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Abstract

Quantum Field Theory is the most successful formalism to model and understand a wide
range of phenomena from high energy to condensed matter physics. Nevertheless, when
outside of the regime of validity of perturbation theory at weak coupling, little can be said
about its behaviour. In this thesis, we approach the problem of QFT at strong coupling in
two ways: in the first half of the thesis we study supersymmetric theories, which allows to
find exact results. In particular, we study the moduli spaces and generalised symmetries of
gauge theories with disconnected gauge groups. In the second half, we consider simple scalar
field theories without supersymmetry, and study the microscopic origin of the large charge
expansion in some examples, as well as several possible applications.
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Resumen

La Teoría Cuántica de Campos es el formalismo más exitoso a la hora de modelizar y enten-
der una amplia gama de fenómenos físicos, desde altas energías a materia condensada. Sin
embargo, una vez alejados del régimen de validez de teoría de perturbaciones para constantes
de acoplo débiles, no hay mucho que se pueda decir sobre su comportamiento. En esta tesis,
abordamos el problema de TCC en régimen de acoplos fuertes de dos maneras: en la primera
parte de la tesis estudiamos teorías supersimétricas, lo que permite encontrar resultados ex-
actos. En particular, estudiamos los espacios de moduli y simetrías generalizadas de teorías
gauge con grupos gauge disconexos. En la segunda parte, consideramos teorías sencillas de
campos escalares sin supersimetría, y estudiamos el origen microscópico de la expansión en
cargas grandes en varios ejemplos, así como posibles aplicaciones.
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Chapter 1

Introduction

Quantum Field Theory (QFT) is one of the main pillars of modern theoretical physics. Since
its inception in the mid 20th century, it has been successful in providing a framework for
understanding a wide range of phenomena, ranging from the description of fundamental
particles and their interaction, to the behaviour of the universe during its very early stages
(especially during inflation), and through the study of various condensed matter systems.

During its early stages, the theoretical development of QFT ran in parallel to the exper-
imental discovery of new subatomic particles during the 40’s and 50’s. In consonance with
this, the formalism was designed to systematically deal with the situations arising in particle
accelerators, allowing one to compute probabilities of different outcomes. Two of the key
advancements during this time were the precise formulation of perturbation theory, both in
terms of Feynman diagrams as well as the path integral; as well as the handling of infinities
by means of renormalization.

However, it soon became apparent that these systematic methods, rooted on the existence
of a small parameter encoding the strength of the interactions, are not effective to capture the
behaviour of systems at strong coupling. This means that one needs new tools and methods
to analyze the physics when the coupling constants are big.

Strong coupling phenomena arises in many physical situations. The most prominent ex-
ample in particle physics is QCD at low energies. While the field theoretic model for strong
interactions benefits from asymptotic freedom (i.e. the coupling is small at very high ener-
gies), meaning it makes sense as a fundamental theory at the smallest scales; when the energy
decreases the coupling grows, and one cannot make use of perturbative QCD to answer seem-
ingly elementary questions such as the inner structure of the proton. Other examples include
condensed matter systems such as high temperature superconductors or topological phases
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of matter.
To date, the problem of QFT at strong coupling is not one that has a single, system-

atic and unequivocal answer. The best that one can attempt is to find methods that work
in some situations, relying on assumptions that are heavily example-dependant. Some ap-
proaches include numerical simulations on the lattice, the use of holographic duality, and/or
integrability.

In this work, we explore two tools that can serve to make an inroad in this question.
The first is supersymmetry, which allows in some cases the computation of observables in
an exact way, namely without making any assumption on the coupling, and therefore can be
used to learn about strong coupling phenomena. The second is the large charge expansion,
which sometimes can be used to employ perturbation theory when the coupling constant is
big, since the inverse of the large charge becomes the small parameter instead.

Each of these two methods has their own advantages and disadvantages. Assuming the
existence of supersymmetry is a big restriction on the quantum field theory, and it seems it is
not realised in models relevant for the description of nature, at least in a straightforward way
(whether it might be broken and realised at higher energies in the context of fundamental
interactions, or emergent in the context of condensed matter systems remains an open ques-
tion). On the other hand, for the toy models that do have supersymmetry, we can usually
rephrase the problem in geometric language, which allows to study more subtle aspects of
QFT by e.g. making contact with String Theory. Conversely, the large charge expansion is
a very general tool that can be utilized in many theories with or without supersymmetry, in
such a way that one has good control over the performed approximation. However, one lacks
the exactness of SUSY and what that brings to the table with regards to the finer print of
QFT.

This thesis is divided in mainly two parts, corresponding to these two approaches. In
the first half we will discuss supersymmetric gauge theories, in the case where the gauge
group is disconnected. This is based on references [1–3], preceded by a brief review of the
basics of 4d N = 2 SUSY. In the second half we will study a double scaling limit involving
large charge in the simple �4 theory. This is based on [4–6], and is also preceded by a brief
review of generalities of the large charge expansion. Each of these chapters includes a section
collecting some conclusions and various remarks, but we also will end with a joint conclusion
chapter putting together the lessons from the two approaches and considering some possible
outlook.
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Chapter 2

Supersymmetric theories with
disconnected gauge groups

One of the main tools that allow for a degree of control on the strongly coupled phenomena
of QFTs is supersymmetry. While the original motivation for its introduction, as a possible
solution to the naturalness problem in particle physics, has fallen from grace due to the lack
of experimental evidence for it at sufficiently low energies; it is still the case that SUSY
can be invoked as a simplifying assumption, producing toy models for QFTs that are much
more constrained than their non-supersymmetric cousins, while still maintaining rich non-
perturbative dynamics. The hope is that, through the study of these simpler models, on can
extract lessons that apply to less symmetric QFTs relevant for the description of nature.

An important quantity in this discussion is the amount of SUSY, given by the number
of fermionic symmetry generators which in 4d can range from N = 1 to N = 4. Naturally,
the larger the quantity of supersymmetries, the more constraints we have in our theory: as
an example, for the case of N = 4, it is believed that the theory is completely specified by
a choice of gauge group, it has conformal symmetry, and there are no UV divergences. This
also implies that a number of strongly coupled phenomena, which we would like to explore,
are abstent in this case. In this thesis we will focus on 4d N = 2 theories, which represent a
sweet spot between the quantitative control of non-perturbative effects and the presence of
rich dynamical features.

The key insight is that for N = 2 theories a lot of physical information is encoded in the
geometry of their moduli space of vacua, which in turn can be studied by means of complex
geometry. In particular, the goal in this chapter will be to study, using these tools, gauge
theories based on disconnected gauge groups. This is a topological property that doesn’t
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affect the local dynamics of the theory and only plays a role when taking into account the
more subtle aspects of QFT; as such, SUSY provides us with a foothold for the understanding
of said aspects.

The organization of this chapter is as follows: in section 2.1, we will provide a brief
introduction to 4d N = 2 SUSY, leaving out many important aspects and instead making a
beeline toward a handful of relevant concepts for the study of moduli spaces which we shall
use frequently in later sections. The rest of the chapter is divided in three parts. In section
2.2 we will discuss the contents of [1], where the possible choices of disconnected gauge group
(with SU(N) as the identity component) were classified, and some aspects of their moduli
space of vacua were investigated using Hilbert Series techniques. Section 2.3 is based on [2],
where we study the Higgs Branch of those theories in depth, including Magnetic Quivers
and its stratification structure as a symplectic singularity. Finally, in section 2.4 we study
the generalised symmetries of these theories [3], and find that the disconnected gauge group
leads to a non-invertible 1-form symmetry even in the non-supersymmetric case. We finish
in section 2.5 with some concluding remarks.

2.1 Lightning review of 4d N = 2 supersymmetry

In this section, we review the basic concepts of 4d N = 2 supersymmetry, somewhat following
[7] and [8]. In 2.1.1 we introduce the N = 2 multiplets and write the most generic lagrangian
for a gauge theory with matter. In 2.1.2 we discuss the moduli spaces of vacua of these gauge
theories and define their Higgs and Coulomb branches. In 2.1.3 we present the geometric
tools that we will use in later sections for the study of moduli spaces.

2.1.1 Multiplets and lagrangians

In 4d, the Poincaré algebra is generated by the Lorentz transformations Mµ⌫ as well as the
translations Pµ. This spacetime symmetry can be enlarged by adding fermionic generators
Qm

↵ and eQn
↵̇, giving rise to the super-Poincaré algebra. Here, Q and eQ are Weyl spinors, ↵

and ↵̇ are (anti)chiral spinor indices; and m,n = 1, . . . ,N are R-symmetry indices, which in
the N = 2 case will be U(2)R = U(1)r ⇥ SU(2)R. The non-trivial commutation relations of
the supercharges are

n
Qm

↵ , eQn
�̇

o
= 2 (�µ)↵�̇ ✏

mnPµ , (2.1.1)
�
Qm

↵ ,Qn
�

 
= �↵�✏

mnZ , (2.1.2)
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where �µ are the Pauli matrices, ✏mn is the Levi-Civita tensor, and Z is called the central
charge.

In order to construct a 4d N = 2 lagrangian, we need to discuss the irreducible repre-
sentations of the SUSY algebra, of which there are two types: the vector multiplet and the
hypermultiplet.

• In order to build the vector multiplet, we start with one complex scalar � which is
annihilated by all the supercharges with a given chirality,

Qm|�i = 0 . (2.1.3)

Acting once with the remaining supercharges eQn will give rise to two spinors �n; and
acting twice to a vector field Aµ. This vector field can be used to describe a gauge
theory; thus its superpartners �n are known as the gauginos, who together with � will
transform in the adjoint of the gauge group. Note that the two gauginos transform as a
doublet of the R-symmetry, while the scalar � is charged under U(1)r but not SU(2)R.

• In order to build the hypermultiplet, we start with two complex scalars q and eq, which
are annihilated by the supercharges in the following way:

Q1|qi = eQ1|qi = Q1|eqi = eQ1|eqi = 0 . (2.1.4)

Acting with Q2, eQ2 now we can obtain two Weyl fermions  and e , but any further
action of the supercharges will annihilate the state, i.e. we cannot reach a spin-1 field.
Therefore, the hypermultiplets will be used to describe matter fields. Note that in this
case the scalars q, eq transform under the SU(2)R symmetry, but are uncharged under
U(1)r.

An efficient way to write down N = 2 lagrangians is to use the N = 1 superspace for-
malism and impose that it has a SU(2)R R-symmetry; this can be acomplished by restricting
the form of the superpotential and the Kahler potential, and it will automatically result in
supersymmetry enhancement to N = 2. Recall that in terms of N = 1 multiplets, a N = 2

vector multiplet is made from a N = 1 vector (vector field and gaugino) plus a N = 1 chiral
(scalar and fermion) in the adjoint of the gauge group; likewise a N = 2 hypermultiplet is
made of two N = 1 chiral multiplets of opposite chirality.

In order to use the N = 1 superspace formalism, we introduce grassmanian coordinates
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(✓↵, ✓̄↵̇) and auxiliary fields D and F j. Then, we can define

Qj = qj + i✓ j + ✓✓F j , (2.1.5)

V = �i✓�µ✓̄Aµ + i✓✓✓̄�̄� i✓̄✓̄✓�+
1

2
✓✓✓̄✓̄D , (2.1.6)

W↵ = �i�↵ + iFµ⌫ (�
µ⌫✓)↵ +D✓↵ + ✓✓

�
�µ@µ�̄↵

�
, (2.1.7)

which are called chiral, vector and gaugino superfields respectively. In these terms, any gauge
and Lorentz invariant combination of the superfields can be integrated over superspace to
produce a N = 1 supersymmetric lagrangian. Requiring SU(2)R R-symmetry places further
restrictions. For example, in order to write down the lagrangian for a N = 2 vector multiplet,
we need to combine the N = 1 lagrangians for a vector and a chiral multiplets with a specific
choice of Kahler potential and overall coefficients (due to the exchange of the two fermions).
This gives rise to the lagrangian for N = 2 super Yang-Mills (SYM) theory:

LSYM
N=2

=
1

8⇡i

Z
d2✓Tr (⌧W↵W

↵ + c.c.) +
Im(⌧)

4⇡

Z
d4✓Tr

�
�†eadj(V )�

�
, (2.1.8)

where ⌧ is the complexified gauge coupling including the theta angle,

⌧ =
✓YM

2⇡
+

4⇡i

g2
, (2.1.9)

and � is a N = 1 chiral superfield involving the scalar � and one of the two fermions �
analogously to (2.1.5).

In a similar fashion, we can construct a lagrangian for a N = 2 hypermultiplet starting
with the lagrangians for two chiral multiplets, and restricting the superpotential and the
overall coefficients in such a way that we respect the SU(2)R R-symmetry that exchanges
the two scalars. This results in

Lmatter
N=2

=

Z
d4✓
h
Q†e⇢(V )Q+ eQ†e⇢(V ) eQ

i
+

Z
d2✓

h
eQ⇢(�)Q+m eQQ+ c.c.

i
, (2.1.10)

where ⇢ is the representation of the gauge group where the matter fields live. A generic N = 2

lagrangian will be given by a choice of fields and a combination of (2.1.8) and (2.1.10).
One of the most important consequences of N = 2 SUSY are the so called non – renormal-

ization theorems, which come about as follows: First, note that the only classically marginal
parameter in the N = 2 lagrangian is the holomorphic coupling ⌧ . Assuming the existence
of a renormalization scheme where holomorphicity is preserved leads to the conclusion that
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the renormalization of ⌧ is 1-loop exact to all orders in perturbation theory, as the l-loop
contribution would be proportional to Im(⌧)1�l. Further assuming that this renormalization
scheme also preserves the R-symmetry further constraints the a priori possible wave-function
renormalization factors for the different kinetic terms, and indeed it turns out they cannot
be non-trivial.

These non-renormalization theorems, and the extended supersymmetry, have important
consequences for the study of the low energy dynamics of N = 2 theories. They imply that
there must exist a holomorphic function F of the chiral superfield � in the vector multiplet,
called the prepotential, such that the various quantities in the effective action depend on its
derivatives. For example, the coupling ⌧ will be

⌧ =
@2F
@�2

. (2.1.11)

In turn, as discovered in the seminal works [9,10], the prepotential can be completely deter-
mined by the geometry of the moduli space of the theory, which we set to discuss in what
follows.

2.1.2 Supersymmetric moduli space of vacua

We have seen that in a N = 2 lagrangian we must have a collection of scalar fields, coming
from both vector multiplets as well as hypermultiplets. It is then natural to ask whether
they can take VEVs and what are the possible vacua. In fact, due to the non-renormalization
theorems, the classical moduli space of vacua is not lifted by quantum corrections, as opposed
to non-supersymmetric theories and even N = 1 theories. Moreover, as shown by Seiberg
and Witten, SUSY restricts the mathematical propierties of the geometry of these spaces,
which can be exploited to obtain a great deal of information about the full theory [9, 10].

In order to find the moduli space, we need to find the minima of the scalar potential
V (�, q, eq). A direct computation shows that these are given by the following set of equations,

⇥
�,�†

⇤
= 0 , (2.1.12)

8
<

:

⇣
qjq†j � eq†jeqj

⌘���
traceless

= 0 ,

qjeqj|traceless = 0 ,
(2.1.13)
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8
>>>><

>>>>:

�qi +M j
i Qj = 0 ,

eqi�+M i
jeqj = 0 ,

�†qj +M †j
i qj = 0 ,

eqi�† +M †i
j eqj = 0 .

(2.1.14)

Let us now focus on the case where the masses are all equal to zero. In this case we
immediately see that there are three qualitatively different types of solutions to the vacuum
equations, which receive the names of Coulomb branch, Higgs branch and mixed branch.

• The Coulomb branch (CB) is obtained by setting all the q’s to zero, in which case
the only non-trivial equation that remains is (2.1.12). This is solved when � takes
values in the Cartan algebra of the gauge group. Such non-zero VEVs will result in
adjoint Higgsing of the gauge group, generically to U(1)rank(G), which justifies the name
“Coulomb branch”. Note that, since the scalar in the vector multiplet is charged under
the U(1)r R-symmetry, only SU(2)R is preserved along these vacua.

• The Higgs branch (HB) is obtained, on the other hand, by setting � = 0, which leaves
us with equations (2.1.13). A point on this branch of the moduli space will be specified
by the VEVs of the q’s satisfying the equations, modulo gauge transformations, a
construction known as a hyper-Kahler quotient. Therefore, the complex dimension of
the space is dimC(HB) = 2(nH � nV ), with nH and nV the number of hypermultiplets
and vector multiplets, as long as there are enough of the former to completely Higgs
the gauge group. Since the q’s are charged under SU(2)R, only U(1)r is preserved along
these vacua.

• If both hypermultiplet and vector multiplet scalars have non-zero VEVs, we are in a
mixed branch. This can always be understood as a fibration of a Higgs branch type
fiber over a Coulomb branch base. Along these vacua, the R-symmetry is completely
broken.

There are two main steps in the study of the moduli space of a N = 2 theory. The
first is to understand the basic underlying algebraic variety, which contains information of,
for example, the list of gauge invariant operators one can build in the theory in question.
The second is to compute the metric on top of this variety, which is in turn the metric of
the sigma model (which has the moduli space as a target) relevant for the low energy EFT
description.
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If we focus on the Coulomb branch, it is very common that the underlying algebraic
variety is very simple. For example, if the gauge group is SU(N), it is parametrized by
gauge invariant operators of the form Tr (�k), k = 2, . . . , N ; where we have taken care of the
redundancy due to the Weyl group of SU(N), and with no relations between the different
generators. This is to say, the CB is simply given by C

N�1/SN . More generally, for a theory
with gauge group G it is very often the case that the CB is C

rank(G)/WG, with WG the
Weyl group of G; although we should remark that this is not so for the theories that we will
discuss in the following sections. Then, one asks what is the metric on top of this algebraic
variety. It turns out that preserving N = 2 SUSY restricts this metric such that the Coulomb
branch is a special Kahler manifold, a fact which can be exploited in order to completely
determine said metric and in some cases solve the full low energy EFT including strong
coupling phenomena [9, 10].

Regarding the Higgs branch, due to the non-renormalization theorems and the fact that
the hypermultiplet part of the lagrangian is blind to the gauge coupling ⌧ , the metric on the
moduli space is just the classical one. Concretely, if we denote the first term of (2.1.10) as

Z
d4✓K(Qi, eQj) , (2.1.15)

then, after writing down the superfields in components,

gij =
@2K

@qi@eqj
, (2.1.16)

which is the metric appearing on the low energy sigma model in the kinetic term of the
scalars as

L � gij @µq
i@µeqj . (2.1.17)

On the other hand, the underlying algebraic variety can be quite complicated. As we
have mentioned before, the HB is obtained as

8
<

:
(qjq†j � eq†jeqj)

���
traceless

= 0

qjeqj|traceless = 0

9
=

;

,
(G� gauge transformation) . (2.1.18)

This construction, known as a hyperKahler quotient, can produce a variety with any number
of generators and various relations among them; in fact, a good part of the work of the
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following chapters consists of studying the algebraic structure of the HB in a collection of
examples. The constraint imposed by N = 2 SUSY is that the variety must be hyperKahler,
which means that it has a quaternionic structure. This is because of the following reason:

First, starting with a complex scalar q = (Re q, Im q) and acting on it with the supersym-
metry generators eQ↵̇Q↵ results in something proportional to (� Im q,Re q), i.e. it involves a
multiplication by the matrix

I =

 
0 1

�1 0

!
, (2.1.19)

which is a complex structure on the Higgs branch. Since we have N = 2, we will have two
complex structures I and J . Moreover, since Q(c) = c1Q1 + c2Q2 is also a supersymmetry
as long as |c1|2 + |c2|2 = 1, we can also produce a third complex structure K. This will be
not independent from the previous two, rather I, J,K will satisfy precisely the quaternionic
conditions,

I2 = J2 = K2 = �1 , (2.1.20)

IJ = K = �JI , (2.1.21)

JK = I = �KJ , (2.1.22)

KI = J = �IK . (2.1.23)

The fact that the Higgs branch is always restricted to be a hyperKahler cone, also known as
a symplectic singularity, can also be used to obtain information about the theory in question.
We will use this fact for example in section 2.3.

2.1.3 Tools for moduli spaces

If the theory is simple enough, studying the algebraic structure of its moduli space is a task
that can be easily completed, i.e. one can find for example the set of equations that fully
define the algebraic variety. This ceases to be the case when the theory grows in complexity,
by which we mean increasing number of gauge groups, bigger representations of the matter
fields, or even non-lagrangian theories, etc. In particular, in the following sections we will
focus on the case where the gauge group has non-trivial topological properties.

In these instances, we need to figure out what characteristics of the moduli space we
can determine, even if the full computation of the moduli space is not possible. This section
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is devoted to reviewing three tools with this purpose, that can be used to obtain partial
information of the moduli space, and in particular of Higgs branches. They are the Hilbert
series, magnetic quivers and Hasse diagrams.

Hilbert Series

It is a basic fact of algebraic geometry that an algebraic variety is completely specified by
its coordinate ring, i.e. the ring of all the polynomials one can build from the coordinates
modulo the relations imposed by the defining equations of the variety. When the full ring is
not accessible, an intermediate observable is the Hilbert series, which is a generating function
that counts the number of different monomials at each degree. That is to say, a variety whose
coordiante ring has 1 monomial of degree 0 (the identity), n1 of degree 1, n2 of degree 2, and
so on, will have a Hilbert Series

HS(t) = 1 + n1t+ n2t
2 + · · · . (2.1.24)

For example, the variety C, which has coordinate ring C[X], will have Hilbert Series

HS(t) =
1

1� t
= 1 + t+ t2 + · · · . (2.1.25)

If the variety is a moduli space of a N = 2 theory, say its Higgs branch, the coordinates
on it are the VEVs of the scalars in the hypermultiplets. Then, finding the Hilbert Series is
a two step process implementing the hyperKahler quotient (2.1.18) [11–13]. First, one needs
to count all possible monomials built from the scalars, modulo the relations imposed by the
F-terms. In the case where the number of hypermultiplets and vector multiplets is such that
there is complete higgsing, this step is straightforward. Second, one needs to mod out by
the action of the gauge group. This can be achieved by introducing the character of the
representation of the gauge group that each field transforms in, and then integrating over
said group with the corresponding Haar measure.

For example, for N = 2 SQCD with gauge group G, and with Nf hypermultiplets in the
fundamental representation, the formula for the Higgs branch Hilbert series will look like

HS(t) =
Z

G

dµG
det(1� �adjt2)

det(1� �f t)Nf det(1� �f t)
Nf

, (2.1.26)

where �⇢ is the diagonal matrix in the Cartan of the gauge group whose trace is the usual
character of the representation ⇢ and dµG is the Haar measure of the group G. Here, the
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denominator takes care of counting all the possible symmetrized products between the scalars
qi and eqi, and the numerator imposes the F-term relations, which themselves are polynomials
of degree 2 and transform in the adjoint of G. Note that, even if an analogous formula to
(2.1.26) can be written for most lagrangian theories, the evaluation of the integral grows
quickly in computational complexity when the rank of the gauge group increases.

Since the coordinates used in our moduli space come directly from the fields in the
lagrangian, the Hilbert series has the direct physical interpretation of counting the number
of gauge invariant operators, and it can be used even outside the realm of supersymmetry in
the context of EFTs (see e.g. [14–18]). Moreover, (2.1.26) can be refined to include fugacities
for the flavour symmetry, which in turn will allow us to know in which representations of the
global symmetry group the gauge invariants will transform. This has nice applications, such
as exploring possible symmetry enhancements, or computing the global form of the global
symmetry group.

Magnetic Quivers

One of the many advantages that supersymmetry brings to the table are dualities, which
is the statement that two apparently different theories are really different descriptions of
the same theory. Since many SUSY theories can be constructed as compactifications or
brane systems in String Theory, it is often the case that dualities between SUSY theories
are inherited from string dualities. One such example is 3d mirror symmetry, an infrarred
duality relating two 3d N = 4 theories stating that their moduli spaces are equal, with the
Higgs branch of the first being equal to the Coulomb branch of the second, and the Higgs
branch of the second equal to the Coulomb branch of the first.

Magnetic Quivers represent a generalization of this statement, exploiting the fact that
the Higgs branch is invariant under changing dimension across d = 3, . . . , 6. If we denote our
original 4d N = 2 as T 4d, in whose Higgs branch we are interested; then a magnetic quiver
for said Higgs branch is a quiver theory1 denoted MQ, which understood as a 3d N = 4

theory has a Coulomb branch equal to the Higgs branch of T . In other words, we have the
following equality of moduli spaces,

HB
�
T 4d
�
= CB

�
MQ3d

�
. (2.1.27)

1A quiver theory is a lagrangian theory specified by a total gauge group which is a direct product of gauge
groups, and matter fields which transform in the bifundamental representations of those; and therefore can
be completely encoded in an ordered graph called a quiver.
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This generalizes 3d mirror symmetry in the sense that there is no requirement for the
Coulomb branch of T and the Higgs branch of MQ to be related, and therefore it shouldn’t
be regarded as a duality between two theories. Still, the equality of moduli spaces presents
several interesting possibilities on itself. One of the main ones concerns the ability to com-
pute Hilbert series for theories where evaluating the integral (analogous to) (2.1.26) is not
feasible. This is thanks to the monopole formula [19]. It states that, since the 3d N = 4

Coulomb branch is the space of dressed monopole operators in the theory, whose conformal
dimension is known, then the Hilbert series can be computed as

HS(t) =
1

|W|
X

m2Zr

X

�2W(m)

t2�(m)

det(1� t2�)
, (2.1.28)

where r is the total rank of the gauge group, |W| is the order of the Weyl group and W(m)

is the subgroup of the Weyl group that leaves the weight m invariant. Lastly, �(m) is the
conformal dimension of the monopole corresponding to the weight m, whose expression in
terms of m is known but depends on the theory. If one can derive the magnetic quiver for
a Higgs branch from string theory arguments (such as brane constructions, etc.), this will
allow the computation of the Hilbert series beyond the reach of the Molien integral.

Hasse Diagrams

We have seen in section 2.1.2 that Higgs branches are always hyperKahler cones, also known
as symplectic singularities. As a consequence, they have the propierty that they always admit
a foliation structure, a fact studied by mathematicians in [20,21]. This means that the Higgs
branch can be divided into a collection of symplectic leaves (i.e. subspaces in the foliation
where the symplectic form is preserved) which have a partial order given by inclusion of
their closures. In physical terms, this foliation contains the information of the structure of
possible partial higgsings [22].

Hasse diagrams are a very generic tool that allows to intuitively depict a partial order
relation in any set. In the context of Higgs branches of supersymmetric theories, the bottom
point of the Hasse diagram will correspond to the origin of the Higgs branch, where all
the VEVs are zero and the gauge group remains unhiggesd. The top of the Hasse diagram
will correspond to a generic point on the Higgs branch, where the different hypermultiplet
scalars take various VEVs, the gauge group is completely higgsed (or, if we don’t have enough
matter, as higgsed as possible) and the only remaining massless fields are a collection of free
hypermultiplets. Intermediate points in the Hasse diagram will correspond to the possible
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partial higgsings, or in mathematical terms to the symplectic leaves of the foliation. They will
be characterized by the remaining gauge group and massless matter fields. In other words,
the Hasse diagram encodes the possible phases of the theory and Higgs branch flows.

Even outside the lagrangian context, when one cannot directly explore the mechanism of
partial higgsing, Hasse diagrams can be derived using string theory constructions or magnetic
quivers. If one has a construction of the theory as a brane system, investigating the possible
movements of the branes in the different transverse directions allows to explore the Hasse
diagram. Likewise, it can also be obtained in the context of geometric engineering by studying
the possible resolutions and deformations (see e.g. [23]). From a magnetic quiver, the Hasse
diagram can also be computed via the algorithm of quiver subtraction [22].

2.2 Discrete gauge theories of charge conjugation

Gauge symmetry governs the dynamics of a huge variety of systems, ranging form Condensed
Matter to Particle Physics. Very often, when discussing gauge symmetry, one implicitly refers
to symmetries associated to continuous groups. However, gauge theories based on discrete
groups (a.k.a. discrete gauge theories), while perhaps more exotic, are also very interesting.
Indeed, in Condensed Matter (or lattice models), discrete gauge theories play a relevant role.
For instance, in 2d, a web relating various well-known dualities was recently described in [24]
by including appropriate Z2 gaugings using previous results in [25, 26]. Also in 3d discrete
gauge theories play a relevant role. For example, the Z2 Ising model for one-half spins in
a squared lattice is dual to a lattice Z2 gauge theory [27]. Moreover, it admits a phase
whose continuum limit is realized by the same doubled Chern-Simons theory appearing in
the description of certain topological phases of electrons in [28].

In turn, in High Energy Physics, discrete gauge theories also play a relevant role. In many
cases, discrete global symmetries – a prominent example being R-parity in supersymmetric
(SUSY) models – are needed to achieve phenomenologically viable scenarios. Yet, if only
global symmetries, their constraints would be washed out by Quantum Gravity effects. This
suggests, as first discussed in [29], that discrete symmetries must be gauged at a fundamental
level. The subject was recently revived in [30], where it was argued that in a consistent theory
of Quantum Gravity such as String Theory all global symmetries, including discrete ones,
are expected to be gauged. Indeed, String Theory quite often produces gauged discrete
symmetries. For instance, in the presence of NS5 branes, there can be discrete Zk gauge
symmetries as discussed in [31]. These gauged discrete symmetries have also been quite
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extensively discussed in the context of String Phenomenology (see e.g. [32]). More recently,
[33] conjectured discrete SN gauge symmetries in 6d Conformal Field Theories (CFT’s)
needed in order to correctly reproduce their operator spectrum.

On a seemingly separate line, the traditional approach to Quantum Field Theory (QFT)
is based on perturbation theory, specifically through the computation of correlation functions
using Feynman diagrams. While this approach is very successful to compute observables such
as scattering amplitudes, it misses a great deal of the beautiful subtleties of Quantum Field
Theory. Indeed, by definition perturbation theory considers small fluctuations around the
(trivial) vacuum, and hence it is essentially blind to the global structure of the group, which
at most enters as a superselection rule. Nevertheless, interesting Physics may be hiding in the
global structure of the group, despite being local Physics blind to it. A particular example is
the case of O(N) theories, which can be regarded as the composition of a continuous gauge
SO(N) symmetry and a discrete gauge Z2 symmetry. Thus, this is yet another context in
which discrete gauge theories may appear, in this case as part of a larger and disconnected
gauge group.

Also in the realm of High Energy Physics, the gauging of discrete symmetries has been
argued to play a very relevant role in the construction of N = 3 SCFTs in 4d. The first
examples of these were constructed in [34] starting with N = 4 SYM where the complexified
Yang-Mills coupling is tuned to a self-S-dual point. At those points a subgroup � ⇢ SL(2, Z)

mapping the theory to itself appears as an extra discrete global symmetry. As shown in
[34–37], quotienting by a well-chosen combination of � and a subgroup of the R-symmetry
– which amounts to gauging a discrete group – precisely breaks the supersymmetry down to
exactly N = 3. Hence, it is the discrete gauging which is breaking the supersymmetry down
to N = 3.

In [35] this strategy was generalized to a systematic study of gaugings of discrete symme-
tries preserving at least N = 2 SUSY (mostly restricting to rank one theories). In this way
a beautiful landscape of theories interrelated among them emerged. In the case of theories
based on an SU(N) gauge group, a natural such discrete symmetry to quotient by is charge
conjugation. As noted in [35], gauging charge conjugation can be subtle and all supersym-
metries can be broken. The ultimate reason for this lies in the fact that charge conjugation is
essentially akin to complex conjugation (⇠ Z2), the outer automorphism of SU(N). It is then
intuitive that the combined group incorporating SU(N) and charge conjugation transforma-
tions cannot simply be the direct product SU(N) ⇥ Z2 but rather the semidirect product
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SU(N)oZ2.2 This conflicts with the two-step procedure of first considering a SU(N) gauge
theory and then gauging its Z2 charge conjugation symmetry, which implicitly assumes a
direct product structure.

In [38] a fresh approach to the problem was taken, namely, first constructing a Lie group
which incorporates both SU(N) transformations as well as charge conjugation, and then using
it to build gauge theories. Such groups had been introduced in the mathematical literature
under the name of principal extensions (in this case of SU(N)) in the past [39,40], and made a
brief appearance in the Physics literature in [41–43] in the context of branes wrapping group
manifolds. A more related set-up is that discussed in [44], where after symmetry breaking
one ends up with a remainder discrete charge conjugation symmetry which can produce Alice
strings. While this was mostly with an eye on the U(1) case, the non-abelian version plays
a relevant role as well in the process of constructing orientifold theories, as discussed in [45].
These groups have two disconnected components and are very similar to the orthogonal
gauge theories briefly alluded above. Indeed, O(2N) is a principal extension of SO(2N) [46]
(since O(2N +1) = SO(2N +1)⇥Z2, this case is much more tractable and less interesting).
Surprisingly, as shown in [38] and soon after in [36,37] for other discrete gaugings of the like,
it turns out that the gauge theories based on principal extension of SU(N) provide the first
examples of four-dimensional N = 2 theories with non-freely generated Coulomb branches.
While a priori no argument forbids theories with non-freely generated Coulomb branches
(and indeed their putative properties had been studied [47]), in view of the lack of explicit
examples it was widely believed that such theories would not exist. The theories proposed
in [36–38] then provide the first counterexamples to that conjecture.

In [38] N = 2 SUSY theories where considered as proof-of-concept for gauge theories
based on principal extensions, with the bonus that the first theories with non-freely generated
Coulomb branches were discovered. Yet in principle one may construct gauge theories in
arbitrary dimensions with any SUSY (including no SUSY) based on principal extension
groups. In this section we re-consider with more detail the construction of such groups. It
turns out that the correct way to think about these groups is as extensions of SU(N) by its
(outer) automorphism group (recall, ⇠ Z2). A detailed analysis shows that actually there
are exactly two possible extensions, corresponding to two possible disconnected Lie groups
which we dub fSU(N)I,II. In a precise way that we describe below, these two types correspond

2Schematically, this can be easily seen by writing any element in the Cartesian product SU(N) ⇥ Z2

as g(U, �), where � is either the identity or complex conjugation (⇠ charge conjugation) and U a SU(N)

matrix. A short computation shows that the multiplication rule is that of a semidirect product (more details
in section (2.2.1)).
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to the classification of symmetric spaces of type A. To our knowledge, the existence of these
two possible extensions and their construction has not appeared before. We then go on and
explicitly construct gauge theories based on them, concentrating, like in [38] as a proof-of-
concept, on N = 2 SQCD-like theories. In particular, we analyze certain protected sectors of
the operator spectrum using different limits of the Superconformal Index (SCI). This allows
us to show that the corresponding Coulomb branches are isomorphic as complex algebraic
varieties and both are not freely generated. As a by-product of the explicit construction of
the Lagrangian of the theories, we can understand from first principles the global symmetry
pattern emerging from the Higgs branch Hilbert series computation in [38].

The organization of this section is as follows: we start in section (2.2.1) describing the
principal extensions of SU(N) as extensions of the Z2 outer automorphism group of SU(N)

by SU(N). As anticipated, we find exactly two such possibilities which are in one-to-one
correspondence with the Cartan classification of symmetric spaces of type A. In section
(2.2.2) we study aspects of the representation theory of these groups, paying special attention
to the fundamental and the adjoint representations as well as to some of the invariants which
can be formed out of them. We also construct the Weyl integration formula over the fSU(N)I,II

groups. In section (2.2.3) we turn to Physics and construct N = 2 SQCD gauge theories
based on fSU(N)I,II. As a by-product, we will provide an a priori understanding of the global
symmetry groups of the resulting theories. In section (2.2.4) we turn to the quantitative
analysis of the theories using various limits of the superconformal index as diagnostics tool.
To that matter, the integration formula previously developed in section (2.2.2) plays a very
relevant role. In particular, we will find that the fSU(N)I,II theories have non-freely generated
Coulomb branches. Finally, we conclude in (3.4.4) with some final remarks and open lines.
For the interest of the reader, we postpone to the appendices several technical details.

2.2.1 Construction of two disconnected groups

The groups we are interested in are extensions of Z2 by a Lie group, which in this section we
will take to be SU(N). In [38], the so-called principal extension were considered, but it turns
out that although the group of outer automorphisms of SU(N) is Out(SU(N)) ⇠= Z2, there
are in some cases more than one (in fact, exactly two) inequivalent ways of constructing a
semi-direct product of SU(N) by Out(SU(N)). This section aims at studying this issue in
depth.

For concreteness, we will start with a pedestrian approach to the problem, and we will see
that the two disconnected groups arise in a natural way. Then we will provide a more abstract,
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but also more rigorous construction, of the semi-direct products. As we will explain, they are
built from involutive outer automorphisms (IOA) of SU(N), i.e. automorphisms which are
their own inverse. In turn, we will see that these are classified by real forms of the complex
Lie algebra sl(N,C), or equivalently by symmetric spaces. This last feature will also help us
understand the global symmetry of the gauge theories constructed in later sections.

Explicit matrix realization

Let’s construct the (disconnected) gauge group of an SU(N) theory in which charge conju-
gation is gauged as well. In such a theory, the lowest-dimensional non-trivial representation
has dimension 2N , so we will construct our group as a 2N ⇥ 2N matrix group. It has a sub-
group, denoted G, which is isomorphic to SU(N) in the fundamental plus antifundamental
representation:

G =

(
U =

 
M 0

0 M?

!�����M 2 SU(N)

)
⇠= SU(N) , (2.2.1)

where the star denotes complex conjugation. The charge conjugation is a Z2 group which
exchanges the fundamental and antifundamental of SU(N), so it has to be of the form

�A =

( 
1 0

0 1

!
,

 
0 A

A�1 0

!)
⇠= Z2 , (2.2.2)

where A 2 U(N) is a matrix on which we will come back later. The total gauge group, which
we call eGA, is the image of the Cartesian product G⇥ �A under the multiplication map,

eGA = {g� | g 2 G, � 2 �A} . (2.2.3)

We have added the subscript A to insist on the fact that this depends on the matrix A chosen
above. The product in this group is simply matrix multiplication. Thus for two elements g�
and g0�0 of eGA, we have

g� · g0�0 = g�g0�0 = (g'�(g
0))(��0) , (2.2.4)

where the last rewriting is necessary for the product to be manifestly in the form g00�00. This
is a semi-direct product structure, with

'� : G ! G

U 7! �U ��1
(2.2.5)
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Note that for the non-trivial element � 2 �A one has

'�(U) =

 
AM? A�1 0

0 A�1 M A

!
. (2.2.6)

Writing down the requirement that this matrix belongs to G defined in (2.2.1) leads to the
condition that AA† = 1 together with A�1 M A = (AM? A�1)? for all M 2 SU(N). From
the last condition it follows that M (AA?) = (AA?)M , which is solved for AA? = � 1. Since
A 2 U(N), by multiplying on the left by A†, we could as well write A? = �A†. Likewise, we
could take the complex conjugate of the equation to write A? A = �? 1. Multiplying now on
the right by A† leads to A? = �? A†, which requires � 2 R. Then, since A 2 U(N), by taking
the determinant, |det(A)|2 = �N = 1. Hence, we obtain

AA? =

8
<

:
±1 for N even

+1 for N odd .
(2.2.7)

Thus, all in all, we have found a family of matrix groups given by (2.2.3) where

• for odd N one needs AT = A. This defines a group that we call fSU(N)I.

• for even N we have two cases:

– A = AT : this defines a group that we call fSU(N)I (the even N version).

– A = �AT : this defines a group that we call fSU(N)II.

While this gives an intuitive construction of two different groups fSU(N)I and fSU(N)II,
several questions are left unanswered: why did we choose to represent eGA in the specific form
(2.2.3)? Is the symmetry property of the matrix A enough to characterize entirely the groups
eGA? Do this construction really yield two non-isomorphic groups?

As for the last point, a preliminary observation is that had the two groups fSU(N)I and
fSU(N)II, for N even, been conjugated one to the other, there should be an invertible 2N⇥2N
matrix X such that �II = X �I X�1, where we denoted by �I,II the non-trivial element of �A

in the two cases. A natural ansatz for the matrix X is

X =

 
X 0

0 X?

!
, (2.2.8)

for some X 2 SU(N). A short computation shows that the condition for both choices to
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Split extensions of Z2 by SU(N)

Involutive automorphisms of SU(N)

Involutive automorphisms of sl(N,C)

Real forms of sl(N,C)

Symmetric spaces associated with
the compact group Gc = SU(N)

Figure 2.1: Schematic representation of the method of classification of split extensions of Z2

by SU(N), covered in sections 2.2.1 and 2.2.1.

be conjugated translates into AII = X AI XT , where AI,II denotes in the obvious way the A

matrix for the corresponding choice. Transposing this equation leads to AII = �X AI XT ,
which shows that such X does not exist. While this hints that indeed both choices are two
different groups, it strongly relies on a specific representation. In the rest of this section
will offer more formal arguments that indeed there are exactly two extensions fSU(N)I and
fSU(N)II of SU(N) for N even, and only one for N odd, that can be obtained by gauging the
outer automorphism, and the labels I and II are related to the Cartan classification of real
forms of sl(N,C). Figure 2.1 gives an overview of the logical steps that we will follow.

Extensions and semidirect products

The semidirect products that we consider are extensions of Z2 by SU(N). In order to point
out the subtleties of this construction, we begin with a review of some general theory of
extensions of discrete groups by Lie groups (more details can be fount in [48], Chapter 18).
Let G̃ be any Lie group, connected or not. Then G̃ is the extension of the discrete groups
of its connected components, called ⇡0(G̃), by its identity component, called G. This means
that there is a short exact sequence

1 G G̃ ⇡0(G̃) 1 .◆ q (2.2.9)

Note that the groups introduced in the previous section fit this structure: constructing the
maps ◆(g) = g id�A (which maps an element g 2 G into eg 2 eG) and q(eg) = � (which maps
an element eg = g� 2 eG into �A

⇠= Z2), it is clear that Ker(q) = Im(◆).
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In the following we will restrict ourselves to split extensions, or equivalently (due to
the "splitting lemma") to the situation where G̃ is a semidirect product G o ⇡0(G̃). The
assumption that the extension is split means that there exist a Lie group morphism � :

⇡0(G̃) ! G̃ such that q � � = id⇡0(G̃)
. Note that for any extension (split or not) we can

construct a map CG : G̃ ! Aut(G) defined by CG(g̃)(g) = ◆�1(g̃◆(g)g̃�1) for all g 2 G and
g̃ 2 G̃. Using now the splitting morphism � we can form a homomorphism S = CG ��, which
is precisely what is needed to build a semi-direct product GoS ⇡0(G̃).

Note as well that indeed the groups introduced in the previous section do fit in this
structure, since we can construct a map from �A into eG as �(�) = idG � which clearly
satisfies that q � � = id�A . Hence, when regarded as a sequence, indeed eG is split and,
consequently, there is a semidirect product structure (which on the other hand we explicitly
constructed). In that language, the homomorphism S corresponds to the '� in eq. (3.3.7).

Finally, we add a last ingredient to the construction, namely the group of outer auto-
morphisms of G, Out(G) = Aut(G)/Inn(G), with the obvious map [·] : Aut(G) ! Out(G).
For $ 2 ⇡0(G̃), one can show that the formula s($) = [CG(g̃)] where g̃ 2 G̃ is chosen such
that q(g̃) = $ defined a group homomorphism s : ⇡0(G̃)! Out(G), called the characteristic
homomorphism of the extension. This is summarized by the diagram

1 G G̃ ⇡0(G̃) 1

Aut(G) Out(G)

◆

q

CG

�

s
S

(2.2.10)

Two equivalent extensions of ⇡0(G̃) by G define the same s.3 Obviously, there are exactly
two possible homomorphisms s when ⇡0(G̃) ⇠= Out(G) ⇠= Z2: the trivial morphism, giving
the direct product G̃ = G ⇥ Z2, and the identity morphism, giving a semi-direct product.
However the converse is not true, and we will see that two inequivalent extensions correspond
to the identity morphism s : Z2 ! Z2. By definition, the classification of semidirect products
G oS ⇡0(G̃) reduce to the classification of the possible maps S. In the case at hand, where
⇡0(G̃) ⇠= Z2, S has to be its own inverse, and thus this means that we need to classify the
involutive automorphisms of G. This is the main lesson that we learn from this abstract
development: classifying the different extensions is equivalent to classifying the involutive
automorphisms of G, which will then be our next task. In particular, the semidirect products
will be associated to outer involutive automorphisms.

3See Lemma 18.1.6 in [48].
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Real forms and Antiinvolutions

There is a very elegant theory of involutive automorphisms in complex Lie algebras, con-
necting them to real forms – this is what will allow us to classify them. We begin with a
quick reminder of some aspects of the theory of real and complex Lie algebras, referring
to [49] for more details. Given a real Lie algebra g0 we denote by g0(C) the corresponding
complexification, which is uniquely defined by the bracket

[x1 + iy1, x2 + iy2] = [x1, x2]� [y1, y2] + i([x1, y2] + [y1, x2]), 8 x1, x2, y1, y2 2 g0 . (2.2.11)

Conversely, a real structure � of g = g0(C) is defined to be an involutive antilinear auto-
morphism, or antiinvolution for short. This means that a real structure is an automorphism
which satisfies

8
<

:
�(↵x+ �y) = ↵⇤�(x) + �⇤�(y) 8 x, y 2 g0 8↵, � 2 C

�2(z) = z 8 z 2 g ,
(2.2.12)

where ↵⇤ denotes the complex conjugate of ↵. Finally, a real subalgebra g0 of g is called a
real form of g if g = g0 � ig0.

It’s important to note that although the complexification of a real Lie algebra is unique,
there might be several real forms for a given complex Lie algebra, and these can be classified
using the real structures. Indeed, on the complex Lie algebra g there is a bijection between
real structures and real forms:

• Given a real structure � : g! g we can construct the corresponding real form

g� := {X 2 g | �(X) = X} . (2.2.13)

• Conversely, given a real form g0 of a complex Lie algebra g, we can construct the
corresponding real structure � as the complex conjugation, �(x + iy) = x � iy 8
x, y 2 g0.

Moreover two real forms g0, g1 of g are isomorphic if and only if the corresponding real
structures �0, �1 are conjugate by an automorphism of g, i.e. there exists ↵ 2 Aut g such
that �1 = ↵�0↵�1.

We now focus on a rank r semisimple complex Lie algebra g. It admits a canonical system
of generators (hi, ei, fi) for i = 1, . . . , r. One can show that [49] there exists a unique real
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structure, which we call ⌧ from now on, such that

⌧(hi) = �hi , ⌧(ei) = �fi , ⌧(fi) = �ei . (2.2.14)

The associated real form is a compact real form.4

Cartan Class Real form sl(N,C)� Real structure � Involution ✓
AI sl(N,R) X 7! X⇤ ✓I : X 7! �XT

AII (N even) sl(N/2,H) X 7! �JNX⇤JN ✓II : X 7! JNXTJN
AIII, AIV su(p,N � p) X 7! �Ip,N�p(X⇤)T Ip,N�p X 7! Ip,N�pXIp,N�p

Table 2.1: The three (types of) real forms of the complex Lie algebra sl(N,C). The second
line exists only when N is even. In the third line, p = 0, 1, . . . , [N/2]. For each real form, we
indicate the corresponding real structure � and the corresponding involution ✓ = �⌧ with
⌧ : X 7! �(X⇤)T .

We now use the compact real structure ⌧ to associate to any real structure � the auto-
morphism

✓ = �⌧ . (2.2.16)

It is clear that ✓ is a linear (as opposed to antilinear) automorphism, but in general it is
not an involution. However, we have seen above that up to replacing the real form g0 by
an other isomorphic real form, we can conjugate the corresponding real structure � by any
automorphism of g, and Cartan proved that at least one of these conjugates gives rise to an
involutive ✓. Therefore, in the case of semisimple complex Lie algebras, to each real form
one can associate an involutive automorphism. This non-trivial statement is the key step
to obtain Cartan’s theorem: two real forms g0, g1 of g are isomorphic if and only if the
corresponding involutions ✓0, ✓1 are conjugate to each other, i.e. 9 ↵ 2 Aut(g) | ✓1 = ↵✓0↵�1.

With this theorem at hand, we can now, given a list of inequivalent real forms of a
semisimple complex Lie algebra, obtain the corresponding classification of inequivalent in-
volutive automorphisms. Let us work out the case of g = sl(N,C). In that case, it is easy to
check that5 ⌧(X) = �(X?)T for X 2 g. The real forms of sl(N,C) can be read on Cartan’s
classification, and come in three different types; it is then a simple task to compute the
associated involution ✓ in each case. This is summarized in Table 2.1. We have used the

4There exists also a unique real structure & which fixes the system of generators,

&(hi) = hi , &(ei) = ei , &(fi) = fi . (2.2.15)

The associated real form is the split real form.
5The split real form & is the usual complex conjugation.
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notations

Ip,q =

 
�1p 0

0 1q

!
, JN =

 
0 �1N/2

1N/2 0

!
, (N even). (2.2.17)

One representant of each conjugacy class of involution of sl(N,C) is presented in the last
column of Table 2.1. Note that the involutions corresponding to the real forms su(p,N�p) are
inner, and we are left with precisely two conjugacy classes of outer involutive automorphisms
when N is even, and only one class when N is odd.

There is a bijective correspondence between the simple real Lie algebras and the irre-
ducible noncompact symmetric spaces of noncompact type which we briefly review in Ap-
pendix 5.A.1 (see [50]); this relates the involution of the algebra ✓ to an involution ⇥ on the
group. This correspondence is illustrated in the case of the compact group SU(N) in Table
2.2. Although we will not exploit the symmetric spaces duality, we want to point out the
involutions ⇥ and the subgroups K left invariant by ⇥. One can check that in all cases the
involutions ⇥ induce on the corresponding Lie algebras the involutions ✓ of Table 2.1. As
for the compact subgroups K, they will turn out to determine the global symmetry of gauge
theories based on the semidirect products of SU(N) by ⇥.

From now on, we focus on the first two lines of Tables 2.1 and 2.2, and borrowing names
from the Cartan classification, we define the two following groups:

fSU(N)I = SU(N)o⇥I Z2 ,

(2.2.18)
fSU(N)II = SU(N)o⇥II Z2 , (N even) .

Note that these are indeed the groups constructed in the previous subsection, thus confirming
the claim that indeed there are the two possible extensions of Z2 by SU(N).

Cartan Class G K dimK Involution ⇥
AI SL(N,R) SO(N) 1

2
N(N � 1) g 7! (g�1)T

AII (N even) SL(N/2,H) Sp(N/2) 1

2
N(N + 1) g 7! �JN(g�1)TJN

AIII, AIV SU(p,N � p) S(U(p)⇥ U(N � p)) p2 + (N � p)2 � 1 g 7! Ip,N�pgIp,N�p

Table 2.2: The three (types of) symmetric spaces for which Gc = SU(N). In each case we
indicate the dual group G, the compact subgroup K and the lift to the group SU(N) of the
involutions ✓ in Table 2.1. One can check that K is the subgroup of G fixed by ⇥.
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A construction of automorphisms

Now we explain how to construct explicitly automorphisms in the various classes correspond-
ing to the lines of Table 2.1. We will use a method based on the Weyl group.

General theory Consider a simple complex Lie algebra g. Let � : � ! � be an isomor-
phism of the root system �, and let � be a set of simple roots in �. The isomorphism �

extends in a trivial way on the Cartan subalgebra h, giving an isomorphism ✓ : h! h, and
we want to extend it to the whole Lie algebra g. To do this, let us first choose a non-zero
element X↵ in each root space g↵ for ↵ 2 �. We also choose a family of non-zero complex
numbers c↵ for ↵ simple. Then (see [51], Theorem 14.2) there exist a unique isomorphism
✓ : g! g that extends ✓ : h! h and such that

✓(X↵) = c↵X�(↵) (2.2.19)

for every simple root ↵ 2 �.
The Weyl group W , generated by reflections with respect to the hyperplanes orthogonal

to the simple roots in h⇤, corresponds to a set of automorphisms of the root system, and by
the construction of the previous paragraph, gives rise to inner automorphisms of g. Outer
automorphisms will arise from root system isomorphisms that are not in the Weyl group.

The sl(N,C) case In the case of g = sl(N,C) with N � 3 the root system isomorphisms
that are not in the Weyl group are of the form �w for w 2 W . If we choose c↵ = 1 for all the
simple roots, then on can generate automorphisms in all possible classes from W [ (�W ).
It should be noted that the class of an involutive Lie algebra automorphism associated to
a given root system automorphism depends on the choice of the c↵, as illustrated by the
example below.

The sl(4,C) example Let us illustrate this with the concrete example of g = sl(4,C). We
express root system automorphisms as matrices in the basis of the simple roots. Thus the
corresponding Weyl group is the order 4! group generated by the three simple reflections

0

BB@

�1 1 0

0 1 0

0 0 1

1

CCA ,

0

BB@

1 0 0

1 �1 1

0 0 1

1

CCA ,

0

BB@

1 0 0

0 1 0

0 1 �1

1

CCA . (2.2.20)
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Out of these automorphisms, we now generate Lie algebra involutions. We first choose c↵ = 1.
Then we find that exactly ten give rise to (inner) involutions of su(4), and their type from
Table 2.1 can be read from the multiplicity of the eigenvalue 1, which can be 15 (for p = 0),
9 (for p = 1) or 7 (for p = 2). The identity corresponds to p = 0 , six automorphisms
correspond to p = 1, namely

0

BB@

�1 1 0

0 1 0

0 0 1

1

CCA ,

0

BB@

0 �1 1

�1 0 1

0 0 1

1

CCA ,

0

BB@

0 0 �1
�1 1 �1
�1 0 0

1

CCA , (2.2.21)

0

BB@

1 0 0

0 1 0

0 1 �1

1

CCA ,

0

BB@

1 0 0

1 �1 1

0 0 1

1

CCA ,

0

BB@

1 0 0

1 0 �1
1 �1 0

1

CCA , (2.2.22)

and three automorphisms correspond to p = 2, namely
0

BB@

�1 1 0

0 1 0

0 1 �1

1

CCA ,

0

BB@

0 �1 1

0 �1 0

1 �1 0

1

CCA ,

0

BB@

0 0 �1
0 �1 0

�1 0 0

1

CCA . (2.2.23)

Now we turn to the outer automorphisms, generated by �W . Here there are exactly six
involutive outer automorphisms, and their type can be read from the multiplicity of the
eigenvalue 1, which is 6 for type I and 10 for type II. We find four involutions of type I,
namely

0

BB@

�1 0 0

0 �1 0

0 0 �1

1

CCA ,

0

BB@

0 1 �1
1 0 �1
0 0 �1

1

CCA ,

0

BB@

0 1 �1
0 1 0

�1 1 0

1

CCA ,

0

BB@

�1 0 0

�1 0 1

�1 1 0

1

CCA (2.2.24)

and two of type II, namely
0

BB@

0 0 1

0 1 0

1 0 0

1

CCA ,

0

BB@

1 �1 0

0 �1 0

0 �1 1

1

CCA . (2.2.25)

Now we can do the same exercise with c↵ = �1. In that case, there are only 6 inner
involutions generated by the Weyl group, two of them of type p = 1 and four of them of
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Value of c↵ N odd N even
c↵ = +1 I II
c↵ = �1 � I

Table 2.3: Type of outer involutive automorphisms generated by the flip of the Dynkin
diagram of AN�1 as a function of the parity of N and of the choice of the constant c↵, taken
to be the same for all the simple roots.

type p = 2. There are 10 outer involutions generated by �W , all of them of type I.

The flip involution Let us focus on a particular element of �W , namely the flip defined
by

↵i ! ↵N�i . (2.2.26)

When N is odd, the flip is of course always of type I. On the other hand, it turns out that
when N is even, the flip generates an outer involutive automorphism of type I when we
choose c↵ = �1, while it generated an outer involutive automorphism of type II when we
choose c↵ = +1. This observation gives us a definition of the two groups fSU(N)I,II that just
differs by a sign, namely, we use (2.2.18) where ⇥I,II is the flip defined using for all simple
root ↵

c↵ ⌘ c =

8
<

:
�1 for type I

+1 for type II
(2.2.27)

This is summarized in Table 2.3. It is easy to prove by recursion on the height6 of the root
↵ that the extensions of the flip to the Lie algebra are defined by

✓I,II (X↵) = �(�c)ht(↵)X�(↵) , (2.2.28)

for any root ↵ (in the case of simple roots, this reduces to (2.2.19)). The corresponding Lie
group morphisms are called ⇥I,II.

6We recall that the height of a root ↵, denoted by ht(↵), is the sum of its coefficients when expressed in
the basis of simple roots.
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The fundamental representation is given by (2.2.3), where the matrix A is

A =

0

BBBBBBBBBB@

1

�c
(�c)2

. . .

. . .

(�c)N�1

1

CCCCCCCCCCA

. (2.2.29)

One checks that these matrices satisfy the symmetry properties encountered in section 2.2.1.

2.2.2 Representations, invariants and integration measure

Having established the existence of the two groups fSU(N)I,II, our next task is to study them.
An aspect of primary interest are their representations, in particular the fundamental and
the adjoint, as they will provide the basic building blocks to construct gauge theories based
on fSU(N)I,II. In turn, the possible invariants which can be constructed out of them will also
play a role, as they will either enter the construction of the Lagrangian of the theories or be-
cause they will be identified with gauge-invariant operators. The latter can be systematically
constructed by computing index-like (we will be more precise below) generating functions
such as the Higgs branch Hilbert series or the Coulomb branch limit of the index, for which
a necessary tool is the integration measure on these groups.

Representations

Let us begin with some general remarks, aiming at understanding the representations of
fSU(N)I,II from those of SU(N). To that matter, we adapt the discussion of [52] (section
VI.7), regarding induced representations. Let us define eG = fSU(N) and G = SU(N). We
have eG/G ' Z2. For k 2 Z2, we define ⌦(k) the representation of eG/G,

⌦(k) : eG/G⇥ C! C (2.2.30)

(x, z) 7! (�1)kz .

Using the canonical projection eG! eG/G, ⌦(k) can also be seen as a representation of eG.
Now we consider two constructions:

• From a representation V of eG, one can construct other representations V ⌦⌦(k) of eG
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Type A Type B
G-representations U all Ux isomorphic all Ux distinct
eG-representations V all V ⌦ ⌦(k) distinct all V ⌦ ⌦(k) isomorphic

Table 2.4: Types of representations related by induction and restriction. See theorem VI.7.3
of [52]: If U is a representation of G of type A, the induced representation of eG is ind eG U =L

k V ⌦ ⌦(k). If Ux, x 2 eG/G are of type B, they all induce the same representation on eG,
ind eG Ux = V .

for k 2 eG/G. Note that V ⌦ ⌦(0) ⇠= V .

• From a representation U of G, one can construct other representations Ux of G for
x 2 eG/G. These are defined by the action of G on Ux given by g · u = eg g eg�1u where
eg 2 eG is such that x 2 g G.

These representations can be partitioned into two types, according to Table 2.4. The reason
for this classification is that induction and restriction relate representations of the same type.
Now consider a representation of SU(N), which we call U0, with Dynkin labels [�1, · · · ,�N�1],
(this means that these are the coefficients of the highest weight in the basis of fundamental
weights). Since we are working with the flip involution (2.2.26), the twisted representation
by the non-trivial element of eG/G, U1, has Dynkin labels [�N�1, · · · ,�1]. Therefore we are
in type A if and only if �i = �N�i for all i. As a consequence:

• If an SU(N) representation U has �i = �N�i for all i, then the induced representation
on fSU(N) is reducible and can be written (V ⌦ ⌦(0))� (V ⌦ ⌦(1)).

• If an SU(N) representation U has �i 6= �N�i for some i, then the induced represen-
tation on fSU(N) is irreducible (and is the same as the induced representation from
[�N�1, · · · ,�1]).

For instance, we have

• The fundamental [1, 0, · · · , 0] of SU(N) induces a unique irreducible representation of
fSU(N). It has dimension 2N .

• The adjoint [1, 0, · · · , 0, 1] of SU(N) induces a reducible representation of fSU(N), which
decomposes into two irreducibles.

Let us now explicitly construct the fundamental and the adjoint representations, which
will be relevant for our later purposes.
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The fundamental representation A particularly important representation will be the
fundamental representation. It corresponds to the the matrix representation introduced in
section 2.2.1, which acts on a 2N dimensional complex space C

N ⇥ C
N . Note that we may

alternatively think of this space as CN⇥(C?)N , thus making explicit that fSU(N)I,II represen-
tations comprise a fundamental and antifundamental of the connected component SU(N).
The elements of this space are of the form

Q =

 
~x

~y

!
, ~x =

0

BBBBB@

x1

x2

...
xN

1

CCCCCA
, ~y =

0

BBBBB@

y1

y2
...
yN

1

CCCCCA
. (2.2.31)

It is useful to introduce a “conjugate"

Q = QT �0 , with �0 =

 
0 1

�c 1 0

!
. (2.2.32)

Then, for a generic eU 2 eG, Q and Q transform as

Q! eUQ , Q! Q eU† . (2.2.33)

The adjoint representation Another very important representation for our purposes is
the adjoint representation. Given the matrix representation in section 2.2.1, an element � in
the adjoint representation is the 2N ⇥ 2N block-diagonal matrix (recall that � 2 su(N), so
�† = � and the Lie algebra automorphism –complex conjugation for hermitean generators–
is � 7! ��?)

� =

 
� 0

0 ��?

!
. (2.2.34)

Under eG it transforms as
�! eU� eU† . (2.2.35)

For future purposes, it is interesting to note that

�0 �
T �0 = c� . (2.2.36)

Note that since one block is complex-conjugated of the other, the number of degrees of
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freedom is really N2 � 1 as it should be for the adjoint. On the other hand, expressing the
adjoint in this way turns out to be most convenient for our latter purposes of constructing
gauge theories based on fSU(N)I,II due to the transformation properties expressed as (2.2.35).

Invariants

Having explicitly constructed the fundamental and the adjoint representations, we now study
the invariants which can be constructed out of them. To that matter, let us consider F copies
of the fundamental representation in addition to an adjoint representation. To set notation,
we will denote eG indices by e↵ with e↵ = 1, · · · , 2N ; and “global symmetry indices" by I with
I = 1, · · · , F . To be explicit with the notation, the fundamentals will be (QI)e↵. Note that
it follows that the indices of the conjugate are (QI)e↵.

With the transformation rules described above for these representations, we may con-
struct all possible group invariants made out of them. Let us stress that the list of such
group invariants is infinite and we will not attempt for an exhaustive classification. Instead,
we will focus on the ones which will be of uttermost relevance for our purposes. Indeed, we
use a gauge-theoretic inspired naming with an eye on applications to gauge theories. Such
most relevant invariants are

1. Meson-like invariants: consider

MIJ = (QI)e↵ (QJ)
e↵ ⌘ QI QJ . (2.2.37)

It is clear that such quantity is an invariant of the group action, using (2.2.33). More-
over, a short computation7 shows that, as a F ⇥ F matrix

MIJ = �cMJI . (2.2.38)

2. Baryon-like invariants: introduce the ✏-like tensor ⌥e↵1···e↵N such that

⌥e↵1···e↵N =

8
>>><

>>>:

✏e↵1···e↵N if e↵i 2 1, · · ·N 8i

✏e↵1···e↵N if e↵i 2 N + 1, · · · 2N 8i

0 otherwise

; (2.2.39)

where ✏e↵1···e↵N is the standard ✏-tensor in SU(N). Then we have the baryon-like invari-
7MIJ = QI QJ = (QI QJ)

T
= QT

J�0
TQI = �cQT

J�0QI = �cMJI .
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ants BI1···IF given by

BI1···IF = (QI1)
e↵1 · · · (QIF )

e↵F ⌥e↵1···e↵N . (2.2.40)

Note that BI1···IF is completely antisymmetric on its F indices.

3. Superpotential-like invariants: consider

QI �QJ . (2.2.41)

It is clear that such quantity is an invariant. Note that we may replace � by �n,
since the n-power of an adjoint still transforms in the same way. Moreover, as a F ⇥F

matrix, we have
QI �QJ = cQJ �QI . (2.2.42)

4. Coulomb branch-like invariants: consider

Tr�2n . (2.2.43)

It is clear that these quantities are invariant under the group transformations above.

Note that these are “holomorphic" invariants in that they do not make use of complex
conjugation. On top of them, and explicitly using complex conjugation, we can construct the
“non-holomorphic" quantity (which we will dub Kähler-like)

Q†

I QJ , (2.2.44)

which is also invariant under the above transformations.

The integration measures

In this section, we consider only the case N even (for N odd, we refer to [38]). In order
to be able to compute index-like quantities for gauge theories based on fSU(N)I,II, we need
the integration measures on said groups. Recall that the standard way of defining the Haar
measure of a connected Lie group, grounded on the fact that conjugation of elements of the
maximal torus of the group is surjective onto the full group, doesn’t apply to our situation.
Instead, to be able to integrate over the disconnected component of fSU(N) we use Lemma
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2.1 of [40], namely the fact that the map

' : SU(N)/S0(⇥)⇥ S0(⇥)! SU(N)⇥ (2.2.45)

(yS0(⇥), z) 7! yz⇥y�1

where S0(⇥) is the subgroup of the maximal torus of SU(N) left invariant by the involution
⇥, is surjective onto the component of fSU(N) disconnected from the identity. Therefore,
we can use ' as a change of variables, and turn the integration over SU(N)⇥ into one over
S0(⇥). The measure arises from the Jacobian of the change of variables,

det (d') (y, z) = det
�
Ad(z⇥)�1 � Id

���
su(N)/s0(✓)

, (2.2.46)

where s0(✓) is the Lie algebra of S0(⇥). The Jacobian (2.2.46) can be easily calculated
from the data in the root system, since the involution ⇥ is completely defined by the flip
� (2.2.26) of the roots and the sign c introduced in (2.2.27). As in [38], we use an adapted
parametrization for the fugacities,

z� =

0

@
N
2 �1Y

i=1

z�i+�N�i

i

1

A

0

@
N
2 �1Y

i=1

z�i��N�i
N
2 +i

1

A z
�N

2
N
2

(2.2.47)

If a root ↵ is fixed by �, the corresponding element of the Lie algebra X↵ is transformed to
�(�c)ht(↵)X↵ = cX↵ since the height is necessarily odd, and it will contribute (1� cz�↵) to
the determinant (2.2.46). On the other hand, if ↵ is exchanged with �(↵), their contribution
will come from the determinant of the block matrix

det

 
�1 �(�c)ht(↵)z�↵

�(�c)ht(↵)z��(↵) �1

!
= 1� z�↵��(↵) , (2.2.48)

where we have used (2.2.28). In total, the integration measure is

dµ�

I,II(z) =
Y

↵=�(↵)

�
1� cz�↵

� Y

↵ 6=�(↵)

�
1� z�(↵+�(↵))

�1/2 N/2Y

j=1

dzj
2⇡izj

. (2.2.49)

In (2.2.49), the products run over the positive roots. In the second product, the power 1

2

takes care of the fact that each pair of roots is counted twice. The integration over fSU(N)I,II
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for N even is then obtained by taking an average,

Z

fSU(N)I,II

dµ(X)f(X) =
1

2

 Z

SU(N)

dµ+(z)f(z) +

Z

SU(N)⇥I,II

dµ�

I,II(z)f(⇥I,II(z))

!
, (2.2.50)

where f is a function defined on fSU(N)I,II which is invariant under conjugation and dµ+ is
the standard Haar measure of SU(N).

Real and pseudo-real representations

Having constructd a group measure allows us to construct an indicator –the so-called Frobenius-
Schur indicator– sensible to the reality properties of the representations. This is very useful
since, in Physics language, allows us to discern whether we have an orthogonal, unitary or
symplectic global symmetry. We first quote the Frobenius-Schur theorem (see [50], Theo-
rem 43.1). Consider an irreducible representation ⇢ of a compact group G, and compute the
quantity

FS(⇢) =

Z

G

�⇢(g
2)dg , (2.2.51)

where �⇢ is the character of the representation. Then

FS(⇢) = 1 () ⇢ is real (2.2.52)

FS(⇢) = 0 () ⇢ is complex (2.2.53)

FS(⇢) = �1 () ⇢ is pseudo-real (2.2.54)

Using this, combined with the integration formula, we can investigate the properties of
our representations. Let us focus on the fundamental representation of fSU(N)I,II, for N even.
Using the measure (2.2.49), we evaluate

FS(Fund) = �c . (2.2.55)

This means that the fundamental representation is real in type I and pseudo-real in type II.
This will have consequences in the next section, when we will study 4d N = 2 gauge theories
with fundamental matter in hypermultiplets: the unitary global symmetry that exchanges
copies of the fundamental is enhanced to

• Symplectic global symmetry when the representations are real, i.e. in type I;

• Orthogonal global symmetry when the representations are pseudo-real, i.e. in type II.
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2.2.3 Construction of N = 2 gauge theories

We now explicitly construct gauge theories based on fSU(N)I,II groups. For definiteness, we
will construct 4d N = 2 SQCD-like theories.

A point which is worth emphasizing is that the fSU(N)I,II groups are not just the di-
rect product of SU(N) and the charge conjugation Z2. This bars the simple construction of
general gauge theories based on fSU(N)I,II as the extra gauging of Z2 in a standard SU(N)

N = 2 theory, a procedure which would be tantamount to considering the direct product
SU(N) ⇥ Z2 which in general would not be consistent. An intuitive reason is that complex
conjugation cannot be disjoint from gauge transformations since these are in general com-
plex. The advantage of constructing the fSU(N)I,II groups is that this problem is ab initio
circumvented and hence the standard technology to construct gauge theories can be directly
imported.

Matter content

The relevant multiplets to construct our theories are

• Vector multiplet:
The vector multiplet contains, in 4d N = 1 language, a vector multiplet and a chiral
multiplet in the adjoint. The latter will be described by an adjoint superfield which we
will denote by � with the transformation properties described in section 2.2.2.

• (Fundamental) Hypermultiplet:
In order to construct hypermultiplets, let us take two chiral superfields, say A and
B, transforming in the fundamental representation as described in section 2.2.2. Out
of, say, B, we can construct the corresponding B. Let us now consider constructing a
chiral superfield out of A, and another chiral superfield out of B, but instead taking its
barred cousin, i.e. B. Let us insist once again that both A and B are chiral superfields
of the same chirality. Thus, we may construct a hypermultiplet out of them, i.e.

H = (A, B) . (2.2.56)

Note that both A and B provide 2N degrees of freedom, so that H contains 4N degrees
of freedom.

Having described the basic ingredients, the construction of the Lagrangian follows the
standard techniques in supersymmetric gauge theories. The kinetic terms will come from a
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Kähler potential. A natural candidate is the “non-holomorphic" invariant (2.2.44) above, i.e.
(we quote the free case; we will comment on the gauged version below)

K = A† A+BB
†

. (2.2.57)

Let us now turn to the superpotential W . Since it is an integration over half of superspace,
it can only involve the chiral fields in H. Assuming a number F of hypermultiplets, the natural
W can be constructed out of (2.2.42),

W = BJ �AI G
IJ . (2.2.58)

with GIJ a suitable matrix of couplings which would be fixed by the requirement of N = 2

SUSY.
So far we have evaded the gauge sector. By construction, only the part of the gauge

group connected to the identity will contribute with a field in the Lagrangian, while the
disconnected part of the gauge group will appear as a superselection rule (see [29, 53] for
early discussions, and [35] for a more recent account). Thus, the vector multiplet will be the
standard one associated to the gauge transformations in the SU(N) part of fSU(N).

Smaller representations

So far we have assumed A 6= B. But nothing prevents us from taking A = B = Q. In
this case, the hypermultiplet becomes H = (Q, Q). Note that this cannot be done with
a standard SU(N) hypermultiplet: indeed, if we want to construct invariants of SU(N)

we need to consider a hypermultiplet (Q, Q̃) with Q a fundamental of SU(N) and Q̃ an
antifundamental. If we wanted “Q = Q̃", we would have to set Q̃ ⇠ Q?, and hence it
would be a chiral superfield of the other chirality. The crucial difference is now that in the
fundamental of fSU(N)I,II there is both the N and the N of the connected SU(N) part,
and the construction of the second element of the hyper –the equivalent to Q̃– does not
involve complex conjugation but rather a simple transposition, and hence does not change
the chirality of the superfield. Since the degrees of freedom are half of the standard hyper,
it would be perhaps more appropriate to call this 2N dimensional representation a half-
hypermultiplet (note that in fact this is the same number of dof. as a full hypermultiplet of
SU(N)).

All in all, we can write the theory for F half-hypermultiplets. The W is just the obvious
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particularization of (2.2.58), i.e.

W = QJ �QI G
IJ (2.2.59)

and using the symmetry property (2.2.42) fixes the matrix G to be either symmetric or
antisymmetric. This allows us to immediately read the global symmetry of the theory:

• fSU(N)I: G is antisymmetric. The global symmetry is Sp(F
2
).

• fSU(N)II: G is symmetric. The global symmetry is SO(F ).

This is in perfect agreement with the result derived using the Frobenius-Schur indicator
in section 2.2.2, and it will be confirmed by the explicit computation of the Higgs branch
Hilbert series. Moreover, it is also suggested by table 2.2 – the fSU(N)I,II behaves in this
respect as its subgroup K would. If K is of orthogonal type, then the global symmetry will
be symplectic, and vice versa.

Note that for the type I extensions the case of odd F is not well-defined. The issue is
manifest in the simplest case of F = 1, where it is simply impossible to write a non-vanishing
W . Since for any odd F one can write F = 2f + 1, this very same argument suggests that
type I theories with odd number of flavors do not exist as a N = 2 theories. In the following
we will restrict our attention to even F for type I theories.

Dynamics

In the following we will be interested in SCDQ theories with fSU(N)I,II gauge group and
F fundamental half-hypers. As discussed above, the vector multiplet only contains a gauge
field for the connected part of the gauge symmetry, while the disconnected part only enters
as a superselection rule. As a consequence, the Lagrangian of the theory is just identical
to that of its SU(N) SQCD cousin. Hence, the Feynman rules will just be the same, and
consequently, all local Physics will be identical to that of SQCD with the only extra addition
that one has to impose the constraints arising from gauge invariance under the disconnected
part of the gauge group (see e.g. [29, 35,53]).

An important consequence of these observations is that all (local) anomalies are just
identical to those in SQCD, which, in particular, implies that pure gauge anomalies auto-
matically vanish (a consequence of being a non-chiral theory). Note however that in general
there may be ’t Hooft anomalies associated to global symmetries (including mixed gauge-
U(1)R anomalies, which vanish in the conformal case). In addition, there may be anomalies
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associated to the disconnected part of the gauge group. It would be very interesting to
undertake a detailed analysis of this point.

Another very important consequence is that the � function will just be the same as in
SQCD. Thus, in particular we can tune N and F and restrict to well-behaved 4d QFT’s. In
particular, we can choose N and F so that our theories become conformal. This will be the
most interesting case, since the gauge dynamics will greatly simplify due to the absence of
a strong coupling scale and the full power of conformal invariance will provide very useful
tools to analyze the theories. In particular, by means of the SCI we can study their spectrum
in both the Coulomb and Higgs branches as we will do below. Note however that the Higgs
branch is non-renormalized [54], and thus when, studying the Higgs branch, the requirements
on N and F may be dropped (more on this below).

2.2.4 The spectrum of the theory

One aspect of basic interest is the operator content of the theories based on eG and their
relations. As discussed above, we can restrict to well-defined QFT’s by choosing N and F so
that the theory is at least asymptotically free. Nevertheless, in order to avoid the complicated
gauge dynamics associated to the strong coupling scale of the gauge group, we can further
focus on SCFT’s. In that case, due to superconformal invariance, we have the powerful tool of
the SCI to analyze the operator spectrum of the theory. While the full index is a complicated
function, in particular limits it simplifies and allows to study in detail both the Coulomb
branch and the Higgs branch of the theory.

Regarding the Coulomb branch, we can study the operator content through the so called
Coulomb branch limit of the superconformal index [55].

In turn, for the Higgs branch, we can consider the Hall-Littlewood limit of the index. On
general grounds, for a theory corresponding to a quiver with no loops, it is clear that the
computation of such Hall-Littlewood limit of the index coincides with the computation of
the Higgs branch Hilbert series, which is a counting of gauge-invariant operators made out of
hypermultiplets [56].8 Note however that, due to supersymmetry, the Higgs branch remains
classical [54]. Hence the computation of the Higgs branch Hilbert series using the classical
Lagrangian even beyond the conformal window provides us a sensible description of the
Higgs branch in the full quantum theory. Thus, when computing the Higgs branch Hilbert

8The way this comes about is as follows: for a theory such as SQCD, the vector multiplet contribution
to the index is through the gaugino, and it precisely coincides with the would-be contribution of the F -term
constraint to the Hilbert series. On the other hand, the hypermultiplet contribution is just identical in both
the Hall-Littlewood limit of the index and the Hilbert series.
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series, we will not restrict ourselves to theories in the conformal window. To be specific, we
will consider below theories with gauge group fSU(N)I,II with F half-hypermultiplets (in the
sense discussed above) only when F � 2(N � 1). The F < 2N region is more difficult to
study in part because at a generic point on the Higgs branch, the gauge group may not be
completely Higgsed, which means that we can not use the letter-counting formula (2.2.71).
A complete treatment of that question has appeared in [57] for gauge groups SU(N), but
the extension of the techniques used in [57] to disconnected gauge groups remains an open
problem.

Warm-up: the free theory

Let us first consider the free theory by sending the Yang-Mills coupling to zero. The spectrum
of the theory will consist of gauge-invariant operators (as Gauss’ law is kept as a constraint)
with no other relation. Focusing on the Higgs branch –i.e. on operators made out of hy-
permultiplet fields–, to lowest order the gauge invariants are the mesons MIJ (we assume
N big enough so that baryon-like operators appear at high dimensions), which are either a
symmetric (for fSU(N)I) or an antisymmetric (for fSU(N)II) F ⇥ F matrix. Thus, introduc-
ing a fugacity t to count dimensions, we should expect the first non-trivial contribution a
(unrefined) partition function counting operators to be t2 F (F±1)

2
.9

Let us consider the next order t4. For definitness, say we have odd N –so we have fSU(N)I.
In that case, M is a symmetric matrix and hence has dS = F (F+1)

2
entries. To order t4 we

will have the symmetrized product of those, i.e. dS (dS+1)

2
. In turn, while at order t2, the

dA = F (F�1)

2
antisymmetric pieces of M are projected out, their symmetrized squares, i.e.

dA (dA+1)

2
, survive at order t4. Hence the t4 coefficient is expected to be

1

2

hF (F + 1)

2

⇣F (F + 1)

2
+ 1
⌘i

+
1

2

hF (F � 1)

2

⇣F (F � 1)

2
+ 1
⌘i

=
F 2 (F 2 + 3)

4
. (2.2.60)

Note that, for fSU(N)II the roles of symmetric and antisymmetric are exchanged. Nevertheless
this has no effect on the t4 coefficient. Hence, all in all, we expect

• fSU(N)I:

HSfree

I
(t) = 1 +

F (F + 1)

2
t2 +

F 2 (F 2 + 3)

4
t4 + o(t4) ; (2.2.61)

9As argued above, the Hall-Littlewood limit index of the index coincides with the Higgs branch Hilbert
series for the theories at hand. Nevertheless, strictly speaking, if though as the Hall-Littlewood limit of the
index, the contribution of vector multiplet and hypermultiplet comes weigthed by a fugacity ⌧

R. However,
since the operators to count satisfy the BPS bound � = 2R, the difference between Higgs branch Hilbert
series and Hall-Littlewood limit of the index is just a simple redefinition of the fugacity t

2 $ ⌧ .
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• fSU(N)II:

HSfree

II
(t) = 1 +

F (F � 1)

2
t2 +

F 2 (F 2 + 3)

4
t4 + o(t4) . (2.2.62)

Note that this implicitly assumes N large enough. Indeed, if N  4, the baryon would
contribute to the order t4. As we will see below, indeed the integration formula allows us to
recover this expectation from the computation of the Higgs branch Hilbert series for the free
theory.

Note that the t2 term is somewhat special, in that its contributions come from scalars
in conserved current multiplets (moment maps of the global symmetry). Since these are,
by construction, in the adjoint representation of the global symmetry, the coefficient of t2

provides a cross-check of the global symmetry of the theory. Indeed, for type I that coefficient
coincides with the dimension of the adjoint of Sp(F

2
), while for type II it coincides with the

dimension of the adjoint of SO(F ).
Using the measure on the groups developed above we can cross-check (and extend to

arbitrary order) the expectations above. The (free theory) Higgs branch Hilbert series reads

HSfree
(N,F )

(t) =

Z

G

d⌘G(X)
1

det(1� t�Fund(X))F
. (2.2.63)

As discussed above, the integral splits into the sum of the connected and disconnected part,
and the measures are the ones found in section 2.2.2. It is then easy to show that indeed the
expectation above for the first few terms is recovered. In order not to clutter the presentation,
as an example, we quote the results for fSU(N)I, and F = 2, 4, 6 10

HSfree
(4,2)(t) =PE[3t2 + t4] = 1 + 3t2 + 7t4 + o

�
t4
�

,

HSfree
(4,4)(t) =

1� t2 + 16t4 � 10t6 + 25t8 � 5t10 + 6t12

(1� t2)17 (1 + t2)6
= 1 + 10t2 + 77t4 + o

�
t4
�
,

HSfree
(4,6)(t) =

1

(1� t2)33 (1 + t2)14

⇣
1 + 2t2 + 124t4 + 435t6 + 3393t8 + 11034t10 + 38282t12+

91513t14 + 195923t16 + 326359t18 + 476999t20 + 554635t22 + 569026t24+

465194t26 + 334666t28 + 190410t30 + 95283t32 + 35694t34 + 12626t36 + 2599t38+

10The plethystic exponential (PE) of a function f(x) such that f(0) = 0 is defined as

PE[f(x)] = exp

 1X

n=1

f(x
n
)

n

!
.
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734t40 + 45t42 + 15t44
⌘
= 1 + 21t2 + 366t4 + o

�
t4
�

,

and the results for N = 6 and F = 2, 4, 6, 8:

HSfree
(6,2)(t) =PE[3t2 + t4] = 1 + 3t2 + 7t4 + o

�
t4
�

,

HSfree
(6,4)(t) =1 + 10t2 + 76t4 + o

�
t4
�

,

HSfree
(6,6)(t) =1 + 21t2 + 351t4 + o

�
t4
�

,

HSfree
(6,8)(t) =1 + 36t2 + 1072t4 + o

�
t4
�

.

We observe that the first three terms in each of these examples match the expected result
given by (2.2.61), once the additional baryons that appear in the t4 term for N = 4, F � 4

are taken into account. In particular, this provides a confirmation of our expectations on the
global symmetry to add to the computation of the Frobenius-Schur indicator as described
above.

Furthermore, while both the numerator of the Hilbert series for the component connected
with the identity and the numerator of the Hilbert series for the component not connected
with the identity are palindromic in the above examples, in general the full Hilbert series
HSfree

(N,F )
(t) has not a palindromic numerator. Note however that in the free limit we are

considering there is no a priori reason for the Hilbert series to be palindromic (for instance,
upon removing the W the theory is effectively not even N = 2). Moreover, in general,
the ring of invariants as a quite involved structure and the corresponding Highest Weights
Generating function (HWG) [58] does not seem to be given by a complete intersection.

The full theory: Coulomb branch operators

The Coulomb branch index is a counting of operators on the Coulomb branch of a CFT, and
thus can be thought as a Hilbert series for the Coulomb branch. Note that the hypermultiplets
only enter this computation through ensuring that we have a CFT, but otherwise they are
blind to the computation of the Coulomb branch index. Thus, we will assume the matter
content to be such that the theory has vanishing beta functions. From the transformation
properties of the adjoint representations described above, it is clear that for either fSU(N)I,II

the Coulomb branch will only count operators of the form Tr�2n. Thus it is clear that [38]

HSC
N(t) =

1

2

h NY

n=2

1

1� t2
�

NY

n=2

1

1� (�t)i
i
. (2.2.64)
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This can be explicitly verified using the integration formula. On general grounds, for a theory
with gauge group G, the Coulomb branch index (or Coulomb branch Hilbert series) reads

HSC
N(t) =

Z

G

d⌘G(X)
1

det(1� t�Adj(X))
, (2.2.65)

Using the formula (2.2.65) we get

HSC
4
(t) = PE[t2 + t4 + t6] , (2.2.66)

HSC
6
(t) = PE[t2 + t4 + 2t6 + t8 + t10 � t16] , (2.2.67)

which indeed agrees with (2.2.64).
Note that eq.(2.2.64) shows that the Coulomb branch is identical as a complex variety

for both fSU(N)I,II. Moreover, it immediately follows that both families of theories provide
explicit examples of consistent N = 2 QFT’s with non-freely generated Coulomb branches,
thus extending [38].

The full theory: Higgs branch operators

Let us now look to the operators in the Higgs branch for the N = 2 theories. Before delving
in a full computation of the generating function of such operators, let us first obtain by hand
the lowest lying such operators. To that matter we now need to additionally mod out by
the F-terms. Note first that the F-terms can be computed by forgetting the vanishing trace
requirement on the adjoint and adding a Lagrange multiplier �Tr� to the W . Then, the
F-terms are essentially

QI QJ G
IJ = 1 , (2.2.68)

where the free indices are in color space.
It is clear that the F terms will enter first at order t4. Thus, the coefficient of t2 is just

like in the free theory, and hence the same comment on the fact that it dictates the global
symmetry of the theory applies. In turn, at order t4 we need to take F terms into account.
Eq.(2.2.68) essentially means that, when squaring M to construct the terms contributing to
t4, one combination of them, times a antisymmetric F ⇥ F matrix (fSU(N)II) or symmetric
matrix (fSU(N)I) can be dropped. Hence, we should expect the t4 term in the fSU(N)II case
to be that of the free theory minus F (F+1)

2
; while for fSU(N)I it should be that of the free

theory minus F (F�1)

2
. That is, we expect
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• fSU(N)I:

HSI(t) = 1 +
F (F + 1)

2
t2 +

F (F + 1)

2

⇣F (F � 1)

2
+ 1
⌘
t4 + o(t4) ; (2.2.69)

• fSU(N)II:

HSII(t) = 1 +
F (F � 1)

2
t2 +

F (F � 1)

2

⇣F (F + 1)

2
+ 1
⌘
t4 + o(t4) . (2.2.70)

Just like in the free case, we can explicitly test this expectation and extend it to arbitrary
orders in t by explicitly computing the Higgs branch Hilbert series (recall, identical to the
Hall-Littlewood limit of the index) using the Haar measure and the technology developed
above. It generically reads

HS(N,F )(t; qi) =

Z

G

d⌘G(X)
det(1� t2�Adj(X))

det(1� t[1, 0, ..., 0]⇥ �Fund(X))
, (2.2.71)

where the {qi} are set of global symmetry fugacity and [1, 0, ..., 0] is the Dynkin label for the
fundamental representation of the global symmetry group.

In order to give a flavor of the computation, let us make explicit the ingredients in (2.2.71)
in the simplest example where the two outer involutions ⇥I and ⇥II are different, which is
SU(4). Let’s begin by choosing the following basis for the su(4) Lie-algebra

{h1, h2, h3, X↵1 , X↵1+↵2 , X↵2 , X↵1+↵2+↵3 , X↵2+↵3 , X↵3 , (2.2.72)

X�↵1 , X�↵1�↵2 , X�↵2 , X�↵1�↵2�↵3 , X�↵2�↵3 , X�↵3} ,

where the hi, for i = 1, 2, 3, denote generators of the Cartan subalgebra, while the ↵i are
the associated simple roots. For the type II extension, according to the discussion in section
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2.2.1, the flip involution will act in the different representations of the Lie algebra as

�Adj(⇥II) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (2.2.73)

�Fund(⇥II) =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 �1 0

0 0 0 0 0 1 0 0

0 0 0 0 �1 0 0 0

0 0 0 �1 0 0 0 0

0 0 1 0 0 0 0 0

0 �1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

. (2.2.74)

The measures for the connected and non-connected component with the identity have
already been discussed in [38], and read

dµ+

4
(z) =

dz1
2⇡iz1

dz2
2⇡iz2

dz3
2⇡iz3

✓
1� z2

1
z2
3

z2

◆�
1� z2z

2

3

�✓
1� z2

2

z2
1

◆�
1� z2

1

�✓
1� z2

z2
3

◆✓
1� z2

1

z2z23

◆
,

(2.2.75)

dµ�

4,II(z) =
dz1
2⇡iz1

dz2
2⇡iz2

✓
1� z4

1

z2
2

◆�
1� z2

2

�✓
1� z2

2

z2
1

◆�
1� z2

1

�
. (2.2.76)

The second involutive outer automorphism is completely analogous except for the sign c
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introduced in (2.2.27). The matrix �Adj(⇥I) reads

�Adj(⇥I) =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 �1 0 0 0 0 0 0

0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0

0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 �1 0 0 0 0 0 0 0 0

0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0

0 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1
0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0

0 0 0 0 0 0 0 0 0 0 0 �1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0

0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0

0 0 0 0 0 0 0 0 0 �1 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

.

(2.2.77)
On the other hand the matrix �Fund(⇥I) acting on the fundamental representation reads

�Fund(⇥I) =

0

BBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCA

. (2.2.78)

In this case, the measure of the disconnected part, with the same parametrization of the
fugacities (2.2.47), is

dµ�

4,I(z) =
dz1
2⇡iz1

dz2
2⇡iz2

�
1 + z2

1

� �
1� z2

2

�✓
1� z4

1

z2
2

◆✓
1 +

z2
2

z2
1

◆
. (2.2.79)

Note the somewhat unusual + signs that appear in the measure, as a consequence of (2.2.49).
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The Higgs branch Hilbert series of SQCD

It is now straightforward to put all ingredients in place and explicitly evaluate (2.2.71) to
obtain the full, refined, Higgs branch Hilbert series (or Hall-Littlewood index). Due to the
lengthy –and rather non-illuminating– expressions, here we will quote some such examples
of the type I projection for even N cases, referring to [38] for type I for odd N and type II
examples.

N = 4 and F = 8, 10

HSI

(4,8)(t; qi) = 1 + [2, 0, 0, 0]C4t
2 +

⇣
[4, 0, 0, 0]C4 + 2[0, 2, 0, 0]C4 + 2[0, 0, 0, 1]C4

+ 3[0, 1, 0, 0]C4 + 3
�
t4 + o(t4) ,

HSI

(4,10)(t; qi) = 1 + [2, 0, 0, 0, 0]C5t
2 +

⇣
[4, 0, 0, 0, 0]C5 + 2[0, 2, 0, 0, 0]C5 + 2[0, 0, 0, 1, 0]C5

+ 3[0, 1, 0, 0, 0]C5 + 3
⌘
t4 + o(t4) ,

where {qi} denote a set of global symmetry fugacities.

N = 6 and F = 12, 14

HSI

(6,12)(t; qi) = 1 + [2, 0, 0, 0, 0, 0]C6t
2 +

⇣
[4, 0, 0, 0, 0, 0]C6 + 2[0, 2, 0, 0, 0, 0]C6

+ [0, 0, 0, 1, 0, 0]C6 + 2[0, 1, 0, 0, 0, 0]C6 + 2
⌘
t4 + o(t4) ,

HSI

(6,14)(t; qi) = 1 + [2, 0, 0, 0, 0, 0, 0]C7t
2 +

⇣
[4, 0, 0, 0, 0, 0, 0]C7 + 2[0, 2, 0, 0, 0, 0, 0]C7

+ [0, 0, 0, 1, 0, 0, 0]C7 + 2[0, 1, 0, 0, 0, 0, 0]C7

⌘
t4 + o(t4) .

As can be seen in these expressions –as well as in the analogous ones in [38]–, at order t2 we
find the character of the representation of the adjoint of the predicted global symmetry group.
Since such contribution is precisely coming from the conserved global symmetry current
multiplet (in fact from one of the scalars in the multiplet ⇠ moment maps), and the latter
must be in the adjoint by definition, this provides a further check on our expectations.
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The full unrefined Higgs branch Hilbert series

Upon unrefining one can find a slightly more manageable form of the Higgs branch Hilbert
series.

As for the component connected to the identity, which is identical to standard SQCD,
the Highest Weight Generating function (HWG) is known exactly [38,58]

HWG+

(N,F )
(t;µi) = PE

"
t2 +

N�1X

i=1

t2iµiµF�i + tN(µN + µF�N)

#
. (2.2.80)

Here the {µi} denote a set of highest weight fugacities for the SU(F ) global symmetry
group. Then, using (2.2.80), we can obtain the expression of the corresponding Hilbert Se-
ries HS+

(N,F )
(t) for the component connected with the identity. On the other hand the Hilbert

Series for the component non-connected with the identity HS(I,II),�
(N,F )

(t) can be explicitly com-
puted performing the integration with the corresponding measure.

As an explicit example, let us consider the case of fSU(3)I with F = 6, and, in order not
to clutter the presentation, postpone to appendix 5.A.2 a longer list of examples.

N = 3 and F = 6

HS+

(3,6)(t) =
1

(1� t)20(1 + t)16(1 + t+ t2)10

⇣
1 + 6t+ 41t2 + 206t3 + 900t4 + 3326t5+

10846t6 + 31100t7 + 79677t8 + 183232t9 + 381347t10 + 720592t11 + 1242416t12+

1959850t13 + 2837034t14 + 3774494t15 + 4624009t16 + 5220406t17 + 5435982t18+

...+ palindrome + ...+ t36
⌘

,

HSI,�
(3,6)(t) =

1 + 2t2 + 16t4 + 23t6 + 59t8 + 46t10 + 59t12 + 23t14 + 16t16 + 2t18 + t20

(1� t2)12(1 + t2)8
,

HSI

(3,6)(t) =
1

(1� t)20(1 + t)16(1 + t2)8(1 + t+ t2)10

⇣
1 + 6t+ 34t2 + 144t3 + 647t4 + 2588t5+

9663t6 + 31988t7 + 97058t8 + 268350t9 + 687264t10 + 1628374t11 + 3598201t12+

7421198t13 + 14364220t14 + 26130494t15 + 44837750t16 + 72656468t17 + 111456702t18+

162010222t19 + 223544610t20 + 292994926t21 + 365233973t22 + 433158422t23+

489154949t24 + 526027956t25 + 538960928t26 + ... + palindrome + ...+ t52
⌘
.
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Note that again the coefficient of the t2 term is just the expected one to reproduce the
predicted global symmetry. Moreover, we observe that the dimension of the pole at t = 1

is the same for both HS+

(N,F )
(t) and HSI

(N,F )
(t). A similar feature, for a different type of

disconnected group, was observed in [46]. Moreover both the numerator of HS+

(N,F )
(t) and

the numerator of HSI,�
(N,F )

(t) are given by a palindromic polynomial.

2.2.5 Conclusions

Because of a number of reasons, ranging from Condensed Matter inspirations to SUSY QFT,
there has recently been interest in gauging discrete symmetries in Quantum Field Theory.
In this section we have discussed the case of the charge conjugation symmetry in gauge
theories based on SU(N) gauge groups in a systematic manner (systematically extending
[44] and its more recent stringy version [45]). A key observation is that charge conjugation
symmetry involves the outer automorphism of the SU(N) group, which is essentially complex
conjugation and it is isomorphic to Z2. Since complex conjugation is non-trivially intertwined
with the standard gauge transformations, it turns out that the appropriate framework for
that is to construct a larger group which, from the beginning, includes both standard gauge
transformations as well as complex conjugation on equal footing. More precisely, these two
actions form a semidirect product group which can be thought as an extension of the outer
automorphism group by the connected component. In this case this amounts to the extension
of Z2 by SU(N). Quite surprisingly, and to our knowledge unnoticed in the literature, it turns
out that the possible such extensions are in one-to-one correspondence with the Cartan
classification of symmetric spaces (in this case of type A). Thus, in the case at hand it turns
out that there are exactly two such groups including a gauged version of charge conjugation.
Mirroring the terminology for symmetric spaces, we have dubbed these fSU(N)I,II (recall that
the fSU(N)II only exists for even N). This extends [38], which, in the newest terminology,
only considered fSU(N)I for odd N and fSU(N)II for even N .

In this section we provided an explicit construction of the fSU(N)I,II groups. As a by-
product, we can explicitly write down the transformation properties of the fundamental
and adjoint representations. Since these are the building blocks for 4d N = 2 SQCD-like
theories, we can explicitly write down the Lagrangian and understand, from first principles,
the global symmetry pattern. We find that the global symmetry for a fSU(N)I theory with F

(half)-hypermultiplets is Sp(F
2
) –which requires F to be even–, while for a fSU(N)II theory

with F (half)-hypermultiplets it is SO(F ). Also, the precise description of the groups allows
us to write down a Haar measure and ultimately to explicitly compute indices counting
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operators which characterize some branches of the moduli space of the theory. Indeed, this
way we can not only check that the expected global symmetry pattern emerges; but also
that both fSU(N)I,II SQCD theories have non-freely generated Coulomb branches. This is
very interesting as it provides examples of non-freely generated N = 2 Coulomb branches.

In this section we focused, as a proof-of-concept, on 4d N = 2 SQCD-like theories based
on fSU(N)I,II. Nevertheless, it is clear that we are just scratching the tip of an iceberg.
Staying in the, perhaps tamest, realm of N = 2 theories, it would be interesting to study
the String/M-theory realization. The close relative of gauging the CP symmetry has been
considered in string-theoretic constructions in the past ( [59]. See e.g [60] for a more re-
cent discussion). While most of these constructions were typically devised with an eye on
phenomenologically viable string-inspired scenarios, it is tempting to guess that our con-
struction could fit along those lines. Another natural embedding in String Theory is through
an orientifold construction, where indeed our groups play a role at intermediary steps as
discussed in [45]. Yet another promising avenue would be embedded our theories into the
class S framework, perhaps yielding a connection to the constructions in [61, 62]. It would
also be very interesting to explore landmark aspects of discrete gauge theories such as codi-
mension 2 defects [53], as well as other dimensionalities and other SUSY’s (including no
SUSY). In particular, in other dimensions it may be that new interesting phenomena are
possible. For instance, given that ⇡0(fSU(N)I,II) = Z2, one may imagine a discrete ✓ param-
eter in a SUSY QM based on fSU(N)I,II. Also, one may consider extending the construction
to U(N) groups. Since the latter have a non-trivial fundamental group, the corresponding
extended versions may lead to interesting phenomena. There may be also a parallel to the
Pin groups, in particular upon considering quotients by subgroups of the center. Also more
exotic constructions, similar to the 2d O(N)± orbifolds as in [63], may be possible in 2d. It
would also be very interesting to explore dynamical aspects of these theories, perhaps using
localization to compute correlation functions along the lines of [64].

2.3 Discrete gauging and Hasse diagrams

In this section, we continue the study of gauge theories with disconnected gauge groups. The
study of gauge theories based on connected and simply connected Lie groups, like SU(N),
has been a very active field of research early on, as they play a central role in the description
of high energy physics, with the focus being really on the Lie algebra. However it was soon
acknowledged that the global structure of the gauge group, beyond its Lie algebra properties,
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also plays a crucial physical role. The importance of the fundamental group ⇡1 has recently
been abundantly discussed in the context of supersymmetric gauge theories [65] and the
standard model [66].

By contrast, the importance of the group ⇡0 of connected components has been less
investigated, even though early studies pointed out its physical relevance [29, 67, 68], and
more recent works connect finite gauge groups and dualities in quantum field theory [24,69].
It should also be mentioned that discrete symmetries appear prominently in the context of
higher form symmetries [70], see for instance [71] for a recent account of the class S case.
Another example of the relevance of discrete gaugings is provided by the discovery of new
types of 4d N = 3 SCFTs [36,37]. These theories are constructed starting with the 4d N = 4

SYM theory with complexified coupling constant ⌧ tuned to a self dual point of the SL(2,Z)
S-duality group. It turns out that, for these specific values of ⌧ , extra discrete subgroups � ⇢
SL(2,Z) ⇥ SU(4)R are global symmetries of the theories and act in a no trivial way on the
supercharges. The gauging of these subgroups breaks the initial amount of supersymmetry
down to exactly 12 supercharges, leading this way to 4d N = 3 strongly coupled SCFTs.
As discussed in [36, 37], these 4d N = 3 SCFTs are different from those obtained using the
S-fold construction [34,72].

Here we are interested in a particular form of discrete symmetry: any simple connected
Lie group has a (sometimes trivial) group of outer automorphisms. The automorphisms can
intervene in compactification by twisting along cycles, and this can be used to engineer
theories with non simply laced gauge groups from string / M theory [73–76]. This is also
a much perused tool in F-theory since its early days [77]. The outer automorphisms for a
simple complex Lie algebra correspond to the symmetries of its Dynkin diagram, and the
the resulting non simply laced algebra is obtained by folding it. In particular it was studied
how the Superconformal Index (SCI) [78, 79] of a 4d N = 2 class S theory is affected by
the twist of this symmetry. These theories are obtained starting with the 6d N = (2, 0)

theory on S3 ⇥ S1 ⇥ ⌃2 labelled by a simply laced Dynkin diagram � and performing a
compactification over the punctured Riemann surface ⌃2. In [62] the authors considered
the evaluation of the SCI twisted by the outer automorphism group along the S1. Another
possibility is to introduce twisted punctures in class S theories [80–82]; in [83] it was studied
how the SCI of type D theories is affected by twist lines on ⌃2. Similar ideas are considered
in [84], where 3d mirror theories of class S theories of type A2N with twisted punctures
compactified on S1 are derived.

Another possibility offered by outer automorphisms is to promote them to gauge sym-
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metries, in effect extending the gauge group and making it disconnected. This class of dis-
connected groups is called principal extension, that is to say the disconnected gauge group
eG is obtained taking the semidirect product between the connected gauge group G and the
discrete outer automorphism group � of the Dynkin diagram

eG ' Go � . (2.3.1)

As amply discussed below, the equation (2.3.1) is not sufficient to define the group eG: it
is necessary to provide an explicit action of � on G. While this construction could seem
a bit abstract a well known example is provided by the O(2N) group that is isomorphic
to SO(2N) o Z2, where the discrete group Z2 acts on the Dynkin diagram of type DN

algebra flipping its two final simple roots. It is then natural to extend the same construction
also to the case of type AN�1 Lie algebra, that is still endowed with a non-trivial Z2 outer
automorphism group. In this case the Z2 acts on the set of roots {↵i} by reflection , i.e. ↵i $
↵N�i+1. The corresponding disconnected group is denoted by fSU(N) ' SU(N) o Z2. From
a physical perspective the gauging of this Z2 corresponds to gauging the charge conjugation
symmetry. The study of SCFTs with fSU(N) gauge groups was initiated in [85] and further
extended in [1]. In both these works we focused on a 4d N = 2 context and consider SQCD-
like theories, with a N = 2 vector multiplet transforming under the adjoint representation
of fSU(N) and matter provided by N = 2 hypermultiplets in the fundamental representation
of the gauge group.

In the discretely gauged theory with fSU(N) gauge group the gauge and the matter
fields transform under representations of the disconnected gauge group. This is the place in
which the different global structures of the groups play a crucial role since, in general, the
representations of fSU(N) differ from representations of SU(N). Moreover it was observed
in [1] that when N is even there are two non equivalent ways of performing the gauging
of the Z2 symmetry, that give rise to two distinct gauge groups, that have been denoted
by fSU(N)I and fSU(N)II respectively. On the other hand, when N is odd, there is only
one possibility corresponding to fSU(N)I . From a mathematical point of view these two
possibilities, arising in the N even case, are related to the fact that the complexified Lie
algebra sl(N,C) admits two distinct real forms that give rise to two non equivalent ways of
gauging charge conjugation.11

All the theories that we study are endowed with a moduli space of vacua parametrized
11See Section 2.3 of [1] for details on that point, and Appendix 5.B for a compendium of the essential

definitions.
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by BPS chiral scalar gauge invariant operators. It is then natural to investigate how the
discrete gauging action affects these spaces. From a physical point of view the fact that the
gauge group has become larger introduces further restrictions on the types of gauge invariant
operators that we can construct and therefore, we expect a modification of the geometric
structure of the corresponding moduli space. A systematic way to characterize the geometry
of these moduli spaces is provided by the Plethystic program [11,12], with the central notion
of Hilbert series, a generating function that counts the chiral operators present in the theory
according to their conformal dimension and other quantum numbers [19,86]. The extension
of these tools, in the context of principal extensions, was performed in [46] and we employ
them in our analysis.

Moreover, even if the complete characterization of the full moduli space of vacua is in
general very difficult, for a 4d N = 2 gauge theory we can identify two particular subbranches,
namely the Coulomb branch and Higgs branch. Specifically the Coulomb branch arises when
we give a vacuum expectation value (VEV) to the complexified scalar inside the N = 2 vector
multiplet. For the theories discussed in this work the computation of the Hilbert series of
the Coulomb branch was performed in [1, 85]. Remarkably it was found that the Coulomb
branch of these theories is not freely generated. On the other hand the Higgs branch is
parameterized by the VEVs of the scalar fields inside the N = 2 hypermultiplets. In general
if there is enough matter in the theory a generic VEV completely breaks the gauge group.
Nevertheless we can also give a VEV only to a subset of the scalar fields, this way the gauge
group could be broken to a non-trivial subgroup. This partial Higgs mechanism is naturally
described by a partial order diagram, called the Hasse diagram, where each node of the
diagram is related to the subgroup of the initial gauge group that is left unbroken by the
Higgs mechanism. The systematic study of the Higgs branch of theories with 8 supercharges
using Hasse diagrams was initiated in [22] and further analysed in [23, 87–96]. The Higgs
branch Hasse diagram in turns reveals the geometric structure of the Higgs branch as a
symplectic singularity, the nodes being in correspondence with symplectic leaves, and the
links representing elementary transverse slices. In this section we aim to move a further step
in this direction and we analyse how the structure of the Higgs branch of the SQCD-like
theories with fSU(N)I or fSU(N)II gauge groups is revealed by the partial Higgsing procedure
described above. In particular our first main result is the derivation of the Hasse diagrams
for Type I and Type II gauging in Figure 2.4 and Figure 2.6. This is based on a careful
analysis of representations of fSU(N)I/II groups, their characters and branching rules.

The Higgs branch of certain 4d N = 2 theories can be equivalently described as the
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Coulomb branch of 3d N = 4 quiver gauge theories. When this is the case, the quiver is
called a magnetic quiver for that Higgs branch [97–101]. Our second main result is a magnetic
quiver for the Higgs branch of fSU(N)I theories, in the form of a wreathed quiver, as introduced
in [91]. As a check of our conjecture we compute the 3d N = 4 Coulomb branch Hilbert
series of that quiver and find perfect agreement with the Higgs branch Hilbert series of the
corresponding fSU(N)I theory that was computed in [1, 85]. The computation is performed
using the monopole formula originally introduced in [19] and generalized to wreathed quivers
in [91].

The present section is organized as follows. In Section 2.3.1 we introduce the notion
of characters for representations of disconnected groups and we discuss the derivation of
the branching rules relevant for the partial Higgsing mechanisms discussed in this work. In
Section 2.3.2 we briefly review the notion of Hasse diagram and we discuss its construction
for type I and type II discretely gauged theories. In Section 2.3.3 we review the generalization
of the monopole formula in the context of 3d N = 4 wreathed quiver gauge theories and we
apply it to theories of type I providing a candidate magnetic quiver. The appendices gather
basic definitions and technicalities regarding fSU(N) groups.

2.3.1 Characters and branching rules for disconnected groups

In this section we develop tools that allow to use the theory of characters of Lie groups in
the context of disconnected groups, focusing on the examples of O(N) and fSU(N). This
allows to compute tensor products, and more importantly branching rules, which are needed
to compute Hasse diagrams in the next section.

Writing the characters for a group G (connected or not) requires firstly the identification
of irreducible representations ⇢ : G! GL(V ), and secondly the choice of a subgroup T ⇢ G

parametrized by fugacities (which can assume continuous or discrete values). The character
is then the function �⇢ : T ! C defined by �⇢(t) = Tr(⇢(t)) for t 2 T . The new feature of
this analysis for disconnected groups G is the appearance of discrete fugacities in T . This
can be seen as a fusion between the usual theories of characters of connected Lie group on
one side, and of representation theory of finite groups (here the component group of G) on
the other side. Here we consider only the simplest non trivial case (2.3.1) where � = Z2,
which has character table

✏ 1 �1
�1 1 1

�✏ 1 �1
(2.3.2)
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but the principles would remain valid for a larger component group. In the character table
(2.3.2), the two Z2 elements are denoted by ✏ = ±1. and rows of this table contain the
characters of its two irreducible representations.12

Representations and characters for O(N)

Groups O(2N)

We start with the very simple example of O(2) to set up the concepts and notations in a
framework where everything can be written explicitly. This group is a semidirect product
SO(2)oZ2, so an element of O(2) can be written as a pair (g, ✏) 2 SO(2)⇥Z2. The semidirect
product is specified by the ⇥✏ automorphism of SO(2) defined by

⇥1

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
=

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
, ⇥�1

 
cos ✓ � sin ✓

sin ✓ cos ✓

!
=

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
.

(2.3.3)
Note that ⇥�1 is the conjugation by the reflection matrix Diag(�1, 1). The fundamental
representation is

O(2) =

( 
cos ✓ � sin ✓

sin ✓ cos ✓

!����� ✓ 2 T 1

)
[
( 

cos ✓ sin ✓

sin ✓ � cos ✓

!����� ✓ 2 T 1

)
. (2.3.4)

Setting z = ei✓, the trace of the matrices in the identity component is z + z�1 while the
trace vanishes in the disconnected component. Therefore the character can be written as a
function of z and ✏ as

�O(2)

Fundamental
(z, ✏) =

✓
1 + ✏

2

◆
(z + z�1) =

8
<

:
z + z�1 if ✏ = 1

0 if ✏ = �1
. (2.3.5)

The character has two fugacities, one continuous variable z and one discrete variable ✏, and
they span the fugacity group.

Consider now the adjoint representation, i.e. the action of (g, ✏) 2 O(2) on a 2 R given
by  

0 a

�a 0

!
7! (g, ✏)

 
0 a

�a 0

!
(g, ✏)�1 . (2.3.6)

12We slightly abuse notation in denoting by the same symbol ✏ two related objects, namely the generic
element of Z2 (which plays the role of a discrete fugacity, satisfying ✏

2
= 1) and the non-trivial irreducible

representation of Z2. With this choice the character of the ✏ representation is ✏.
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This is a 7! a for ✏ = 1 and a 7! �a for ✏ = �1. Therefore the corresponding character reads

�O(2)

Adjoint
(z, ✏) =

✓
1 + ✏

2

◆
⇥ (1) +

✓
1� ✏
2

◆
⇥ (�1) = ✏ . (2.3.7)

We note an interesting fact: the adjoint representation is not the same as the trivial repre-
sentation. There are two inequivalent representations of dimension 1, while there is only one
of dimension 2.

Consider now O(4) = SO(4)o Z2, the first example in which the choice of the subgroup
of fugacities T is not straightforward. As maximal torus of SO(4) we choose matrices of the
form 0

BBBB@

cos ✓1 � sin ✓1 0 0

sin ✓1 cos ✓1 0 0

0 0 cos ✓2 � sin ✓2

0 0 sin ✓2 cos ✓2

1

CCCCA
(2.3.8)

The trace of this matrix is z1 + z�1

1
+ z2 + z�1

2
with z1 = ei✓1 and z2 = ei✓2 . However we

now need to specify how the semidirect product is defined, as there is no way to make this
choice symmetric in z1 and z2. We choose to define ⇥�1 as the conjugation by the reflection
Diag(�1, 1, 1, 1). As a consequence, the trace of an element with ✏ = �1 in the fundamental
representation is z2 + z�1

2
. The symmetry between z1 and z2 is broken. The embedding

O(2) ⇢ O(4) is obtained by sending z2 ! 1, while sending z1 ! 1 gives the embedding
SO(2) ⇢ O(4). The reader is encouraged to check this on the characters of the fundamental
and adjoint representations of O(4) which read

�O(4)

Fundamental
(z1, z2, ✏) =

✓
1 + ✏

2

◆
(z1 + z�1

1
) + (z2 + z�1

2
) , (2.3.9)

�O(4)

Adjoint
(z1, z2, ✏) =

✓
1 + ✏

2

◆�
2 + (z1 + z�1

1
)(z2 + z�1

2
)
�
. (2.3.10)

One can generalize these computations to O(2N) = SO(2N) o Z2, with ⇥�1 given by
conjugation by Diag(�1, 1, · · · , 1). The characters of the fundamental and adjoint represen-
tations of O(2N) are

�O(2N)

Fundamental
(zi, ✏) =

✓
1 + ✏

2

◆
(z1 + z�1

1
) +

NX

i=2

(zi + z�1

i ) , (2.3.11)

�O(2N)

Adjoint
(zi, ✏) =

✓
1 + ✏

2

◆ 
2 + (z1 + z�1

1
)
X

2jN

(zj + z�1

j )

!

61



O(2N) �! O(2N � 1)⇥O(1) = (SO(2N � 1)⇥ Z2)⇥ Z2

FO(2N) 7�!
�
FSO(2N�1) ⌦ ✏⌦ 1

�
�
�
1SO(2N�1) ⌦ 1⌦ ✏

�

Adj
O(2N)

7�!
�
Adj

SO(2N�1)
⌦ 1⌦ 1

�
�
�
FSO(2N�1) ⌦ ✏⌦ ✏

�

SO(2N + 1) �! O(2N)

FSO(2N+1) 7�! FO(2N) � 1O(2N)

Adj
SO(2N+1)

7�! Adj
O(2N)

� FO(2N)

Table 2.5: Summary of branching rules for O(N) groups.

+(N � 2) +
X

2i<jN

(zi + z�1

i )(zj + z�1

j ) . (2.3.12)

Note that the group O(2N) is simple for N � 3, and in those cases the trivial, fun-
damental and adjoint representations are given by Dynkin labels [0, . . . , 0], [1, 0, . . . , 0] and
[0, 1, 0, . . . , 0] respectively. These are invariant under the exchange of the Dynkin labels for
the two spinor nodes, so from each of these representation one can build another inequivalent
one by tensoring with ✏.13 In the case N = 2, the group O(2N) is not simple, and accord-
ingly the adjoint representation corresponds to Dynkin labels [2, 0]� [0, 2]; from the general
arguments given in [1, Sec. 3.1], it follows that the character should vanish for ✏ = �1, and
this is indeed the case in (2.3.12).

Groups O(2N + 1) and Branching rules

The group O(2N +1) is a direct product SO(2N +1)⇥Z2 so the characters factorize. Using
the characters one can check the branching rules for orthogonal groups. The branching
rules O(2N + 1) ! O(2N) are obtained by restricting the O(2N + 1) characters to O(2N)

characters, with no change in the fugacities. The branching rules O(2N) ! O(2N � 1) are
obtained by setting zN ! 1. The results are presented in Table 2.5.

Representations and characters for fSU(N)

We can apply similar techniques to express characters of representations of fSU(N)I/II . Def-
initions and notations for these groups are gathered in Appendix 5.B. As for O(N), we first

13These representations are sometimes called “pseudo". From the trivial or scalar representation one builds
the pseudo-scalar, and from the fundamental or vector one builds the pseudo-vector.
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have two one-dimensional representations:

1. The trivial representation, with character �
fSU(N)

1
= 1.

2. The ✏ representation, with character �
fSU(N)

✏ = ✏.

Let us now move to higher dimensional representations. As explained in [1], representa-
tions of SU(N) induce representations of fSU(N) according to the following rule. Let R be
a representation of SU(N) with highest weight �. If � = [�1, . . . ,�N�1] is invariant under
the permutation �i $ �N�i then there are two corresponding representations of fSU(N),
both of dimension dim(R), which differ by a tensor product with the ✏ representation; if the
highest weight is not invariant under that permutation, then there is a single corresponding
representation of fSU(N), of dimension 2dim(R).

In this work we focus on the representations induced by the fundamental and the adjoint
of SU(N). These are

3. The fundamental representation. This is a 2N dimensional representation which we
denote by (F � F ). Let us emphasize that despite this notation, this is an irreducible
representation, as the Z2 element mixes the F and F of the starting SU(N) group.

4. The adjoint representation, of dimension N2 � 1.

5. The tensor product of the adjoint representation with ✏ representation, of dimension
N2 � 1.

To write down characters for these representations, we need to pick a group of fugacities.
For characters in SU(N), the natural choice is to consider the subgroup of diagonal matrices
U(1)N�1. In the case of the disconnected group fSU(N), it turns out that the choice of an
appropriate fugacity subgroup is a subtle problem that is discussed at length in Appendix
5.B. In a nutshell, the reason for which the choice is subtle is that certain subgroups, called
Cartan subgroups, are well suited for representation theory (e.g. an extension of the Weyl
character formula is valid) but do not commute with the embedding of smaller disconnected
groups like fSU(N � 1) ⇢ fSU(N). In the present section, we are interested in branching
rules for that embedding, so we pick instead T = {(z1, . . . , zN�1, ✏)} = U(1)N�1

o Z2 as
defined in (5.B.23), where the first factor corresponds to diagonal matrices in SU(N) and
the semidirect product is the one that serves to define the extension fSU(N). With these
choices, the representations and their characters are summarized in Table 2.6.

For instance, in the fundamental representation the trace of the matrix corresponding to
an element (g,�1) is clearly 0, so that the character is the product of the the corresponding
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Representation Value on (g, 1) Value on (g,�1)
Trivial 1 1
✏ 1 �1

F � F

✓
g 0
0 ⇥�1(g)

◆ ✓
0 g

⇥�1(g) 0

◆

Adj X 7! gXg�1 X 7! g✓�1(X)g�1

Adj⌦ ✏ X 7! gXg�1 X 7! �g✓�1(X)g�1

Representation Character
Trivial 1
✏ ✏

F � F
�
1+✏
2

�N�1P
i=0

⇣
zi

zi+1
+ zi+1

zi

⌘

Adj

8
>>>><

>>>>:

�
1+✏
2

�
 
�1 +

N�1P
i=0

N�1P
j=0

zi
zi+1

zj+1

zj

!
+ (1�N)

�
1�✏
2

�
Type I

�
1+✏
2

�
 
�1 +

N�1P
i=0

N�1P
j=0

zi
zi+1

zj+1

zj

!
+ (1 +N)

�
1�✏
2

�
Type II

Adj⌦ ✏

8
>>>><

>>>>:

�
1+✏
2

�
 
�1 +

N�1P
i=0

N�1P
j=0

zi
zi+1

zj+1

zj

!
� (1�N)

�
1�✏
2

�
Type I

�
1+✏
2

�
 
�1 +

N�1P
i=0

N�1P
j=0

zi
zi+1

zj+1

zj

!
� (1 +N)

�
1�✏
2

�
Type II

Table 2.6: The first table shows the representations of fSU(N) used in this work, by giving the
explicit action of elements of the form (g, ✏) for ✏ = ±1. For the 1-dimensional representations,
this is a number; for the F �F representation we give a 2N⇥2N matrix, and for the adjoint
and ✏-adjoint we give the action on an element X in the Lie algebra g. The second table
gives the characters expressed in terms of fugacities (z1, . . . , zN�1, ✏) 2 T with the convention
z0 = zN = 1.

SU(N) character by the projector 1+✏
2

. As another example, for the adjoint representation
the action of (g,�1) on the Lie algebra is X 7! g✓�1(X)g�1, see equation (5.B.13). As shown
in section 5.B.3, the computation of the character reduces to the computation of the trace
of ✓�1, which is given in equations (5.B.14) and (5.B.15).

The characters of Table 2.6 allow to compute branching rules. For instance the branching
rules for fundamentals are

�
(F�F )fSU(N)

|zN�1!1 =

✓
1 + ✏

2

◆N�2X

i=0

✓
zi
zi+1

+
zi+1

zi

◆
+ 2

✓
1 + ✏

2

◆

= �
(F�F )fSU(N�1)

+ 1 + ✏ . (2.3.13)
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fSU(N)I �! fSU(N � 1)I

(F � F )fSU(N)I
7�! (F � F )fSU(N�1)I

� ✏� 1

AdjfSU(N)I
7�! AdjfSU(N�1)I

� (F � F )fSU(N�1)I
� ✏

✏ 7�! ✏

fSU(2N)II �! fSU(2N � 2)II

(F � F )fSU(2N)II
7�! (F � F )fSU(2N�2)II

� 2⇥ ✏� 2⇥ 1

AdjfSU(2N)II
7�! AdjfSU(2N�2)II

� 2⇥ (F � F )fSU(2N�2)II
� ✏� 3⇥ 1

✏ 7�! ✏

fSU(N)I,II �! SU(N)

(F � F )fSU(N)
7�! FSU(N) � F SU(N)

AdjfSU(N)
7�! Adj

SU(N)

✏ 7�! 1

Table 2.7: Summary of branching rules for fSU(N) groups.

For a less trivial example, let us look at the adjoint representation in type II. We take N � 4

even and consider the branching rules for the embedding fSU(N � 2)II ⇢ fSU(N)II

�AdjfSU(N)II
|zN�2,zN�1!1 =

✓
1 + ✏

2

◆⇣
�AdjSU(N)

|zN�2,zN�1!1

⌘
+ (1 +N)

✓
1� ✏
2

◆

=

✓
1 + ✏

2

◆⇣
�AdjSU(N�2)

+ 2�
(F�F )SU(N�2)

+ 4
⌘
+ (1 +N)

✓
1� ✏
2

◆

= �AdjfSU(N�2)II
+ 2�

(F�F )fSU(N�2)II

+ 3 + ✏ . (2.3.14)

The crucial feature here is the 3 + ✏ contribution. If instead we repeat the computation for
type I this term becomes 1 + 3✏ because of the different sign in front of the N✏ term in the
character. The branching rules are summarized in Table 2.7.

2.3.2 Hasse diagrams

Higgs branches of theories with 8 supercharges are hyperKähler cones [102], or symplectic
singularities [20], and as such admit a foliation [21,103] which can be conveniently described
by a Hasse diagram. Each point of the diagram represents a symplectic leaf of said foliation.
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The Hasse diagram represents a partial order between the symplectic leaves, defined by
inclusions in their closures. For any two given leaves which can be compared in this partial
order, we have a transverse slice which describes how the smaller leaf looks as a symplectic
singularity inside the closure of the bigger leaf. If the two leaves are adjacent in the Hasse
diagram, we have a so called elementary transverse slice, which oftentimes has a simple
geometric description as the closure of a minimal nilpotent orbit of a classical group or as
a Klein singularity (this will always be the case for our purposes, see [95, 104] for examples
with more exotic elementary slices).

In [22] the Hasse diagram of symplectic leaves for the Higgs branch of a classical gauge
theory with 8 supercharges is identified with the Hasse diagram of phases of that gauge
theory under partial Higgsing. Each leaf is labeled by the unbroken gauge group in that
phase, and the elementary transverse slices describe the geometry of gauge singlets. We
apply this principle to the Higgs branch of gauge theories with fSU gauge groups, and in this
section, we derive the Hasse diagrams of Figures 2.2, 2.4 and 2.6 by looking at the chain of
possible Higgsing patterns. As a warm-up we first review that procedure by looking at the
example of SU(Nc) +Nf SQCD.

The Higgs branch of this theory is defined classically as a hyperKähler quotient which
can be written symbolically as

1

2

�
NfFNc +NfFNc

�
� AdjNc

, (2.3.15)

where the factor of 1/2 is due to the fact that when separating fundamentals and antifunda-
mentals we are counting half-hypers. The hyperKähler quotient is denoted by the minus sign
in the above equation. Replacing each representation by its dimension, the formula above
yields the quaternionic dimension of the Higgs branch.

Now we apply the branching rules under the breaking SU(Nc)! SU(Nc � 1),

Nf

2
[FNc�1 � 1Nc�1] +

Nf

2

⇥
FNc�1 � 1Nc�1

⇤
�
⇥
AdjNc�1

� FNc�1 � FNc�1 � 1Nc�1

⇤
.

(2.3.16)

Finally, we reshuffle this expression to put it in the form

[Matter fields charged under SU(Nc � 1)]� [Adjoint of SU(Nc � 1)] + [singlets] . (2.3.17)

The first two terms identify the theory that results after the Higgsing, and the singlets cor-
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Slice dimH Gauge Theory Global Symmetry
aN N U(1) with N + 1 fundamental hypermultiplets su(N + 1)
cN N O(1) = Z2 with 2N fundamental half-hypermultiplets sp(N)
dN 2N � 3 Sp(1) with 2N fundamental half-hypermultiplets so(2N)

Table 2.8: List of elementary slices which appear in this work. These are the closures of the
minimal nilpotent orbits of their global symmetry algebra.

respond to the transverse slice according to Table 2.8. The cancellation of the fundamentals
coming from AdjNc

by fundamentals coming from matter fields corresponds physically to the
Higgs mechanism, where some of the gauge bosons of the initial theory acquire a mass. In
our example,

1

2

�
(Nf � 2)FNc�1 + (Nf � 2)FNc�1

�
� AdjNc�1

�

1

2
(Nf +Nf )� 1

�
1Nc�1 , (2.3.18)

which means that the remaining theory after Higgsing is SU(Nc� 1) + (Nf � 2) SQCD, and
the transverse slice is aNf�1 i.e. the (closure of the) minimal nilpotent orbit of su(Nf ). The
slice is identified to be aNf�1 as the coefficient of the singlets of the hyperKähler quotient of
the U(1) gauge theory as described in Table 2.8.

In order to distinguish between different elementary slices of the same dimension, one
looks at the number of singlets coming from the adjoint of the initial gauge group and
matches it with the dimension of the gauge group of the theory in the third column in Table
2.8. For the slices considered in this thesis, this number is respectively 1, 0 and 3 for the
three rows of the Table.

Hasse Diagram for O

Let’s proceed with our first disconnected group, and consider a theory with gauge group
O(Nc) plus Nf � Nc fields in the fundamental representation. The Hasse diagram is already
shown in [22]; we rederive it here to illustrate the method of characters for disconnected
groups. We use the same procedure shown above to find the transverse slices and resulting
theories after the Higgsing. In order to make sure that we get the full Hasse diagram, we need
to scan over the possible subgroups of O(Nc) and check which symmetry breaking patterns
are possible according to the branching rules of Table 2.5. Let’s begin by considering the
(potential) breaking O(Nc)! O(Nc � 1)⇥ O(1). Note that since O(2k + 1) can be written
as a direct product, but O(2k) cannot, there is in principle a difference between choosing
Nc odd or even. We take Nc even for now, and shall soon see that this initial choice doesn’t
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matter.

NfFO(Nc) � Adj
O(Nc)

!Nf [(FSO(Nc�1) ⌦ ✏⌦ 1)� (1SO(Nc�1) ⌦ 1⌦ ✏)]

� [(Adj
SO(Nc�1)

⌦ 1⌦ 1)� (FSO(Nc�1) ⌦ ✏⌦ ✏)] . (2.3.19)

Note that the last term coming from the decomposition of the adjoint cannot be cancelled.
This means that under the symmetry breaking pattern under consideration, the gauge fields
have no Goldstone bosons to eat, and therefore the Higgs mechanism cannot take place. In
a similar way, we can check that O(Nc) also can’t break to the subgroup O(p)⇥O(q) (with
p+ q = Nc).

The next possible breaking to consider is then O(Nc) ! O(Nc � 1). This is achieved
taking (2.3.19) and forgetting the second Z2 representation in each tensor product, as that
was the one corresponding to the O(1) factor. Thus we have

NfFO(Nc) � Adj
O(Nc)

!Nf [(FSO(Nc�1) ⌦ ✏)� (1SO(Nc�1) ⌦ 1)]

� [(Adj
SO(Nc�1)

⌦ 1)� (FSO(Nc�1) ⌦ ✏)] . (2.3.20)

We see that this symmetry breaking pattern is possible, and it results in

NfFO(Nc) � Adj
O(Nc)

! (Nf � 1)FO(Nc�1) � Adj
O(Nc�1)

�Nf1O(Nc�1)| {z }
cNf

slice

. (2.3.21)

From this, we conclude that the transverse slice at the bottom of the Hasse diagram is cNf
,

and the remaining theory on the symplectic leaf of the Higgs branch is O(Nc�1)+(Nf�1)F .
Recall that we had chosen Nc even, so now we have an odd number of colours, O(Nc � 1) =

Z2 ⇥ SO(Nc � 1). We can therefore consider the potential breaking Z2 ⇥ SO(Nc � 1) !
Z2 ⇥ O(Nc � 2), where the Z2 representations stay the same and the branching rules are
those in the second part of Table 2.5. This results in

(Nf � 1)[✏⌦ FSO(Nc�1)]� [1⌦ Adj
SO(Nc�1)

]! (Nf � 1)[✏⌦ (FO(Nc�2) � 1O(Nc�2))]

� [1⌦ (Adj
O(Nc�2)

� FO(Nc�2))] (2.3.22)

=(Nf � 1)[(✏⌦ FO(Nc�2))� (✏⌦ 1O(Nc�2))]

� [(1⌦ Adj
O(Nc�2)

)� (1⌦ FO(Nc�2))] .

(2.3.23)
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Once again, we see that the necesary cancellations are only possible if we forget about the
Z2, i.e. if we consider the breaking O(Nc � 1)! O(Nc � 2). With this,

(Nf � 1)FO(Nc�1) � Adj
O(Nc�1)

! (Nf � 2)FO(Nc�2) � Adj
O(Nc�2)

�(Nf � 1)1O(Nc�2)| {z }
cNf�1 slice

.

(2.3.24)

That is, the second slice at the bottom of the Hasse diagram is cNf�1 and the remaining theory
is O(Nc�2)+(Nf�2)F . To complete the Hasse diagram, we need to repeat the process above
the necessary number of times. Note that, as advertised, it doesn’t matter whether at each
step the number of colour is even or odd; even if the decomposition of the representations
looks different, in the end we always have that the breaking is O(Nc � k)! O(Nc � k � 1)

with transverse slice cNf�k. The chain of Higgsings only stops after Nc steps, when we have
O(1)! {1} with a cNf�(Nc�1) transverse slice. The resulting Higgs branch Hasse diagram is
a line, and is depicted in the bottom left of Figure 2.2.

As a byproduct of this analysis, we can also obtain the Hasse diagram for a theory with
SO(Nc) gauge group and Nf fundamentals.14 The process is completely analogous to the
one above, except there are no Z2 representations making any appearance. At each step the
possible Higgsing is SO(Nc � k) ! SO(Nc � k � 1) with transverse slice cNf�k. The only
difference comes after Nc� 2 steps, when the theory we have left is SO(2) with Nf �Nc + 2

fundamentals. In the O case, there was still one possible nontrivial subgroup and Higgsing
O(2)! O(1) = Z2. On the other hand, now we have SO(2) = U(1), which has no nontrivial
subgroups to be Higgsed to. Therefore the only Higgsing is U(1) ! {1}, with transverse
slice a2Nf�2Nc+3. We show this Hasse diagram in the bottom right of Figure 2.2. The relation
between the Hasse diagrams for the O and SO theories is reminiscent of the relation between
U and SU [22,87], as made clear on the figure.

Hasse diagram for fSU(N)I

We now proceed to compute the Higgs branch Hasse diagrams for theories with fSU(Nc)I

gauge group, and matter content consisting of Nf fields in the (F � F ) representation and
N✏ fields in the ✏ representation. We do this by considering all the possible Higgsing patterns,
using the branching rules summarised in Table 2.7. We consider only the case where Nf is
large enough so that we can have complete Higgsing.

14We are indebted to Amihay Hanany for drawing our attention to the Hasse diagram of that theory.
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0U(Nc)

aNf�1

Nf � 1U(Nc � 1)

aNf�3

2Nf � 4U(Nc � 2)

(Nc � 2)(Nf �Nc + 2)U(2)

aNf�2Nc+3

(Nc � 1)(Nf �Nc + 1)U(1)

aNf�2Nc+1

NfNc �N2
c{1}

0SU(Nc)

aNf�1

Nf � 1SU(Nc � 1)

aNf�3

2Nf � 4SU(Nc � 2)

dNf�2Nc+3

(Nc � 2)(Nf �Nc + 2)SU(2)

NfNc �N2
c + 1{1}

0O(Nc)

cNf

NfO(Nc � 1)

cNf�1

2Nf � 1O(Nc � 2)

(2Nf �Nc + 3)(Nc � 2)/2O(2)

cNf�(Nc�2)

(2Nf �Nc + 2)(Nc � 1)/2O(1)

cNf�(Nc�1)

NfNc �Nc(Nc � 1)/2{1}

0SO(Nc)

cNf

NfSO(Nc � 1)

cNf�1

2Nf � 1SO(Nc � 2)

a2Nf�2Nc+3

(2Nf �Nc + 3)(Nc � 2)/2SO(2)

NfNc �Nc(Nc � 1)/2{1}

Figure 2.2: Comparison between the Higgs branch Hasse diagram for theories with U(Nc) (top
left) and SU(Nc) (top right) and for theories with O(Nc) (bottom left) and SO(Nc) (bottom
right) gauge groups, with the number of fundamental flavours Nf satisfying Nf � Nc. The
blue numbers are the quaternionic dimensions of the leaves, and the red groups are the
residual gauge groups.
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Let’s begin with the simple example of fSU(4)I with 4 fundamentals as an appetizer. This
representation is real, and so the theory has Sp(4) global symmetry. Computing the Higgsing
to fSU(3)I , we find,

4(F � F )fSU(4)I
� AdjfSU(4)I

! 4
h
(F � F )fSU(3)I

� ✏� 1
i

(2.3.25)

�
h
AdjfSU(3)I

� (F � F )fSU(3)I
� ✏
i

= 3(F � F )fSU(3)I
� 3 ✏� AdjfSU(3)I

� 4 · 1| {z }
c4 slice

, (2.3.26)

and we see that the remaining theory is an fSU(3)I gauge theory with 3 fundamentals and 3
fields in the ✏. Since both the (F � F )fSU(3)I

and the ✏ are real representations, this theory
has a Sp(3) ⇥ Sp(3) global symmetry. On the other hand, we observe that the transverse
slice at the bottom of the Hasse diagram is c4.

We are now presented with two options regarding how to continue the chain of Higgsings.
The gauge fields can either eat the fields in the ✏, resulting on the breaking fSU(3)I ! SU(3),
or fields in the (F � F )fSU(3)I

, resulting on the breaking fSU(3)I ! SU(2) ⇥ Z2. In the first
case, we find

3(F � F )fSU(3)I
� 3 ✏� AdjfSU(3)I

! 6FSU(3) � Adj
SU(3)

� 3 · 1|{z}
c3 slice

. (2.3.27)

From this point onward, we have the already known Higgsing pattern and Hasse diagram of
the SU groups. Let’s then consider the second case,

3(F � F )fSU(3)I
� 3 ✏� AdjfSU(3)I

!3
h
(F � F )fSU(2)I

� ✏� 1
i

(2.3.28)

+ 3 ✏�
h
AdjfSU(2)I

� (F � F )fSU(2)I
� ✏
i
.

Here we are making an abuse of notation: since the principal extension of SU(2) is trivial,
we have fSU(2) = SU(2)⇥ Z2, and the (F � F ) representation is in fact reducible and equal
to 2 · FSU(2). Using this,

(2.3.28) = 4 · FSU(2) � 5 · ✏ � Adj
SU(2)

� 3 · 1|{z}
c3 slice

. (2.3.29)

We conclude that the theory after this last Higgsing splits into two decoupled theories,
one consisting of SU(2) gauge group with 4 flavours and the other of a Z2 gauge group with
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7
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7

4

0

c5

c5

c3

d4

a5d4

c3

c4

fSU(4)ISp(4)

(F � F )

fSU(3)ISp(3) Sp(3)

(F � F ) ✏

SU(2)⇥ Z2SO(8) Sp(5)

F ✏

Z2Sp(5)

✏

SU(3)SU(6)

F

SU(2)SO(8)

F

Free hypers

Figure 2.3: Higgs branch Hasse diagram of fSU(4)I +4 (F �F ). Next to each symplectic leaf,
we write its dimension (in blue) and the quiver of the effective theory.

5 fields in the ✏. The overall global symmetry is SO(8)⇥ Sp(5).
At this point, the possible Higgsings are trivial, since there are no more nontrivial sub-

groups. We can either Higgs SU(2)! 1 with the fundamental flavours, leaving the Z2 + 5✏

alone (this produces a d4 slice), or Higgs Z2 ! 1 with the ✏ fields (this produces a c5 slice).
Note that the SU(2)+4F remaining in this transition can also be reached from the Higgsing
of SU(3) + 6F that we obtained in the previous steps. All in all, the Hasse diagram for the
Higgs branch of this theory is depicted in Figure 2.3.

Generalizing to an arbitrary number of fundamentals Nf � Nc and fields in the ✏ is now
straightforward.15 As before, we begin by writing down the hyperKähler quotient for the
Higgs branch of fSU(Nc)I +Nf (F � F ) +N✏✏,

Nf (F � F )fSU(Nc)
�N✏✏� AdjfSU(Nc)I

. (2.3.30)

This theory has Sp(Nf )⇥ Sp(N✏) global symmetry. Similarly to the intermediate step of the
previous example, there are two possible Higgsings, with the ✏’s or with the fundamentals.

15The case Nf < Nc is more involved, as is already visible in SQCD with SU gauge groups. One difficulty
comes from the fact that the Higgs branch may be a union of several hyperKähler cones with non-trivial
intersections. In addition, non complete Higgsing gives rise in some cases to nilpotent operators in the Higgs
chiral ring which makes it difficult to match with a 3d N = 4 Coulomb branch ring, as discussed in detail
in [87].
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Applying the branching rules of Table 2.7 in either case results in

fSU(Nc)I ! SU(Nc) : (2.3.30)! NfFSU(Nc) �NfF SU(Nc) (2.3.31)

� Adj
SU(Nc)

�N✏ · 1| {z }
cN✏ slice

fSU(Nc)I ! fSU(Nc � 1)I : (2.3.30)! (Nf � 1)(F � F )fSU(Nc�1)I
(2.3.32)

� (N✏ +Nf � 1)✏� AdjfSU(Nc�1)
�Nf · 1| {z }
cNf

slice

The former leads to an effective theory with SU(Nc) gauge group and SU(2Nf ) global
symmetry, whose Hasse diagram is already known. This is the right part of the Hasse diagram
of Figure 2.4. The latter leads to a theory with fSU(Nc � 1)I gauge group, Nf � 1 fields in
the (F � F ), and N✏ + Nf � 1 fields in the ✏; thus a Sp(Nf � 1) ⇥ Sp(N✏ + Nf � 1) global
symmetry. In order to continue the computation of the Hasse diagram, we are once again
presented with two possibilities: Higgsing with the ✏ fields –this produces a cN✏+Nf�1 slice
that merges with the right part of the Hasse diagram corresponding to the connected gauge
groups– or with the fundamentals –this produces a cNf�1 slice that continues on the left side
of the Hasse diagram corresponding to the disconnected gauge groups with both fundamental
and ✏ matter fields–.

The Hasse diagram of Figure 2.4 is the result of iterating this procedure Nc � 2 times,
until we reach fSU(2)I = SU(2)⇥Z2. At this point, as happened with the previous example,
the theory will decouple into an SU(2) gauge theory with Nf �Nc + 2 fundamentals, and a
Z2 gauge theory with N✏ + (Nc � 2)(2Nf � Nc + 1)/2 ✏’s. We can Higgs each of these two
gauge groups separetly, resulting in the “rectangle” at the top of the Hasse diagram.

Hasse diagram for fSU(N)II

The computation of the Hasse diagram of the Higgs branch for theories with SU(2Nc)II gauge
group is very similar to the one we just described in detail for the type I case. There are
only a few key differences that we need to take into account. The first is that fSU(2N �1)I is
not a subgroup of fSU(2N)II . This implies that the smallest step we can take in the chain of
Higgsings is fSU(2N)II ! fSU(2N � 2)II . The second is that the fundamental representation
of the type II groups is pseudo-real rather than real, and therefore these fields will give rise
to an SO global symmetry.

As in the type I case, before considering the fully general case, we begin by looking at
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2NcNf �N2
c +N✏ + 1 {1}

2NcNf + 4(Nc �Nf )�N2
c � 4 +N✏ SU(2)

2NcNf + 6(Nc �Nf )�N2
c � 9 +N✏ SU(3)

2NcNf + 8(Nc �Nf )�N2
c � 16 +N✏ SU(4)

6Nf � 9 +N✏ SU(Nc � 3)

4Nf � 4 +N✏ SU(Nc � 2)

2Nf � 1 +N✏ SU(Nc � 1)

N✏ SU(N)

Z2 Nf (Nc + 2)�
Nc
2 (Nc + 3) + 2

SU(2)⇥ Z2
(2�Nc)(Nc�2Nf�3)

2

fSU(3)I
(3�Nc)(Nc�2Nf�4)

2

fSU(4)I
(4�Nc)(Nc�2Nf�5)

2

fSU(Nc � 3)I 3Nf � 3

fSU(Nc � 2)I 2Nf � 1

fSU(Nc � 1)I Nf

fSU(Nc)I 0

c (Nc�2)(2Nf�Nc+1)

2
+N✏

c (Nc�2)(2Nf�Nc+1)

2
+N✏

c (Nc�3)(2Nf�Nc+2)

2
+N✏

c (Nc�4)(2Nf�Nc+3)

2
+N✏

d2(Nf�Nc+2)

a2Nf�2Nc+5

a2Nf�2Nc+7

a2Nf�2Nc+9

d2(Nf�Nc+2)

cNf�Nc+3

cNf�Nc+4

cNf�Nc+5

cNf

cNf�1

cNf�2

cNf�3

cN✏

cNf�1+N✏

c2Nf�3+N✏

c3Nf�6+N✏

a2Nf�1

a2Nf�3

a2Nf�5

a2Nf�7

Figure 2.4: Higgs branch Hasse diagram of fSU(Nc)I+Nf (F�F )+N✏ ✏ for Nf � Nc. The blue
numbers are the quaternionic dimensions of the leaves, and the red groups are the residual
gauge groups.
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a concrete example, fSU(6)II with 6 fields in the (F � F ); the resulting Hasse diagram is
depicted in Figure 2.5. The procedure is the same as before: we begin by writing down

6(F � F )fSU(6)II
� AdjfSU(6)II

, (2.3.33)

and apply the branching rules of Table 2.7 under the breaking fSU(6)II ! fSU(4)II . After
some cancellations, this results in

4(F � F )fSU(4)II
� 11✏� AdjfSU(4)II

�(12� 3) · 1| {z }
d6 slice

. (2.3.34)

We see that the remaining effective theory has SO(8) ⇥ Sp(11) global symmetry, and the
transverse slice, according to Table 2.8, is the minimal nilpotent orbit of so(12). Again we
are at a stage where we can proceed with the chain of Higgsings in two ways: either Higgs
with the ✏ fields –this results in a c11 slice that goes to the right side of the Hasse diagram
corresponding to the SU groups– or with the fundamentals –this results in a d4 slice that
continues in the left of the Hasse diagram corresponding to the disconnected groups–. Note
that since in the disconnected side of the diagram the rank of the gauge group jumps by two,

37

32

27

20

19

14

9

0

c18

c18

c11

d4

a5

a7

d4

d4

d6

fSU(6)IISO(12)

(F � F )

fSU(4)IISO(8) Sp(11)

(F � F ) ✏

SU(2)⇥ Z2SO(8) Sp(18)

F ✏

Z2Sp(18)

✏

SU(4)SU(8)

F

SU(3)SU(6)

F

SU(2)SO(8)

F

Free hypers

Figure 2.5: Hasse diagram of fSU(6)II + 6(F � F ). Next to each symplectic leaf, we write its
quaternionic dimension (in blue) and the quiver of the effective theory corresponding to the
transverse slice from that leaf to the top leaf.
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we will have extra symplectic leaves in the right side of the Hasse diagram. In our example,
the extra leaf is the one of dimension 27, with gauge group SU(3) and global symmetry SU(6);
meanwhile on the left side we jump directly from fSU(4)II ! SU(2) ⇥ Z2. As in the type I
case, the disconnected version of the SU(2) group is simply a direct product, which means
that at the top of the Hasse diagram we have a rectangle where the sides are the transverse
slices c18 –corresponding to Higgsing the Z2 with the ✏ fields– and d4 –corresponding to
Higgsing the SU(2) with the fundamentals–.

With this in mind, generalizing to a fSU(2Nc)II+Nf (F�F )+N✏✏ (with Nf large enough)
requires no extra thinking. We only need to repeat the computation above a few times to
obtain the result in Figure 2.6.

2.3.3 Magnetic quivers

In [1,85] we began the study of the Higgs branch of the 4d N = 2 discrete gauged SQCD-like
theories of type I and II. In this section we attempt to find a magnetic quiver, i.e a 3d N = 4

theory whose Coulomb branch is equal to the Higgs branch of the fSU(N) gauge theory. We
conjecture that the Higgs branch of the 4d N = 2 fSU(N)I gauge theory with Nf (F � F )

hypermultiplets is the Coulomb branch of the wreathed quivers drawn in Figure 2.9. We check
our conjecture performing the computation of the corresponding Coulomb branch Hilbert
series on a selection of examples. Our main tool will be the monopole formula that was
initially introduced in [19]. The generalization of this formula in the context of wreathed
quivers was performed in [91].

We start with a short review of the monopole formula of [91] before applying it to the
theories of interest. We work out with full details the fSU(3)I case with Nf = 3 while we just
report the result for fSU(N)I with N > 3. The type II theories are discussed in Section 2.3.3.

Review of the Monopole formula and Wreathed quivers

We consider a 3d N = 4 simply laced quiver with unitary nodes and only bifundamental
hypermultiplets, and a finite subgroup � of the automorphisms of that quiver. We call V
the set of vertices of the quiver; to each vertex v 2 V is associated a unitary gauge group
U(nv). We call E the set of (unoriented) edges e = {v, v0} of the quiver, which correspond to
hypermultiplets in bifundamental representations connecting the gauge nodes v and v0. The
gauge group of the initial quiver is G =

Q
v2V U(nv).

Given such a quiver, we can construct a so-called wreathed quiver for any subgroup
� of the automorphisms of the quiver diagram. For instance the quiver of Figure 2.7 has
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4NcNf � 4N2
c + 1 +N✏ {1}

4NcNf � 4Nf � 4N2
c + 8Nc � 4 +N✏ SU(2)

4NcNf � 6Nf � 4N2
c + 12N2

c � 9 +N✏ SU(3)

4NcNf � 8Nf � 4N2
c + 16Nc � 16 +N✏ SU(4)

12Nf � 36 +N✏ SU(2Nc � 6)

10Nf � 25 +N✏ SU(2Nc � 5)

8Nf � 16 +N✏ SU(2Nc � 4)

6Nf � 9 +N✏ SU(2Nc � 3)

4Nf � 4 +N✏ SU(2Nc � 2)

2Nf � 2 +N✏ SU(2Nc � 1)

N✏ SU(2Nc)

Z2 2NcNf + 2Nf � 2N2
c � 5Nc + 4

SU(2)⇥ Z2 (Nc � 1)(2Nf � 2Nc + 1)

fSU(4)II (Nc � 2)(2Nf � 2Nc + 3)

fSU(2Nc)II 0

fSU(2(Nc � 1))II 2Nf � 3

fSU(2(Nc � 2))II 4Nf � 10

fSU(2(Nc � 3))II 6Nf � 21

c(Nc�1)(2Nf�2Nc+3)+N✏

c(Nc�1)(2Nf�2Nc+3)+N✏

c(Nc�2)(2Nf�2Nc+5)+N✏

d2(Nf�2Nc+2)

a2Nf�4Nc+5

a2Nf�4Nc+7

a2Nf�4Nc+9

a2Nf�5

a2Nf�7

a2Nf�9

a2Nf�11

a2Nf�13

a2Nf�1

a2Nf�3

d2(Nf�2Nc+2)

dNf�2Nc+4

dNf�2Nc+6

dNf�6

dNf�4

dNf�2

dNf

c2Nf�1+N✏

c4Nf�6+N✏

c6Nf�15+N✏

cN✏

Figure 2.6: Higgs branch Hasse diagram of fSU(2Nc)II + Nf (F � F ) + N✏✏ for Nf � 2Nc.
The blue numbers are the quaternionic dimensions of the leaves, and the red groups are the
residual gauge groups.
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a Z
2

2
diagram automorphism generated by the permutation of the two long legs and the

permutation of the two short legs. Wreathing the quiver by � means promoting the gauge
group to the wreath product G o �. If � ✓ Sn the wreath product G o � is defined as a set by

G o � =

 
nY

i=1

Gi

!
⇥ � (2.3.35)

where G1, . . . , Gn are n identical copies of the gauge group G and where the product is
defined by

(g, �) · (g0, �0) = (g�(g0), ��0) , with (g�(g0))i = gig
0

��1(i) . (2.3.36)

In this notation (g, �) 2 G o � is an ordered list of n elements gi of G together with � 2 �.
It should be noted that in the particular case of a symmetry permuting a bouquet of U(1)
gauge nodes, the wreathing operation coincides with the discrete gauging of [33, 105, 106].
We refer the reader to [91] for more details about wreathed quivers.

Following [19, 91] the (unrefined) Coulomb branch Hilbert series associated to � takes
the form

HS�(t) =
1

|W�|
X

m2Zr

X

�2W�(m)

t2�(m)

det(1� t2�)
, (2.3.37)

where W� := W o � ✓ Sr+1 is given by the extension of W =
Q

v2V Snv by the symmetry
� of the quiver. Here r = �1 +

P
v2V nv denotes the total rank of the quiver gauge theory

that we are considering, while m denotes the magnetic charge that takes value in the lattice
Z
r. For any m 2 Z

r we call W�(m) = {w 2 W� | w · m = m}. Finally �(m) denotes the
conformal dimension, defined by

2�(m) =
X

{v,v0}2E

nvX

i=1

n0
vX

j=1

|mv,i �mv0,j|�
X

v2V

nvX

i=1

nvX

j=1

|mv,i �mv,j| . (2.3.38)

When � = {1} is the trivial group, (2.3.37) reproduces the standard monopole formula of [19].
Henceforth we consider quivers which possess a Z2 automorphism, and we set � = Z2.

Formula (2.3.37) can be more efficiently evaluated after exploiting the Weyl group sym-
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metry. We introduce the Casimir factors PW�
16

PW�(t;m) =
1

|W�|
X

�2W�(m)

1

det(1� t2�)
. (2.3.39)

This way the formula (2.3.37) can be recast in the following form

HS�(t) =
X

m2Weyl(Go�)\Zr

PW�(t;m)t2�(m) , (2.3.40)

where G =
Q

v2V U(nv) is the initial gauge group and the sum is taken over the magnetic
weights in the principal chamber Weyl(Go �).

Example: the fSU(3)I case

We start from the magnetic quiver for the Higgs branch of 4d N = 2 SQCD with gauge
group SU(3) and Nf = 3 flavours. The � = Z2 is implemented with a wreathing on the legs
of the quiver as schematically shown in Figure 2.7. Note that the quiver has a full Z2 ⇥ Z2

automorphism group, each factor exchanging two identical legs; we just wreath with the
diagonal subgroup �. This is justified by the generalization to Nf > N , see Figure 2.9.

1 2 3 2 1

1 1

Z2

Figure 2.7: Magnetic quiver for SQCD with gauge group fSU(3)I and 3 (F � F ). The red
dashed lines show the Z2 action on the legs of the quiver.

In order to check this conjecture we compute the Coulomb branch Hilbert series using
formula (2.3.37). We believe it is useful to provide the full details of the computation for
that example as this is the first time (2.3.37) is evaluated on a non-trivial wreathed quiver.

16Note that for W� = SN this definition coincides with the definition of the Casimir factors PU associated
to unitary gauge groups, that were introduced in [19].
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• To each gauge node of the quiver we associate the magnetic weights as follows:

c d1, d2 g1, g2, g3 f1, f2 e

a b

(2.3.41)

The total rank r of the gauge group is 11 � 1 = 10, and the sum over the magnetic
charges is over elements of the form

m ⇠= (a, b, c, d1, d2, e, f1, f2, g1, g2, g3 = 0) 2 Z
r+1 (2.3.42)

so this is indeed a sum over Zr (see Section 2.4.3 of [107] for detailed explanation about
the choice of lattice).

• The Weyl group W is the product of the Weyl groups of the simple gauge groups,
namely

W = S1 ⇥ S1 ⇥ S1 ⇥ S2 ⇥ S1 ⇥ S2 ⇥ S3 ⇢ S11 (2.3.43)

• The wreathing group is � = Z2. It is generated by the permutations that exchange
simultaneously a$ b, c$ e and di $ fi (i = 1, 2). Then the group W� = Wo� ⇢ S11

has order |W�| = 48.

• The expression (2.3.38) gives the following conformal dimension for the case at hand

2�(m) =
3X

i=1

(|a� gi|+ |b� gi|) +
2X

i=1

(|c� di|+ |e� fi|) +
2X

i=1

3X

j=1

(|di � gj|+ |fi � gj|)

�
2X

i,j=1

(|di � dj|+ |fi � fj|)�
3X

i,j=1

|gi � gj| . (2.3.44)

We now work out formula (2.3.40), splitting it into six contributions, one for each gener-
alized wall of the Weyl chamber.

• The interior of the chamber is defined by the inequality a < b. In that case, for any m

satisfying this inequality, W�(m) = W (m) so the Casimir factors correspond to those
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of W , and we get the contribution

H1(t) =
(1� t2)

(1� t2)4

X

a<b

X

c

X

d1d2

X

e

X

f1f2

X

g1g20

PU(d)PU(f)PU(g)t
2�(a,b,c,d1,d2,e,f1,f2,g1,g2,0) .

(2.3.45)
Note that we factored out the Casimir terms for the four U(1) nodes, giving (1� t2)�4

in the denominator, and we include a (1 � t2) in the numerator to account for the
decoupled U(1). In (2.3.45) and all similar equations below, all sums run over the
integers Z.

• Then we go on the wall of the chamber defined by a = b. Now to avoid over counting
we have to be in the interior of that wall, which we define by the inequality c < e. In
that case clearly W�(m) = W (m), so the contribution is

H2(t) =
(1� t2)

(1� t2)4

X

a

X

c<e

X

d1d2

X

f1f2

X

g1g20

PU(d)PU(f)PU(g)t
2�(a,a,c,d1,d2,e,f1,f2,g1,g2,0) .

(2.3.46)

• The third (respectively the fourth) contributions are defined by a = b, c = e and
d2 < f2 (respectively d2 = f2 and d1 < f1). This uses a lexicographic order to
find a fundamental chamber relative to the fugacities of the non-abelian groups U(2).
Again these constraints guarantee that (a, b, c, d1, d2, e, f1, f2) 6= (b, a, e, f1, f2, c, d1, d2)

so W�(m) = W (m) and the contributions are

H3(t) =
(1� t2)

(1� t2)4

X

a

X

c

X

f1f2

X

d1d2<f2

X

g1g20

PU(d)PU(f)PU(g)t
2�(a,a,c,d1,d2,c,f1,f2,g1,g2,0) ,

(2.3.47)

H4(t) =
(1� t2)

(1� t2)4

X

a

X

c

X

f1f2

X

d1<f1

X

g1g20

PU(d)PU(f)PU(g)t
2�(a,a,c,d1,f2,c,f1,f2,g1,g2,0) .

(2.3.48)

• We now reach the regions where (a, b, c, d1, d2, e, f1, f2) = (b, a, e, f1, f2, c, d1, d2). In
that case we can no longer use the standard Casimir factors PU for the U(2) nodes.
Consider first the fifth region, defined by

a = b c = e d1 = f1 d2 = f2 f1 < f2 . (2.3.49)

As the factor S3 in W is unaffected, we keep the PU Casimir term for it. Let us denote
W 0 = W/S3 = S1 ⇥ S1 ⇥ S1 ⇥ S2 ⇥ S1 ⇥ S2 ⇢ S8. For a weight m satisfying (2.3.49),
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W 0

�
(m) does not depend on m, so we can factor out from (2.3.37) a prefactor

1

|W 0

�
|
X

�2W�(m)

1

det(1� t2�)
=

1 + 6t4 + t8

(1� t2)8 (1 + t2)4
. (2.3.50)

Therefore the fifth contribution is

H5(t) = (1� t2)
1 + 6t4 + t8

(1� t2)8 (1 + t2)4
X

a

X

c

X

f1<f2

X

g1g20

PU(g)t
2�(a,a,c,f1,f2,c,f1,f2,g1,g2,0) .

(2.3.51)
In that expression the four U(1) gauge nodes Casimirs are accounted for in (2.3.50).

• Finally the last region is defined by

a = b c = e d1 = f1 d2 = f2 f1 = f2 . (2.3.52)

and for such an m we get

1

|W 0

�
|
X

�2W�(m)

1

det(1� t2�)
=

1� t2 + 4t4 � t6 + t8

(1� t2)8(1 + t2)4(1 + t4)
. (2.3.53)

This gives the contribution

H6(t) = (1�t2) 1� t2 + 4t4 � t6 + t8

(1� t2)8(1 + t2)4(1 + t4)

X

a

X

c

X

f1

X

g1g20

PU(g)t
2�(a,a,c,f1,f1,c,f1,f1,g1,g2,0) .

(2.3.54)

The Hilbert series (2.3.37) for the case at hand is the sum of these six contributions. Evalu-
ating each of them perturbatively, we find

HS(t) = 1 + 21t2 + 20t3 + 336t4 + 560t5 + 3850t6 + 7812t7 + 34643t8 + 73900t9

+252132t10 + 535920t11 + 1533810t12 + 3177876t13 + 8011642t14 + 16049712t15

+36748014t16 +O
�
t17
�
. (2.3.55)

The Higgs branch Hilbert series for this theory has been evaluated exactly in [1] using
the Molien-Weyl integration formula for disconnected groups [40], giving the result

1

(1� t)20(1 + t)16(1 + t2)8(1 + t+ t2)10

⇣
1 + 6t+ 34t2 + 144t3 + 647t4 + 2588t5+

9663t6 + 31988t7 + 97058t8 + 268350t9 + 687264t10 + 1628374t11 + 3598201t12+
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7421198t13 + 14364220t14 + 26130494t15 + 44837750t16 + 72656468t17 + 111456702t18+

162010222t19 + 223544610t20 + 292994926t21 + 365233973t22 + 433158422t23+

489154949t24 + 526027956t25 + 538960928t26 + ... + palindrome + ...+ t52
⌘
.

All computed orders in (2.3.55) agree with the above expression, giving a strong evidence
that the wreathed quiver of Figure 2.7 can be considered to be a magnetic quiver for the
fSU(3)I gauge theory with 3 (F � F ).

We note that the evaluation of the corresponding refined Hilbert series does not present
any conceptual obstruction: it suffices to introduce one fugacity for each U(1) factor in the
gauge group in the summand of equation (2.3.40). Concretely in the example at hand, one
introduces fugacities z1, z2, z3, z4 and weight the summands of the various sums above with
the term

zc+e
1

zd1+d2+f1+f2
2

zg1+g2+g3
3

za+b
4

(2.3.56)

where the four fugacities satisfy the condition

z2
1
z4
2
z3
3
z2
4
= 1 (2.3.57)

which corresponds to the diagonal U(1) factor. Solving (2.3.57) for z4 one obtains the Hilbert
series

HS(t; z1, z2, z3) = 1 +
�
z2
1
z3z

2

2
+ z1z3z

2

2
+ z3z

2

2
+ z1z2 + z1z3z2 + z3z2

+z2 + z1 + z3 +
1

z1
+

1

z3
+

1

z1z2
+

1

z1z3z2
+

1

z3z2
(2.3.58)

+
1

z2
+

1

z1z3z22
+

1

z2
1
z3z22

+
1

z3z22
+ 3

◆
t2 +O(t3) ,

which has coefficient of t2 equal to the character of the adjoint representation of sp(3) written
in the simple root basis.

Folded quiver and twisted compactification

In this paragraph, we denote by C the Coulomb branch of the 3d N = 4 theory defined by
the wreathed quiver of Figure 2.7 and by H the Higgs branch of the 4d N = 2 fSU(3)I gauge
theory with 3(F � F ) matter. We now consider the following three claims:

(↵) The exact Hilbert series of C and H are equal.
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c2
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6

3

0

d3
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Table 2.9: Comparison of the Hasse diagrams for a quiver with a Z2 symmetry and the
corresponding wreathed and folded quivers.

(�) The Hasse diagrams of C and H as symplectic singularities agree.

(�) The symplectic singularities C and H are isomorphic.

The logical implications between these statements is (�) =) (�) =) (↵). The computation
performed above strongly suggests that (↵) holds. Based on that result, and on physical
intuition regarding charge conjugation,17 we conjecture that (�) holds as well. If this is
correct, then (�) should also be correct, and in combination with the results of Section 2.3.2,
it means that we have identified the Hasse diagram for C, see the middle column of Table
2.9. It is interesting to compare this Hasse diagram with the Hasse diagram of a third quiver,
namely the non simply laced quiver

1 2 3 1 (2.3.59)

obtained by folding, presented in the last column of Table 2.9. The Hasse diagram is obtained
from the quiver subtraction algorithm (see [92] for a similar computation).

17It is known that the quiver of Figure 2.7 before wreathing is 3d mirror to the S
1 compactification of the

4d N = 2 SU(3) theory with 6 flavors. The fSU(3) theory is obtained by gauging charge conjugation, which
is identified in [75] with the Z2 used for wreathing in Figure 2.7.
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We note that the quiver (2.3.59) arises naturally as follows. Consider the following brane
web, where vertical lines represent NS5 branes, horizontal lines represent D5 branes and
circles represent (p, q)-seven-branes with appropriate charges:

(2.3.60)

This represents the 5d N = 1 theory SU(3) with 6 fundamental hypers, with masses set to
zero, and finite gauge coupling. This brane web has a Z2 ⇥ Z2 symmetry (the first factor
being the reflection with respect to a vertical axis, and the second factor a reflection with
respect to a horizontal axis). In particular, the diagonal Z2, which is a rotation of angle ⇡ in
the plane of the brane web, should correspond to charge conjugation in the SU(3) theory [75].
The magnetic quiver associated to this brane web is

1 2 3 2 1

1 1

(2.3.61)

It has a SU(6)⇥U(1) global symmetry. We can compactify this 5d theory on a circle with a
Z2 twist, corresponding to charge conjugation, to obtain a N = 2 theory in 4d, following [75].
Then the SU(6) factor in the global symmetry is broken to Sp(3), and the U(1) factor is
completely broken. The magnetic quiver, which is derived using the rules of Appendix B
of [108], is (2.3.59).

This construction sheds light on the difference between the wreathed and the folded quiv-
ers from the 4d perspective. In the first case, charge conjugation is gauged, which means that
inequivalent configurations in the original theory are declared to be equivalent. Mathemat-
ically, the operation on the Higgs branch is a quotient, and the dimension is unchanged. In
the second case, charge conjugation is involved in twisted compactification: mathematically,
the operation on the Higgs branch is a reduction to fixed points of the discrete action, and
accordingly the dimension is changed. We conclude this section with an observation of an
apparent conflict with a conjecture of [91], which states that the Hasse diagram of a folded
quiver should be a subdiagram of the Hasse diagram of any corresponding wreathed quiver.
The diagrams of Table 2.9 contradict this conjecture (which was based on observation of a
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few examples), and it would be interesting to study this point further.

Type I – general case

Based on the computation performed for the fSU(3)I case we can infer the general form of the
wreathed magnetic quiver for theories of type I, see Figure 2.9. When Nf = N this reduces
to the quiver of Figure 2.8, where the Z2 action is picked from the Z2 ⇥ Z2 automorphism
group of the quiver by continuation from the Nf > N case.

Z2

1
2

N � 1

N
N � 1

2
1

1

1

Figure 2.8: Wreathed quiver for SQCD-like theories with gauge group fSU(N)I and N flavours.
The automorphism group of this quiver is Z2 ⇥ Z2, but we wreath only a Z2 subgroup, as
made clear by the generalization to higher number of flavors in Figure 2.9.

Z2

1
2

N � 1
1

N

N

N

N
N � 1

2
1

1

2Nf � 2N � 1

Figure 2.9: Wreathed quiver for SQCD-like theories with gauge group fSU(N)I and Nf > N
flavours. There is a single Z2 action which flips the whole quiver about the horizontal axis.
The global symmetry of this wreathed quiver is Sp(Nf ).

For N � 4 the explicit evaluation of the Coulomb branch Hilbert series for Nf = N ,
associated to the conjectured wreathed quiver, turns out to be computationally quite in-
volved. Due to this obstruction we checked our conjecture only for the case N = 4, where
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the application of the formula (2.3.37) gives

1 + 36t2 + 1114t4 + 24717t6 + 417276t8 +O(t10) . (2.3.62)

We observe that this expression perfectly matches with the first orders of the expansion of
the Higgs branch Hilbert series for SQCD with gauge group fSU(4)I and eight flavours, that
was computed in [1].

Comment on 3d mirror symmetry We have argued that the wreathed quivers of Figure
2.9 are magnetic quivers for the Higgs branch of theories with fSU gauge groups. One could
be tempted to further conjecture that this provides a 3d mirror pair. However, one would
need to study fSU gauge theories in 3d N = 4 and then examine how monopole operators
are affected by the Z2 factor in the gauge group in order to characterize the 3d Coulomb
branch of fSU gauge theories and match it with the Higgs branch of wreathed quivers. This
is left for future work.

Type II

In the previous sections, we have provided the magnetic quivers for theories with one of the
types of disconnected gauge groups that we have discussed in this thesis, fSU(N)I . Currently
we have no candidate for a possible magnetic quiver of a theory with fSU(N)II gauge group.
To understand why the type II groups pose a much bigger problem than the type I groups,
let’s look into the logic that led us to the wreathed quiver in Figure 2.7.

Two of the main characteristics of the Higgs branch of SQCD-like theories with fSU gauge
groups groups are that, on the one hand, its dimension is the same as for their connected
cousins SU, while on the other hand the global symmetry is modified due to the reality
properties of the fundamental representation. In particular, for Nc = 4 with 4 F � F the
quaternionic dimension of the Higgs branch is 17, and the global symmetry is SU, Sp or SO
in the connected case, type I and type II respectively.

When looking for a magnetic quiver, a natural starting point is the known magnetic
quiver for the SU groups, which in the Nc = 3 case is depicted in (2.3.61). This has the
correct dimension, but the wrong global symmetry for our purposes. We also have its folded
version, the non-simply laced quiver in (2.3.59); this has the correct global symmetry Sp(3),
but the incorrect dimension. With this in mind, the introduction of wreathed quivers in [91]
quickly leads to a potential candidate for the magnetic quiver of fSU(3)I , since the wreathing
construction preserves the dimension, while modifying the global symmetry in the same way
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as the folding. This candidate is the one in Figure 2.7, and it turned out to be the correct
one.

However, for the type II groups the puzzle is significantly more complicated. Our anal-
ysis shows that starting from the magnetic quiver of SU(4), none of the possible ways to
wreath a Z2 gives rise to the expected global symmetry. This has been confirmed by Hilbert
series computations. Thus, as stated above, we have no candidate for the magnetic quiver
of fSU(Nc)II . It is of course possible that such a magnetic quiver may be found as a wreath-
ing of a completely different quiver, perhaps including not only unitary nodes; or from an
altogether different route.

2.3.4 Conclusions

In this section we analyzed several aspects of 4d N = 2 theories with disconnected gauge
groups. In particular we studied how the global structure of these groups affects the Hasse
diagrams for the Higgs branch of supersymmetric gauge theories. The main difference with
respect the connected case is that these diagrams are characterized by the presence of bifur-
cations, physically corresponding to scalar fields transforming in different representations of
the gauge group getting a VEV.

Moreover, in the second part of the section, we moved a further step towards the under-
standing of the Higgs branch of the 4d N = 2 SQCD like-theories with fSU(N)I gauge group
providing a candidate for a magnetic quiver that turns out to be a wreathed quiver. Our
analysis also suggests that a magnetic quiver for type II theories is not a wreathed quiver
of type discussed in [91] or, to the best of our knowledge, any other type 3d N = 4 quiver
appearing in the literature. We leave the identification of this quiver for future investigation.

This naturally leads to a wealth of open problems, the most prominent of which being the
connection between the two parts of this work, namely the Hasse diagrams and the magnetic
quivers. To the best of our knowledge, the algorithms of quiver subtraction leading to Hasse
diagrams has not been extended to wreathed quivers. The present work thus offers an infinite
family of data points that could serve as a basis to understand how quiver subtraction applies
to those quivers. In particular, it should be noted that the Hasse diagram for a wreathed
quiver seems not to contain in general the Hasse diagram of the associated folded quiver,
as shown in Table 2.9. This point needs to be investigated further. A brane realization of
theories with fSU(N) gauge groups, possibly along the lines of [44, 45, 109, 110] would be an
important step forward.
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2.4 Non-invertible symmetries from discrete gauging and

completeness of the spectrum

Global symmetries play a central role in Quantum Field Theory (QFT). They are used as an
organizing principle to systematically construct the possible operators, their breaking pat-
tern allows to characterize the phases of a system and their possible anomalies provide exact
constraints on the dynamics. However, in recent times it has been made clear that the notion
of symmetry has to be generalized from the traditional textbook definition typically in terms
of Noether currents. The central idea, pioneered in [70], is that symmetries are associated
to symmetry operators Tg(Md�(p+1)) depending on a transformation g and defined on codi-
mension p+1 manifolds Md�(p+1).18 The crucial point is that the dependence on Md�(p+1) is
topological: the properties of Tg(Md�(p+1)) –for instance their correlation functions– do not
change under small changes of Md�(p+1) as long as these do not cross any charged operator.

The textbook examples of global symmetries naturally fit in this framework. Indeed, for
a continuous symmetry there is a Noether current, whose integral on Md�1 manifolds gives
a charge Q. Clearly, slight changes of Md�1 do not change Q as long as these do not cross
charged operators. Moreover, the exponential of Q gives a an element of the symmetry group,
and thus corresponds to the Tg(Md�1).19 The point of view above naturally generalizes this in
two directions. On one hand it allows for more generic symmetries supported on codimension
p+ 1 manifolds whose charged objects are supported on p-dimensional submanifolds. These
are often referred to as higher form symmetries or p-form symmetries. On the other hand,
it allows to consider more generic categorical symmetries not arising from a group. This is
reflected into a more generic fusion rule for symmetry operators, which in particular do not
need to have an inverse (as opposed to what should happen for a fusion rule of elements in
a group). These cases are often dubbed non-invertible symmetries.

The existence of non-invertible symmetries is well-known in lower-dimensional QFT’s. In
particular, in 2d there is a whole body of work studying these (see e.g. [111–116] for early
references). Their status in higher dimensions is however a bit less clear. The case of O(2)

has been argued to give rise to non-invertible symmetries in [117] (see also [118], and [119] for
further developments), and more exotic examples have been constructed in [120,121]. More
recently, it has been argued in [122] that indeed non-invertible symmetries are common in
higher dimensions.

18We will mostly assume the QFT defined on a dimension d euclidean signature space, and thus talk about
operator insertions.

19In this case, as e
iQ is a group element, it is often denoted by Ug(M

d�1
).
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Very recently, [118] (see also [123]) provided a criterion to compute the symmetry op-
erators in a gauge theory with compact gauge group, including both invertible (i.e. usual
symmetries associated to groups) as well as non-invertible symmetries. From the analysis
in [118], it follows that if a gauge theory has local operators in all possible representations,
no possible non-trivial topological operator candidate for electric 1-form symmetry operator
can exist.20 Therefore, the absence of global electric 1-form symmetries, whether group-like
or non-invertible, is equivalent to the completeness of the spectrum of the QFT.21 In turn,
this has interesting implications for the Swampland Program (in short, the study of the re-
strictions imposed in the low energy Physics which can be consistently coupled to Quantum
Gravity. See e.g. [124, 125] for introductions and further references), where the Absence of
Global Symmetries and the Completeness of the Spectrum are two central conjectures which
indeed have been long suspected to be deeply related.

In this section we study in detail (certain) higher-form global symmetries of gauge theo-
ries which include, as an element of the gauge group, charge conjugation in generic d dimen-
sions. More precisely, we will consider gauge theories based on the gauge groups constructed
in [1, 85] dubbed fSU(N). These are principal extensions of SU(N) by the Z2 outer auto-
morphism corresponding to flipping the Dynkin diagram, which, in particular, exchanges
the fundamental representation with the antifundamental, and thus corresponds to charge
conjugation (the construction can be extended to U(N), giving rise to eU(N)). Concentrating
on pure gauge theories, we will study the 1-form electric symmetry, which turns out to be
non-invertible (in a sense, generalizing the O(2) example). Moreover, as the gauge groups
are disconnected, there is a (d � 2)-form symmetry associated to the non-trivial ⇡0(G) for
G = fSU(N), eU(N).22 We also introduce String Theory constructions of these theories. Amus-
ingly, these automatically all come with configurations of extended objects which break the
(d�2)-form symmetry. From this perspective, they may be regarded as Swampland examples
in the sense that when the gauge theory with gauge group G is embedded into a consistent
theory of Quantum Gravity, the otherwise present (d � 2)-form symmetry is broken by the
presence of charged “matter" (in this case extended objects).

The remainder of the section is structured as follows. In section 2.4.1 we review basic
20By electric 1-form symmetry we mean the one that is always present in a gauge theory, associated to

the field strenght. In the free Maxwell case, the Noether current is simply F .
21Completeness of the spectrum is defined as the existence of operators in every possible representation of

the gauge group.
22There may be other higher form symmetries other than those we consider. In particular, there may be

a (d� 3)-form magnetic symmetry associated to the dual of the gauge field. However, its study requires the
knowledge of the GNO dual group, which is not known at present for the theories at hand.
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facts in the topic of higher form global symmetries, mainly from [70] and recent progress
in [118]. In section 2.4.2 give a lightning review of the groups fSU(N), eU(N) and study
the electric 1-form symmetries of pure gauge theories based on them. In section 2.4.3 we
study the (d � 2)-form symmetry coming from the fact that the groups are disconnected.
We discuss the would-be charged objects, which are the so-called Alice strings [44] (or twist
vortices in the nomenclature of [118]). As it is well-known, in the presence of twist vortices,
only a subgroup of the gauge group is globally well-defined [126]. We also introduce a stringy
construction for gauge theories based on eU(N), which, as advertised above, automatically
come with Alice strings which break the (d� 2)-global symmetry.

2.4.1 Higher form symmetries and topological operators

In the quest to generalize the notion of symmetry to higher-form global symmetries [70],
one quickly realizes that the usual textbook formulation, based on a Lagrangian and an
explicit transformation of the fields, is not appropriate. Instead, the focus should be on the
symmetry generators Ug(Md�1) depending on a symmetry transformation g and associated
to a manifold Md�1. In the continous case, these are given by the exponentiation of the
charge computed as the integral of the Noether current,

Q(Md�1) =

Z

Md�1

?J , (2.4.1)

The key is that the dependence of Ug on the manifold Md�1 in which it is supported is
topological: Ug doesn’t change under deformations of Md�1 unless the deformation crosses
an operator charged under the symmetry.

This point of view can be easily generalized to higher-form symmetries. The symmetry
operators now live on a codimension p+1 manifold (on whom they depend only topologically),
and the charged objects are extended on p spatial dimensions.

Usually, the symmetry transformations form a group when fusing23 the topological oper-
ators,

Ug1(M
d�p�1) · Ug2(M

d�p�1) = Ug1g2(M
d�p�1) , (2.4.2)

and the transformation has an inverse U�1

g (Md�p�1) = Ug�1(Md�p�1). However, this require-

23Intuitively, and since the topological nature of the operators is best understood when considering them
inside correlation functions, fusing them can be seen as taking their OPE: note that this operation makes
sense even for non-conformal field theories due to the topological nature of said operators.
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ment can be relaxed, by demanding instead that the topological operators fuse according to
(we now denote the operators by T to stress that they may not come from a group)

Ta(M
d�p�1) · Tb(M

d�p�1) =
X

i

N i
ab Ti(M

d�p�1) , (2.4.3)

and need not have an inverse; this structure is that of a fusion algebra. In this case we have
what is called a categorical symmetry or non-invertible symmetry.24 In dimensions three
or higher, a further generalization is possible, whereby operators of different dimensions
can start or end at a given topological junction, and the integer coefficients N i

ab ought to be
understood as the partition function of the topological theories living on said junctions [122].
The underlying structure is that of an n�category, and so this case is referred to as a higher
categorical symmetry.

The action of the topological operators on the charged objects O(Cp) can be understood
by introducing the symmetry operator on a sphere Sd�p�1 that surrounds Cp, and then
shrinking that sphere to a point, finding25

Ta(S
d�p�1)O(Cp) = BO(a)O(Cp) , (2.4.4)

where BO(a) is called the linking coefficient. As an example, we can consider the electric 1-
form symmetry of a gauge theory. The charged operators are the Wilson lines W⇢(�1), with ⇢
a representation of the gauge group; and the symmetry operators, which we denote Ta(Md�2),
are the so called Gukov-Witten operators [129,130], which are labelled by a conjugacy class a
of the gauge group. The linking coefficient in this case is obtained from the Aharonov-Bohm
interaction between the line and the codimension 2 operator [118,131],

BW⇢(a) =
�⇢(a)

dim ⇢
sz(a) , (2.4.5)

24The name categorical symmetry comes from the 2-dimensional case, where the structure that captures
the features of these symmetries is that of a modular tensor category (see [127] for a more precise review
and references): the objects are the topological line defects, the morphisms are the local operators where the
lines can begin, end, or change; and the integer coefficients N

i
ab correspond to the different possible local

operators in a given topological junction. See [128] for recent progress extending this to dimensions higher
than 2,3.

25One may wonder whether more generic actions rather than the “canonical linking" (2.4.4) are possible.
As an example, it may happen that symmetry operators act trivially on the would-be canonically linked
operators, but non-trivially on other extended operators (an example of this being charge conjugation in
U(1)2N Chern-Simons theory: there is no gauge-invariant local operator to begin with. Yet, charge conjuga-
tion exchanges a line with its conjugate). However, for our purposes we can assume that (2.4.4) holds [118],
as we will be interested on 1-form symmetries in pure gauge theories where the O’s are Wilson lines.
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where �⇢(a) is the character of the representation ⇢ evaluated in the conjugacy class of a,
sz(a) is the number of elements of the group inside said conjugacy class and dim ⇢ is the
dimension of the representation.

In [118], the question was addressed of whether or not a Gukov-Witten operator can be
topological (i.e. if it generates a, possibly non-invertible, 1-form global symmetry) if it links
with an endable Wilson line. The argument is as follows: consider a gauge theory with matter
fields in a representation R. Then the Wilson lines corresponding to the representation R

and tensor products thereof can end and break into segments. Suppose that a GW operator
1) is topological and 2) links non-trivially with the Wilson line (i.e. the linking coefficient
is different from its linking with the identity operator, BW (a) 6= B1(a)). Then, given the
topological nature of the GW operator, we can consider either shrinking it on top of the
Wilson line, which produces the linking coefficient BW (a); or breaking the Wilson line into
segments and shrinking the GW on top of a point where there is no Wilson line, which
produces a trivial linking B1(a). By comparison, it follows that if a GW operator links non-
trivially with an endable Wilson line, it cannot be topological. Equivalently, a necessary
condition for GW operators to be topological is to link trivially with endable Wilson lines.

In fact, in [118] it was also argued that for gauge theories based on a compact gauge
group this necessary condition is also sufficient. The argument starts by enlarging the orig-
inal theory T with the addition of an adjoint scalar into an auxiliary theory T 0. Since the
gauge sector of T 0 is identical to that of T , the possible set of Gukov-Witten operators
as well as Wilson lines is the same as in the original theory. In addition, since no matter
in representations not already present in T is introduced, the endability/non-endability of
Gukov-Witten/Wilson lines is not changed from T to T 0. As a consequence the topological
sector of T 0 and T is the same (of course, generic observables such as generic correlation
functions in T 0 are different than those in T ), and hence so is their 1-form symmetry. A
simpler version of this statement is the following: if one has U(1) with a charge n electron,
the 1-form symmetry is Zn. If one adds to the theory arbitrarily many more charge n elec-
trons, obviously generic correlation functions will change, yet the 1-form symmetry remains
Zn. This is true as long as one adds matter in representations already present –in this case,
being U(1), electrons with the same charge. Hence, all in all, one can take advantage of
this to study the structure of the 1-form symmetry in T from that of T 026: one can give
a VEV to the adjoint scalar and move on the “Coulomb branch" where the gauge group is

26Note that in general even the dynamical behavior (e.g. spontaneous symmetry breaking) may be different.
However we are only interested in the structure of the UV 1-form symmetry, which must be identical in T
to the one in T 0.
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U(1)r (and possibly some discrete factor). In that case, it is known that all GW operators
that link trivially with a Wilson line are topological. In fact, they can be seen to precisely
coincide with those selected by the necessary condition above. By continuity, at least these
operators must exist at the origin of the Coulomb branch, where at most we could expect
some symmetry enhancement. However, they already exhaust all the a priori possible ones
selected by the necessary condition of the previous paragraph, and therefore one concludes
that the trivial linking criterion is actually sufficient.

Let us consider pure gauge theories with a gauge group G that is disconnected. The
endable Wilson lines will correspond to the adjoint representation and its tensor products.
In this case, the previous argument, together with (2.4.5), leads to a very simple criterium to
find the 1-form symmetry. Instead of the center of the group (as is the case in the more usual
examples of connected and simply connected groups like SU(N)), the topological Gukov-
Witten operators will correspond to the conjugacy classes of the elements in the centralizer
of the identity component G0 of G,

{topological GW} ⌘ {G�1hG , h 2 CG

�
G0
�
} , (2.4.6)

Once the topological operators have been identified, we need to determine whether they
generate a group or a non-invertible symmetry. A possible way to do it is by using the so
called quantum dimension of the operator, which is defined [118] as the linking coefficient
with the identity operator, dim(Ua) = B1(a). As an example, if we are concerned with
the one-form symmetry, the topological operators are Gukov-Witten operators and their
quantum dimension is (2.4.5)

dim(Ta) = B1(a) = sz(a) . (2.4.7)

The quantum dimensions have the property that they get multiplied under the fusion of
topological operators, and summed under their sum,

dim(Ta · Tb) = dim(Ta) dim(Tb) , (2.4.8)

dim(Ta + Tb) = dim(Ta) + dim(Tb) , (2.4.9)

and since the topological operator corresponding to the identity always has quantum dimen-
sion equal to 1, this allows us to infer when a symmetry has to be non-invertible from the
presence of topological operators with quantum dimension � 1.
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In the same way that we can study the electric one-form symmetry from the topological
GW operators and under which Wilson lines are charged, we can also look at the topological
Wilson lines to find out about the dual (d� 2)-form symmetry under which GW operators
are charged. It turns out that this problem has a more straight-forward solution [118]. Since
the gauge holonomy along a contractible loop always belongs to the identity component of
the gauge group, two Wilson lines along homotopic paths differ at most by an element of G0.
Therefore, only Wilson lines corresponding to representations that map G0 to the identity
are topological. In other words,

{topological WL} ⌘ {representations of ⇡0(G)} , (2.4.10)

where ⇡0(G) is the group of connected components of G. Note that this discussion is actually
unchanged in the presence of matter fields in any representation of G.

While the main focus of this work lies in pure gauge theories, one can consider more
general theories adding matter fields.27 If the matter is in a representation smaller than the
adjoint, the corresponding Wilson lines will become endable, and the GW operators with
whom they link can no longer be topological. As a consequence, the 1-form symmetry will
be reduced. Similarly, for the dual (d � 2)-form symmetry, we can make the GW operators
endable, albeit in this case by adding suitable codimension-3 objets. These were called twist
vortices in [118] and are defined by a monodromy in G/G0 when going around them. For the
disconnected gauge groups under study in this work, these are also known as Alice vortices,
or Alice strings in 4 dimensions [44].

It is worth pointing that this discussion, which is mostly “kinematical", holds irrespective
of the dimensionality of the space for pure gauge theories with YM action. In particular, the
existence and invertibility properties of the generators of the electric 1-form symmetry do not
depend on d. However, depending on the dimensionality of the space, there can be certain
additional ingredients entering the full 1-form symmetry: for instance, in d = 3 both GW and
Wilson lines are line operators; or in d = 4 there can be a magnetic 1-form symmetry acting
on Wilson lines. In both cases, the full 1-form symmetry may be more complicated than the
subset of topological operators studied in this work, which is only the electric part. Moreover,
depending on the spacetime dimension, one may have different topological terms (such as ✓
terms in 4d, Chern-Simons terms in odd d) which could as well enrich the discussion. We
leave these aspects for future studies.

27Depending on the matter content, there may be gauge anomalies, as recently studied in [132].
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Examples: SO, Sp, O

In this section, we review the higher form symmetries of the orthogonal group O(N) that
result from using the formalism discussed above. We also list the results for SO(N) and
Sp(N), as we will need them on later sections.

Special orthogonal and symplectic groups: These groups are connected, therefore
the 1-form symmetry of the corresponding pure gauge theory is simply given by the center
(see Table 2.10). In all these cases, the 1-form symmetry is invertible.

Gauge group Topological GW operators Quantum dimension 1-form symmetry

Sp(N)
T Sp
0

= Id 1
Z2T Sp

⇡ 1

SO(2)
T SO(2)

0
= Id 1

SO(2)
T SO(2)

✓ , ✓ 2 (0, 2⇡) 1

SO(2k), k � 2
T SO
0

= Id 1
Z2T SO

⇡ 1
SO(2k � 1) , k � 2 T SO

0
= Id 1 Trivial

Table 2.10: Summary of topological Gukov-Witten operators for theories with Sp(N) and
SO(N) gauge group.

The magnetic (d� 2)-form symmetry, which is given by the group of connected compo-
nents, is trivial in all these cases.

Orthogonal groups: This is the first instance of disconnected gauge group that we
encounter. Instead of the center, the 1-form symmetry is obtained from the centralizer of
the identity component of the group. We need to distinguish three possible cases: N = 2, N
even and bigger than 2, or N odd.

The case of O(2) was studied in detail in [117,118], and it is special because the identity
component, SO(2), is abelian. The full group O(2) can be written as a semidirect product
SO(2)oZ2. By definition the generator of the Z2 does not commute with the SO(2), therefore
the centralizer is

CO(2)(SO(2)) = SO(2) . (2.4.11)

The topological GW operators are labelled by the conjugacy classes of elements in this
centralizer. Here the global structure of the group becomes relevant, as we can also conjugate
by the nontrivial element in the Z2. If we denote this element as P , the action on an element
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of the centralizer is

P�1 ·
 

cos ✓ � sin ✓

sin ✓ cos ✓

!
· P =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
, (2.4.12)

i.e. it maps ✓ 7! �✓. This means that we don’t have one GW operator for each ✓ 2 [0, 2⇡],
but rather one for each ✓ 2 [0, ⇡] and the quantum dimension of the operators labelled by
✓ 2 (0, ⇡) is equal to two. Therefore, the 1-form symmetry in the O(2) case is non-invertible.
The fusion algebra of the topological operators was reported in [118],

TO(2)

✓ · TO(2)

' = TO(2)

✓+' + TO(2)

✓�' ,

TO(2)

✓ · TO(2)

⇡ = TO(2)

✓+⇡ ,

TO(2)

⇡ · TO(2)

⇡ = 1 , (2.4.13)

TO(2)

✓ · TO(2)

✓ = 1 +WO(2)

sign + TO(2)

2✓ ,

TO(2)

✓ · TO(2)

⇡�✓ = TO(2)

⇡ +WO(2)

sign TO(2)

⇡ + TO(2)

2✓�⇡ ,

where ✓ 6= ' and WO(2)

sign is the Wilson line in the sign representation of O(2) (WO(2)

sign alone
stands for the Wilson line in the sign representation on a trivial surface). The appearance
of the Wilson line in the fusion of two GW operators is the hallmark of a higher-group
global symmetry structure [133], that can also be seen from the fact that Wilson lines of
the SO(2) theory (namely before gauging the Z2) are charged under the (0-form) charge
conjugation symmetry as well as the electric 1-form symmetry. In more detail, the fourth
equation in (2.4.13) can be understood as follows28. First, consider the fusion of two GW
operators corresponding to different angles ✓ and ' and take the limit '! ✓. We obtain

TO(2)

✓ · TO(2)

✓ = TO(2)

2✓ + “ TO(2)

0
” . (2.4.14)

Naively, one would say that “ TO(2)

0
” is equal to two copies of the identity. However, to

properly investigate this one should consider the fusion inside correlation functions. When
all other operators in the correlator belong to the connected component (that is, they are
operators just like those in the SO(2) theory), indeed TO(2)

0
looks like twice the identity.

However, if one of the inserted operators belongs to the disconnected component there may
be subtleties. Indeed, suppose including in our correlator the GW operator corresponding to
the Z2 ✓ O(2), which we denote TO(2)

disc . This corresponds to the insertion of an Alice string
28We thank Miguel Montero for explaining this argument to us.
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defined by a gauge connection which picks a sign upon going around the string. Suppose
now hTO(2)

disc
TO(2)

✓ · · · i. Since TO(2)

✓ shifts the gauge connection by a constant, which is clearly
incompatible with the action of TO(2)

disc
, it follows that TO(2)

disc
TO(2)

✓ = 0 for any ✓. Thus, inserting
(2.4.14) in the correlator with TO(2)

disc
leads to the requirement “ TO(2)

0
”TO(2)

disc
= 0, which shows

that “TO(2)

0
” cannot simply be two copies of the identity. In fact, the only operator we can

construct that satisfies these conditions is

“ TO(2)

0
” = 1 +WO(2)

sign
, (2.4.15)

leading to the fusion rule in (2.4.13) (a similar argument would hold for the fifth equation).
The cases of O(N) where N � 3 are simpler, since the centralizer is always finite. If N is

odd, then SO(N) has trivial center. However, in this case O(N) is the direct product SO(N)⇥
Z2 and the nontrivial element of the Z2 (which is�1) will appear in the centralizer. Naturally,
both ±1 are mapped to themselves by conjugation in O(N), thus, we have a Z2 invertible
1-form symmetry. On the other hand, if N is even, SO(N) has a center isomorphic to Z2,
where the non-trivial element is precisely �1. In this case the extension to the orthogonal
group is a semidirect product SO(N)oZ2, and no new elements will appear in the centralizer.
We conclude that also in this case we have an invertible Z2 1-form symmetry. We summarize
these results in Table 2.11.

Gauge group Topological GW operators Quantum dimension 1-form symmetry

O(2)
Id 1

(2.4.13)TO(2)

✓ , ✓ 2 (0, ⇡) 2
TO(2)

⇡ 1

O(N), N � 3
Id 1

Z2

TO(N)

⇡ 1

Table 2.11: Summary of topological Gukov-Witten operators for theories with O(N) gauge
group.

The dual (d � 2)-form symmetry is obtained from the representations of the group of
connected components (2.4.10). For all the O(N) groups, ⇡0(O(N)) = Z2, which has two
representations. These two representations of Z2 lift to the full O(N) group giving rise to the
trivial and sign representation. Therefore, the topological Wilson lines are precisely WO(N)

1 (�)

and WO(N)

sign (�). Note that in this case the fusion of the Wilson lines (which in general is
obtained from the decomposition of the tensor product of the two initial representations)
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reduces to a group operation,

WO(N)

1 ·WO(N)

1 = WO(N)

1 , WO(N)

1 ·WO(N)

sign = WO(N)

sign ,

WO(N)

sign ·WO(N)

1 = WO(N)

sign , WO(N)

sign ·WO(N)

sign = WO(N)

1 , (2.4.16)

and so the (d� 2)-form symmetry is an invertible Z2.

2.4.2 Electric 1-form symmetry

In this subsection, we look at the electric 1-form symmetry of disconnected groups built
as Z2 extensions of SU(N) or U(N). We derive the topological Gukov-Witten operators
from the generic arguments presented in section 2.4.1, namely from the computation of the
centralizer of the identity component of these groups. An alternative derivation of which are
the topological GW operators, with equal results, is presented in appendix 5.C.1.

We begin by recalling some basic definitions and propierties of fSU(N) groups. These
are the principal extensions of SU(N) groups, i.e. semidirect products SU(N)o⇥ Z2 where
⇥ : Z2 ! Aut(SU(N)) is a lift to the group of the automorphism of the Dynking diagram
of SU(N). If N is odd, there is only one such possible lift up to isomorphism,

⇥I(1)(g) = g , ⇥I(�1)(g) = (g�1)T = g , (2.4.17)

where g 2 SU(N) and the bar denotes complex conjugation. If N is even, there are two
distinct choices of ⇥ that give rise to two different groups [1]. One is given by (2.4.17) and
the other by

⇥II(1)(g) = g , ⇥II(�1)(g) = �JN(g�1)TJN = �JNgJN , (2.4.18)

where

J2k :=

 
0 �1k⇥k

1k⇥k 0

!
. (2.4.19)

We denote these two different groups as fSU(N)I and fSU(N)II respectively, and their el-
ements are pairs (g, ⌘) with g 2 SU(N) and ⌘ 2 Z2. According to the definition of semidirect
product, multiplication of elements is given by

(g1, ⌘1)(g2, ⌘2) = (g1⇥(⌘1)(g2), ⌘1⌘2) . (2.4.20)
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It is possible to give a matrix construction of the groups explicitly exhibiting these properties
[1].

Note that we can apply the same construction beginning with gi 2 U(N), although in
this case we cannot call them principal extensions. We will denote these groups as eU(N)I

and eU(N)II . In many cases, it can be useful to write the elements of these groups directly in
their fundamental representation. This is a 2N dimensional representation where an element
(g, ⌘) is represented by

fund((g, 1)) =

 
g 0

0 ⇥(�1)(g)

!
, fund((g,�1)) =

 
0 g

⇥(�1)(g) 0

!
(2.4.21)

With these definitions, it is easy to compute both the center as well as the centralizer of
the identity component of these groups. First, recall that the center of U(N) and SU(N) is
U(1) or ZN respectively, with elements ei✓1 or ei2k⇡/N1. Second, note that elements of the
disconnected component don’t commute with generic elements in the connected component.
Therefore, to find the center, we need to find the elements (h, 1) with h 2 Z(G) (G = U(N)

or SU(N)) that commute with (g,�1) with g 2 G. From the definition of the semidirect
product, we find

(h, 1)(g,�1) = (hg,�1) , (2.4.22)

(g,�1)(h, 1) = (g⇥(�1)(h),�1) . (2.4.23)

Since h 2 Z(G), this leads to the condition

h = ⇥(�1)(h) = h , (2.4.24)

which doesn’t depend on whether ⇥ corresponds to (2.4.17) or (2.4.18). This condition is
only satisfied for h = ±1; however, note that for the case of SU(2k� 1) only +1 belongs to
the group. All in all, the center of these groups is given by

Z(eU(N)) = Z2 , (2.4.25)

Z(fSU(2n)) = Z2 , (2.4.26)

Z(fSU(2n+ 1)) = {1} . (2.4.27)

The topological GW operators can be found from the centralizers of the identity compo-
nents. The computation of these centralizers is very similar to that of the centers above. The
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only difference is that, since these elements don’t need to commute with the disconnected
component, we don’t need to impose (2.4.24). Therefore,

CeU(N)
(U(N)) =

��
ei✓1, 1

�
, ✓ 2 [0, 2⇡]

 
, (2.4.28)

CfSU(2n)(SU(2n)) =
n⇣

ei
k⇡
n 1, 1

⌘
, k = 0, 1, . . . , 2n� 1

o
, (2.4.29)

CfSU(2n+1)
(SU(2n+ 1)) =

n⇣
ei

2k⇡
2n+11, 1

⌘
, k = 0, 1, . . . , 2n

o
, (2.4.30)

Gauge group Topological GW operators Quantum dimension 1-form symmetry

eU(N)
T

eU
0

= Id 1
(2.4.40)T

eU
✓ , ✓ 2 (0, ⇡) 2

T
eU
⇡ 1

fSU(2n+ 1)
T

fSU
0

= Id 1 (2.4.37)
T

fSU
k , k = 1, . . . , n 2

fSU(2n)
T

fSU
0

= Id 1
(2.4.37)T

fSU
k , k = 1, . . . , n� 1 2

T
fSU
n = T

fSU
⇡ 1

Table 2.12: Summary of topological Gukov-Witten operators for theories with eU(N) and
fSU(N) gauge group.

Finally, in order to find the topological GW operators, what we need to do is compute
the conjugacy classes of the elements above in eU(N) and fSU(N). Working directly in the
fundamental representation,

 
0 1

1 0

! 
g 0

0 ⇥(�1)(g)

! 
0 1

1 0

!
=

 
⇥(�1)(g) 0

0 g

!
. (2.4.31)

From the definition of ⇥(�1) we see that conjugating with an element of the disconnected
component leads to mapping the phase ✓ 7! �✓, or k 7! �k. All in all, for the different gauge
groups, we have topological GW operators labelled by

eU(N) : T
eU
g = T

eU
g(✓) , g(✓) = ei✓

 
1 0

0 1

!
, ✓ 2 [0, ⇡] , (2.4.32)

fSU(2n) : T
fSU
g = T

fSU
g(k) , g(k) = ei

k⇡
n

 
1 0

0 1

!
, k = 0, 1, . . . , n , (2.4.33)
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fSU(2n+ 1) : T
fSU
g = T

fSU
g(k) , g(k) = ei

2k⇡
2n+1

 
1 0

0 1

!
, k = 0, 1, . . . , n . (2.4.34)

Note that the conjugacy classes corresponding to ✓ 2 (0, ⇡) have two elements belonging
to them, and likewise for k = 1, . . . , dN/2e � 1. Therefore the corresponding GW operators
have quantum dimension two: this means that the symmetry is non-invertible, as there are
no operators that we can fuse with e.g. T fSU

1
and produce the identity operator, according to

(2.4.8). This can also be checked by directly computing the fusion rule, which we proceed
to illustrate in the example of fSU(N). Note that the GW operator T fSU

k can be written as a
sum of two GW operators of SU gauge theory,

T
fSU
k (Md�2) = T SU

k (Md�2) + T SU
�k (M

d�2) . (2.4.35)

If we fuse two operators with k 6= k0, we find

T
fSU
k · T fSU

k0 =
�
T SU
k + T SU

�k

�
·
�
T SU
k0 + T SU

�k0
�

(2.4.36)

= T SU
k · T SU

k0 + T SU
k · T SU

�k0 + T SU
�k · T SU

k0 + T SU
�k · T SU

�k0 .

The 1-form symmetry of SU(N) gauge theory is invertible, i.e. the fusion of the T SU
k GW

operators obeys (2.4.2). Thus,

T
fSU
k · T fSU

k0 = T SU
k+k0 + T SU

k�k0 + T SU
k0�k + T SU

�(k+k0)

= T
fSU
k+k0 + T

fSU
|k�k0| , (2.4.37)

The fusion rule in the case when k = k0 is more subtle and we cannot compute it directly.
However, since the behaviour of the 1-form symmetry of fSU and eU groups seems in many
aspects a natural generalization of the O(2) case described above, we expect that the same
argument to that between equations (2.4.14)–(2.4.15) should also apply; i.e. whenever the
naive substitution k0 ! k gives rise to T

fSU
0

we should identify it with the condensation defect
1 +W

fSU
sign (see also [128] for a related discussion in the language of categories). That is, the

fusion rule should be

T
fSU
k · T fSU

k = 1 +W
fSU

sign + T
fSU
2k . (2.4.38)

If N is even, the case k0 = N
2
� k also has to be studied independently, and again similarly
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to the O(2) case,

T
fSU
k · T fSU

N
2 �k

= T
fSU
N
2

+W
fSU

signT
fSU
N
2

+ T
fSU
2k�N

2
. (2.4.39)

For the gauge group eU , the computation is completely analogous, and the only difference
is that instead of the discrete parameters k, k0 we have continious parameters ✓, ✓0,

T
eU
✓ · T eU

✓0 = T
eU
✓+✓0 + T

eU
|✓�✓0| . (2.4.40)

We can gain further intuition on the appearance of non-invertible symmetries if we con-
sider the theory before gauging the outer automorphism (i.e. just U(N) or SU(N) gauge the-
ory), when the topological Gukov-Witten operators have quantum dimension one. However,
the (now global) zero-form symmetry is not independent of the center one-form symmetry;
a feature that can be seen from the fact that the fundamental Wilson line is acted upon by
charge conjugation C as

C : Wfund 7! Wfund , (2.4.41)

This implies that the total global symmetry of the theory is not a direct product of both,
but rather a higher categorical object known as a 2-group symmetry (see e.g. [133–138]).

This observation provides further support to the identification of the symmetry operators
for the fSU(N)/eU(N) theories above (along lines similar to [139]). The GW operators of the
U(N)/SU(N) theory are acted in a similar way to (2.4.41) by C. It is then clear that the
C-invariant combinations are precisely (2.4.35) (and the converse for U(N)), which are then
the leftover GW after gauging C. Note that the appearance of non-invertible symmetries is
due to the “folded structure" in (2.4.35), which from this point of view is inherited from
the fact that the 1-form generators of the SU(N)/U(N) theory are acted by the 0-form
symmetry C.

2.4.3 Dual (d� 2)-form symmetry

In this subsection, the aim is twofold: on the one hand, we study the (d� 2)-form symmetry
generated by topological Wilson lines; and on the other hand, we look for brane constructions
of fSU(N) theories. It seems that the key to achieving the second is to include defects so that
the (d� 2)-form symmetry is broken.
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Wilson lines and Alice strings

In the previous pages we looked for topological GW operators that generate the electric
1-form symmetry. The charged objects were Wilson lines, and the symmetry can be broken
if we include particles that make the Wilson lines endable. In this section, we look for
topological Wilson lines: the charged objects are precisely the Gukov-Witten operators. As
we have discussed above, the Wilson line along a contractible path always belongs to the
connected component of the group, and this makes it so that the topological ones, which
generate the (d � 2)-form symmetry, are given by the representations of the gauge group
that map the whole identity component G0 to 1 (2.4.10).

In the case of fSU(N) and eU(N), the group of connected components is Z2. This group
has two representations, the trivial and the fundamental. At the level of the group, they
correspond to the trivial representation and the sign representation respectively, where the
sign representation is defined as

sign((g, 1)) = 1 , sign((g,�1)) = �1 , (2.4.42)

for g in fSU(N) or eU(N). Therefore, the topological Wilson lines are W eG
1 and W

eG
sign. Similarly

to the case of the O(N) groups (2.4.16), the topological Wilson lines fuse according to the
Z2 product, and therefore we have a Z2 invertible (d� 2)-form symmetry.

In a similar fashion to the 1-form symmetry, this (d � 2)-form symmetry can be bro-
ken by including defects on which the charged GW operators can end. These were dubbed
twist vortices in [118], and in the context of the charge conjugation symmetry have been
usually called Alice strings [44]. These defects always have a transverse R

2 at each point,
and are defined by the fact that when going around them, operators undergo a monodromy
corresponding to the outer automorphism of the gauge group.

An important feature of Alice strings is that their presence reduces the globally well
defined gauge group [131]. This is because the outer automorphism doesn’t commute with
all gauge transformations, and states that should be gauge equivalent can pick up different
Aharonov-Bohm phases from the action of the monodromy. This is a contradiction: what
happens is that, even if in a region that doesn’t include the string the gauge group is appar-
ently G, the presence of the string reduces it to the centraliser of the outer automorphism
of G, i.e. precisely the subgroup that does commute with the monodromy.

Let’s be more explicit in the case at hand of fSU(N)I,II . When going around the Al-
ice string, fields are acted upon by the element (1,�1) which corresponds to the outer
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automorphism of SU(N). Note that this action does depend on the choice of semidirect
product ⇥ (2.4.17) or (2.4.18). The globally well defined gauge group is the centraliser
CfSU(N)I,II

((1,�1)), which can be easily found by computing

(g, ⌘)(1,�1) = (g⇥(⌘)(1),�⌘) = (g,�⌘) , (2.4.43)

(1,�1)(g, ⌘) = (⇥(�1)(g),�⌘) . (2.4.44)

We see that g needs to satisfy

g = ⇥(�1)(g) . (2.4.45)

If ⇥ = ⇥I (2.4.17), this implies that g 2 SO(N). On the other hand, if ⇥ = ⇥II (2.4.18),
which can only happen if N is even, we have g 2 Sp(N/2). Note also that the element (1,�1)
will always belong in the centraliser, which therefore will take the form of a direct product.

In summary, if we add an Alice string to break the (d � 2)-form symmetry of fSU(N)

theory, the gauge group becomes SO(N) ⇥ Z2 or Sp(N/2) ⇥ Z2. It is interesting to look
back to the electric 1-form symmetry of these theories. From Table 2.10, we see that the
topological Gukov-Witten operators, after the reduction of the well defined gauge group,
correspond to +1 or �1 (the latter only when it belongs to the group). Comparing with
the results of Table 2.12, these are precisely the GW operators with quantum dimension 1
in fSU(N) theory. Therefore, it seems that breaking the (d � 2)-form symmetry ultimately
results in the disappearance of the non-invertible 1-from symmetries. We believe that this is
a phenomenon deserving of further exploration.

Brane constructions

Brane setups engineering Alice strings and eU(N) gauge groups can be achieved by intersect-
ing branes with orientifolds. Following [130], consider

0 1 2 3 4 5 6 7 8 9
N D3 ⇥ ⇥ ⇥ ⇥
O3 ⇥ ⇥ ⇥ ⇥

r D3’ ⇥ ⇥ ⇥ ⇥

(2.4.46)

The argument in [130] suggests that the theory on the D3-branes is eU(N). However,
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from the point of view of the D3-branes, the O3 +r D3’ act as a codimension 2 defect with a
monodromy associated to the element (1,�1) 2 eU(N), that is, an Alice string. As a result,
the globally well defined gauge group is O(N) (in the eU(N)I case) or Sp(N/2) (in the eU(N)II

case), and the full eU(N)I,II is only manifest on top of the defect. The type of semidirect
product extension ⇥I or ⇥II depends on the choice of orientifold plane. For O3+, fO3

+

we
find eU(N)I , leading to a globally well-defined O(N) in the presence of the twist vortex, and
for an O3� we find eU(N)II leading to a globally well-defined Sp(N/2) in the presence of the
twist vortex.29

This arrangement of branes can be straightforwardly generalised to N Dp-branes along
the x0,...,p directions and Op +k Dp’ along the x0,...,p�2,p+1,p+2. In this way, we can engineer
eU(N) theories in a different number of dimensions.

Besides (2.4.46), there are two more setups where we can engineer a eU(N) theory in a
similar fashion. These are the type IIB configuration

0 1 2 3 4 5 6 7 8 9
N D3 ⇥ ⇥ ⇥ ⇥
k D7’ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
O7 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

(2.4.47)

The IIB configuration with an O7� and 4 extra flavor D7 branes was studied in detail
in [45, 140], where it was argued that the 2d intersection acts as an Alice string for the
eU(N)I theory on the D3, out of which only a O(N) is globally well-defined.

In addition, we also have the T-dual in type IIA,

0 1 2 3 4 5 6 7 8 9
N D2 ⇥ ⇥ ⇥
k D6’ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
O6 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

(2.4.48)

In both these cases, the theory on the D3 (or D2) is a eU(N) gauge theory, and the
orientifold intersection appears as an Alice string which reduces the well defined gauge group
to an orthogonal or symplectic subgroup. However, as opposed to (2.4.46), the identification

29It would be interesting to clarify the distiction bewteen O3� and fO3
�

.
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of the type of orientifold with the semidirect product extension is reversed: an O7+ will give
rise to eU(N)II on the D3, and an O7� to eU(N)I .

An important observation is that all the brane constructions that we have discussed have
one thing in common: when seeking to engineer a disconnected gauge group, the Alice string
appears automatically, and it seems impossible to the best of our knowledge to find the
former without the latter. As a consequence, as we have discussed in the previous section,
the presence of the Alice string also serves the purpose of breaking the (d � 2)-form global
symmetry of these theories. This strongly resonates with the conjectured absence of global
symmetries in quantum gravity.

2.4.4 Conclusions and outlook

In this note we have studied the electric 1-form and (d�2)-form symmetries of gauge theories
based on the gauge groups which include charge conjugation as part of the gauge symmetry
introduced in [1, 85]. As for the electric 1-form symmetry, concentrating on pure gauge
theories, we have found that these QFT’s provide very simple and explicit examples of non-
invertible symmetries using the technology developed in [118], supporting the claim in [122]
that indeed non-invertible symmetries are ubiquitous also in dimensions higher than three.
In this case, the emergence of non-invertible symmetries can be heuristically understood
considering a copy of the same theory but with gauge group SU(N) (an analogous discussion
holds for the U(N) case). In that case, the symmetry operators associated to the electric 1-
form symmetry are permuted by the 0-form charge conjugation symmetry (forming actually
a 2-group). The operators which carry over to the version of the theory with gauged charge
conjugation are the combinations which are C-invariant, and this “folds" the GW operators
as in (2.4.35) leading to non-invertible symmetries in very much the same way as in the
O(2) case discussed in [118]. The non-invertible character of the symmetries can be read-off
from the fact that their quantum dimension is 2 (instead of 1). This manifests itself also in
the fusion rules, which mimic the O(2) case. Even though we have provided arguments in
support of the fusion rules in section 2.4.2, it would be very interesting to further study this
aspect to put them on firmer grounds.

More generally, the existence of non-invertible symmetries has been shown to be closely
related to mixed anomalies (see e.g. [121, 141]). The fact that, when considering a theory
which includes charge conjugation as part of the gauge group, one immediately finds a non-
invertible 1-form symmetry, may signal that such a mixed anomaly between the gauge group
and its outer automorphism should be present (see [142] for a related discussion). It would
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be very interesting to investigate this point further, complementing the studies of [132].
Since the gauge groups we are considering are disconnected (⇡0(G) = Z2), QFT’s based

on them automatically exhibit a (d � 2)-form symmetry [118]. The objects charged under
this symmetry are twist vortices (Alice strings in the d = 4 case). As it is well-known, in the
presence of twist vortices only a subgroup of the full gauge group is well defined. In the case
at hand it is SO(N) for fSU(N)I and Sp(N/2) for fSU(N)II –recall that this latter version
is only available for even N . Elaborating on [130] and [45, 140] we have suggested String
Theory embeddings for these theories. Amusingly, they automatically come with twist vor-
tices, thus breaking the (d�2)-symmetry. This is very much consistent with the Swampland
criteria that any global symmetry should be broken. These String Theory constructions in-
volve intersecting orientifolds. Roughly speaking, the type of orientifold (Op± and their tilde
versions) matches the possible theories. However, it would be very interesting to study these
constructions in more detail (in particular including the relation between the two proposed
constructions). Moreover, the String Theory construction may be used to study the duality
properties of these theories. As a consequence, this would allow to study magnetic (d � 3)-
form symmetries as well as possible ’t Hooft anomalies. Note that some of these aspects may
depend on the dimension d. We leave these very interesting aspects for future studies.

2.5 Concluding remarks

In this chapter, we have discussed a number of novel features of Quantum Field Theories
with gauge groups that are disconnected. These represent a region of the landscape of QFTs
that has remained so far largely unexplored, but that as we have seen present many rich
traits even at a kinematical level.

Let us briefly recap the contents of this chapter. The first item of business, discussed in
the first part of section 2.2, was to identify the possible principal extensions of SU(N), of
which we saw rigorously that there are two, by establishing a correspondence between said
extensions and the known classification of symmetric spaces. The reason to restrict to these
kind of disconnected group is that that they are better studied in the mathematical literature,
and they have properties that make them more amenable to e.g. Hilbert series computations
via Molien integration. Intuitively, this is because they come with a map, specifying the
semidirect product, that morally speaking allows us to jump from one connected component
to another. Of course, it is legitimate to build a gauge theory based on a more generic
disconnected group that is not a principal extension, but we can’t say anything about those.
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In the context of 4d N = 2 theories, the first physical consequence of the disconnected
gauge group is that it modifies the global symmetry of the theory. This is because the reality
properties of the various representations (in particular the fundamental) are modified: instead
of complex they are real or pseudo-real. At the lagrangian level, we saw that we can build a
superpotential with half-hypermultiplets of the same chirality, which results in an additional
exchange symmetry requirement for the matrix of couplings, therefore making the global
symmetry either Sp(Nf ) or SO(Nf ). We verified this modification of the global symmetry
with Hilbert series calculations.

Regarding their moduli spaces, one of the main observations is that the Coulomb branch
is not freely generated; i.e. there are relations in its coordinate ring. This is relevant, for
example, in the program of bottom-up classification of 4d N = 2 SCFTs, since very often
one restricts the possible Coulomb branches to freely generated ones as a simplification (see
e.g. [143–145]). As for the Higgs branch, apart from having a different isometry than in
the connected case (an almost tautological consequence of the different global symmetry),
its most interesting property is that the possible Higgs branch flows, encoded in the Hasse
diagram, can be considerably more intrincate than for SU(N). This is because upon higgsing,
there will appear matter fields in the pseudo-scalar representation, even if the initial theory
has none; this pseudo-scalars are then available to higgs the discrete factor of the gauge
group. We also checked, using Hilbert series, that we can find magnetic quivers for these
Higgs branches using wreathed quivers, a recently discovered operation in the context of
SUSY moduli spaces that precisely implements the desired quotient.

Another extremely interesting feature of theories with disconnected gauge groups are their
generalized symmetries. Wilson lines of the usual SU gauge theory are charged both under
the center 1-form symmetry as well as the 0-form symmetry of charge conjugation, which
together form a (split) 2-group. Upon gauging the later, it turns out that the electric 1-form
symmetry becomes non-invertible. Remarkably, this fact doesn’t depend on the dimensional-
ity of the theory; this is a very unusual fact, as the dimension of spacetime often plays a very
important role in the discussion of generalized global symmetries. This non-invertible 1-form
symmetry exists for supersymmetric theories with only vector multiplets (the presence of
hypermultiplets explicitly breaks it), but also for non-supersymmetric theories as long as the
matter fields live only in the adjoint or products thereof.

When trying to build brane systems that engineer theories with disconnected gauge
groups, we found that intersections of orientifold planes with D-branes tend to make an ap-
pearance. In the field theory these intersections are Alice strings, which have the consequence
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of breaking the globally well defined gauge group. Sadly, what this means is that, even if
naively the brane system would realise the disconnected gauge group with a non-invertible
symmetry, in fact only a direct product gauge group with an invertible symmetry remains
globally well defined.

There are many questions that remain unanswered regarding disconnected gauge groups.
Possibly the most interesting have to do with their construction from higher dimensions,
as this would shed light on many other problems. For example, their realization in class
S can be a very important step towards extending the classification of 4d N = 2 SCFTs
beyond Coulomb branches that are freely generated. In this direction, a detailed study of
the Seiberg-Witten curve of the superconformal theory with gauge group fSU(3) looks very
promising: it is a particular case whose Coulomb branch is freely generated, and it has low
enough rank that it should belong to the already classified SCFTs. Moreover, the conformal
dimensions of the Coulomb branch generators, a key data point in this regard, has been
computed in this work via the Coulomb branch Hilbert series. One may have the hope that
a generalization to higher ranks then becomes visible. Another desirable possible outcome
of this study would be to understand the realization of the non-invertible 1-form symmetry
from the 6d point of view.

In a similar spirit, it would be interesting to be able to construct the fSU theories in
String Theory without Alice strings making an appearance, in order to study said 1-form
symmetry from a holographic point of view. In fact, given that the local dynamics of a fSU
theory are the same as that of the connected gauge group SU, it should be possible to realize
the holographic dual directly as AdS5⇥S5, and the boundary conditions of some discrete Z2

field should encode the change in the global form. The puzzle remains of what should this
discrete field correspond to in type IIB, as a first analysis indicates it’s not either (�1)FL nor
⌦; and instead should be related to the �1 in the center of SL(2,Z). In modern language,
all this information is encoded on the symmetry topological field theory (SymTFT). This is
an auxiliary 5d theory to our theory of interest in 4 dimensions, and from the string theory
realization it should be obtained by integrating the topological terms in type IIB on S5.

The SymTFT has many applications of its own. One of the most compelling is that it also
contains information about anomalies. In the case at hand, these would be global ’t Hooft
anomalies mixing the outer automorphism Z2 with various other fields (one would expect the
background fields for the 1-form symmetry, at least). One important subtlety in this story
is the fact that there are two different extensions giving rise to two distinct gauge groups
fSU(N)I,II , in the case that N is even. It is a mystery if and how this distinction is realized at
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the level of the SymTFT, whether it is as different choices of boundary conditions, different
choice of discrete Z2 field (if this were the case, then one may ask how would it arise in the
reduction from type IIB), or some sort of discrete theta angle.

Before wrapping up this chapter, let us conclude with some philosophical musings. In this
work, what has been done is to consider one family of particularly manageable disconnected
gauge groups, adding a Z2 (the smallest group) to SU(N) in –almost– the simplest possible
way (a semidirect product). Yet, we have seen that this innocent gauging of a Z2 has very
wild consequences, ranging from the change of the generalized global symmetries to the basic
geometric properties of their moduli spaces. It is a sobering thought to realize that there
are many more disconnected groups than there are connected ones, and that most of those
have more complicated structures than the principal extensions studied here. This entails a
vast enlargement of the landscape of possible QFTs, that remain virtually unexplored, and
of which this work is just a first look onto the most controlled corner.
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Chapter 3

Non-supersymmetric theories at large
charge

When one drops the assumption of supersymmetry, many of the computational tools that
allow for control over non-perturbative phenomena, rooted on holomorphy and the non-
renormalization theorems, loose their capacity to accurately describe the behaviour of Quan-
tum Field Theories. At the classical level, there might still exist e.g. moduli spaces, and in
principle one can still study their geometry with the same tools; but none of those aspects
are likely to survive quantum corrections, as they are not protected.

In these situations, when exact results are beyond reach, the best one can hope for in most
situations is to find a reliable approximation such that computations are feasible and the error
is under control. Textbook perturbation theory at weak coupling is one such approximation.
However, rather tautologically, this most well known approach is not one that can provide
information about the behaviour of QFTs at strong coupling. An alternative method, and
the one we shall focus on in this chapter, is the large quantum number expansion, where the
inverse of said quantum number is the small parameter that one can use to expand.

The main idea is, once we are given a QFT, to look at a subsector of the Hilbert space
that has a fixed and large charge under some global symmetry. By virtue of being a global
symmetry, we have that the symmetry generator Q commutes with the hamiltonian of the
system,

[H,Q] = 0 . (3.0.1)

On the other hand, since we are looking at a sector of fixed charge, we can find the lowest
energy state inside that sector and denote it by |0Qi (note that it is not the vacuum of the
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complete theory) which will satisfy

Q|0Qi 6= 0 . (3.0.2)

Equations (3.0.1) and (3.0.2) are the definition of spontaneous symmetry breaking, even
if it is caused not by some scalar VEV but by restricting to a subsector of fixed charge. One
then may use the standard techniques to write down an Effective Field Theory (EFT) for
a spontaneous symmetry broken phase, which can be used to describe the subsector of our
initial theory with fixed charge. Moreover, among the in principle infinite terms of the EFT,
only a handful of them (very few in fact) survive the limit when the fixed charge is large. In
this way, one ends with a EFT for the large charge sector that includes only a finite amount
of terms. This EFT can then be used to compute correlators, anomalous dimensions, and
various other observables.

The goal of this chapter is to understand the simplifications brought about by the large
charge limit directly in terms of the UV theory and fields. This is less generic than the EFT
approach, and in particular we will take not only the large charge limit, but a double scaling
limit involving the coupling of the theory, g, such that

Q!1 , g ! 0 , gQ2 = fixed , (3.0.3)

in order to have control when flowing to the IR. The advantages are that the way the large
charge limit enters in the computation becomes very intuitive, both in the path integral as
well as directly in terms of Feynman diagrams.

The rest of this chapter is organized as follows. In section 3.1 we give a brief review of
the large charge EFT; in a way, this serves as a motivation that we should look for simpli-
fications at large charge already in the UV. In section 3.2 we discuss the existence of the
aforementioned double scaling limit in the simple example of the O(2) model, showing in
detail how the different Feynman diagrams are suppressed, and one can resum the complete
series of remaining ones. In section 3.3 we utilize the limit to compute more general corre-
lation functions in the theory. Another application is shown in section 3.4, where we study
the relation between various fixed points of scalar theories in 6d. We finish in 3.5 with some
concluding remarks.
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3.1 Lightning review of the large charge expansion

In this section, we briefly review the generic arguments leading to the existence of a large
quantum number expansion in QFT (see e.g. [146] for a more thorough review). As mentioned
above, the key idea is that restricting to a sector of fixed charge is the same as looking at a
theory with a spontaneously broken symmetry. However, Goldstone’s theorem doesn’t apply
in the same way as in bona fide SSB of relativistic field theories. Reviewing this is the goal
of subsection 3.1.1. In 3.1.2 we discuss how to then write down the corresponding low energy
theory and how the large charge approximation leaves us with only finitely many terms.

3.1.1 Spontaneous symmetry breaking by fixed charge

In a relativistic QFT with the usual Spontaneous Symmetry Breaking caused by a scalar
gaining a VEV, Goldstone’s theorem tells us that the low energy theory describing the IR
dynamics of the system consists of a massless Goldstone boson which transforms non-linearly
under the broken symmetry. The counting of Goldstones is straightforward: there will be one
for each broken generator of the symmetry. If the VEVs break the global symmetry G to
a subgroup H, the EFT is a NLSM with target space G/H. In the simplest example of a
complex scalar with a U(1) global symmetry, one splits the complex field into its modulus
and phase: the VEV implies the modulus is fixed to the given value, and the angle becomes
the massless Goldstone boson, which indeed has values in U(1) as expected.

If the field theory is not relativistic, or if there is spontaneous breaking of spacetime
symmetries, things are not so simple. In general there are two types of Goldstone bosons,
those which are massless and with relativistic dispersion relation (type I) and those with
masses and cuadratic dispersion relation (type II). Their counting also doesn’t immediately
follow from the number of broken generators, as it can happen that the same field serves as
the Goldstone for two different broken symmetries.

Our interest lies in CFTs, as they describe the fixed points of generic RG flows. When
looking at a subsector with fixed charge, we are artificially introducing one scale into the
problem, namely the charge density ⇢ = Q/V ; therefore, conformal symmetry is also broken.
We see that we are in the second situation regarding Goldstone’s theorem, were we also
have spontaneous breaking of a spacetime symmetry. However, since the underlying theory
we want to describe is still a CFT, we’ll want to restore scale invariance into our EFT of
massless Goldstone’s. This can be achieved by adding a dilaton with a particular non-linear
transformation under scalings.
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As an example, consider the effective theory for one potential Goldstone boson � for a
U(1) broken symmetry in 4 dimensions,

L[�] = f 2

⇡

2
@µ�@

µ�� C4 . (3.1.1)

The constants f⇡ and C are dimensionfull and break scale invariance. Then, we add a second
field � such that under a scale transformation x! e↵x, � transforms as

� ! � � ↵

f
, (3.1.2)

with f a new constant of dimension [f ] = �1. Now, for any operator O� of dimension �,
we can dress it as

O� ! e(��2)f�O� , (3.1.3)

which is now scale invariant. Applying this recipe to (3.1.1), and adding a kinetic term for
the dilaton � leads to

L[�, �] = 1

2
gµ⌫f 2

⇡e
�2f�@µ�@⌫�� C4e�4f� +

1

2
gµ⌫
✓
gµ⌫@µ�@⌫� � ⇠

R

f 2

◆
. (3.1.4)

Even though the dimensionful constants still appear, they conspire to produce a conformal
invariant action. This can be made manifest by the following transformation of the fields,

(�,�)! ⌃ = � + if⇡�! � =
1p
2f

e�f⌃ , (3.1.5)

upon which the lagrangian becomes

L[�] = @µ�
⇤@µ�� ⇠R�⇤�� 4g(�⇤�)2 , (3.1.6)

where

g = (Cf)4 , (3.1.7)

is a dimensionless constant. The conclusion is that the low energy EFT resulting from a
broken U(1) symmetry, plus the restoration of conformal symmetry, will look like the theory
of a complex scalar (3.1.6), possibly including higher derivative corrections.
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3.1.2 Effective Field Theory at large charge

We are now in a position to construct the EFT that will describe the large charge sector of
our theory. For concreteness, we can focus on the O(2) model, which as we have just seen,
can be described in the IR with a complex scalar field. Note that the significance of the
analysis of the previous section is that this conclusion remains true even after the RG flow,
i.e. the complex scalar in the IR � doesn’t need to be the same, or even have any simple
relation, to the complex scalar in the UV denoted as '.

With this in mind, we can rewrite (3.1.6) with yet another useful parametrization of the
complex scalar � in terms of a modulus a and an angle �,

� =
ap
2
eib� , (3.1.8)

where b is a constant. The result is

L[a,�] = 1

2
@µa@

µa+
1

2
b2a2@µ�@

µ�� ⇠R

2
a2 � 1

4
ga4 + . . . , (3.1.9)

where the dots stand for the higher derivative corrections to the EFT. It is now time to
exploit the fact that the fixed charge is large, as so far we have only used it to argue that
there is SSB of the global and scaling symmetry. The next steps are

1. Find the ground state in the fixed charge sector.

2. Study the perturbations around said ground state.

3. Integrate out the massive modes of said perturbations, keeping only the terms that
scale with positive powers of Q, i.e. neglect O(1/Q).

The first step can be easily achieved by solving the Euler-Lagrange equations. The equa-
tion of motion for � is the equation of charge conservation, so it is as this point that the
value of the charge Q, or more precisely the charge density ⇢ = Q/V , enters the game.
Schematically, the solution looks like

� = µt , a = ⌫ , (3.1.10)

where µ and ⌫ are constants that depend on ⇢. Importantly, if ⇢ 6= 0 then also ⌫ 6= 0.
The second step is to study the fluctuations around this ground state. This can be
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achieved by parametrising the complex scalar field in (3.1.6) as

�(t, x) = eibµt
✓
⌫p
2
+ ⇡(t, x)

◆
, (3.1.11)

and studying the resulting lagrangian in terms of the fluctuation ⇡. There are two different
modes, corresponding to the real and imaginary parts of ⇡, or in a different basis to its radial
and angular parts. Their dispersion relation can be studied by looking at their propagator;
it turns out that one of the modes, the angular one, is massless, with !(k) = k/

p
3 (where

3 arises as the number of space directions) and the other is massive, with m / ⇢1/3 = ⇤Q.
If the charge is large, and we are at energies lower than the scale set by the charge

density ⇤ ⌧ ⇤Q, we can proceed with the third step, namely integrating out the massive
radial component a in (3.1.9) and ending up with a EFT for � only. Since a2 appears in the
kinetic term for �, this computation is very complicated; and when proceeding in Wilsonian
fashion –writing all terms of correct dimension compatible with the symmetries– it has the
consequence that the combination (@µ�@µ�) can also appear with negative powers. Moreover,
also the curvature R and other geometric invariants can make an appearance, which further
complicates the possible structure of the possible terms.

At this point, one would end with a EFT with infinitely many terms, depending on
infinitely many Wilson coefficients. However, we can exploit the large charge limit one last
time. We notice that, through the dependence of the constant µ on ⇢, we have that @0� /
⇤Q / Q1/3. This can be used to keep only the terms that are not suppressed in the large
charge limit, of which there are only finitely many. In 4 dimensions, the effective action
schematically looks like

L[�] = k0 (@µ�@
µ�)2 + k1 R @µ�@

µ�+ geometry , (3.1.12)

where we have omitted terms having to do with geometric invariants such as Rµ⌫⇢�Rµ⌫⇢�;
these terms become important when exploiting conformal symmetry by considering the the-
ory on different manifolds, such as the sphere, the cylinder, etc.

Once we have this result, one can now begin to compute observables of the low energy
theory in the large charge sector, such as correlators, anomalous dimensions, etc. Indeed,
also corrections of order 1/Q and higher can be computed, by keeping the corresponding
terms in the EFT description. Despite the fact that we have only discussed a particularly
simple example, the conclusion that observables in CFT can be computed in the large charge
regime from as an aproximation in terms of 1/Q remains true for more complicated systems.
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An alternative viewpoint to the fixed charge EFT is to consider the O(2) model at the
Wilson-Fisher fixed point and exploit conformal symmetry to map the theory in flat space to
the cylinder [147]. In this way, the state-operator correspondence of CFT provides a powerful
tool to compute the scaling dimensions of operators with fixed charge (in flat space) from
the energies of states with fixed energy (in the cylinder). It turns out that in so doing, the
natural parameter making an appearance is the ‘t Hooft-like coupling �̄ = g⇤Q, where g⇤ is
the value of the coupling g at the fixed point. The large charge limit can then be taken while
keeping �̄ fixed. In the case �̄� 1 one recovers the same results as in the large charge EFT,
as expected. In what follows, we shall study the opposite regime of �̄⌧ 1.

3.2 The large charge limit of scalar field theories and the

Wilson-Fisher fixed point at ✏ = 0

Despite decades of huge research efforts, Quantum Field Theory (QFT) is far from analytic
reach beyond perturbative approaches which, in practice, typically comprise the computation
of certain observables to a few loop accuracy. It thus comes as a very welcome surprise that,
in certain cases, it is possible to identify special limits which lead to drastic simplifications
and sometimes to a reorganization of perturbation theory. A prototypical example is the
large N limit discovered by ’t Hooft. In a gauge theory, one takes the rank N of the gauge
algebra to infinity at the same time that the Yang-Mills coupling gYM is sent to zero in
such a way that the ’t Hooft coupling g2

YM
N is fixed. This limit selects planar diagrams in

the perturbative expansion of the theory, which naturally organize themselves into a genus
expansion very reminiscent of a string theory, a connection that has been intensively studied
over the last two decades.

A different approach is to explore asymptotic regimes in the space of operators in a
certain QFT, in particular focusing on those with large charge n under a global symmetry
of the theory. This remarkable suggestion was made in [148] and it was further explored in
many relevant papers including [149–162]. A new perturbation expansion emerges in terms
of a small effective coupling represented by the inverse of the charge, 1/n (see also [163,164]
for other interesting physical applications).

Recently, a new “double-scaling" large charge limit was introduced in [165] in the context
of N = 2 4d superconformal field theories. In this case, supersymmetric localization provides
an efficient method to compute “extremal" correlators of chiral primary operators (Tr�2)n

[64] (being � the scalar field in the vector multiplet). In the N = 2 SCFT context, the
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double scaling limit of [165] corresponds to taking gYM ! 0, n ! 1 keeping � = g2
YM

n

fixed. This limit systematically isolates, at each loop order in the perturbative expansion of
SQCD, a certain contribution. Its existence requires that at k loops, any extremal correlator
has a leading behavior nk, which remarkably turns out to be the case to all loop orders.
Detailed aspects of this limit were discussed in the relevant articles [166,167]. It was recently
understood in an important paper [168] that this limit can be viewed as the standard ’t
Hooft limit of an associated random matrix model. In particular, this explains why the limit
exists, at least in this theory. In addition, the matrix model interpretation of [168] allows
one to obtain the exact � dependence in correlators in closed form by employing standard
matrix model techniques.

An obvious question is whether the existence of the double-scaling, large charge limit is
a peculiarity of highly supersymmetric theories such as N = 2 SCFTs. In this note we find
that an analogous limit exists for a familiar non-supersymmetric theory, namely scalar field
theory with quartic potential. We will show that the very familiar Wilson-Fisher (WF) fixed
point for the O(2) theory provides perhaps the simplest example where one can study non-
trivial correlation functions in said limit, by means of a complete resummation of Feynman
diagrams.

One may more generally consider the O(N) model in 4� ✏ dimensions, but for simplicity
we shall restrict the discussion to the N = 2 case. This can be recast as the theory for a
complex scalar � with a quartic interaction controlled by a coupling g. Appropriately tuning
the mass parameter, there is a renormalization group flow to the Wilson-Fisher fixed point
where g ⇠ ✏. One of the remarkable applications of the ✏ expansion is to extrapolate the
results to ✏ = 1, where the model describes the ferromagnetic transition of the 3d Ising model.
Although this limit is far from the perturbative regime, the analytical results nevertheless
remarkably agree with the numerical values for various critical exponents. On the other
hand, in taking the limit ✏! 0 the theory is simply led to the gaussian fixed point in d = 4.
However, the limit of [165–168] suggests that one can consider sectors of large global charge
which might have non-trivial dynamics. Specifically, we consider operators On ⌘ �n of U(1)

charge n and engineering dimension n (1� ✏
2
). It turns out that in the limit g ! 0, the sector

of operators with n ! 1 such that � = g n2 is fixed, have non-trivial correlators, which
can be exactly computed through a resummation of the surviving Feynman diagrams. We
also provide an alternative derivation from the path integral: in the double scaling limit,
it is dominated by a saddle-point, giving rise to the same correlation function previously
obtained diagrammatically. The saddle-point calculation suggests that a similar limit may
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exist in other theories. In particular, we also consider the O(2) theory in three dimensions
for a potential (�̄�)3, where we identify the relevant limit and compute the exact two-point
correlation function for the operators �n, �̄n.

Outlook Let us comment on some interesting open problems. It would be interesting to
consider higher point functions in detail. A preliminary observation is as follows. Consider,
for instance, a 3-point function hOn(x)On(y) Ō2n(0)i in the simplest context of the O(2)

model studied in this note. One can show that, to next-to-leading order, there are diagrams
surviving the limit, yielding a result consistent with the structure dictated by conformal
symmetry. Clearly, it would be of interest to extend this study to all orders and to arbitrary
k-point functions. It would also be very interesting to systematically study the structure of
2-point functions following [154]. This might lead to universal relations involving the central
charges of the conformal algebra. A challenging problem is to see if, as suggested in [168],
the double scaling limit of the O(2) theory can be understood as a ’t Hooft limit of a “dual”
random matrix model. One may also study large R charge correlators in ABJM theory in
the same limit, which could be compared against results from supersymmetric localization.

3.2.1 The Wilson-Fisher fixed point for a complex scalar field

Let us consider the O(N) model in d = 4� ✏ dimensions. This model is both of pedagogical
interest –as the historic laboratory for QFT and RG– as well as of practical interest: for
different values of N it is known to describe various phase transitions of relevant physical
systems (for instance, for N = 1, at ✏ = 1, it describes the 3d ferromagnetic transition). The
action reads

S =

Z
d4�✏x

✓
1

2
(@~')2 � 1

2
m2 ~'2 � g

16
(~'2)2

◆
; (3.2.1)

where ~' is the N component field rotated by the O(N) symmetry. As it is well-known, upon
tuning the mass to zero this flows to the Wilson-Fisher fixed point at the critical value

gWF =
32 ⇡2

N + 8
✏ . (3.2.2)

We will be interested in theories with a global U(1) charge, for which the simplest example
is N = 2. In that case the theory can be re-written as the theory for a complex scalar field
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in 4� ✏ dimensions with action

S =

Z
d4�✏x

⇣
@�̄ @��m2 �̄ �� g

4
(�̄�)2

⌘
. (3.2.3)

With these conventions, the Feynman rule for the vertex is just �i g. We will be interested
in the critical case where m2 = 0.

Note that this construction allows one to take the g ! 0 limit along a family of Conformal
Field Theories. Nevertheless, since we are ultimately interested in the extreme weak coupling
limit, we may alternatively simply consider the g (�̄ �)2 theory in d = 4.

It is easy to compute the anomalous dimension of scalar operators of the form On = �n

to O(g). One finds �On ⇠ g n2 ⇠ ✏n2 (see e.g. [169]). The emergence of the combination
� = g n2 ⇠ ✏n2 suggests the existence of a double scaling limit:

g ! 0 , n!1 , � = g n2 fixed . (3.2.4)

The existence of the limit may also be suggested by earlier investigations on the exponenti-
ation property of multiparticle amplitudes [170–172].

3.2.2 The double scaling limit on correlation functions

We will now investigate the limit (3.2.4) in the exact two-point correlation function hOn(x)Ōn0(0)i,
with On = �n, Ōn = �̄n in d = 4� ✏ dimensions. These operators have a definite U(1) charge
n and hence they are automatically orthogonal for different charges.1

Diagrammatic computation

Let us first compute the 2-point functions by evaluation of the relevant Feynman diagrams.
As a preliminary step, let us consider the bubble diagram in fig.3.1, which is ubiquitous in
the perturbative expansion of such correlators.

Figure 3.1: Bubble diagram.

1It should be noted that, at fixed charge n, the most general operators are of the form On,k = (�̄�)
k On.

We will restrict to the lowest tower with k = 0.
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This diagram has no dependence on the external momenta; therefore it can only be
proportional to the mass. Since we will be interested in the critical theory, this diagram
vanishes. Thus, when computing On correlators, we shall only consider diagrams that do not
contain any bubble.

Let us now consider the systematics of the perturbative expansion of the correlation
function hOn(x) Ōn(0)i. As usual, at each order in the perturbative expansion in g there are
several topologically different diagrams, each one coming with a certain dependence on n.
We are going to be interested in taking n to infinity, and inspection of all topologies shows
that in this limit a class of them dominates over the rest. As shown below, the dominant
topology can be viewed as an iteration of the one-loop diagram of fig. 3.2, that we will call
Kermit the frog’s diagram.

...

...
 

...

Figure 3.2: The relevant one-loop diagram and its Kermit the frog representation.

...

...

...

...

...

...
...

Figure 3.3: Four topologies contributing at order O(g2).

At order g2, we have the four diagrams of fig. 3.3 above. The key point to identify the
dominant diagram at large n, at any given loop order, is the n dependence, which comes
from the combinatorial factor. This is given by n!n!/k!, where k is the number of lines that
do not undergo interactions. Therefore, the diagram that has the highest power of n is the
one with the smallest k. Using this formula, we thus find that the combinatorial factor of
the fourth diagram in fig. 3.3 is n!n (n� 1) (n� 2) (n� 3). On the other hand, the formula
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n!n!/k! implies that the combinatorial factors of the first, second and third diagrams are
n!n, n!n (n� 1) and n!n(n� 1)(n� 2) respectively (we omit numerical coefficients standing
from symmetrization, which do not affect the n dependence). Thus, for large n, the diagram
on the right dominates. We will call this one the two-loop Kermit diagram.

Now consider the general m-loop diagram with m vertices. The lines in each vertex can
go either to another vertex or join some of the n lines of the operators �n or �̄n. The diagram
which has a smaller number of lines that do not undergo interactions is when two lines of
each vertex join two of the n lines of the operator �n and the other two lines join two of the
n lines of the operator �̄n (it is not possible to have three lines of the vertex joining three
lines of the operators �n because of charge conservation; vertices are of the form ���̄�̄).
This corresponds to the iteration of the Kermit diagram and has a combinatorial factor
n!2/(n� 2m)! which has the highest power of n (see (3.2.5) and below for the derivation of
the combinatorial factor at m loop order including other symmetry factors).

...

...
+

...

...
+

...
+ · · ·

Figure 3.4: Diagrams contributing to hOn(x) Ōn(x)i at large n.

Thus, we conclude that a class of diagrams dominate the correlation function, the m-loop
Kermit diagrams of fig. 3.9. Denoting by Km the contribution from the Kermit diagram with
m interaction vertices, the correlator is

hOn(x) Ōn(0)i = n!
X

m=0

(�ig)m Km
1

4m
n!

(n� 2m)!

1

m!
. (3.2.5)

The combinatorial factor can be understood from fig. 3.9. There are n lines on each side,
giving rise to a factor (n!)2 obtained by permutations. Then one must divide over the num-
ber of permutations that lead to equivalent configurations. There is a factor 1/(n � 2m)!

associated with the permutations of the n� 2m lines that do not undergo interaction. There
is also a factor 1/2m on each side associated with the permutations of the pair of lines in the
m loops. The factor 1/m! originates from the expansion of the exponential of the interaction
term.
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Using the de Moivre-Stirling formula, for n� 1 one obtains

n!

(n� 2m)!
⇡ n2m , n� 1 . (3.2.6)

Therefore we can define the limit

n!1 , g ! 0 , � = g n2 = fixed . (3.2.7)

The correlator then becomes

hOn(x) Ōn(0)i = n!
X

m=0

Km

⇣�i�
4

⌘m 1

m!
. (3.2.8)

To further proceed, note that, in position space, the Kermit diagram Km is

Km = G(0, x)n�2m
mY

i=1

Z
d4zi G(0, zi)

2 G(zi, x)
2

= G(0, x)n
⇣ 1

G(0, x)2

Z
d4z G(0, z)2 G(z, x)2

⌘m
, (3.2.9)

where G(x, y) is the propagator of the � field. Thus

hOn(x) Ōn(0)i = n!G(0, x)n
X

m=0

⇣�i�K
4

⌘m 1

m!
, (3.2.10)

with
K =

1

G(0, x)2

Z
d4z G(0, z)2 G(z, x)2 . (3.2.11)

Since n!G(0, x)n = hOn(x)On(0)i0 is the correlation function in the free theory, and the
sum can be trivially resumed, we find

hOn(x) Ōn(0)i = hOn(x) Ōn(0)i0 e�i �K
4 . (3.2.12)

Next, consider the computation of K, which is carried out in the appendix. Note that K
represents the O(g) correction to the O2 correlator. We have

K = � i

8 ⇡2
log(⇤2x2) . (3.2.13)

As a cross-check of this result, one can see that in the N = 1 case, and upon appropriately
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taking into account numerical conventions, this yields the correct O(g) anomalous dimension
of the On operator (cf. for example [169]).

Thus

hOn(x) Ōn(0)i = hOn(x) Ōn(0)i0
1

|x|
�

16⇡2

. (3.2.14)

Since in position space

G(0, x) =
1

4 ⇡2

1

|x|2 , (3.2.15)

we finally find

hOn(x) Ōn(0)i =
n!

(4 ⇡2)n |x|2 (n+
�

32⇡2 )
. (3.2.16)

In particular, this gives the following formula for the dimension of the On operator in the
double scaling limit

�On = n+
�

32 ⇡2
. (3.2.17)

Saddle-point derivation

The underlying reason behind the existence of a large charge limit can be understood from a
saddle-point calculation. It is convenient to rescale the scalar field and define new variables

� = g
1
4 � , �̄ = g

1
4 �̄ . (3.2.18)

The correlator is then given by

hOn(x1) Ōn(x2)i =
1

g
n
2Z

Z
D�D�̄ e�S , (3.2.19)

where the Euclidean action, including source terms, is given by

S =

Z
d4x

✓
g�

1
2@�̄ @� +

1

4
(�̄�)2 � n�(x� x1) log � � n�(x� x2) log �̄

◆
. (3.2.20)

In the large n limit, this integral is dominated by a saddle-point. Indeed, the saddle-point
analysis is very similar to the one carried out in section 2.3 of [154]. The saddle-point equa-
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tions are given by

@2� = �ng 1
2 �(x� x2)

1

�̄
+

1

2
g

1
2 �̄�2 , @2�̄ = �ng 1

2 �(x� x1)
1

�
+

1

2
g

1
2 �̄2� . (3.2.21)

The crucial point is that, in the limit g ! 0, n!1, where � = n2g = fixed, the interaction
term can be ignored. The resulting equations become

�̄@2� = �� 1
2 �(x� x2) , �@2�̄ = �� 1

2 �(x� x1) . (3.2.22)

These equations are now equivalent to those discussed in [154]. The solution is given by

�(x) = �1/4
ei�0 |x1 � x2|
2⇡(x� x2)2

, �̄(x) = �1/4
e�i�0 |x1 � x2|
2⇡(x� x1)2

. (3.2.23)

Let us now substitute this solution into the action. Consider first the interaction term. This
is absent in [154] and it is indeed the interesting part in our case. We have

Z
d4x

1

4
(�̄�)2 =

�

4(2⇡)4

Z
d4x

|x1 � x2|4
(x� x1)4(x� x2)4

. (3.2.24)

The integral can be computed by using (5.D.3), (5.D.5), upon shifting x! x+ x1. We get

Z
d4x

1

x4 (x� (x2 � x1))4
=

4⇡2

(x2 � x1)4
log |x2 � x1| . (3.2.25)

Thus Z
d4x

1

4
(�̄�)2 =

�

32 ⇡2
log(x1 � x2)

2 . (3.2.26)

Let us now consider the remaining terms in the action. Following [154], we have

g�
1
2

Z
d4x @�̄ @� � n log

�
�(x1)�̄(x2)

�
= �n log

�
�(x1)�̄(x2)

�
+ n

= �n

2
log �+ n+ n log (2⇡(x1 � x2))

2 .

Putting all pieces together, we find

hOn(x) Ōn(0)i =
n!

(4 ⇡2)n |x1 � x2|2 (n+
�

32⇡2 )
n! ⇠ (2⇡)1/2nn+ 1

2 e�n . (3.2.27)

which is precisely the result (3.2.16) found from the perturbative calculation based on re-
summing Feynman diagrams.
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It is worth noting that (3.2.27) can also be written as

hOn(x) Ōn(0)i =
n!

(4 ⇡2)n |x|2n (1+
b�

32⇡2 )
, (3.2.28)

where b� = �
n = g n. This makes contact with the limit of [170–172], recently discussed

in [147,173], where b� is kept fixed. More precisely, on general grounds, correlation functions
for large charge operators admit a double, ’t Hooft-like, expansion in n, b�, so that � =
P

1

i=0
n1�iFn(b�). At the same time, for weak b� coupling, F0 must admit a perturbative

expansion F0 = 1 + a b� + · · · , where, by explicit computation, a = 1

32⇡2 . Fixed � implies
�̂ ⌧ 1 when n � 1, which corresponds to the weak coupling regime in the b� expansion.
In this way our formula above is recovered as the n ! 1 (akin to the planar limit in the
familiar ’t Hooft 1

N expansion) at weak b� coupling. From this perspective, the 1

n corrections
to the saddle-point approximation reconstruct the double expansion described above.

3.2.3 The double-scaling limit in d = 3

We can similarly consider (�̄�)3 theory in d = 3, defined by the action

S =

Z
d3�✏x

⇣
@�̄ @��m2 �̄ �� g

3!
(�̄�)3

⌘
. (3.2.29)

It should be noted that this model cannot describe the ✏ ! 1 limit of the WF fixed point
discussed in the previous section, as it contains a sextic (as opposed to quartic) interaction.
Note that in both cases the interaction term is classically marginal in their respective di-
mensions and that the fixed points lie in the perturbative regime. In fact, just as in the WF
case above, our strategy in this d = 3 model will be to consider large charge operators in the
extreme weak coupling regime.

Let us consider the saddle-point calculation for the same correlator hOn(x1) Ōn(x2)i.
After scaling � = g

1
6 � , �̄ = g

1
6 �̄ . the action becomes

S =

Z
d3x

✓
g�

1
3@�̄ @� +

1

3!2
(�̄�)3 � n�(x� x1) log � � n�(x� x2) log �̄

◆
. (3.2.30)

A similar saddle-point analysis now leads to the equations

@2� = �ng 1
3 �(x� x2)

1

�̄
+

1

12
g

1
3 �̄2�3 , @2�̄ = �ng 1

3 �(x� x1)
1

�
+

1

12
g

1
3 �̄3�2 . (3.2.31)
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We now take the limit

n!1 , g ! 0 , with � = n3g = fixed . (3.2.32)

As in d = 4, the interaction term vanishes in the limit. The solutions of the saddle-point
equations are obtained just like in the d = 4 case, finding now

�(x) = �1/6
ei�0 |x1 � x2|

1
2

p
4⇡|x� x2|

, �̄(x) = �1/6
e�i�0 |x1 � x2|

1
2

p
4⇡|x� x1|

. (3.2.33)

The anomalous dimension now comes from the contribution
Z

d3x
1

3!2
(�̄�)3 =

�

3!2(4⇡)3

Z
d3x

|x1 � x2|3
|x� x1|3 |x� x2|3

. (3.2.34)

This integral represents the Feynman diagram of fig. 3.5, the “sleeping Kermit".

...

Figure 3.5: Sleeping Kermit. The diagram represents the leading non-trivial contribution to
the two-point correlation function of the d = 3 theory in the double-scaling limit.

This integral can be done using the results in appendix, leading to
Z

d3x
1

3!2
(�̄�)3 =

�

(24⇡)2
log |x1 � x2|2⇤2 . (3.2.35)

The saddle-point calculation implies that, as in the d = 4 case, this contribution exponenti-
ates, leading to a correlator

hOn(x) Ōn(0)i =
n!

(4⇡)n |x1 � x2|
2 (n+ �

(24⇡)2
)
, n! ⇠ (2⇡)1/2nn+ 1

2 e�n . (3.2.36)
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3.3 Correlation functions in scalar field theory at large

charge

We have seen in previous sections that sectors with large charge under a global symmetry
of a given quantum field theory enjoy remarkable simplification properties, which allow a
systematic and analytic study [148–150]. A prototypical example is the O(2) model in d = 3,
where, if one is interested in the sector of operators with large charge n under the global
symmetry, it is possible to write an effective field theory governing their dynamics. This allows
to compute their anomalous dimensions, which are found to scale as � ⇠ n

3
2 +O(n

1
2 ). This

result can be understood from a “microscopic" description starting with the U(1) Wilson-
Fisher (WF) fixed point in d = 4� ✏ dimensions, described by the action

S0 =

Z
d4�✏x

⇣
@�̄ @�� g

4
(�̄�)2

⌘
. (3.3.1)

This approach in fact uncovers a rich structure, as the sector of operators at fixed charge
n is described by an effective theory depending on both n and g (recall that at the WF
fixed point, g ⇠ ✏), in such a way that, depending on how the large charge limit is taken, a
different behavior emerges. This was first discussed in [4], where the two-point function of the
operators �n, �̄n was computed by a full resummation of the dominant Feynman diagrams
–dubbed Kermit L-loop diagrams– that survive in a double scaling limit with n ! 1 at
fixed g n2 ⌘ �. In this limit the sum over Feynman diagrams exponentiates, giving the result

h�n(x)�̄n(0)i = n!

(4⇡2)n|x|2� , � = n+
�

32⇡2
. (3.3.2)

This result can also be derived by a saddle-point evaluation of the two-point function, which
becomes exact in the double scaling limit with fixed � = gn2 [4].

A general way to organize the large n expansion was then discussed in [147, 173, 174]
(generalizing earlier work in [170–172]). The effective description of the large n sector nat-
urally depends on n and g n = �̂, i.e. �̂ = �/n, in such a way that a ’t Hooft-like double
expansion emerges and, in particular, one has

� =
1X

k=�1

n�k �k(�̂) . (3.3.3)

In the strict large n limit the dominant term is ��1(�̂), which in turn must admit a pertur-

129



bative expansion for small �̂. This gives [147,173]

��1(�̂) = 1 +
�̂

32⇡2
+O

�
�̂2
�
. (3.3.4)

In the double-scaling limit of [4] at fixed �, the O
�
�̂2
�

terms are given by Feynman diagrams
which are suppressed by powers of 1/n. Thus, from this point of view, the result (3.3.2)
can be viewed as the leading term of the more general double expansion in n, �̂. In the
opposite limit of large �̂ –which overlaps with the regime of validity of the large charge
effective theory– one finds � ⇠ �̂

4�✏
3�✏ + · · · , thus recovering the expected scaling, with the

extra bonus of providing an analytic expression for the actual coefficients in the large charge
expansion [147,173,174].

Large charge expansions also exist in general CFT’s with a marginal coupling. An example
of a CFT depending on an exactly marginal parameter gYM is N = 2 supersymmetric
four-dimensional QCD with gauge group SU(N) and 2N fundamental flavors. The large
charge limit of this theory was first introduced in [165] and studied using supersymmetric
localization. It was shown that the perturbative expansion of correlators of (Tr�2)n – �

being the adjoint scalar in the vector multiplet of unit R-charge – has a well-defined large n

limit provided one takes a double-scaling limit of large n and fixed g2
YM

n. This limit ensures
that all terms in the perturbative expansion are finite and non-vanishing. Further aspects
were studied in detail in [166,167]. Subsequently, the existence of a double-scaling limit was
understood in terms of a “hidden" matrix model description in [168].

The mere fact that it is possible to compute observables of a QFT in a closed form in
the large charge sector is remarkable per se. Motivated by this, in this work, we study higher
point functions in the O(2) theory in the sector of operators with large charge. Focusing
in the weak coupling regime in the double expansion in 1/n, �̂, we compute “extremal"
correlators (of the form h�n1 · · ·�nr �̄mi) as well as 4-point functions in the “non-extremal"
case. As discussed above, in the double scaling limit, these results become exact. We shall
use the saddle point method employed in [4].

3.3.1 Higher point functions in the O(2) model

We will follow the approach of [4], where the two-point function was computed in a double-
scaling limit, n ! 1, g ! 0 at fixed g n2 ⌘ �. This limit yields the exact exponentiation
of the the leading non-trivial term in the more general n, �̂ expansion in the large n and
weak �̂ regime. In the case of higher-point functions, we are interested in general correlation
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functions of the form

h�(x1)
n1 · · ·�(xr)

nr �̄(y1)
m1 · · · �̄(ys)msi ,

rX

i=1

ni =
sX

j=1

mj . (3.3.5)

We will assume the following scaling

ni = ain , mj = bjn , g ! 0, n!1 , gn2 = fixed ,

and fixed ai, bj. In the case of the two-point function h�(x)n�̄(y)ni, it was shown in the
previous section that in the double-scaling limit all higher loop diagrams vanish except those
with a particular topology (the “Kermit the frog" L-loop diagram), corresponding to the case
where two lines of each of the L vertices join two of the n lines of the operator �n and the
other two lines join two of the n lines of the operator �̄n. In particular, Feynman diagrams
having lines joining one vertex to another one vanish in the double-scaling limit. As a result,
the two-point function can be exactly computed by a complete resummation of the surviving
L-loop Feynman diagrams.

Alternatively, the double-scaling limit can be understood from a saddle-point calculation.
This can be easily generalized to the general correlation function (3.3.5). We first introduce
the scaled scalar field

� = g
1
4 � , �̄ = g

1
4 �̄ . (3.3.6)

The general correlation function (3.3.5) is then given by

h�(x1)
n1 · · ·�(xr)

nr �̄(y1)
m1 · · · �̄(ys)msi = 1

g
m
2 Z

Z
D�D�̄ e�S , m ⌘

sX

j=1

mj ,

where the Euclidean action, including source terms, is given by

S = Sfree + Sint (3.3.7)

Sfree =

Z
d4x

 
g�

1
2@�̄ @� �

X

i

ni�(x� xi) log � �
X

j

mj�(x� yj) log �̄

!

=

Z
d4x

⇣
g�

1
2@�̄ @� � log �(x1)

n1 · · · �(xr)
nr �̄(y1)

m1 · · · �̄(ys)ms

⌘
, (3.3.8)

Sint =

Z
d4x

1

4
(�̄�)2 . (3.3.9)
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The saddle-point equations are given by

@2� = �ng 1
2

X

j

bj�(x� yj)
1

�̄
+

1

2
g

1
2 �̄�2 , @2�̄ = �ng 1

2

X

i

ai�(x� xi)
1

�
+

1

2
g

1
2 �̄2� .

In the double-scaling g ! 0, n ! 1, with fixed � = n2g, the cubic term vanishes. The
equations simply become

�̄@2� = �� 1
2

X

j

bj�(x� yj) , �@2�̄ = �� 1
2

X

i

ai�(x� xi) . (3.3.10)

Extremal correlators

We shall first consider a special class of correlation functions where the resulting expressions
in the double-scaling limit are conspicuously simple. These are the “extremal" correlators

h�(x1)
n1 · · ·�(xr)

nr �̄(y)mi ,
rX

i=1

ni = m . (3.3.11)

The name “extremal" correlators was here taken from N = 2 supersymmetric gauge theories,
where correlation functions of this form having r chiral primary operators and one anti-chiral
primary operator enjoy special properties because of supersymmetry. In the present case,
there is of course no supersymmetry. Yet, for extremal correlators of the form (3.3.11), the
double-scaling limit will still single out the particular topologies generalizing the Kermit
diagrams of [4] with the two lines of each vertex being distributed among the r different
points. The reason of the simplicity of this correlator is more transparent in the saddle-point
calculation, which for this case admits a simple solution. The solution to (3.3.10) is

� =
�

1
2 b

�̄0(y)
G(x� y) , �̄ = �̄0(y)

rX

i=1

aiG(x� xi)

bG(xi � y)
, (3.3.12)

where G(x) is the Green function

G(x) =
1

4⇡x2
, @2G(x) = ��(x) ,

Note that the factor �̄0(y) = �̄(y). cancels out in computing the action. Substituting this
solution into the free part of the action, we obtain

Sfree = � log �(x1)
n1 · · · �(xr)

nr �̄(y)m +m . (3.3.13)
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This gives

h�(x1)
n1 · · ·�(xr)

nr �̄(y)mifree =
mme�m

(4 ⇡2)m

rY

i=1

1

|xi � y|2ni
. (3.3.14)

The factor mme�m is the leading approximation for m! (the Gaussian integration in the
saddle-point approximation completes the standard form of the de Moivre-Stirling formula
m! ⇡

p
2⇡mmme�m).

Next, let us consider the interaction term.

Sint =

Z
d4x

1

4
(�̄�)2 =

�

4

Z
d4xG(x� y)2

 
X

i

aiG(x� xi)

G(xi � y)

!2

=
�

4

 
rX

i=1

a2i I(xi, y) + 2
rX

i<j

aiajI(xi, xj, y)

!
,

where 2

I(xi, y) ⌘
1

G(xi � y)2

Z
d4xG(x� y)2G(x� xi)

2 =
1

4⇡2
log(µ|xi � y|) (3.3.15)

I(xi, xj, y) ⌘
1

G(xi � y)G(xj � y)

Z
d4xG(x� y)2G(x� xi)G(x� xj)

=
1

8⇡2
log
⇣
µ
|xi � y| |xj � y|

|xi � xj|

⌘
, (3.3.16)

where µ is a reference mass scale, which in what follows will be set to one (see comments on
section 3.3.1).

Combining the free and the interacting part, we finally obtain

h�(x1)
n1 · · ·�(xr)

nr �̄(y)mi = m!

(4⇡2)m
Qr

i=1
|xi � y|2(ni+

� aib

32⇡2 )
Qr

i<j |xi � xj|�
� ai aj
16⇡2

. (3.3.17)

We can now check that this structure is consistent with the expected structure dictated
by conformal symmetry. Consider first the particular case of the three-point function, that
is, r = 2. With no loss of generality, we can set y = 0. The result can be written in the
equivalent form

h�(x1)
n1�(x2)

n2 �̄(y)mi = m!

(4⇡2)m|x1|�1+�̄��2 |x2|�2+�̄��1 |x1 � x2|�1+�2��̄
, (3.3.18)

2Details on the calculation of these integrals can be found in [175] (see also [4]).
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Figure 3.6: Types of diagrams that contribute to the extremal correlators.

where m = n1 + n2 and

�1 = n1 +
�a2

1

32⇡2
, �2 = n2 +

�a2
2

32⇡2
, �̄ = (n1 + n2) +

�(a1 + a2)2

32⇡2
.

Higher-point extremal correlators are given explicitly by the remarkably simple formula
(3.3.17). When r � 3, the exponents in the formula (3.3.17) can no longer be expressed
purely in terms of the dimensions {�i, �̄} as in the three-point function (3.3.18).

Summarizing, we found the exact “extremal" correlators in the double-scaling limit where
all charges go to infinity scaling in the same way. The result represents the resummation of the
infinite number of L-loop Feynman diagrams that survive the limit. These are shown in figure
3.11 and generalize the “Kermit the frog" diagrams described in detail in [4]. The existence
of the limit can be understood from the saddle-point analysis, which led to finite expressions
that become exact at n = 1. For large, but finite, charges, the double-scaling limit can be
viewed as the leading result in a 1/n expansion. The next O(1/n) terms in the expansion
may be systematically derived from corrections to the saddle point approximations, obtained
from the Taylor expansion of the action around the saddle-point.

Non-extremal correlators

Let us now discuss general (“non-extremal") correlation functions. The general solution to
(3.3.10) is given by

�(x) = �
1
2

sX

j=1

bj
�̄(yj)

G(x, yj) , �̄(x) = �
1
2

rX

i=1

ai
�(xi)

G(x, xi) , (3.3.19)

One can check that these equations are consistent provided
Pr

i=1
ni =

Ps
j=1

mj. General
correlation functions can be obtained by substituting (3.3.19) into the action (3.3.8), (3.3.9).
In what follows we shall focus on the four-point function.
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Four-point non-extremal correlator

As an explicit example, let us consider the case r = s = 2, i.e. the four-point function

h�(x1)
n1 �(x2)

n2 �̄(y1)
m1 �̄(y2)

m2i , n1 + n2 = m1 +m2 . (3.3.20)

In addition, in this subsection we shall consider the particular case

a1 = a2 = b1 = b2 = 1 , (3.3.21)

so that ni = mi = n. Then

�(x) = �0(x2)

q
G(x1, y2)
G(x2, y1)

G(x, y1) +
q

G(x1, y1)
G(x2, y2)

G(x, y2)
p
G(x1, y2)G(x2, y1) +

p
G(x1, y1)G(x2, y2)

, (3.3.22)

and

�̄(x) =
�

1
2

�0(x2)

⇣
G(x, x2) +

s
G(x2, y1)G(x2, y2)

G(x1, y1)G(x1, y2)
G(x, x1)

⌘
. (3.3.23)

The factor �0(x2) = �(x2) cancels out when computing the action. Substituting the solution
into the free part of the action, given in (3.3.8), we obtain

Sfree = 2n� n log �
⇣p

G(x1, y2)G(x2, y1) +
p
G(x1, y1)G(x2, y2)

⌘2
. (3.3.24)

It is convenient to rename (y1, y2)! (x3, x4) and define rij ⌘ |xi � xj|. Thus we obtain

h�(x1)
n �(x2)

n �̄(x3)
n �̄(x4)

nifree =
n2ne�2n

(4⇡2)2n

✓
1

r14r23
+

1

r13r24

◆2n

. (3.3.25)

Let us now compute the interaction term. Substituting the solutions (3.3.22), (3.3.23) for
� and �̄ into (3.3.9), we get an expression with nine integrals. Using the formulas (3.3.15),
(3.3.16) and the integral computed in [176]

Z
d4xG(x, x1)G(x, x2)G(x, x3)G(x, x4) =

H

28⇡6 r2
13
r2
24

(3.3.26)

where
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H =
1

1� x� y

⇣
log x(1� y) log

y

1� x
� 2 Li2(x) + 2Li2(1� y)

⌘
, (3.3.27)

being u, v the conformal ratios

u ⌘ r12r34
r13r24

, v ⌘ r14 r23
r13 r24

, (3.3.28)

and

x =
⇢u2

1 + ⇢u2
, y =

⇢v2

1 + ⇢ v2
, ⇢ =

2

1� u2 � v2 � � , � =
p
(1� u2 � v2)2 � 4 u2 v2 .

one finds that

Sint =
�

16⇡2
log

r13r24
r12r34

+
�

16⇡2
log

r14r23
r12r34

+
�

16⇡2
log(r12 r34) + S 0

int , (3.3.29)

where

S 0

int ⌘
�

16⇡2

1

(r14r23 + r13r24)2

✓
H r2

14
r2
23
� r2

13
r2
24
log

r13r24
r12r34

� r2
14
r2
23
log

r14r23
r12r34

◆
. (3.3.30)

Thus, altogether, we obtain

h�(x1)
n �(x2)

n �̄(x3)
n �̄(x4)

ni = (n!)2

(4⇡2)2n
(r14r23 + r13r24)2n (r12r34)

�
16⇡2

(r14r23r13r24)
2�

e�S0
int . (3.3.31)

The final expression (3.3.31) has the symmetries under the exchanges x1 $ x2 and x3 $ x4.
These symmetries are not manifest in the term with H, but they can be shown to hold
using standard properties of Li2(x) (see discussion in appendix C of [176]). The four-point
function (3.3.31) also has the expected singular behavior in the channels x1 = x3, x1 = x4,
x2 = x3, x2 = x4, with a power governed by the full scaling dimension � of the operators,
including the anomalous dimension. While the free part does not contain any singularity in
the channels r12 = 0 and r34 = 0 because of charge conservation, due to the interaction, there
is a behavior (r12r34)

�
16⇡2 . This behavior was already present in the extremal correlators. The

terms with log r12 and log r34 in S 0

int exactly cancel out with similar terms originating from
H in the limit where either r12 ! 0 or r34 ! 0, so there is no extra contribution to this
behavior. As a non-trivial check, we must recover the extremal three-point function (3.3.18)
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in the limit x4 ! x3. We obtain

lim
x4!x3

h�(x1)
n �(x2)

n �̄(x3)
n �̄(x4)

ni = (2n)!

(4⇡2)2n
(✏ r12)

�
16⇡2

r�̄
13
r�̄
23

, �̄ = 2n+
�

8⇡2
, (3.3.32)

where ✏ = r34. This reproduces (3.3.18) for n1 = n2 = n, m = 2n, with an extra factor ✏
multiplying r12. This factor is to be absorbed into the reference scale µ; see discussion in
section 3.3.1.

The important prediction of the double-scaling limit is that the O(�) correction expo-
nentiates. The saddle-point method exactly computes the full resummation of the surviving
multiloop Feynman diagrams in the double-scaling limit. The saddle point approximation
receives 1/n corrections that we are not computing and reorganize into a more general ex-
pansion in powers of 1/n and �.

On the scale dependence of correlation functions

It is worth noting that the first two terms in (3.3.29) and S 0

int
are dimensionless quantities

(which can in fact be written in terms of the standard conformal ratios). Upon restoring the
reference mass scale µ, this appears only in the term log(µ2 r12 r34) term. One may wonder
how, in a CFT, a non-trivial dependence on a scale appeared in a correlation function. To
understand this point, let us first consider the case of the two-point function written it in
terms of dimensionless operators using the reference scale µ. This leads to

h
⇣�(x1)

µ

⌘n ⇣ �̄(x2)

µ

⌘n
i =

n!

(4⇡2)n
e�Sint

(µ |x1 � x2|)2n
=

n!

(4⇡2)n
e�

�
16⇡2 log(µ |x1�x2|)

(µ |x1 � x2|)2n

=
n!

(4⇡2)n
1

(µ |x1 � x2|)2�
, � = n+

�

32 ⇡2
. (3.3.33)

Thus, the µ dependence in the argument of the logarithm is precisely what it is required to
soak up the dimensions of x as it should be for a correlator of dimensionless operators. In
other words, the µ dependence in the argument of the logarithm is reflecting the fact the
operator has anomalous dimension.

Now consider the four-point function (3.3.31). Similarly, the factor of µ arising from the
term log(µ2 r12 r34) in (3.3.29) combines with the factor µ�4n to give a net factor µ�4�, which
is, in this case, the expected factor given that each operator has dimension �. Restoring the

137



µ dependence, the non-extremal four-point function is given by

1

µ4n
h�(x1)

n�(x2)
n�̄(x3)

n�̄(x4)
ni =

(n!)2

(4⇡2)2n
µ4n(r14r23 + r13r24)2n (µ2r12r34)

�
16⇡2

µ8� (r14r23r13r24)
2�

e�S0
int

=
(n!)2

(4⇡2)2n
(r14r23 + r13r24)2n (r12r34)

�
16⇡2

µ4� (r14r23r13r24)
2�

e�S0
int .(3.3.34)

One can check that the same property holds for the general extremal correlator (3.3.17):
the only µ-dependence in µ�

P
i niµ�mh�(x1)n1 · · ·�(xr)nr �̄(y)mi is in a factor µ�

P
i �iµ��̄

on the RHS, as expected.

Generating functional for the free part

Here we shall compute general higher-points correlation functions for the free theory by
computing the generating functional. This will also serve as a cross-check of the free (� = 0)
part of the previous results. We consider the following correlation function:

h
rY

i=1

e↵i�(xi)

sY

j=1

e�j �̄(yj)i. (3.3.35)

The desired (free) correlator (3.3.5) is then obtained by expanding the generating functional
in powers of ↵i and �j and isolating the term with the required powers ni, mj. Including
the source terms, the action is given by

Sfree =

Z
d4x

 
@�̄ @��

X

i

↵i�(x� xi)��
X

j

�j�(x� yj)�̄

!
. (3.3.36)

The functional integral is Gaussian and can be computed exactly, with no need of taking
any large charge limit, by solving the saddle-point equations. These are given by

@2� = �
sX

j=1

�j�(x� yj) , @2�̄ = �
rX

i=1

↵i�(x� xi) . (3.3.37)

The advantage of working with exponential operators is that the equations have now the
straightforward solutions

�(x) =
sX

j=1

�jG(x� yj) , �̄(x) =
rX

i=1

↵iG(x� xi) . (3.3.38)
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Substituting these solutions into the action we obtain

Sfree = �
sX

j=1

rX

i=1

↵i�jG(xi � yj) . (3.3.39)

Using this formula, we reproduce the previous results for the free part of the extremal
correlators in a straightforward way.

Let us now consider non-extremal correlators. These have a more complicated structure
involving several sums of terms, which originate from many new possible contractions arising
in Feynman diagrams. As an example, here we consider the four-point correlation function

G4 ⌘ h�(x1)
n1�(x2)

n2�̄(y1)
m1�̄(y2)

m2i . (3.3.40)

We have

he↵1�(x1)e↵2�(x2) e�1�̄(y1)e�2�̄(y2)i = e↵1�1G(x1�y1)e↵2�2G(x2�y2)e↵1�2G(x1�y2)e↵2�1G(x2�y1) .

Expanding in powers of ↵i, �j and isolating the terms with given powers ↵n1
1
↵n2�m1

1
�m2
2

, we
find

G4 = n1!n2!m1!m2!
X

k

G(x1 � y1)kG(x2 � y2)k+n2�m1G(x1 � y2)n1�kG(x2 � y1)m1�k

k!(n1 � k)!(k + n2 �m1)!(m1 � k)!

(3.3.41)
Thus far this is exact, valid for any values of n1, n2,m1,m2, with the sum over k restricted
to k � 0, k  m1, k � m1 � n2, k  n1.

Obtaining the correct asymptotic large charge behavior requires some care, as the ap-
proximation (n�k)! ⇡ n!n�k cannot be applied in (3.3.41) because this holds for k ⌧ n and
terms with k ⇠ n give a relevant contribution to the sum. To illustrate this, let us consider
in particular the case n1 = n2 = m1 = m2 ⌘ n. Then we get

G4 = (n!)4
nX

k=0

G(x1 � y1)kG(x2 � y2)kG(x1 � y2)n�kG(x2 � y1)n�k

k!2(n� k)!2

=
n!2

(4⇡2)2n
1

r2n
14

r2n
23

2F1(�n,�n, 1, v2) , (3.3.42)

where we renamed (y1, y2) ! (x3, x4). This formula is in agreement with the results pre-
sented in [177] for the cases n = 1 and n = 2, given by (6.17) and (6.21) in [177] (for a real
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scalar field). Explicitly,

1

r2n
14

r2n
23

2F1(�n, �n, 1, v2) =

8
<

:
u+ u

v if n = 1 ,

u2 + u2

v2 + 4 u2

v if n = 2 .
(3.3.43)

The missing term “1" in (6.2) of [177] is easily understood, as it comes from the identity
operator which in the present O(2) case cannot be exchanged in the �(x1)�(x2) fusion due
to charge conservation. As a further consistency check, in the limit x4 ! x3 we find

h�(x1)
n �(x2)

n �̄(x3)
2ni = (2n)!

(4⇡2)2n
1

r2n
13

r2n
23

, (3.3.44)

which is precisely the free part of the 3-point function (c.f eq.(3.3.18) for � = 0).
The exact result (3.3.42) can be used to cross-check the free part computed earlier in

(3.3.25). The asymptotic large n behaviour can be obtained from the integral representation
of the hypergeometric function, which at large n is dominated by a saddle-point. This gives

2F1(�n,�n, 1, v2) ⇡
1p
4⇡n

(1 + v)1+2n

v
1
2

.

Substituting this formula into (3.3.42), we obtain

h�(x1)
n �(x2)

n �̄(x3)
n �̄(x4)

ni ⇡ n!2

(4⇡2)2n
1p
4⇡n

1

(r14r23r24r13)n

✓p
v +

1p
v

◆1+2n

. (3.3.45)

For large n, this coincides with (3.3.25).

3.4 On the UV completion of the O(N) model in 6 � ✏

dimensions: a stable large charge sector

While in the previous sections we focused in the O(2) model near 4 dimensions, we shall
now consider the more general O(N) model for various values of d. This is one of the most
extensively studied quantum field theories, made of N real scalar fields �i and a quartic in-
teraction g (~� 2)2. The theory has a number of interesting applications in d  4 as it describes
universal features of critical phenomena, including, for instance, a precise description of the
second-order phase transition in the three-dimensional Ising model near criticality.

Besides its importance as a description of systems of great physical interest, the O(N)
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model is also of relevance in the context of the AdS/CFT duality. It was conjectured [178]
that the Vasiliev higher spin theories on AdSd+1 [179–184] are dual to the singlet sector of
the O(N) model in d dimensions. In recent years, the duality was investigated particularly
in d < 4. It is thus natural to inquire how the duality could work for the d > 4 theories.

The upper critical dimension of the quartic interaction is 4. For d < 4 the O(N) model
flows to an IR fixed point which is typically strongly coupled [185,186]. Despite this, several
techniques have been developed to study the IR fixed point and their combination gives
a qualitative picture of the physics of the model. In particular, large N methods, the ✏-
expansion around the upper/lower critical dimensions and, more recently, the bootstrap;
have yielded a qualitative understanding of the O(N) model in dimensions 2 < d < 4,
including approximate results for certain quantities such as scaling dimensions of simple
operators.

Although for d > 4 the theory is not renormalizable by power counting, the large N

analysis as in [187] nevertheless suggests that the theory may still admit a UV fixed point, a
scenario akin to Weinberg’s asymptotic safety(see also [188]). This opens the very interesting
possibility to construct an interacting, strongly coupled, non-SUSY CFT in d = 5. The
existence of a UV fixed point at large N is consistent with the observation in [189], drawing
on the results in [190–195], that the continuation to negative ✏ of the standard ✏-expansion
yields sensible results, at least within perturbation theory. Indeed, for certain observables
such as scaling dimensions of some operators, the continuation to negative ✏ –that is, in
d = 4 + |✏| dimensions– of the expressions for generic d leads to compelling results for the
scaling dimensions, as they lie within the unitarity bounds [187,196,197].

Fei, Giombi and Klebanov [189] proposed a UV completion of the quartic O(N) model
in terms of a cubic theory with N +1 fields and the same O(N) global symmetry. The cubic
O(N) model was studied in the past [198] in an ✏-expansion about its critical dimension
d = 6 � ✏. By examining the one-loop � functions, it was found that, for N > Ncr, with
Ncr ⇠ 1038, the theory has an IR fixed point. This result was reproduced in [189] , where
it was shown that, at the IR fixed point, physical observables, such as scaling dimensions
of operators, remarkably agree with their counterparts in the quartic model. A three loop
analysis [199] suggested that Ncr at ✏ = 1 may dramatically decrease up to Ncr ⇠ 64, while
four loop corrections [200] seem to place the value of Ncr around Ncr ⇠ 400.

The striking agreement between the IR fixed point of the cubic model and the UV fixed
point of the quartic model is non-trivial. The quartic model is most conveniently studied
upon performing a Hubbard-Stratonovich (HS) transformation [187, 201], which effectively
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converts it into a cubic model albeit with no (tree level) dynamics for the HS scalar field.
One might think that the cubic model proposed in [189] is just the resummation of the
higher-loop momentum dependence of the HS field. However, as shown in [202], this is not
the case, as the cubic model is at a larger universality class and it is only upon fine-tuning
to a critical manifold that one can fall in the universality class of the quartic model with the
same critical exponents.

In any case, the fixed points of either theory can only be at most metastable. Indeed,
it is known from long ago that the quartic theory at d > 4 cannot admit a true fixed
point [203]. A sign of this is the fact that, in d = 4 + ✏ dimensions, the continuation of
the standard perturbative fixed point lies at negative values of the coupling g, implying
an inverted, unstable, potential. In turn, while the IR fixed point [189] of the cubic theory
which UV-completes the quartic model lives at positive values of the couplings, the potential
is cubic and it is therefore unbounded from below. An analysis of the exact RG in these
models [202, 204, 205] indeed shows that there is no fixed point. The problem was further
studied in [206], where instanton instabilities of the unbounded potentials in both theories
were computed. In particular, it was shown how the instanton saddle points are responsible
for giving exponentially small imaginary parts to the scaling dimensions of the operators in
both models.

In parallel, very recently it was appreciated that, on general grounds, the sectors of
large charge under a global symmetry in a CFT enjoy special properties which make them
analytically tractable (see, e.g. [148,149,151,158,162,207,208], and [153,161] for comparison
with lattice simulations). This may be regarded as a generalization of very well known
particular large charge limits extensively studied in the literature, such as the pp-wave limit
or even large spin expansions in CFT. The key observation is that the correlation functions
of operators with large charge under a global symmetry can be regarded, upon mapping to
the cylinder, as a finite charge density state whose energy selects the relevant correlator. The
scale of the charge density (operator charge) defines a UV cut-off, while the size of the sphere
sets an IR cut-off. Then, provided one considers a large charge state which parametrically
gives a large separation of the UV and IR scales, one can write an effective theory from which
one can compute the desired correlation function. While this construction is universal, as it
relies on generic assumptions, it has recently been realized that a microscopic derivation can
also be provided. Focusing on the O(2) model, one may consider large charge n operators in
the sector where g scales as n�1, so that n acts as ~. Hence, the large charge limit acts as
a “classical limit" where ~ ⇠ n�1 is sent to zero at fixed g n. Of course, in the sense of the
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standard perturbative expansion in Feynman diagrams, this “classical limit" digs into the
quantum regime of the theory as it resums infinitely many Feynman diagrams. An efficient
way to select the leading relevant Feynman diagrams is to consider a similar large n limit
but with fixed g n2. One can then explicitly compute and resum these diagrams, dubbed
“Kermit the frog" in [4].

The existence of this double scaling limit was first hinted for scalar theories long ago
in [170–172], and very recently reconsidered in [4, 5, 147, 173]. Even though these studies
concern scalar theories (mostly the O(2) model), a similar double-scaling limit was found
in N = 2 SQCD in [165] and further studied in [166–168, 209] (see also [154, 156]). It is
very interesting to note that in the large n limit of N = 2 QCD the (Yang-Mills) instanton
sector is exponentially suppressed [165] and thus the perturbative series (or, if summed, its
continuation to strong coupling) is exact.

In view of the simplifications in large charge sectors, it is natural to apply these tech-
niques to the study of the O(N) model in d > 4. We shall see that in the sector of large
charge operators the agreement between the description of the fixed points from the UV
of the quartic theory and from the IR of the cubic theory can be explicitly checked, in-
cluding the contribution of infinitely many diagrams in the standard Feynman expansion.
In addition, just as in the N = 2 SQCD case, instanton corrections are absent. This will
have the implication that the sector of large charge operators is stable. In particular, the
scaling dimensions of large charge operators do not have imaginary components (they are
suppressed exponentially with the charge n, even at finite N). With this motivation in mind,
in this section we will study a class of large charge operators which are in the [n, 0, · · · , 0]
representation of the O(N) group.3 One natural way to do this, for even N , is to re-write the
theory so that it explicitly exhibits U(1)⇥SU(N) ⇢ O(2N). It turns out that the correlators
of the [n, 0, · · · , 0] in O(2N) are computed by correlators of n-th powers of the fundamental
of SU(N). Using this, we will compute the (purely real) scaling dimension of the operators
in the [n, 0, · · · , 0] of O(2N) from their 2-point functions and explicitly check the agreement
between the cubic and quartic models. We will also explicitly compute a class of higher-point
functions in the same double-scaling limit, in particular, obtaining results for the three-point
function consistent with conformal symmetry.

In the case of even n, we will see that the same correlator can be computed as well by
means of correlators of meson operators represented by n-fold symmetrized powers of the
adjoint of SU(N). This can be carried over to a version of the theory projected to U(1)-

3As the models contain no pseudoscalar fields, in all cases, representations transform trivially under parity.
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invariant states.
In order to solve the saddle-point equations, we will resort to perturbation theory. As a

consequence, strictly speaking, our results are valid in d = 6�✏ dimensions in the limit ✏! 0.
It is possible that, by including additional corrections, the results could be extrapolated to
higher coupling so as to get to the region of ✏ = 1, that is, to the d = 5 O(N) model.
This would provide a sector free of instabilities which may be of relevance in the AdS/CFT

context, primarily in the case of the theory projected to the U(1) singlet sector.
The rest of this section is organized as follows. In section 3.4.1 we introduce the class

of operators that we consider and compute their 2-point functions in order to read off their
scaling dimensions. We first do this in the context of the cubic model and then describe
the agreement with the quartic model. We also discuss the absence of instanton contribu-
tions in the double scaling limit which thus renders this sector stable. In section 3.4.2 we
compute higher-point functions for the so-called extremal case – a terminology borrowed
from the supersymmetric case that alludes to correlators with exactly one insertion of an
antiholomorphic field. In section 3.4.3 we compute the scaling dimension of meson operators.
Some concluding remarks will be made in section 3.4.4, which includes a discussion of open
problems. Finally, in the appendices we collect some useful formulas as well as a standard
derivation of the relevant correlation functions, including combinatorial factors, for the cubic
interaction.

3.4.1 Large charge operators in the cubic O(2N) theory in d = 6� ✏
dimensions

Our starting point is the d = 6� ✏ dimensional theory investigated in [189,206]. It is defined
by the action

S =

Z
ddx

✓
1

2

�
@~'
�2

+
1

2

�
@⌘
�2

+
g1
2
⌘
�
~'
�2

+
g2
6
⌘3
◆
. (3.4.1)

Here ~' is a vector of O(2N). As discussed in the Introduction, this theory has an IR stable
fixed point for N > Ncr. The critical Ncr was estimated in [189, 198] to be 2Ncr ⇠ 1038

using the one-loop � functions. However, further analysis [199,200] suggests that higher loop
corrections may, at ✏ = 1, dramatically reduce this value. From the one-loop � functions,
one finds that the theory (3.4.1) has an IR stable fixed point which at large N sits at [189]
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g⇤
1
=

r
6 (4⇡)3 ✏

2N

✓
1 +O

⇣ 1

N

⌘◆
, g⇤

2
= 6

r
6 (4⇡)3 ✏

2N

✓
1 +O

⇣ 1

N

⌘◆
. (3.4.2)

For N < Ncr, the critical couplings move to the complex plane and the fixed point cannot
describe a unitary theory.

Correlation functions for a class of large charge operators

In the theory (3.4.1), the elementary fields 'i fill a vector representation of O(2N), whose
Dynkin labels are [1, 0, · · · , 0]DN . Composite operators are then formed from their products
and derivatives. Let us consider the class of operators formed solely by symmetrized (as we
are dealing with bosons) powers of the 'i. One can check that

Symn
⇣
[1, 0, · · · , 0]DN

⌘
=

b
n
2 cX

i=0

[n� 2i, 0, · · · , 0]DN . (3.4.3)

It is clear that all but the i = 0 term in the sum in (3.4.3) will contain powers of ~' 2

when constructed in terms of fields. As an illustrative example, one may consider the case of
even n, when the last term in the sum in (3.4.3) is [0, 0, · · · , 0]DN ; corresponding to (~' 2)

n
2 .

For reasons which will become clear momentarily, let us consider precisely the i = 0 term
in the sum in (3.4.3), i.e. the [n, 0 · · · 0]DN representation of O(2N).4 Now, O(2N) has a
SU(N)⇥ U(1) subalgebra. When branched in SU(N)⇥ U(1), the [n, 0 · · · 0]DN gives

[n, 0, · · · , 0]DN !
nX

k=0

[n� k, 0 · · · 0, k](n�2k) , (3.4.4)

where the RHS is meant to refer to AN�1 Dynkin labels and the subscript is the U(1) charge.
Let us consider the k = 0 term in the sum on the RHS of (3.4.4). In terms of fields, this

representation is easily constructed: in terms of the complex combinations �I = 'I
+i'I+N
p
2

with I = 1, · · · , N , the action of the theory is

S =

Z
ddx

✓
|@~�|2 + 1

2

�
@⌘
�2

+ g1 ⌘ |~�|2 +
g2
6
⌘3
◆
, (3.4.5)

so that
4Let us stress that our [n, 0 · · · 0]DN operator is composed out of n fields and thus has –classical– scaling

dimension �cl = n (2� ✏
2 ) in d = 6� ✏. Of course, one may construct operators in the same representation

by adding arbitrary powers of the singlet |~'|2, increasing arbitrarily its dimension.
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[n, 0, · · · , 0](n) = �I1 · · ·�In . (3.4.6)

Consider now the operator On = (�1)n. It has n indices and it has U(1) charge n.
Such operator can only be an entry of the [n, 0, · · · , 0](n) representation corresponding to
k = 0 in the sum in (3.4.4). Moreover, since this operator does not contain any power of
|~�|2 = ~' 2, it can only correspond to the i = 0 term in the sum in eq. (3.4.3), that is, to the
[n, 0, · · · , 0]DN representation of O(2N). Thus, the operator On can only be an entry of the
[n, 0, · · · , 0]DN representation of O(2N) with classical scaling dimension �cl = n (2� ✏

2
). In

particular, it follows that, by computing correlators of On, we determine the correlators of
the [n, 0, · · · , 0]DN representation of O(2N).

Thus, all in all, we will be interested on correlators of On, from which we will read-off the
correlators (and, in particular, the anomalous dimension) of the [n, 0, · · · , 0]DN in O(2N).
Let us stress that there is no other operator to which On can correspond to, other than the
[n, 0, · · · , 0]DN of O(2N), and thus, when computing correlators, there is no mixing to take
into account.

The correlators of interest can be computed by the path integral

hOn(x1)On(x2)i = Z�1

Z
D� e�Se↵ , (3.4.7)

with Z =
R
D� e�S and

Se↵ =

Z
ddx

✓
|@~�|2 + 1

2

�
@⌘
�2

+ g1 ⌘ |~�|2 +
g2
6
⌘3 � n log(�1) �(x� x1)� n log(�⇤

1
) �(x� x2)

◆
.

It is convenient to extract an overall factor of n and re-scale fields and couplings as

�I =
p
n�I , ⌘ =

p
n ⇢ g1 =

h1p
n
, g2 =

h2p
n
; (3.4.8)

so that, up to a constant

Se↵ = n

Z
ddx

✓
|@~�|2 + 1

2

�
@⇢
�2

+ h1 ⇢ |~�|2 +
h2

6
⇢3 � log(�1) �(x� x1)� log(�⇤

1
) �(x� x2)

◆
.

(3.4.9)
Since Se↵ is a function of (n, h1, h2), when inserted in (3.4.7), the correlator of interest
will be a function of these same variables, and hence must admit a double expansion in n,
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hi = gi
p
n (this is similar to the double expansion discussed in [147] for |�|4 theory). In

particular, the scaling dimension of the operator [n, 0, · · · , 0]DN must have the form

�[n, 0,··· , 0]DN
= n

X

k=0

n�k �k(h1, h2) . (3.4.10)

Note that, in (3.4.9), n plays the role of ~�1, and it is thus the loop counting parameter.
Written in this form, it is natural to consider the “classical limit"

n!1 , h1, 2 ⌘ fixed . (3.4.11)

In this limit, the saddle point approximation becomes exact, and, in particular, selects the
term k = 0 in (3.4.10). Let us stress that, even though this is formally a classical limit, what
plays the role of ~ is n�1. This “classical limit" still resums an infinite series of Feynman
diagrams in the conventional loop expansion (see Fig. 3.9).

The saddle-point equations are given by

@2�I = h1 ⇢�I , @2�⇤

I = h1 ⇢�
⇤

I , I = 2, · · · , N , (3.4.12)

@2�1 +
1

�⇤

1

�(x� x2) = h1 ⇢�1 , @2�⇤

1
+

1

�1

�(x� x1) = h1 ⇢�
⇤

1
, (3.4.13)

@2⇢ = h1 |~�|2 +
h2

2
⇢2 . (3.4.14)

In the saddle-point method, the correlator is then determined as usual by the evaluation of
the integrand of (3.4.7) on the solution to the saddle-point equations.

To further proceed, let us consider the regime where h1, h2 ⌧ 1, so that we can solve
(3.4.12), (3.4.13), (3.4.14) in perturbation theory. To begin with, note that �I = �⇤

I = 0 for
I 6= 1 is an exact solution. To order zero, (3.4.13), and (3.4.14) are solved by

�(0)

1
=

G(x� x2)p
G(x1 � x2)

, �(0)⇤

1
=

G(x� x1)p
G(x1 � x2)

, (3.4.15)

⇢(0) = 0 , (3.4.16)

where G(x� y) is the the Green’s function for the laplacian defined as
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@2G(x� y) = ��(x� y) . (3.4.17)

In the solution, we have set to one an arbitrary multiplicative constant in �(0)

1
, and the

inverse constant in �(0)⇤

1
, as they cancel out in the computation of the action.

To the next order, given that only �(0)

1
, �(0)⇤

1
are non-zero, (3.4.14) gives

@2⇢(1) � h2

2
⇢(1) 2 = h1

G(x� x1)G(x� x2)

G(x1 � x2)
. (3.4.18)

It obviously follows that ⇢(1) is of order h1 itself. Hence, the RHS of (3.4.13) will be of order
O(h2

1
), which in turn show that both �(1)

1
and �(1)⇤

1
will be of order O(h2

1
). Thus, to leading

order in h1,2, �(1)

1
= �(1)⇤

1
= 0, and we only need to solve (3.4.18). To that matter, let us

introduce ⇢(1) = h1 %. Then the equation becomes

@2%� h1 h2 %
2 =

G(x� x1)G(x� x2)

G(x1 � x2)
. (3.4.19)

In perturbation theory, we can approximate this equation by

@2% =
G(x� x1)G(x� x2)

G(x1 � x2)
. (3.4.20)

The solution to this equation is simply

% = � 1

G(x1 � x2)

Z
d6x3 G(x� x3)G(x3 � x1)G(x3 � x2) . (3.4.21)

Therefore, the solution in perturbation theory to order O(h2

i ) is

�1 =
G(x� x2)p
G(x1 � x2)

+O(h2

i ) , �⇤

1
=

G(x� x1)p
G(x1 � x2)

+O(h2

i ) , (3.4.22)

�I = �⇤

I = 0 , I = 2, · · · , N , (3.4.23)

⇢ = � h1

G(x1 � x2)

Z
d6x3 G(x� x3)G(x3 � x1)G(x3 � x2) +O(h2

i ) . (3.4.24)

In order to compute the correlator, it only remains to evaluate the action on the saddle
point solution. Let us write Se↵ = Sfree + Sint, with
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Sfree = n

Z
ddx

✓
|@~�|2 + 1
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�
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�2 � log(�1) �(x� x1)� log(�⇤

1
) �(x� x2)

◆
, (3.4.25)

and

Sint = n

Z
ddx

✓
h1 ⇢ |~�|2 +

h2

6
⇢3
◆
. (3.4.26)

Computing the free part, up to multiplicative constant, we find the expected factor e�Sfree =

G(x1 � x2)n ⇠ |x1 � x2|�2�cl . Therefore

hOn(x1)On(x2)i ⇠
e�Sint

|x1 � x2|2�cl
. (3.4.27)

It only remains to compute the interaction piece of the action evaluated on the saddle point
solution. We obtain

�Sint =
nh2

1

G(x1 � x2)2

Z
d6x

Z
d6y G(x�x1)G(x�x2)G(x�y)G(y�x1)G(y�x2) . (3.4.28)

Upon shifting x! �x+ x1 and y ! �y + x1, this becomes (z = x1 � x2)

�Sint =
nh2

1

G(z)2

Z
d6x

Z
d6y G(x)G(x� z)G(x� y)G(y)G(y � z) . (3.4.29)

Sint involves the integral I =
R
d6x

R
d6y G(x)G(x � z)G(x � y)G(y)G(y � z), which can

be written as

I =

Z
d6P

(2⇡)6
e�i P z Ĩ , Ĩ =

2Y

i=1

Z
d6pi
(2⇡)6

G̃(p1) G̃(p2) G̃(p1 � p2) G̃(p1 + P ) G̃(p2 + P ) .

(3.4.30)
where G̃(p) = 1/p2. Two-loop integrals of this form have been computed in [?]. In d = 6� ✏
dimensions one finds

Ĩ =
⇡6�✏

(2⇡)12
(P 2)1�✏


� 1

3 ✏2
� 3� �E

3 ✏
+ finite

�
. (3.4.31)

Fourier-transforming and using the explicit expression for the Green’s function (see appendix
A), we finally find
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I =
1

64 ⇡3
G2(z) log |z|2 . (3.4.32)

Thus

�Sint =
1

64 ⇡3
nh2

1
log |x1 � x2|2 . (3.4.33)

Using this result and the value of h1 at the fixed point coming from (3.4.2), (3.4.8), to leading
order in 1

N we find

�Sint =
3 ✏n2

N
log |x1 � x2|2 . (3.4.34)

Then (3.4.27) becomes

hOn(x1)On(x2)i ⇠
1

|x1 � x2|
2 (�cl+�[n, 0,··· , 0]DN

)
, (3.4.35)

where the anomalous dimension is given by

�[n, 0,··· , 0]DN
= �3 ✏n2

N
. (3.4.36)

It is important to stress that, even though this result is to first order in perturbation
theory at weak coupling in the hi and in the “classical limit" defined by the large n limit, it
resums an infinite series of Feynman diagrams in the usual perturbative expansion. To see
this, note that expanding e�Sint = 1� Sint + · · · , we have

hOn(x1)On(x2)i = G(x1 � x2)
n +G(x1 � x2)

n (�Sint) + · · · (3.4.37)

Using now the expression in (3.4.29) for the interaction and writing it in terms of the original
gi couplings, this is

hOn(x1)On(x2)i = G(x1 � x2)
n + (3.4.38)

2
n2

2
g2
1
G(x1 � x2)

n�2

Z
d6x

Z
d6y G(x� x1)G(x� x2)G(x� y)G(y � x1)G(y � x2) + · · · .

In the second line in (3.4.38) we recognize precisely the diagram on the right panel in Fig.
3.7.5

5The factor of 2 in (3.4.38) deserves some discussion. Strictly speaking, the free correlator is n!G(x1�x2)
n.

The NLO correction we are computing has an extra factor of 2 with respect to this n!, which is that in (3.4.38).
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...

...
...

Figure 3.7: Leading order diagrams for the hOn(x1)On(x2)i correlator. Solid lines stand for
� propagators while wavy lines stand for ⇢ propagators.

Note in particular that the overall n2 stands for the combinatorics: the ⇢ line connects
each pair of � lines, and there are n (n�1)

2
⇠ n2

2
such lines, so that the diagram on the right

panel in Fig. 3.7 is proportional to n2 g2
1
. Of course, at the same order in the gi’s there is the

diagram on the left panel in Fig. 3.7, which would be proportional to n g2
2
. In our large n

limit with fixed hi, the diagram on the left panel is suppressed and only the diagram on the
right panel contributes. Moreover, it is clear that the same logic goes through for the higher
order terms in (3.4.38): the large n limit with fixed hi limit will select the diagrams with
the highest power of n. At weak coupling in the hi’s these are the natural “multi-ladder"
generalization of the diagram on the right panel of figure 3.7 (see Fig. 3.9). These infinitely
many diagrams exponentiate and give the formula (3.4.35), with the anomalous dimension
given by (3.4.36). To be precise, in the leading correction in the second line of (3.4.38), all but
the two lines connected by ⇢ are spectators. Thus we can factor out the n free propagators,
so that, for all practical purposes, the relevant diagram is that of Fig. (3.8) –divided by
G(x1� x2)2 to factor out the overall free correlator. Then, one can easily recognize that this
is precisely �Sint (c.f. (3.4.29)). It is thus this subdiagram what exponentiates in the large
n, small hi regime.

0 z

x

y

Figure 3.8: The subdiagram contributing to �Sint.

See appendix (5.E.2) for further discussion.
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Exact resummation in the large n limit with couplings decreasing as 1/n

It is possible to consider an alternative scaling where the leading order in the perturbation
series in the hi’s couplings becomes exact. The correlation function (3.4.7) can be computed
again by the saddle-point method, where we define rescaled fields as ~' = g

1
2
1
~�. At the same

time we define the couplings

�1 = g1n , �2 = g2n . (3.4.39)

We now take the large n limit, this time with �1, �2 fixed. In this limit, the saddle-point
equations become

@2'I = 0 , @2'⇤

I = 0 , I = 2, · · · , N , (3.4.40)

@2'1 +
�1
'⇤

1

�(x� x2) = 0 , @2'⇤

1
+
�1
'1

�(x� x1) = 0 , (3.4.41)

@2⌘ = |~'|2 . (3.4.42)

These equations reproduce the ones obtained for the leading order in the perturbation series
in section 2.1, which, with the current scaling, become exact. This is the precise analog
of the limit considered in [4, 5], with the difference that now there is an additional field ⌘,
which mediates the interaction. The saddle-point calculation in the double-scaling limit gives
rise to the exponentiation of the second Feynman diagram of Fig. 3.7. The exponentiation
corresponds to the full resummation of the Feynman diagrams of Fig. 3.9, which are the only
surviving Feynman diagrams in this limit, all other diagrams being suppressed by powers
of 1/n. In the case of [4, 5], the relevant Feynman diagram corresponds to collapsing the ⌘
propagator to a point, i.e. setting x = y in Fig. 3.8 (this gives rise to the “Kermit the frog"

...

...
+

...

...
+

...

...
+ · · ·

Figure 3.9: Resummation of the surviving Feynman diagrams in the large n limit with fixed
�1, �2.
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diagram of [4, 5]).
In terms of the perturbation series in the h1, h2 couplings, organized as in section 2.1,

this limit can be understood as follows. Recall that, on general grounds, the dimension of the
operator is given by (3.4.10), where the �k’s are given by a perturbative series in h1, h2. At
leading order in the 1/n expansion, we can keep the �0 term alone. �0 admits a perturbation
series expansion in the h1, h2’s, which is schematically of the form (we collectively denote
by h both h1, 2)

�[n, 0,··· , 0]DN
= n�(0)

0
+�(2)

0
nh2 +�(4)

0
nh4 + · · ·

= n�(0)

0
+�(2)

0
(
p
nh)2 +

1

n
�(4)

0
(
p
nh)4 + · · · . (3.4.43)

Here �(0)

0
is the classical dimension of a scalar in d = 6� ✏ dimensions, that is, �(0)

0
= 2� ✏

2
.

In the limit where hi
p
n = �i is kept fixed, all but the leading correction are suppressed.

Making use of the previous results, we obtain

�[n, 0,··· , 0]DN
= 2n� ✏n

2
+�(2)

0
(
p
nh)2 = 2n� �2

1

64 ⇡3
+O(n�1) . (3.4.44)

where we have used that ✏ ⇠ n�2 on the fixed point at fixed �1,2. Thus, the fixed �1, �2

limit reproduces the leading term of the perturbation series in h1, h2, where now hi ⇠ n�
1
2 ,

giving gi ⇠ 1

n in terms of the original couplings.

On (the absence of) instanton contributions

Instanton contributions are typically of order exp[�const./g2
1,2] and are therefore exponen-

tially suppressed at weak couplings. As the large n, double-scaling limit (3.4.8) requires
g2
1,2 ⇠ 1/n, instanton contributions will vanish exponentially as exp[�const. n]. It is instruc-

tive to explicitly derive this result for the present model.
Let us first consider the equation (3.4.14) for ⇢. Below we will show that the term h1|~�|2

on the RHS can be neglected in a self-consistent approximation at weak coupling, as it carries
higher powers of the couplings. Ignoring this term, the equation becomes

@2⇢ =
h2

2
⇢ . (3.4.45)

It is well-known from long ago [210–212] –and recently described in this context in [206]–
that this equation admits instanton solutions ⇢inst destabilizing the theory (and giving, in
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particular, imaginary parts to scaling dimensions). The solution is given

⇢inst = �
12

h2

4�2

(1 + �2 (~x� ~a)2)2 . (3.4.46)

Here ~a has the interpretation as the position of the instanton, while � corresponds to its
(inverse) size, both being moduli. Since the instanton solution is of order h�1

2
, this would

justify neglecting the |~�|2 term in the (3.4.14) equation provided � is at most of order h0

i .
To check this, let us now turn to the �-equations. Of course, �I = �⇤

I = 0 for I > 1. The
remaining equations are

@2�1 +
1

�⇤

1

�(x� x2) = �
h1

h2

48�2

(1 + �2 (~x� ~a)2)2 �1 , (3.4.47)

@2�⇤

1
+

1

�1

�(x� x1) = �
h1

h2

48�2

(1 + �2 (~x� ~a)2)2 �
⇤

1
. (3.4.48)

Since h1
h2
⇠ O(h0

i ), the solution to these equations is of order O(h0

i ), consistently with the
assumption for the instanton solution to (3.4.14).

Evaluating the action on the solution, one obtains the instanton action given by

Sinst ⇠ n
768 ⇡3

5h2

2

+O(h0

i ) . (3.4.49)

Thus, in the large n limit (and actually for any value of hi), the instanton action goes to 1,
and hence the instanton contribution is exponentially suppressed. The absence of instanton
contributions in the large n, double scaling limit was first noticed in the supersymmetric
context in [165]. Thus we conclude that, in the sector of large charge operators, instantons
are completely suppressed even at finite N . This shows that large charge operators are free
of instanton instabilities and therefore represent a stable sector with real scaling dimensions.

The quartic theory avatar

Let us consider the quartic O(2N) theory with lagrangian

S =

Z
ddx

✓
1

2

��@~'
��2 + g

4
(~'2)2

◆
. (3.4.50)

This theory has a UV fixed point at negative g in 4 < d < 6 dimensions. It has been
conjectured in [189] that the cubic theory (3.4.1) is a UV completion of this theory. Just as
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in the cubic theory, we will introduce the suitable complex combinations of fields to make
explicit a U(N) subgroup of the full O(2N). The standard treatment [?, 187] that generates
the 1/N expansion is by considering a Hubbard-Stratonovich transformation, which leads to
the action

S =

Z
ddx

✓
|@~�|2 + �|~�|2 � 1

4 g
�2

◆
. (3.4.51)

The original theory is recovered upon integrating out �. At the (now UV) fixed point the
last term can be dropped, and the dynamic is just described by the action

S =

Z
ddx

⇣
|@~�|2 + �|~�|2

⌘
. (3.4.52)

It is convenient to re-scale � as in [189] so that the action becomes6

S =

Z
ddx

✓
|@~�|2 + 1p

N
�|~�|2

◆
. (3.4.53)

A 2-point function for � is induced at one-loop [187]. In position space, it reads (see appendix
(5.E.2), which includes a discussion of some relevant factors; see also [189])

h�(x) �(0)i = Cd

2 (x2)2
Cd =

22+d �(d�1

2
) sin(⇡ d

2
)

⇡
3
2 �(d

2
� 2)

. (3.4.54)

Note that, if one substitutes d = 6� ✏, one finds

h�(x) �(0)i = 1

2
C̃6 G(x) ; (3.4.55)

where G(x) is the 6d (scalar) propagator, and

C̃6 = (2N) g⇤
1

2 , (3.4.56)

being g⇤
1

the value of g1 at the fixed point given by (3.4.2). Note that g⇤
1

2 ⇠ ✏. Thus, to
leading order in ✏, G(x) in (3.4.55) is just the 6d propagator.

The quartic theory (3.4.50) exhibits the same SU(N) global symmetry as the cubic
theory (3.4.5). Thus, we can consider the same On = (�1)n operator which, by the same
arguments as above, can only belong to the dimension �cl operator in the [n, 0 · · · 0]DN

representation of the original O(2N). Thus, the correlator hOn(x1)On(x2)i determines its
6Recall that we are considering the O(2N) model. Yet, as � is complex, in the one-loop contribution to

the � propagator N �’s are running.
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anomalous dimension. Since the � propagator is itself induced at one-loop, in the present
formulation we do not have an easy path integral representation for the correlator. Yet, we
can compute it directly in perturbation theory. The leading correction to the free theory is
given by the diagrams in Fig. 3.10.

...

...
...

Figure 3.10: Diagrams contributing to the hOn(x1)O(x2)i correlator in the quartic theory
to the leading-non-trivial order. Solid lines correspond to � fields, while dashed lines are �
fields.

Just as for the cubic theory, the diagram on the left panel is suppressed with respect to
the diagram on the right panel of Fig. 3.10 in the large n limit by a factor 1/n. Hence, we
only need to evaluate the diagram on the right. Moreover, the combinatorics of the diagram
on the right panel of Fig. 3.10 are just as in the cubic case and thus, at large n, the diagram
comes multiplied by n2

2
, giving (we include the aforementioned factor of 2 which cancels the

1

2
in the � propagator)

D =
n2

2

C̃6

N
G(x1 � x2)

n�2

Z
d6x

Z
d6y G(x� x1)G(x� x2)G(x� y)G(y � x1)G(y � x2) .

(3.4.57)
Using the explicit value of C̃6 in (3.4.56), we find

D = n2 g⇤
1

2 G(x1 � x2)
n�2

Z
d6x

Z
d6y G(x� x1)G(x� x2)G(x� y)G(y � x1)G(y � x2) .

(3.4.58)
This precisely recovers the second line in (3.4.38) (evaluated at the fixed point), implying a
striking match with the anomalous dimension computed from the cubic theory.
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3.4.2 Extremal higher-point functions

The cubic theory

Let us now consider the correlation function of an arbitrary number of operators in represen-
tations [ni, 0, · · · , 0]DN , with i = 1, · · · , k, and one operator in the conjugate representation
[
Pk

i=1
ni, 0, · · · , 0]DN , with all ni of order n � 1. Correlation functions of this form were

dubbed extremal in [5]. The name is taken from superconformal field theories, where correla-
tion functions of k chiral primary operators and one antichiral primary operator turn out to
have a simpler structure because of supersymmetry. While here there is no supersymmetry,
the extremal correlators are nevertheless far more simple than non-extremal correlators [5].

We shall now compute the correlation function

h�1(x1)
n1 · · · �1(xk)

nk �1(y)
P

i nii . (3.4.59)

The path integral representation of this correlator is given in terms of the action

Se↵ = n

Z
ddx

✓
|@~�|2 + 1

2
@⇢2 + h1 ⇢ |~�|2 +

h2

6
⇢3

�
kX

i=1

ai log(�1) �(x� xi)�
kX

i=1

ai log(�
⇤

1
) �(x� y)

◆
, (3.4.60)

where we have already extracted an overall factor of n and re-scaled fields and couplings just
as in section 3.4.1. Moreover, we have written ni = ai n and we shall consider the large n

limit with all ai fixed.
In the large n limit with fixed h1,2 and ai, the saddle point-approximation becomes exact.

The corresponding saddle-point equations are

@2�I = h1 ⇢�I , @2�⇤

I = h1 ⇢�
⇤

I , I = 2, · · · , N , (3.4.61)

@2�1 +

Pk
i=1

ai
�⇤

1

�(x� y) = h1 ⇢�1 , @2�⇤

1
+

kX

i=1

ai
�1

�(x� xi) = h1 ⇢�
⇤

1
, (3.4.62)

@2⇢ = h1 |~�|2 +
h2

2
⇢2 . (3.4.63)

157



We follow the same procedure as in section 2.1, by solving these equations in the weak h1,2

regime. For I > 1, one immediately has �I = �⇤

I = 0. In turn, for �1, �⇤

1
and ⇢ one has

(again we choose some constants judiciously)

�1 = G(x� y) +O(h2

i ) , �⇤

1
=

kX

i=1

ai
G(x� xi)

G(xi � y)
+O(h2

i ) ; (3.4.64)

⇢ = �h1

kX

i=1

ai
G(xi � y)

Z
d6z G(z � y)G(z � xi)G(x� z) +O(h2

i ) . (3.4.65)

In order to compute the correlation function of interest we need to evaluate the action on
this solution. Splitting Se↵ in free and interaction pieces, with

Sfree = n

Z
ddx

 
|@~�|2 + 1

2
@⇢2 �

kX

i=1

ai log(�1) �(x� xi)�
kX

i=1

ai log(�
⇤

1
) �(x� y)

!
,

(3.4.66)
and

Sint = n

Z
h1 ⇢ |~�|2 +

h2

6
⇢3 , (3.4.67)

up to a constant, one easily gets

e�Sfree =
kY

i=1

G(xi � y)ni . (3.4.68)

On the other hand, one obtains the expression

�Sint = nh2

1

kX

i=1

kX

j=1

ai aj
G(xi � y)G(xj � y)

Z
d6x

Z
d6z G(x�y)G(x�xi)G(z�y)G(z�xj)G(x�z) .

(3.4.69)
For xi = xj, the integral is the same as the integral in (3.4.29), which leads to the result
(3.4.32). More generally, we find
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Z
d6x

Z
d6z G(x�y)G(x�xi)G(z�y)G(z�xj)G(x�z) =

8
>>><

>>>:

G(xi�y)2

32⇡3 log |xi � y| , i = j ;

G(xi�y)G(xj�y)
64⇡3 log |xi�y| |xj�y|

|xi�xj |
, i 6= j .

(3.4.70)
Thus, at the fixed point, we have

�Sint =
kX

i=1

6 ✏n2

i

N
log |xi � y|+

kX

i<j

6 ✏ni nj

N
log

|xi � y| |xj � y|
|xi � xj|

. (3.4.71)

Therefore, we finally find

h�1(x1)
n1 · · · �1(xk)

nk �1(y)
P

i nii = N
Qk

i=1
|xi � y|4ni�

6 ✏ni (
P

nj)

N
Q

i<j |xi � xj|
6 ✏ni nj

N

.

(3.4.72)
For k = 1 this recovers the two-point correlation functions discussed above. For k = 2, the
formula (3.4.72) can be neatly encoded as

h�1(x1)
n1 �1(x2)

n2 �1(0)
n1+n2i = N

|x1|�1+�̄��2 |x2|�2+�̄��1 |x1 � x2|�1+�2��̄
, (3.4.73)

which is the expected form for the three-point function in a CFT as dictated by conformal
symmetry, with the precise expected dimensions for the operators

�i = 2ni �
3 ✏n2

i

N
, �̄ = 2 (n1 + n2)�

3 ✏ (n1 + n2)2

N
. (3.4.74)

The quartic theory

In order to compute extremal correlators in these theories, we proceed as in section 3.4.1 by
applying the saddle-point method. By expanding the interaction factor e�Sint in powers of
Sint, one can check that the diagrams contributing to the extremal correlators in the large n

limit are those in figure 3.11. Just as in the 2-point case, one can easily show that these are
indeed the Feynman diagrams that carry the highest power of n and are thus selected in our
limit.

Just as for the 2-point functions, we can compute the relevant correlation function order
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xi

xj

y
...

xi

xj

y
...

Figure 3.11: Types of diagrams that contribute to the extremal correlators in the cubic
theory. These coincide with the relevant diagrams in the quartic theory upon replacing the
⇢ propagators by � propagators.

by order in perturbation theory. In the end, since the combinatorics is just the same as
in the cubic model, the relevant diagrams are formally identical. Thus, to check agreement
of the two theories it is sufficient to check the first order. The corresponding diagrams are
identical to the diagrams shown in figure 3.11, upon replacing the propagator lines of the
elementary field ⇢ of the cubic model by the induced propagator of the HS field � (denoted
by a dashed line). However, (3.4.55), (3.4.56) show that, just as for the 2-point function,
on the fixed point the diagrams with the exchanged scalar being � will be identical to the
diagrams in the cubic theory with the exchanged scalar ⇢, thus ensuring the agreement of
the two computations.

3.4.3 Correlation functions for meson operators

The branching of the [n, 0, · · · , 0]DN of O(2N) into U(1)⇥SU(N) in (3.4.4) has an interesting
particularity for even n. For [2n, 0, · · · , 0]DN , the RHS of (3.4.4) contains, for k = n, the
representation [n, 0, · · · , 0, n]0 of U(1) ⇥ SU(N). For n = 1, from the point of view of
the theory written as in (3.4.5), such operator corresponds to a “meson" operator Mi

j =

�̄j �i in the adjoint of SU(N), which is neutral under U(1). Then, higher n corresponds to
symmetrized n-fold products of this meson operator. In particular, it follows that correlators
of the [2n, 0, · · · , 0]DN can also be computed through correlators of n-fold symmetrized
powers of meson operators.7

Consider now Mn = (�1 �̄2)n = (�1 (�2)⇤)n. This operator clearly belongs to Symn([1, 0 · · · 0, 0]⌦
[0, 0 · · · 0, 1]). Moreover, since that this operator does not contain any trace, it can only be
an element of the [n, 0 · · · 0, n] SU(N) representation. Thus, we may compute correlators of

7Anomalous dimensions for similar meson operators in the quartic O(N) model in 4� ✏ dimensions were
recently computed in [?].
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the [n, 0 · · · 0, n] representation by means of the correlator hMn(x1)M
n
(x2)i. Once again,

Mn can only sit in the [n, 0 · · · 0, n] representation and thus there is no allowed mixing.
While we could read-off the correlators and dimensions for the [2n, 0, · · · , 0]DN operators
from the previous computation by simply replacing n by 2n, in the following we will explic-
itly compute the correlators of Mn, both as a consistency check of the previous results and
also for a further application that will be discussed in section (3.4.3).

Anomalous dimensions for mesons

We can give a path integral representation for the two-point correlation function:

Z�1

Z
D� Mn(x1)M

n
(x2) e

�S = Z�1

Z
D� e�Se↵ , (3.4.75)

where now
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◆
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(3.4.76)
Upon performing the same re-scaling as in section 2.1, we find
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Z
ddx
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(3.4.77)
In the double-scaling limit n ! 1 with fixed hi, the saddle-point approximation becomes
exact. The saddle-point equations are now given by

@2�I = h1 ⇢�I , @2�⇤

I = h1 ⇢�
⇤

I , I = 3, · · · , N , (3.4.78)

@2�1 +
1

�⇤

1

�(x� x2) = h1 ⇢�1 , @2�⇤

1
+

1

�1

�(x� x1) = h1 ⇢�
⇤

1
, (3.4.79)

@2�2 +
1

�⇤

2

�(x� x1) = h1 ⇢�2 , @2�⇤

2
+

1

�2

�(x� x2) = h1 ⇢�
⇤

2
, (3.4.80)

@2⇢ = h1 |~�|2 +
h2

2
⇢2 . (3.4.81)
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Just as in section 3.4.1, we may solve these equations in perturbation theory. To order O(h2

i ),
we find

�1 =
G(x� x2)p
G(x1 � x2)

+O(h2

i ) , �⇤

1
=

G(x� x1)p
G(x1 � x2)

+O(h2

i ) , (3.4.82)

�2 =
G(x� x1)p
G(x1 � x2)

+O(h2

i ) , �⇤

2
=

G(x� x2)p
G(x1 � x2)

+O(h2

i ) , (3.4.83)

�I = �⇤

I = 0 , I = 3, · · · , N , (3.4.84)

⇢ = � 2h1

G(x1 � x2)

Z
d6x3 G(x� x3)G(x3 � x1)G(x3 � x2) +O(h2

i ) . (3.4.85)

The non-trivial part of the correlator is given by the interaction term of the action, which
reads

�Sint =
4nh2

1

G(x1 � x2)2

Z
d6x

Z
d6y G(x�x1)G(x�x2)G(x�y)G(y�x1)G(y�x2) . (3.4.86)

This involves the same integral computed before in (3.4.29). We thus obtain

�Sint =
1

16 ⇡3
nh2

1
log |x1 � x2|2 . (3.4.87)

Substituting the values of the couplings at the fixed point (3.4.2), we find that the anomalous
dimension of the operator is

�[n, 0···0, n] = �
12 ✏n2

N
. (3.4.88)

As anticipated, this is precisely the result in (3.4.36) upon replacing n by 2n. Moreover, just
as in section 2, in the large n limit with fixed hi instantons are exponentially suppressed.
Thus, in the n ! 1 limit these operators do not have imaginary parts in their scaling
dimensions.

The quartic theory

Let us now study the correlation functions of the same U(1)-invariant operators Mn, Mn

in the quartic model (3.4.53). The computation of the two-point correlation function turns
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out to be essentially identical to that of the On, On operators, with the only difference that
the combinatorial factor C of the diagram is now slightly different. Note that our correlator
is a two-point function for the meson �n

1
(�⇤

2
)n. Therefore, the tree level diagram contains

2n lines: n of �1 and n of �⇤

2
. In this case, the diagram on the right panel of Fig. 3.10 now

consists on a � joining any pair of such lines. There are 2n (2n�1)

2
⇠ 2n2 such diagrams, so

that C = 2n2. Thus, borrowing the computation from section 2, the final result is

�[n, 0···0, n] = �
12✏n2

N
, (3.4.89)

which precisely agrees with (3.4.88). Note that, once again, we have only computed the first
correction to the anomalous dimension for large n operators. However, using the scaling of
section 3.4.1, one can prove that the combinatorics is such that higher order corrections
exactly exponentiate [4] with the same anomalous dimension as in (3.4.88).

Projection to the U(1)-invariant sector through gauging

Theories with matter in vector representations of a group G play a relevant role in the
AdS/CFT correspondence upon projection to the singlet sector –i.e. thinking of G as a
color group. In particular, according to [178], in d = 5 the O(N) model should have an AdS6

gravity dual description in terms of the higher spin theories. One may imagine generalizations
of this setup where one considers the color group to be the unitary group, and/or one adds
more species of fields in vector representations. In this spirit, since O(2N) � U(1)⇥SU(N),
and given that our operators are neutral under the U(1), we may regard SU(N) as a global
symmetry with the U(1) factor as the color group, and project to the singlet sector by
gauging it.8 To that matter, we start with the action (3.4.5) and gauge the U(1) in U(1)⇥
SU(N) ⇢ O(2N). Besides trading derivatives by gauge-covariant derivatives, one should add
all marginal terms to the lagrangian. This gives rise to a higher-derivative theory, which was
recently studied in [213]. Such higher-derivative theory was shown to admit three IR fixed
points: in two of the fixed points the g1, 2 couplings attain the same value (3.4.2) as in [189]
(they differ in the values of other couplings which, as it will be clear below, are not important
for our purposes). The third fixed point, dubbed FP2 in [213], corresponds to critical scalar
QED and it will not be interesting for our purposes.9

Let us consider the computation of two-point correlation functions of the meson opera-
8It is not difficult to generalize our set-up to U(M)⇥SU(N). Yet we will stick to the abelian case, which

can be nicely embedded in the U(1) gauge theories discussed in [213].
9The one-loop � function for general six-dimensional renormalizable models containing the Yang-Mills

part was computed in [214] for a general gauge group.
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tors in the higher-derivative gauge theory. Including the operator insertions to compute the
correlators of interest and dropping the gauge-fixing term, we need to consider10

Se↵ =

Z
ddx
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Upon performing the change of variables in (3.4.8) and defining
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n
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, (3.4.91)

one gets
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where f = da and the covariant derivative is now Dµ = @µ � i q aµ.
We can now take the corresponding double-scaling limit where n!1 while {q, hi} are

held fixed. Then, the computation of the correlators once again boils down to the evaluation of
(3.4.92) on the solution to the saddle point equations. These equations are now, a priori, more
complicated due to the presence of the gauge field. However, evaluating the gauge current
jµ ⇠ i (~�† @µ~� � h.c.) on the leading perturbative solution above, it is straightforward to
see that it exactly vanishes. Therefore the configuration does not source the gauge field and
thus the computation becomes identical to the computation of section 2. This result could
have been anticipated, since the operator insertions sourcing the saddle point equations
carry no electric charge (they are gauge-invariant operators), so that, at the “classical level"
(recall that the large n limit is a classical limit) the gauge field is not excited. In summary,
the projection to the U(1)-invariant sector through gauging does not change the two-point
correlation function of mesons.

10The notation is slightly changed with respect to [213]. We also tune all mass parameters to zero. These
include, in particular, the standard kinetic term for the gauge field. As these parameters have a large classical
� function, in searching for an IR fixed point, one is forced to set them to zero.
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3.4.4 Conclusions

The O(N) model with the familiar quartic potential in 4 < d < 6 possesses a UV fixed
point in perturbation theory. The proposed UV completion in terms of a cubic model [189]
leads to a perturbative IR fixed point, although it faces the expected problems of non-
perturbative instabilities due to the fact that the potential is not bounded from below. In
this section we have investigated sectors of large charge operators where these instabilities are
exponentially suppressed at finite N . In addition, this sector enjoys special simplifications. To
begin with, these operators do not mix with other operators. Hence, their scaling dimension
can be directly read off from their 2-point functions. Moreover, correlation functions can be
computed by the saddle-point method, using the same techniques as in [4, 5]. In the large
n limit the saddle point approximation becomes exact and it resums an infinite series of
Feynman diagrams.

The large n limit selects the diagrams with the largest combinatorial factor. This is
analogous to the Kermit-the-frog diagrams dominating the analogous limit in d = 4 � ✏

dimensions as described in [4]. The main difference with respect to the quartic O(2) theory
discussed in [4] is that, in the present cubic model, the dominant Feynman diagrams contain
an additional ⇢ propagator. However, in the relevant integration region – which determines
the logarithmic behavior as x1 ! x2 – the ⇢ propagator is constant, so the result of integration
is essentially the same. On the other hand, one can also understand the matching with
the UV fixed point of the quartic O(2N) theory: in the latter, and upon performing a
convenient Hubbard-Stratonovich transformation, the combinatorial factor shows that the
same Feynman diagrams are the dominant ones in the double-scaling limit. Furthermore,
(3.4.55) together with (3.4.56) ensure that the contribution of each diagram in the quartic
theory is the same as in the cubic theory, hence explaining the agreement between the two
calculations.

The fixed point in d > 4 (IR for the cubic theory, UV for the quartic theory) occurs only
in perturbation theory. This can be seen by means of the exact renormalization group, where
no such extremum of the effective potential exists. The instability manifests itself through
instanton corrections which give small imaginary parts to scaling dimensions. However, as
we have argued, in the large charge sector instanton instabilities are washed out: in the
double scaling limit, the scaling dimensions of large charge operators become real, as the
imaginary part goes exponentially to zero. We have also discussed a double scaling limit
with couplings scaling as 1/n –the fixed � limit – where our result using perturbation theory
in hi becomes exact. In terms of the standard expansion in Feynman diagrams, the fixed
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� limit selects an infinite series of diagrams which can be summed with infinite radius of
convergence (in the end, it recovers the exponential of the classical action). The infinite
radius of convergence is consistent with the absence of instantons in the strict n ! 1
limit. As far as the 1/n expansion is concerned, the existence of instanton contributions
of order exp(�const. n) indicates that the series is asymptotic. Since instantons provide an
imaginary part, we expect that the Borel transform has poles on the real axes, which occurs
when the asymptotic series is not of alternate type. It would also be interesting to study the
convergence properties of the perturbative expansion in hi of large charge correlators and its
implications/relations with instanton instabilities.

In this work we have studied the large n limit to first order in perturbation theory in the
hi’s. There are a number of motivations to study anomalous dimensions beyond this regime.
To begin with, it would be important to test the agreement between the quartic and the
cubic theory to higher orders, where the cubic interaction in the singlet scalar field may give
rise to new diagrams contributing to the anomalous dimensions. To leading order in 1/N , the
cubic interaction has no counterpart in the quartic model, but we expect that the effect will
be compensated by higher order corrections received by the HS propagator of the �-field.
Moreover, the strong hi regime should be able to probe the ✏ ! 1 region just as in the
d = 4� ✏ case discussed in [147,173]. In this manner one may explore the large charge sector
of a d = 5 “CFT". Such CFT is expected [178] to have an AdS6 gravity dual description
through the higher spin theories of [179–184]. In this context, the model projected to the U(1)

singlet is of special relevance [178]. This projection can be implemented through the gauging
of the U(1) symmetry, as done in section 4.2. This connects to the higher-derivative theory
investigated in [213] (see also [215]). A straightforward yet very interesting extension is to
consider a U(M) model projected to the singlet sector with SU(N) global symmetry (a model
in the class of [216]). The U(M) would play the role of the O(N)/U(N) symmetry in [178],
of which the singlet sector is kept, and the SU(N) global symmetry would provide a global
symmetry whose large charge sector, potentially free of instabilities, may be investigated.

Methods based on large charge expansions, as the one discussed in this work and in
[4, 147, 173], or based on the effective action (see e.g. [156]), may be useful for a number of
applications. An interesting one is to explore non-gaussianity effects in cosmological scenarios
[217]. Another potential application is the study of non-conformal theories at large density
(see [218, 219] for related investigations), in particular scalar QCD or brane constructions
such as [220]. Lastly, the method used in this thesis for computing correlation functions of
large charge operators should also be applicable to other higher-dimensional theories (see
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e.g. [221, 222] for an overview). It would be very interesting to see if a double scaling limit
exists in these cases and what Feynman diagrams are resummed.

3.5 Concluding remarks

In this chapter, we have investigated a number of features of the large charge expansion of
Quantum Field Theories, directly in terms of the microscopic fields in the UV lagrangian.
The main takeaway is that there seem to be many situations where a double scaling limit
exists that greatly simplifies the computation of observables in scalar theories.

Let us make a quick recap. In section 3.2 we explored the existence of a double scaling
limit in the O(2) model, whereby we take the coupling to be very small and focus on operators
of very large charge. In this limit, we saw that there is one family of Feynman diagrams that
dominates the two point functions –the so called Kermit the Frog diagrams–, and moreover
all orders in perturbation theory in the coupling can be easily resumed into an exponential.
We also provided an alternative derivation of this double scaling limit from the path integral
point of view. In these terms, it becomes clear how the inverse of the charge plays the same
role as ~ in standard perturbation theory and the resumed Feynman diagrams conspire to
give precisely the contribution from the saddle around this new classical limit.

This double scaling limit is not exclusive to the O(2) model. It also exists in other scalar
theories and dimensions other than 4. The most obvious application is that one can use it
to compute critical exponents such as the anomalous dimension of operators in the large
charge sector. This is a result of the computation of the two point function, but we also
saw in section 3.3 that higher-point correlation functions can be computed in the double
scaling limit. A curious point in this analysis is that it seems that the computation of so
called extremal correlators is significantly easier than the non-extremal ones, a fact reminis-
cent of the situation for supersymmetric theories, even though a priori the reasons for this
simplification have nothing in common.

A different application that we found for our double scaling limit concerns the extension
of the epsilon expansion towards dimensions higher than 4, in section 3.4. Here, the Wilson-
Fisher fixed point is unstable rather than stable, and a natural question to ask is whether
or not it admits a UV completion where it can be regarded as an IR fixed point of a new
theory. This question is slippery per se, because the negative coupling in the cuartic theory
at the fixed point, as well as the cubic potential of the putative completion, mean that the
theories have instabilities. The first simplification is that we can look to the large charge
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sector of the theory, and here the instabilities are suppressed. Moreover, several observables
can be easily computed in the double scaling limit, and we find that they agree between the
two different models, which provides evidence that they are indeed different descriptions for
the same fixed point.

The large charge expansion of Quantum Field Theories is a vast topic, and there are
many directions for further progress. Among them, a particularly interesting one would be
to find a similar double scaling limit to the one discussed here but in gauge theories, such
that the coupling at play is the gauge coupling. This would greatly expand the landscape of
theories where one can make use of the large charge expansion in the double scaling limit,
possibly including models of direct relevance for the description of Nature. Another reason
to hope that such limit might exist is that in the supersymmetric case, precisely this limit,
involving as a global symmetry the R-symmetry, does exist.

Another exciting avenue is to continue exploring the applications of the large charge
expansion to the behaviour of fixed points of different theories and their relation. For example,
one could explore the phenomenon of bifurcations in RG flows, i.e. when two fixed points
collide as we change the parameters of the theory. This can be seen to give rise to phase
transitions, and moreover one can also determine the type of phase transition from the
mathematical properties of the bifurcation.

Before concluding, let us make a final comment. In the introduction to Chapter 2, we
discussed how supersymmetry can be invoked as a simplifying assumption in order to further
our understanding of QFT. In this chapter, we studied the large charge limit of scalar non-
supersymmetric theories. The remarkable thing is that the exploration of such limit in the
first place was directly inspired by the investigation of the large R-charge limit of N = 2

gauge theories mentioned above. Therefore, this work also serves as a nice example to bring
home the fact that indeed one can learn interesting features of Quantum Field Theories
without supersymmetry by studying their supersymmetric cousins.
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Chapter 4

Conclusions and outlook

In this thesis, we pursued two avenues to study the behaviour of Quantum Field Theories
beyond the classical perturbative regime. These two parts are fairly distinct: in the first
one we considered essentially a new family of QFTs whose gauge group has non-trivial
topology, and studied mostly their basic kinematical aspects; on the other hand, in the
second part we focused on very simple theories where we were able to find a limit that
allowed the computation of various observables. Each of these parts has their own set of
remaining puzzles, which we have briefly discussed in sections 2.5 and 3.5 respectively. Here
we will attempt to speculate on possible ways to relate the two approaches and where these
considerations might lead to.

Quite possibly the most salient one has to do with the recent developments on generalised
global symmetries in higher dimensions, of which the theories with disconnected gauge groups
are examples. While in that particular context the non-invertible symmetry was a 1-form
symmetry, there are many other cases where one can have a non-invertible 0-form symmetry,
under which the charged objects are local operators. A natural question to ask is then how do
the non-invertible 0-form symmetries act on the Hilbert space. A systematic understanding
of this point doesn’t exist yet, but it appears to be the case that in most examples, the
construction of the non-invertible symmetry relies on a related invertible transformation
which fails to be a symmetry (for example, due to anomalies) but that can be cured in a way
that induces the non-invertibility. In these cases, typically there is a sector of the Hilbert
space where the action of the categorical symmetry is the same as the naive invertible
transformation, while on the rest of it it maps the state to zero. If this is true in general,
then much in the same way that one restricts to a sector of fixed charge (under an ordinary
0-form global symmetry) in the Hilbert space, and write down a large charge EFT for it; it
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should be possible to focus on the sector where a non-invertible symmetry acts in the naive
way, and then look at subsectors with fixed charge, and try to proceed in an analogous way.
This would in principle allow to essentially extend results from the large charge expansion
to operators that are not charged under a naive 0-form global symmetry.

Another interesting possibility would be to use generalized symmetries to study relation
between different fixed points in order to establish various dualities. Related to this, it would
be desirable to understand if and how they get mapped between different sides of established
dualities. More generically, an important question is what is the fate of these topological oper-
ators along the RG flow; and whether phenomena known to exist with invertible symmetries,
such as enhancements etc. also occur.

Conclusiones y direcciones futuras

En esta tesis, hemos perseguido dos avenidas para estudiar el comportamiento de Teorías
Cuánticas de Campos más allá del régimen perturbativo clásico. Estas dos partes están
sensiblemente diferenciadas: en la primera consideramos lo que esencialmente es una nueva
familia de TCCs cuyo grupo gauge tiene topología no trivial, y estudiamos sus aspectos
cinemáticos más básicos; por otro lado, en la segunda parte nos centramos en teorías muy
simples en las que hemos sido capaces de encontrar un límite que permite el cálculo de ciertos
observables. Cada una de estas partes tiene su propio conjunto de preguntas pendientes, que
ya hemos discutido brevemente en las secciones 2.5 y 3.5 respectivamente. Aquí trataremos
de especular sobre posibles formas de relacionar estas dos aproximaciones y a dónde estas
consideraciones nos podrían llevar.

Quizás lo más relevante tenga que ver con los recientes desarrollos en simetrías globales
generalizadas en dimensiones superiores, de las cuales las teorías con grupos de gauge dis-
conexos son ejemplos. Mientras en ese contexto particular la simetría no invertible era una
simetría de 1-forma, hay muchos otros casos donde uno puede encontrar una simetría de
0-forma no invertible, bajo la cual los objetos cargados son operadores locales. Entonces,
una pregunta natural es cómo actúan dichas simetrías de 0-forma no invertibles en el espa-
cio de Hilbert. Aún no existe una comprensión sistemática de este punto, pero parece que
en la mayoría de los ejemplos, la construcción de la simetría no invertible depende de una
transformación invertible relacionada que no llega a ser una simetría (por ejemplo, debido a
anomalías) pero que puede ser corregida de una manera que induce la no invertibilidad. En
estos casos, típicamente hay un sector del espacio de Hilbert donde la acción de la simetría
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generalizada es la misma que la transformación invertible ingenua, mientras que en el resto
del espacio de Hilbert los estados mapean a cero. Si esto es cierto en general, entonces, de la
misma manera que uno se restringe a un sector de carga fija (bajo una simetría global de 0-
forma ordinaria) en el espacio de Hilbert, y escribe una EFT de carga grande para él, debería
ser posible enfocarse en el sector donde una simetría no invertible actúa de manera ingenua,
y luego mirar subsectores con carga fija, tratando de proceder de una manera análoga. Esto
en principio permitiría esencialmente extender los resultados de la expansión de gran carga
a operadores que no están cargados bajo una simetría global de 0-forma ingenua.

Otra posibilidad interesante sería usar las simetrías generalizadas para estudiar la relación
entre diferentes puntos fijos a fin de establecer varias dualidades. Relacionado con esto, sería
deseable entender si y cómo dichas simetrías se mapean entre diferentes lados de dualidades
establecidas. Más en general, una pregunta importante es qué sucede con estos operadores
topológicos a lo largo del flujo del grupo de renormalización, y si fenómenos conocidos en el
contexto de simetrías invertibles, como su acrecentamiento, etc., también ocurren.
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Chapter 5

Appendices

5.A Appendix to “Discrete gauge theories of charge con-

jugation”

5.A.1 Symmetric spaces and real forms

In this appendix we offer a lightning summary of some relevant facts on symmetric spaces.
For a more thorough review, see Chapter 28 in [50].

Let G be a Lie group and H a closed subgroup. In general, the quotient G/H is not a
group, but it is a well-behaved topological space, called a homogeneous space. For instance,
SU(N)/SU(N � 1) is the sphere S2N�1 seen as the unit sphere of CN .1

Consider now the following situation: suppose G is a connected Lie group, with an invo-
lution (i.e. an automorphism of order 2) ⇥ such that the subgroup K = {g 2 G|⇥(g) = g}
is compact. Then the homogeneous space X = G/K is a symmetric space, i.e. a Riemannian
manifold in which around every point there is an isometry reversing the direction of every
geodesic. The involution ⇥, and the corresponding involution on the Lie algebra g of G, which
we denote ✓, is called a Cartan involution. Let k be the Lie algebra of K, or equivalently the
+1 eigenspace of ✓ in g. It is natural to also introduce the �1 eigenspace, that we call p. We
have clearly

g = k� p . (5.A.1)
1Similarly, SN�1 seen as the unit sphere of RN is SO(N)/SO(N � 1), and S

4N�1 seen as the unit sphere
of HN is Sp(N)/Sp(N � 1).
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Groups ⇥:
non-compact space
K ⇢ G, X = G/K duality ��!

compact space
K ⇢ Gc, Xc = Gc/K

x?y
x?y

Lie algebra: ✓ g = k� p same complexification �����������! ✓
0
gc = k� ip

Figure 5.1: Summary of the duality relations between homogeneous space X and Xc.

Now let’s introduce another Lie algebra

gc = k� ip . (5.A.2)

Both g and gc have the same complexification gC. The involution ✓ induces an involution on
gc defined by

x+ iy ! x� iy (5.A.3)

where x 2 k and y 2 p.
Now we go back to the level of the groups. Under good assumptions, gc is the Lie algebra

of a compact and connected Lie group Gc, and both G and Gc can be embedded in the
complexification GC. Moreover (5.A.3) can be lifted to Gc, which means Xc = Gc/K is also
a symmetric space.

In summary, we have two symmetric spaces X and Xc, one non-compact and one compact,
which are said to be in duality (see figure 5.1). For instance, the sphere S2 can be realized
as the compact symmetric space SU(2)/SO(2), the hyperbolic plane H as the non-compact
symmetric space SL(2,R)/SO(2), and they are in duality. The duality between symmetric
spaces is a generalization of this elementary example.

The pairs of (irreducible, simply connected) symmetric spaces have been classified by
Cartan. There are three types of pairs:

• The Euclidean spaces;

• The pair with Gc = (K ⇥ K)/K and G = (KC)R where K is a compact simple Lie
group (a member of the Killing-Cartan ABCDEFG classification);

• A pair in Table 28.1 of [50], which corresponds to the classification of noncompact real
forms of the simple Lie algebras.

Here we are interested in those symmetric spaces where Gc = SU(N) for some N . Looking
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at the classification, we find that the candidates come from the third type, and are reported
in the first three columns of Table 2.2.

5.A.2 Results for the unrefined Hilbert series

In this appendix we collect the results obtained for the unrefined Hilbert series HSI,II
(N,F )

(t)

with N colors and F flavors. Note that when N is even both the type I-action and the type
II-action are possible.

N = 3, F = 8, 10 with action ⇥I

HS
I

(3,8)(t) =
1

(1� t)32(1 + t)24(1 + t2)12(1 + t+ t2)16

⇣
1 + 8t+ 60t

2
+ 352t

3
+ 2180t

4
+ 12240t

5

+ 63615t
6
+ 297072t

7
+ 1271655t

8
+ 5001104t

9
+ 18251874t

10
+ 62027176t

11
+ 197358994t

12
+

589894792t
13

+ 1662662266t
14

+ 4431761456t
15

+ 11202560833t
16

+ 26916075192t
17

+ 61602528492t
18
+

134547288976t
19

+ 280922141406t
20

+ 561538929032t
21

+ 1076105342885t
22

+ 1979421972312t
23
+

3498766636248t
24

+ 5948607168296t
25

+ 9737172113226t
26

+ 15357420491872t
27

+ 23355546914320t
28
+

34271353352936t
29

+ 48550884100169t
30

+ 66437452982600t
31

+ 87857610599498t
32
+

112323553804264t
33

+ 138879963090049t
34

+ 166117154759136t
35

+ 192266666483228t
36
+

215374877940064t
37

+ 233536846417860t
38

+ 245150314372704t
39

+ 249146681474602t
40

... +

palindrome + ... t
80

⌘
,

HS
I

(3,10)(t) =
1

(1� t)44(1 + t)32(1 + t2)16(1 + t+ t2)22

⇣
1 + 10t+ 94t

2
+ 708t

3
+ 5594t

4
+ 40304t

5
+

267596t
6
+ 1604770t

7
+ 8823246t

8
+ 44685068t

9
+ 210162976t

10
+ 922138360t

11
+ 3793387031t

12
+

14685693384t
13

+ 53699356234t
14

+ 186024512912t
15

+ 612212660929t
16

+ 1918747129356t
17
+

5739475779538t
18

+ 16417980228736t
19

+ 44992209839201t
20

+ 118311677930184t
21
+

298973084347420t
22

+ 727001567961864t
23

+ 1703229868953967t
24

+ 3848902875668712t
25
+

8398044127896305t
26

+ 17709753210444906t
27

+ 36126291437128415t
28

+ 71345154443802538t
29
+

136509440283280531t
30

+ 253232898276985664t
31

+ 455739121278331778t
32

+ 796177311646870288t
33
+

1350951695000313907t
34

+ 2227550842846449570t
35

+ 3570900466255197137t
36
+

5567741522682300884t
37

+ 8447064933353162776t
38

+ 12474366711895916734t
39
+

17937609369569411305t
40

+ 25123443718887660186t
41

+ 34283553514238981759t
42
+

45592869670297954474t
43

+ 59103639171661870052t
44

+ 74701493375989226532t
45
+

92071217634978085051t
46

+ 110680303143430918394t
47

+ 129787178088343520066t
48
+
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148478122575903878990t
49

+ 165732587105152093453t
50

+ 180511607443936610316t
51
+

191859268605749303150t
52

+ 199003742403609087020t
53

+ 201443245637522550224t
54
+

+ ... + palindrome + ...+ t
108

⌘
.

N = 4, F = 8, 10 with action ⇥II

HSII

(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 11t2 + 749t4 + 8520t6 + 123173t8 + 975504t10+

7079801t12 + 37130520t14 + 168290287t16 + 606231681t18 + 1880386783t20 + 4837617956t22+

10783278743t24 + 20384258878t26 + 33595129641t28 + 47516178744t30 + 58828027690t32+

62834962052t34 + ... + palindrome + ...+ t68
⌘

,

HSII

(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 20t2 + 1880t4 + 40559t6 + 932570t8 + 13749498t10+

172341355t12 + 1684998864t14 + 13851616125t16 + 94630953820t18 + 552972551103t20+

2770203725095t22 + 12073883443120t24 + 45987359734926t26 + 154444878746850t28+

459222671967535t30 + 1216126216507310t32 + 2877699662424911t34 + 6109680294283385t36+

11666292937742595t38 + 20092424985476080t40 + 31261869088087670t42 + 44025712808863775t44+

56169284503495746t46 + 64994327796765700t48 + 68224551337259378t50 + ... + palindrome + ... t100
⌘

N = 4, F = 8, 10 with action ⇥I

HSI

(4,8)(t) =
1

(1� t2)34(1 + t2)17

⇣
1 + 19t2 + 621t4 + 9672t6 + 115781t8 + 1012392t10 + 6929353t12+

37647616t14 + 166763191t16 + 610159441t18 + 1871499527t20 + 4855440684t22 + 10751422823t24+

20435224870t26 + 33521903017t28 + 47610887368t30 + 58717583354t32 + 62951199956t34+

... + palindrome + ...+ t68
⌘

,

HSI

(4,10)(t) =
1

(1� t2)50(1 + t2)25

⇣
1 + 30t2 + 1640t4 + 43719t6 + 903050t8 + 13965248t10+

171040855t12 + 1691679084t14 + 13821738043t16 + 94749067680t18 + 552555331397t20+

2771531440035t22 + 12070052718828t24 + 45997431130604t26 + 154420650803330t28+

459276181907479t30 + 1216017405986190t32 + 2877903862084869t34 + 6109325929218841t36+

11666862552680995t38 + 20091575715527008t40 + 31263044887405650t42 + 44024199831283511t44+

56171095173235402t46 + 64992311468943920t48 + 68226641217885546t50+
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+ ...+ palindrome + ...t100
⌘

N = 5, F = 10 with action ⇥I

HS
I

(5,10)(t) =
1

(1� t)52(1 + t)48(1 + t2)24(1 + t2 + t3 + t4)26

⇣
1 + 22t+ 284t

2
+ 2706t

3
+ 21955t

4
+

160914t
5
+ 1095989t

6
+ 6979246t

7
+ 41658165t

8
+ 233574566t

9
+ 1234569365t

10
+ 6174964900t

11
+

29339025390t
12

+ 132880692724t
13

+ 575483327555t
14

+ 2389678052368t
15

+ 9537108858707t
16
+

36658340475690t
17

+ 135959694126589t
18

+ 487352408392372t
19

+ 1690878189035940t
20
+

5685865819978940t
21

+ 18553353915421956t
22

+ 58812746144565240t
23

+ 181295374749401949t
24
+

543973294401568114t
25

+ 1590097569959523153t
26

+ 4531884343550335332t
27

+ 12602966622005009583t
28
+

34222732445449084068t
29

+ 90801798406026318027t
30

+ 235550865278275435154t
31
+

597781158693692309598t
32

+ 1484941206577385534578t
33

+ 3612556855586202953706t
34
+

8611425331844868499654t
35

+ 20123123002882735041990t
36

+ 46117967367942045961984t
37
+

103701230641717242512770t
38

+ 228882161202628401398674t
39

+ 496044838564012314603553t
40
+

1056013484156029947574972t
41

+ 2209065184079799283904974t
42

+ 4542364802182471087464116t
43
+

9183898349160013048150427t
44

+ 18263102474622174109283076t
45

+ 35731344980304035652518168t
46
+

68797198502279183054832396t
47

+ 130392515255665999661450280t
48

+ 243334669278371355251281076t
49
+

447227865448283414970636444t
50

+ 809705050788821331767991526t
51

+ 1444419199557525884710374569t
52
+

2539330673373178708242199168t
53

+ 4400400061161378562047041542t
54
+

7517882728502831968413954866t
55

+ 12665124362834156846827184294t
56
+

21043140994302550778160376372t
57

+ 34488341247592291002683019204t
58
+

55765427955534322478937405226t
59

+ 88972575754699507596936788405t
60
+

140091005097562491907119219110t
61

+ 217715405474146926177559832432t
62
+

334004367894475080619545506914t
63

+ 505889843814484679526388720852t
64
+

756580164670751794484968322138t
65

+ 1117380660642869503684842943144t
66
+

1629837707627349788223179891574t
67

+ 2348184609132241268753454614722t
68
+

3342030098734627900076782048544t
69

+ 4699182325256166921736227036528t
70
+

6528444132112829102068477963998t
71

+ 8962152087005380332380602472677t
72
+

12158166797853174056382018906264t
73

+ 16300962310475160862617427342532t
74
+

21601416397311748248950447669348t
75

+ 28294881210629359687423170146093t
76
+

36637125430881682085950853304052t
77

+ 46897794251366524433817202742132t
78
+

59351139575785230185385458458708t
79

+ 74263933013520921469754722695984t
80
+
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91880686508283605721275742630480t
81

+ 112406560907646621311656207138740t
82
+

135988625360814413094029942796482t
83

+ 162696416973845686429064538780835t
84
+

192503011763013195188281840233904t
85

+ 225268022347578830193191985999101t
86
+

260724052662385407911626535090360t
87

+ 298468136817513466381809076622798t
88
+

337959547790685641993088340369146t
89

+ 378525073621853250977077476172104t
90
+

419372430837618163454454120590622t
91

+ 459611939962498281014889114186630t
92
+

498285964998009472402641743538914t
93

+ 534404969678972657531726866256818t
94
+

566988428691645677376257138792706t
95

+ 595108314685264729771554857585174t
96
+

617932519787766416628401096312304t
97

+ 634765409395059823386687683065751t
98
+

645082773998319336209845681850552t
99

+ 648558747011165681457601756617802t
100

... +

palindrome + ...+ t
200

⌘

N = 6, F = 12, 14 with action ⇥I We report the results only for the disconnected
component HSI,�

(N,F )
(t)

HSI,�
(6,12)(t) =

1

(1� t2)42 (1 + t2)37

⇣
1 + 7t2 + 69t4 + 358t6 + 2038t8 + 8419t10 + 35209t12

+ 118646t14 + 392133t16 + 1091925t18 + 2941220t20 + 6833264t22 + 15255425t24

+ 29803863t26 + 55760142t28 + 92180215t30 + 145662506t32 + 204720814t34 + 274750067t36

+ 329305773t38 + 376711462t40 + 385626520t42 + ... palindrome ... + t84
⌘

,

HSI,�
(6,14)(t) =

1

(1� t2)54 (1 + t2)49

⇣
1 + 9t2 + 101t4 + 654t6 + 4357t8 + 22320t10 + 111704t12

+ 469641t14 + 1895000t16 + 6669349t18 + 22380498t20 + 66872433t22 + 190076679t24

+ 487466405t26 + 1188492526t28 + 2638404185t30 + 5568826504t32 + 10772076177t34

+ 19818706650t36 + 33573603786t38 + 54119513030t40 + 80595879849t42 + 114256971885t44

+ 149990270920t46 + 187496330812t48 + 217354673235t50 + 239983501133t52+

245894331898t54 + ...palindrome... + t108
⌘

.
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5.B Appendix to “Discrete gauging and Hasse diagrams”

5.B.1 Definition of fSU(N)

The groups. We are interested in semidirect products SU(N)o⇥ Z2, defined by a group
morphism ⇥ : Z2 ! Aut(SU(N)). There are essentially two inequivalent choices for ⇥, see
Table 2 in [1]. For g 2 SU(N), we define ⇥I

+1
(g) = ⇥II

+1
(g) = g and

⇥I
�1
(g) = (g�1)T = g , ⇥II

�1
(g) = �JN(g�1)TJN = �JNgJN , (5.B.1)

where the bar denotes complex conjugation and the matrix J2N reads

J2N :=

 
0 �IN⇥N

IN⇥N 0

!
. (5.B.2)

Moreover we note that ⇥II
�1

is defined only for N even. When we discuss both cases together,
we simply use the letter ⇥. Spelling out the definition of the semidirect product, the group
fSU(N)I,II is the Cartesian product SU(N)⇥ Z2 with group law defined by

(g, ✏) · (g0, ✏0) = (g⇥✏(g
0), ✏✏0) . (5.B.3)

Explicitly, we can write fSU(N)I,II as a union of two connected components

fSU(N)I,II = {(g, 1) | g 2 SU(N)} [ {(g,�1) | g 2 SU(N)} (5.B.4)

with the product rules

(g, 1) · (g0, 1) = (gg0, 1) (5.B.5)

(g, 1) · (g0,�1) = (gg0,�1) (5.B.6)

(g,�1) · (g0, 1) = (g⇥(g0),�1) (5.B.7)

(g,�1) · (g0,�1) = (g⇥(g0), 1) . (5.B.8)

From this we also have
(g, ✏)�1 = (⇥✏(g

�1), ✏) . (5.B.9)

and
(g0, ✏0) · (g, ✏) · (g0, ✏0)�1 = (g0⇥✏0(g)⇥✏(g

0)�1, ✏) . (5.B.10)
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The Lie Algebra. The Lie algebra of fSU(N)I,II is

g = {X 2 gl(N,C) | Tr(X) = 0 and X +X† = 0} . (5.B.11)

The involutions ⇥I,II
�1

on fSU(N)I,II descend to involutions on the Lie algebra defined by

✓I
�1
(X) = �XT , ✓II

�1
(X) = JNX

TJN . (5.B.12)

This is also valid on the complexified Lie algebra, where the condition that X +X† = 0 is
dropped. We can rewrite equation (5.B.10) for (g, ✏) = (1 +X, 1) ⌘ 1 +X with X 2 g, and
get the adjoint representation of fSU(N)I,II :

(g, ✏) ·X · (g, ✏)�1 = g✓✏(X)g�1 . (5.B.13)

It is useful to compute the trace of ✓I,II , and this can be done by expressing it on any basis
of g. We use as a basis {(Aij)1i<jN , (Bij)1i<jN , (Ci)1i<N} with (Aij)kl = �ik�jl � �jk�il,
(Bij)kl = i (�ik�jl + �jk�il) and (Ci)kl = i (�ik�il � �i+1,k�i+1,l). The matrices A are eigenvectors
of ✓I with eigenvalue +1 and the matrices B and C are eigenvectors with eigenvalue �1, so

Tr
�
✓I
�
= 1�N . (5.B.14)

For ✓II with N = 2n even, we note that the matrices A and B are permuted (with signs)
and the eigenvectors are Ai,i+n and Bi,i+n with eigenvalue +1. Finally there is a contribution
+1 from ✓II(Cn) =

P
1i<N Ci, so the trace of ✓II is 2n+ 1:

Tr
�
✓II
�
= 1 +N . (5.B.15)

5.B.2 Maximal tori and Cartan Subgroups

Before writing characters for representation of a Lie group G, it is necessary to pick a
subgroup which is parametrized by a collection of variables zi (called fugacities, which can
assume continuous or discrete range). For connected compact Lie groups, there is an obvious
choice, which is a maximal torus U(1)r where r is the rank of the group. The situation
is much less clear when one considers disconnected groups. For general considerations, we
refer the reader to [223, Chapter VII] and [224, Chapter I] for a discussion of the various
Cartan subgroups, and to the series of papers by Lusztig starting with [225] for characters
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of disconnected groups. The case of fSU(N)I,II is discussed more specifically in [226].
Here we simply give a brief and explicit exposition of the situation in the simplest non

trivial case of fSU(3)I , the generalization to fSU(N)I,II being straightforward.
Let us define the diagonal and anti-diagonal matrices

D(z1, z2, z3) =

0

BB@

z1 0 0

0 z2 0

0 0 z3

1

CCA A(z1, z2, z3) = �

0

BB@

0 0 z1

0 z2 0

z3 0 0

1

CCA . (5.B.16)

The minus sign is there to ensure that detD(z1, z2, z3) = detA(z1, z2, z3) = z1z2z3. We have

D(z1, z2, z3) 2 SU(3)() A(z1, z2, z3) 2 SU(3)() |z1| = |z2| = |z3| = z1z2z3 = 1

(5.B.17)
Obviously we have a group morphism T = U(1)2 ! SU(3) given by (z1, z2) 7! D

⇣
z1,

z2
z1
, 1

z2

⌘
.

T has three interesting properties:

A. It is a maximal torus2 of SU(3).

B. It is a large Cartan subgroup [224] of SU(3), i.e. it is equal to the set of elements that
normalize a certain maximal torus (namely itself) and fixes the fundamental Weyl
chamber.

C. Any element in SU(3) is conjugate to at least one element of T .

We want to see how this can be extended to fSU(3). The crucial point is that the three
properties A, B and C are not equivalent in the context of disconnected groups.

In fSU(3), T is still a maximal torus. The corresponding large Cartan subgroup is the set
of elements g 2 fSU(3) such that g�1Tg = T and g�1Bg = B where B is the set of elements
of the form (M, 1) with M upper triangular. We find that the large Cartan subgroup is given
by

T+ = {'(z1, z2, ✏) | z1, z2 2 U(1) , ✏ = ±1} , (5.B.18)

where we have defined

'(z1, z2, ✏) =

8
<

:

⇣
D
⇣
z1,

z2
z1
, 1

z2

⌘
, 1
⌘

if ✏ = 1
⇣
A
⇣
z1,

z2
z1
, 1

z2

⌘
,�1

⌘
if ✏ = �1 .

(5.B.19)

2A maximal torus is a compact, connected, abelian subgroup.
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The product rules give

'(z1, z2, ✏) · '(y1, y2, ⌘) =

8
<

:
'(z1y1, z2y2, ✏⌘) if ✏ = 1

'(z1y2, z2y1, ✏⌘) if ✏ = �1 .
(5.B.20)

This means that ' is an injective group morphism U(1)2oZ2 ! fSU(3) where the semidirect
product U(1)2 o Z2 is defined by

(z1, z2, ✏) · (y1, y2, ⌘) =

8
<

:
(z1y1, z2y2, ✏⌘) if ✏ = 1

(z1y2, z2y1, ✏⌘) if ✏ = �1 ,
(5.B.21)

so that the semidirect product can be identified with the wreath product U(1) o S2. Clearly,
this group is not Abelian, and as a consequence its image T+ by ' is not Abelian either.

A natural Abelian subgroup of U(1) o S2 is T = U(1)2 considered above. This is in fact
the small Cartan subgroup [224] associated to T , defined as the centralizer of T , which in
the present case is equal to T . Clearly this is not relevant for our study of the disconnected
component of fSU(3).

Another natural Abelian subgroup is U(1) ⇥ Z2 where the first factor is the diagonal
subgroup of T . Its image in fSU(3) is

T 0 = {'(z, z, ✏) | z 2 U(1) , ✏ = ±1} . (5.B.22)

Property C fails here: clearly not every element of fSU(3) is conjugate to an element of T 0.
Note however that every element of the disconnected part of fSU(3) is conjugate to an element
of the disconnected part of T 0. This property is crucial in establishing a Weyl integration
formula over fSU(3) [40].

Finally, consider the subgroup

T = { (z1, z2, ✏) | z1, z2 2 U(1) , ✏ = ±1} , (5.B.23)

where we have defined
 (z1, z2, ✏) =

✓
D

✓
z1,

z2
z1
,
1

z2

◆
, ✏

◆
. (5.B.24)
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Group F � F character
T = T� z1 +

z2
z1
+ 1

z2
+ z2 +

z1
z2
+ 1

z1

T+
�
1+✏
2

� ⇣
z1 +

z2
z1
+ 1

z2
+ z2 +

z1
z2
+ 1

z1

⌘

T 0 (1 + ✏)
�
z + 1 + 1

z

�

T
�
1+✏
2

� ⇣
z1 +

z2
z1
+ 1

z2
+ z2 +

z1
z2
+ 1

z1

⌘

Table 5.1: Character for the F � F representation of fSU(3) for various fugacity subgroups.

Group Adjoint Character
T 2 + z21

z2
+ z1z2 +

z22
z1

+ z1
z22

+ 1

z1z2
+ z2

z21

T+
�
1+✏
2

� ⇣
2 + z21

z2
+ z22

z1
+ z1

z22
+ z2

z21

⌘
+ ✏
⇣
z1z2 +

1

z1z2

⌘

T 0 (1 + ✏) (1 + z + z�1) + ✏ (z2 + z�2)

T
�
1+✏
2

� ⇣ z21
z2

+ z1z2 +
z22
z1

+ z1
z22

+ 1

z1z2
+ z2

z21

⌘
+ 2✏

Table 5.2: Character for the adjoint representation of fSU(3) for various fugacity subgroups.

The product rules give

 (z1, z2, ✏) ·  (y1, y2, ⌘) =

8
<

:
 (z1y1, z2y2, ✏⌘) if ✏ = 1

 (z1y
�1

1
, z2y

�1

2
, ✏⌘) if ✏ = �1 .

(5.B.25)

This means that  is an injective group morphism U(1)2oZ2 ! fSU(3) where the semidirect
product U(1)2 o Z2 is defined by

(z1, z2, ✏) · (y1, y2, ⌘) =

8
<

:
(z1y1, z2y2, ✏⌘) if ✏ = 1

(z1y
�1

1
, z2y

�1

2
, ✏⌘) if ✏ = �1

(5.B.26)

This is a different from (5.B.21). In (5.B.21) the Z2 acts on U(1)2 by permuting the two
factors, while here is inverts elements in both factors and preserves the order. The subgroup
T is not a Cartan subgroup, as it does not preserve the fundamental Weyl chamber. However
its matrices are all diagonal, and therefore is well suited for deriving branching rules.

5.B.3 Characters

A representation of fSU(N) is a vector space V with a group morphism ⇢ : fSU(N)! GL(V ).
Picking a basis for V , a finite dimensional representation is given by matrices ⇢(g, 1) and
⇢(g,�1) for each g 2 SU(N), satisfying the product rule ⇢(g, ✏)⇢(g0, ✏0) = ⇢(g⇥✏(g0), ✏✏0). The
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character � of this representation is the trace of these matrices: �(g, ✏) = Tr(⇢(g, ✏)). Note
that using (5.B.10) we have �(g, ✏) = �(g0⇥✏0(g)⇥✏(g0)�1, ✏) for any g, g0, ✏ and ✏0.

In particular
�(g, 1) = �(hgh�1, 1) (5.B.27)

�(g,�1) = �(hg⇥�1(h)
�1,�1) (5.B.28)

�(g, 1) = �(h⇥�1(g)h
�1, 1) (5.B.29)

�(g,�1) = �(h⇥�1(g)⇥�1(h)
�1,�1) (5.B.30)

In order to express these characters we pick a diagonal form g = Diag(z1, . . . , zN), as
explained in the previous subsection. Let’s see what the constraints above tell us about
the function �(zi, ✏), taking the case of type I to illustrate. The third lines says that the
character for ✏ = 1 is invariant under z ! z�1. The second line says that �(g,�1) =

�(hghT ,�1) for any h 2 SU(N). In particular for h = Diag(hi) with |hi| = 1 this gives
�(zi,�1) = �(h2

i zi,�1). In other words, �(zi,�1) can not depend on the zi at all! Therefore
it is a pure number that can be evaluated for zi = 1.

5.C Appendix to “Non-invertible symmetries from dis-

crete gauging and completeness of the spectrum”

5.C.1 Gukov-Witten operators and principal extensions

In the main text, we have studied the 1-form symmetries of pure gauge theories with discon-
nected gauge groups, using the known result that the topological Gukov-Witten operators
should correspond to the conjugacy classes of elements in the centralizer of the identity
component of the group. In this appendix, we find the same topological GW operators by
direct computation of their linking with Wilson lines in the adjoint. This computation has
two steps: first we identify all possible GW operators, and then we use (2.4.5) to find which
of them link trivially with the Wilson line; these will be the topological ones.

Gukov-Witten operators where introduced in [129,130] as codimension two operators that
preserve a certain amount of supersymmetry. This was done by finding solutions to Hitchin’s
equations for the gauge fields, with a singularity at the locus of the operator and prescribed
boundary conditions. Said boundary conditions are specified by the monodromy when going
around the singular locus, which is an element of the gauge group and whose conjugacy class
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is a gauge invariant that labels the different Gukov-Witten operators.
If the gauge group is connected, finding all posible GW operators is easy. A basic theorem

of Lie theory tells us that in this case, any element of the group is conjugate to at least one
element of the maximal torus, i.e. if we call G the group and T its maximal torus, the map

C :G⇥ T ! G (5.C.1)

(g, t) 7! g�1tg

is surjective. More precisely, elements of T that are related by the action of the Weyl group
Wg will give rise to the same conjugacy classes. For our purposes, this implies that the
possible GW operators (topological or not) are labelled by elements of T/Wg.

This statement is no longer true if the group is not connected. Still, if we restrict ourselves
to the case of principal extensions (namely the group is a semidirect product of its connected
component times its group of outer automorphisms), we have lemma 2.1 of [40], which is
enough for our purposes. The statement in the case where the outer automorphism group is
isomorphic to Z2 is that, if we call G0 the identity component of the group and ⇥ the map
such that G = G0

o⇥ Z2, then the map

' :G⇥ T⇥ ! Gdisc (5.C.2)

(g, t) 7! g�1⇥(t)g

is surjective onto the disconnected component of the group. Here Gdisc = ⇥ · G0 denotes
said disconnected component, and T⇥ is the subgroup of the maximal torus of G0 which
is left invariant by the action of ⇥. Therefore, GW operators specified by a monodromy
transformation in the disconnected component of the gauge group can be labelled by elements
in T⇥.

Once all the GW operators have been identified, we look for the ones that link trivially
with an adjoint Wilson line: these are the topological ones that generate the 1-form symmetry.
From the linking coefficient (2.4.5) it follows that we need to solve

�Adj(a) = dimAdj , (5.C.3)

where a 2 T if we are considering a GW operator in the connected component and a = ⇥(t),

t 2 T⇥ if we are considering one in the disconnected component.
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Example: fSU(3)I

As an example, we can consider the principal extension of SU(3). Its Lie algebra has
three positive roots, ↵1, ↵2 and ↵1 + ↵2, and the outer automorphism exchanges ↵1 and ↵2:
thus, the invariant subgroup of the torus, T⇥, precisely corresponds to the root ↵1 + ↵2.
In order to write down the characters, it’s more convenient to use a modified basis for the
fugacities, instead of the usual one, such that the one parameter subgroup corresponding to
↵1+↵2 is parametrized by z2

1
. This can be achieved by selecting fugacities z1z32 and z1/z32 for

the ↵1 and ↵2 directions respectively [1,85]; note that in these terms the action of the outer
automorphism is z2 7! 1/z2. With this, the character of the adjoint evaluated in a conjugacy
class in the connected and disconnected components gives

�Adj(t) = 2 + z2
1
+

1

z2
1

+ z1z
3

2
+

1

z1z32
+

z1
z3
2

+
z3
2

z1
, t 2 T (5.C.4)

�Adj(⇥(t0)) = �z2
1
� 1

z2
1

, t0 2 T⇥ (5.C.5)

The dimension of the adjoint of fSU(3)I is equal to 8. Since the fugacities are complex
numbers of modulus 1, we find that the topological GW operators correspond to elements
in the connected component such that z1 = 1 and z3

2
= 1, or z1 = z2 = �1. The solutions

with z1 = z2 = 1 and z1 = z2 = �1 are in fact one and the same, which can be seen
from the fact that with this fugacity parametrization, the character of the fundamental is
�F = z1z2+1/z2

2
+ z2/z1. The corresponding Gukov-Witten operator is the identity of the 1-

form symmetry. The other two solutions z1 = 1, z2 = ei⇡/3 and z1 = 1, z2 = e2i⇡/3 correspond
to different elements of the gauge group, but ones that get identified via conjugation with
the generator of the Z2. Therefore, there is one non-trivial GW operator, with quantum
dimension two, that generates the 1-form symmetry. This is the same result obtained from
the centralizer computation in the main text.

An important remark is that �Adj(⇥(t0)) = dim(Adj) has no solutions for GW operators
corresponding to the disconnected component. This is completely generic and due to the fact
that, since T⇥ has always a smaller dimension than T , there will be fewer monomials in the
corresponding character than it’s needed to have solutions to the equation. Therefore, GW
operators labelled by classes in the disconnected component can never be topological.
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5.D Appendix to “The large charge limit of scalar field

theories and the Wilson-Fisher fixed point at ✏ = 0”

5.D.1 Real space renormalization

A relevant integral in our discussion is

K =
1

G(0, x)2

Z
d4z G(0, z)2 G(z, x)2 , (5.D.1)

where the propagator is

G(x, y) =
1

4 ⇡2

1

(x� y)2
. (5.D.2)

After rotation to euclidean signature, the relevant integral to compute is

G(0, x)2 K = � i

(4 ⇡2)4

Z
d4z

1

z4 (x� z)4
. (5.D.3)

The integral can be easily computed following the regularization method of [175], i.e. using
that, in d = 4,

1

z4
= �1

4
@2
✓
log z2 ⇤2

z2

◆
. (5.D.4)

Note that there will be an identical contribution from the divergence at z = x, to be regulated
just in the same way, and hence the value of the integral will be twice of the contribution at,
say z = 0. We now substitute (5.D.4) into the integrand of (5.D.3) and integrate by parts.
The resulting integral is convergent upon giving a small imaginary part to z, which does not
affect the coefficient of the logarithmic term. The integral is then easily computed by going
to polar coordinates. One arrives at

K = � i

8 ⇡2
log(⇤2 x2) . (5.D.5)

One may alternatively use the method of [227], which leads to the same result.

Next, consider the d = 3 case. The relevant integral is now

Z
d3z

1

z3 (x� z)3
. (5.D.6)
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In this case, it can be regularized using the formula

1

z3
= �1

2
@2
✓
log z2⇤2

z2

◆
, (5.D.7)

and following just the same steps as in the d = 4 case.

5.E Appendix to “On the UV completion of the O(N)

model in 6� ✏ dimensions: a stable large charge sec-

tor”

5.E.1 Fourier transforms formulæ

In euclidean signature, the Fourier transform of 1/(x2)↵ is given by

1

(x2)↵
=

(4⇡)
d
2 �(d

2
� ↵)

4↵ �(↵)

Z
ddp

(2⇡)d
e�ipx

(p2)
d
2�↵

. (5.E.1)

As an application, it follows that the Green’s function in position space is

G(x) =
4

d�2
2 �(d�2

2
)

(4⇡)
d
2 (x2)

d�2
2

. (5.E.2)

5.E.2 Combinatorics and propagators in the (complex) scalar the-

ory with cubic interaction

Let us consider the cubic theory with interaction Hamiltonian

Hint =

Z
ddx g ⇢ �̄ � . (5.E.3)

In the following we shall use the shorthand notation G(⇢)
xy , G

(�)
xy to denote ⇢, � propagators

from x to y (G(⇢,�)
xy = G(⇢,�)

yx ).
Using Dyson’s formula, the expectation value of any quantity can be written as hO(x)i ⌘

hO(x) e�Hinti where the LHS is to be evaluated in the interacting picture (that is, for all
practical purposes, with free fields).
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The 1PI diagram for the real scalar self-energy

The (leading) 1PI diagram for ⇢ in the cubic theory is

1

2
g2
Z

ddx

Z
ddy h⇢(0) ⇢(x) �̄(x)�(x) ⇢(y) �̄(y)�(y) ⇢(z)i . (5.E.4)

Note that the 1

2
comes from the expansion to second order of the exponential of the interacting

Hamiltonian. This gives

1

2
g2
Z

ddx

Z
ddy G(�)

xy G(�)
xy h⇢(0) ⇢(x) ⇢(y) ⇢(z)i . (5.E.5)

Performing the ⇢ contractions we obtain (we omit the disconnected terms)

1

2
g2
Z

ddx

Z
ddy G(�)

xy G(�)
xy G(⇢)

0x G(⇢)
yz +

1

2

Z
ddx

Z
ddy G(�)

xy G(�)
xy G(⇢)

0y G(⇢)
xz . (5.E.6)

The two integrals are just the same and we finally find

g2
Z

ddx

Z
ddy G(�)

xy G(�)
xy G(⇢)

0x G(⇢)
yz . (5.E.7)

The � propagator in the quartic theory

The above discussion is of direct application to the quartic theory, where loop effects induce a
2-point function for � (akin to the ⇢ in the previous discussion). The tree-level � propagator
from the action in (3.4.51) is just �2 g. Denoting the 1PI diagram by ��, it then follows
that the � propagator is [187]

G(�) = � 2 g

1� 2 g �
. (5.E.8)

At the UV fixed point, when g !1, G(�) it is just the inverse of the 1PI diagram for �. In
momentum space, (5.E.7) is given by3

�(p) =

Z
ddq

(2⇡)d
1

(p� q)2 q2
. (5.E.9)

3The signs can be checked by going back to Lorentzian signature, where propagators have an extra i. In
turn, the cubic vertex is � ip

N
. Thus the 1PI diagram is given by �L, where �L is the (Lorentzian) loop

integral alone ((� i
N )

2 from the vertices, i2 from the � propagators, and an overall N from the N �’s running
in the loop). Hence G

(�)
= � 2 i g

1+2 i g �L
⇠ 1

�L
. Wick-rotating to the Euclidean �L = i�, and so G

(�)
= i

1
� .

Stripping off the i to go back to Euclidean signature gives G
(�)

=
1
� , with � given by (5.E.9).
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Introducing Feynman parameters

Z
ddq

(2⇡)d
1

(p� q)2 q2
=

Z
ddq

(2⇡)d

Z
1

0

dx
1

(q2 +�)2
. � = x(1� x) p2 . (5.E.10)

Computing the integral, we find

Z
ddq

(2⇡)d
1

(p� q)2 q2
= � (4⇡)

3�d
2

2d sin
⇣

d⇡
2

⌘
�
⇣

d�1

2

⌘ (p2)
d
2�2 . (5.E.11)

Hence

�(p) = �2 C̃�1

d (p2)2�
d
2 , C̃d = 2d+1 (4⇡)

d�3
2 sin

⇣d ⇡
2

⌘
�
⇣d� 1

2

⌘
. (5.E.12)

Thus, in momentum space, the � propagator is

h�(p) �(�p)i = C̃d

2 (p2)
d
2�2

. (5.E.13)

In position space this is

h�(x) �(0)i = Cd

2 (x2)2
, Cd =

16

(4⇡)
d
2 �
⇣

d
2
� 2
⌘ C̃d . (5.E.14)

The h�(0)2 �̄2(z)i correlator to NLO

Let us consider the calculation of the correlation function h�(0)2 �̄2(z)i to NLO order. To
LO this is just the free correlator. Evaluating it through Wick contractions one easily finds

h�(0)�(0) �̄(z) �̄(z)i = 2G(�)
0z . (5.E.15)

The NLO correction comes from evaluating

1

2
g2
Z

ddx ddy h�(0)�(0) ⇢(x) �̄(x)�(x) ⇢(y) �̄(y)�(y) �̄(z) �̄(z)i . (5.E.16)

This gives

1

2
g2
Z

ddx ddy G(⇢)
xy h�(0)�(0) �̄(x)�(x) �̄(y)�(y) �̄(z) �̄(z)i . (5.E.17)
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In order to have connected diagrams, the �(0)’s must be contracted with either the �̄(x) or
the �̄(y), for which each case has two possible contractions (one for each of the two �(0)’s)
thus giving

1

2
g2
Z

ddx ddy G(⇢)
xy 2G(�)

0x h�(0)�(x) �̄(y)�(y) �̄(z) �̄(z)i (5.E.18)

+
1

2
g2
Z

ddx ddy G(⇢)
xy 2G(�)

0y h�(0) �̄(x)�(x)�(y) �̄(z) �̄(z)i .

By the same token, the remaining �(0) can only be contracted either with the �̄(x) or with
the remaining �̄(y), giving

2 g2
Z

ddx ddy G(⇢)
xy G(�)

0x G(�)
0y h�(x)�(y) �̄(z) �̄(z)i . (5.E.19)

Making the final contractions, we find

4 g2
Z

ddx ddy G(⇢)
xy G(�)

0x G(�)
0y G(�)

xz G(�)
yz . (5.E.20)

Thus, all in all, to NLO, the correlator is given by

h�(0)�(0) �̄(z) �̄(z)i = 2G(�)
0z + 4 g2

Z
ddx ddy G(⇢)

xy G(�)
0x G(�)

0y G(�)
xz G(�)

yz . (5.E.21)

We may now write this as

h�(0)�(0) �̄(z) �̄(z)i = 2
⇣
G(�)

0z + 2 g2
Z

ddx ddy G(⇢)
xy G(�)

0x G(�)
0y G(�)

xz G(�)
yz

⌘
, (5.E.22)

where we have extracted the factor of 2 of the free correlator, leaving behind the relative
factor of 2 pointed out in the main text. Note that the factor of 2 stands for the 4 possible
relative ways to paste the two halves of (3.8) multiplied by the factor 1

2
that arises from

expanding the Dyson series. This extends in a straightforward way to the more general case
of correlators of On, On operators, with the only difference that the overall 2 becomes n!.
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