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Abstract: Stirling engines are currently of interest due to their adaptability to a wide range of energy
sources. Since simple tools are needed to guide the sizing of prototypes in preliminary studies, this
paper proposes two groups of simple models to estimate the maximum power in Stirling engines
with a kinematic drive mechanism. The models are based on regression or ANN techniques, using
data from 34 engines over a wide range of operating conditions. To facilitate the generalisation and
interpretation of results, all models are expressed by dimensionless variables. The first group models
use three input variables and 23 data points for correlation construction or training purposes, while
another 66 data points are used for testing. Models in the second group use eight inputs and 18 data
points for correlation construction or training, while another 36 data points are used for testing. The
three-input models provide estimations of the maximum brake power with an acceptable accuracy
for feasibility studies. Using eight-input models, the predictions of the maximum indicated power
are very accurate, while those of the maximum brake power are less accurate, but acceptable for the
preliminary design stage. In general, the best results are achieved with ANN models, although they
only employ one hidden layer.

Keywords: Stirling engine; preliminary design; power correlations; engine speed correlations; ANN

1. Introduction

The oldest heat engines in use today are Stirling cycle engines. It is often emphasised
that this type of cycle has the highest achievable efficiency under ideal conditions, but its
greatest advantage might be the possibility of using a wide variety of energy sources, with
low levels of chemical and noise pollution. Apart from refrigeration and cryogenic applica-
tions, where the Stirling cycle has achieved remarkable developments [1], technological
and commercial vicissitudes over more than two hundred years have restricted the current
applications of the Stirling engine practically, to cases where there is less competition.
These range from anaerobic underwater equipment [2] to the combined production of heat,
cooling, and electricity, especially in systems powered by waste heat [3] and renewable
energies on a low power scale [4-7]. Additionally, variants of the Stirling engine are among
the alternatives being evaluated for power generation in space, both for space missions and
for terrestrial use [8,9].

Comparisons with other technologies are based on technical indicators, such as ef-
ficiency, mean effective pressure and specific power, as well as economic indicators. Re-
garding the latter, units based on Stirling engines present, in general, higher investment
costs than units based on internal combustion engines, since they are not currently mass-
produced, but they are economically competitive with fuel cell-based units. Their durability
and relatively low maintenance costs [7] are additional strengths to the other advantages
already mentioned.
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The so-called Beale number is often used to estimate the specific power or mean
effective pressure of a Stirling engine, not only in preliminary technical feasibility studies
but also in academic analyses [10-12]. William Beale observed that the maximum brake
power in well-developed engines is roughly proportional to the mean cycle pressure, cycle
volume amplitude, and engine rotational frequency. Walker called Beale’s number, Np, the
proportionality constant [13]. Thus, the product of Np and the mean pressure would be
approximately equal to the mean effective pressure which, multiplied by the rotational
frequency, would be equal to the specific power of the engine.

The Np ~ 0.15 value was obtained from the data of 24 engines, most of them operating
with a heater temperature of about 650 °C. Nonetheless, using data from 14 engines with
kinematic drive mechanisms, including the original 1843 Stirling engine, and 8 free piston
Stirling engines (FPSE), West [14] deduced that the assumed proportionality constant varied
in the range of 0.06 to 0.23, and could be expressed as a function of the ratio of the absolute
temperatures of the heater and cooler. Reader and Hooper proposed that this function was
linear [15]. Other authors, using data from six operating points measured on five engines,
two of them in the low temperature difference range, derived a correlation between the
dimensionless maximum brake power and the main operating variables, i.e., pressure
and temperatures, by a dimensional analysis [16]. The proposal has been interpreted as a
variant of West's correlation, with doubtful applicability to other engines due to the small
number of parameters and influential variables considered in the model [17]. However,
it should be recognised that these authors pointed out the need to obtain an additional
correlation to estimate the engine speed corresponding to the maximum power.

Previously, Organ [18] and, independently, Prieto et al. [19,20], had already deduced
that the dimensionless maximum indicated power is a function of more than twenty
dimensionless parameters and variables, laying the foundations for the similarity of Stirling
engines and the application of scaling techniques for engines with a kinematic drive
mechanism [21,22]. Subsequently, Formosa and Fréchette [23] studied the similarity of
FPSEs. Prieto and co-workers [24] deduced, from basic thermodynamic concepts and
experimental data, that the engine speed corresponding to the maximum indicated power
is not an independent variable in engines with a kinematic drive mechanism, but a function
of the engine parameters and operating variables. They also analysed the leakage and
mechanical losses of indicated power, and extended the model previously established for
the gas circuit to the analysis of mechanical efficiency and brake power [25].

Correlations based on a few variables often lead to predictions of insufficient accuracy,
even within the scope of their main objective, which is to guide the preliminary sizing
of new prototypes. Therefore, correlations have been obtained based on a larger number
of influential variables, using 21 operating points of eight engines, both for the dimen-
sionless values of maximum indicated and brake power, as well as for the corresponding
dimensionless speeds [26]. Although the use of dimensionless variables facilitates the
generalisation of the results, and the study has recently been extended to 54 operating
points of 10 engines [27], the lack of data certainly limits the applicability of the correlations
for engines not included in the databases.

Recently, soft computing methods based on genetic algorithms, particle swarm optimi-
sation, fuzzy logic, and artificial neural networks (ANN), are an alternative to regression-
based correlations. Soft computing methods have, so far, mainly been applied to design or
optimise particular Stirling engines, often FPSEs [28]. A smaller number of soft-computing
models are known to have been developed using the databases of a set of engines. The
temperature of the heat source, rotation speed, fuel, and pressure have been selected as
input variables in ANN-based approaches proposed to predict the torque and brake power
of a Stirling engine, using experimental data, obtained mostly from the Philips M102C
engine, to test, validate, and train the model [29,30]. The temperature of the heat source,
rotation speed, and type of engine configuration have given good results as input variables
for other torque and brake power prediction models, which have used a larger amount of
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data from several engines for training, testing, and validation, but limited to the ranges of
453-1273 K, 46-1800 rpm, and 0.3-500 W [31].
The main novelties of this paper are the following;:

e  Two groups of models are proposed to replace the Beale, West, and similar correlations
for feasibility studies and the preliminary sizing of Stirling engines with a kinematic
drive mechanism, as complementary tools to more advanced procedures for analysis,
design, and optimisation. The aim is to cover the widest possible diversity of size,
power, and ranges of operating variables, even though this may penalise the accuracy
of the model predictions. It is rare to find experimental data on Stirling engines in
the literature that are extensive enough to be used reliably for model building. In
addition, the stages of design, manufacture, testing, optimisation, and commercial
development of a prototype are a relatively long evolutionary process, so that not
many engines have progressed beyond research and demonstration phases. It is,
therefore, recognised that some objectives of the article are subject to the quality of the
databases used and future improvements;

e  Group G1 includes models that, in combination, allow the maximum brake power to
be estimated using three input variables. The G1-1R and G1-2R models are based on
regression fitting techniques, while the G1-3ANN and G1-4ANN models are based
on ANN methodologies. In G1 models, only the working gas, heater and cooler wall
temperatures, mean pressure, and cycle volume amplitude are used as input variables.
The results are evaluated using data collected from the literature for 89 operating points
of 34 engines with very different characteristics, which provides a wide overview of
the ranges of parameters and operating variables;

e  Group G2 includes four correlations for estimating the maximum indicated and brake
power, obtained by regression in a previous study [27], which are referred to in this
paper as G2-5R, G2-6R, G2-7R, and G2-8R models. These correlations use eight input
variables, often not available in the literature, and were, therefore, evaluated on data
from a smaller number of engines. The results are compared in the article with those
obtained using the new G2-9ANN, G2-10ANN, G2-11ANN, and G2-12ANN models,
based on neural networks.

The use of dimensionless input and output variables allows the influence of a larger
number of parameters and variables to be considered, and facilitates the generalisation of
results. Comparisons between models are made in all cases using appropriate statistical
indicators to highlight the advantages and limitations of each type of model.

2. Materials and Methods
2.1. Selection of Input Variables

The indicated power P;,; developed by a Stirling engine with a kinematic drive
mechanism depends on the following set of variables:

Heater wall temperature T,z and cooler wall temperature Ty,c;
Mean pressure of the working gas, p;
Phase angle « and other geometrical parameters of the pistons and the drive mecha-
nism, Iy, ..., 1, which determine the shape and volume amplitude V; of the thermo-
dynamic cycle;

e  Dead volume V;,, wetted surface Ayy, and hydraulic radius ry,, of each gas circuit
space x;

e  Physical properties of the working fluid, i.e., adiabatic coefficient -, specific constant
R, and viscosity y;

e  Thermal diffusivity ag, volumetric specific heat capacity prcgr, and volumetric porosity
{v of the regenerator material;

e  Frequency of rotation, ;.
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Applying Buckingham’s theorem, with p;,;, Vo, T;,c and n; as reference variables, leads
to the following equivalent functional relationship between dimensionless variables [20]:

gind = f(’l’,tx,)\l,. . .,/\nfl,]ldx,. A TR '/Ahxr" .,ﬂlv,’)/,Np, NMAINFOINTCR)r (1)

where gind = Pind/(pmVOnS)/ T = TwC/TwE/ A= li/V()1/3/ Hix = de/VOI
twx = Awx/ V5", Anx = 11/ Vo "% Ny = puVa"? / (43/RTuc), Nua = n5Vy"?/V/RToc,
Nro = “R/<”sVol/3) ,and Nrcr = prerTwe/ pim -

The characteristic Mach number Ny, 4 is a dimensionless velocity form representing

the influence of the operating frequency #;. In order to make this influence explicit, the
following equation has been proposed [24]:

Cind = o — ®Nyta — YN 4, )

where ( is the dimensionless quasi-static work per cycle, i.e., a theoretical limit of the gas
circuit performance that, irrespective of the configuration, operating point and working
fluid, cannot be reached by real engines, while the coefficients ® and ¥ are macroscopic
representations of the indicated power losses associated with irreversibilities inherent to
working gas friction and heat transfer. Depending on whether the drive mechanism is
harmonic or non-harmonic, {y can be calculated with analytical equations or by numerical
simulation using, in both cases, an isothermal model of the thermodynamic cycle. Func-
tionally, {yp depends on the temperature ratio, the parameters of the drive mechanism, and
the dead volumes, but is independent of the working fluid and the mean pressure, so the
following relationship can be written:

gO:f(Tr“//\lw--r/\nflr]’ldxw“) (3)

The following conclusions can be drawn from Equation (2) [24]:

e  The dimensionless maximum indicated power, ;4 max, must be within the following
range of variation:

1 < Cind,max < % (4)
2 Zo 3

e The dimensionless speed corresponding to the maximum indicated power value,
NMA max- 15 not an independent design parameter, but a function which depends on
the same parameters influencing the gas circuit performance;

e  The coefficients of indicated power losses are inversely proportional to N4 max, as
the following equations show:

> — 2€0 - Cind,max ) (5)
NMA,max
¥ _ 2girwl,max - gO ) (6)

NMA,max

On the other hand, the mechanical losses of indicated power caused by leakage or
friction depend on the same variables influencing the operation of the gas circuit, and on
additional parameters characteristic of the seals and the drive mechanism, the influence of
which can be expressed by mechanical efficiency. Therefore, the maximum brake power
Pp max depends on more than thirty parameters and operating variables.

2.1.1. Input Variables for Group G1 Models

A simplified version of Stirling engine operation is to assume that the maximum brake
power Pp a« can be estimated by knowing only the main operating variables, i.e.,

PB,max ~ f(TZUE! TwCr le/ VO/ n;max) (7)
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where 13 .., is the engine speed corresponding to the peak power point.
From this expression, Buckingham’s theorem leads to the following equivalent func-
tional relationship:
gB,rnax ~ f(T) (8)

where (B max = Ppax/ ( Pm Von;k,max) is the dimensionless maximum brake power.
Particular cases of this approach are the Beale, Reader and Hooper, and West correla-
tions, which can be expressed, respectively, by the following equations:

{Bmax ~ 0.15(for T ~ 0.3) )
{Bmax ~ 0.34 — 0.527 (10)
1—-7

CB,max ~ 0.25 (11)

1+71

For the G1 models in this article, it is assumed that Pp m,x also depends on the prop-
erties of the working fluid and on the main variables of the thermodynamic cycle, i.e.,

Pp max & f(')/r R, Twe, Twe, pm, Vo, n:,max) (12)

from which Buckingham’s theorem leads to the following functional relationship:

CB,max ~ f('Yr T, Np) (13)

On the other hand, since it is not possible to calculate Pp max from {p max without know-
ing the corresponding speed, the following functional relationship is assumed analogously:

n:,max ~ f(')’r R, TwE/ TwCr Pm, VO) (14)

which leads to:
N A max & f(7,7,Np) (15)

The Rayleigh method allows Equations (13) and (15) to be expressed as follows for the
G1-1R and G1-2R models, respectively:

gB,max ~ K'Ya TbN;Cz (16)

N;\(/IA,max ~ K/,.ya/Tb/ NFC; (17)

For the G1-3ANN and G1-4ANN models, the output variables {p max and Ny,
will be estimated from the same three input variables, i.e., 7y, T and Nj,.

A,max

2.1.2. Input Variables for Group G2 Models

For the models of group G2, the maximum values of indicated and brake power, and
their corresponding speeds, are estimated by the following functional relationships [27]:

* r%R LR
gind,maxz NMA,maX/ gB,maX/ NMA,max ~ f 0,7, T, Np/ Vo ’ Z Hdxr Kdxer Bdxe (18)

Note that a large number of influencing variables are implicit in the dimensionless
variables, while others have been considered to be specific to a later stage of dimensioning,
e.g., hydraulic radii and wetted areas of the heater and cooler, wetted area, porosity and
material properties of the regenerator, as well as characteristics parameters of the seal rings
and drive mechanism.
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The data analysis procedure in models G2-5R, G2-6R, G2-7R, and G2-8R is based on
regression fitting using functional relationships of the following type:

2 e
b 17 L
gind,maxr NMA,maxz gB,maxr NX/IA,max ~ KCS’)/ TcNg (hl{(;()R) (Z Hdx )fﬂixe.”gxc (19)

In models G2-9ANN, G2-10ANN, G2-11ANN, and G2-12ANN, the eight independent
variables in Equation (19) are also used as input variables to estimate the same four output

. *
variables gind,maXr NMA,maxz gB,max and NMA,max‘

2.2. Characteristics of Neural Networks

A neuron is a single cell living in a network of cells that receives inputs, processes
those inputs, and generates an output [32]. Neurons can be classified into three groups or
layers, as shown in Figure 1. The input layer receives the numerical data of the variables of
interest x1, ..., x; used to estimate the target values a4, . . ., 4 of the network, and provides
input values to the neurons that form the hidden layers of the structure, whose inputs and
outputs are not accessible from outside the ANN. A neural network can have as many
hidden layers as necessary, increasing the complexity of its structure, as only neurons from
adjacent layers can be connected.

Input layer Hidden layers Output layer

Figure 1. Architecture of an artificial neural network.

The output of the neurons is calculated using Equation (20). The parameter y; depicts
the output value of the j-th neuron, which is calculated as the outcome of a certain activation
function f, given a linear combination of the output values of the previous layer. Thus, x;, is
the input of the n-th neuron of the layer, w,,; is the weight or gain factor of the input signals
to the neuron, and k; is the independent term or offset value of each neuron. According
to the literature, the activation function could be, among other options, an arctangent,
the absolute value, or a ramp function [33]. The reason of this element is to introduce a
non-linear component in the behaviour of the system.

yi=f (Z wijx; + kj) (20)
i1

Finally, the nodes of the output layer receive the outputs of the outermost hidden layer,
and provide the final computation of the entire ANN. In this layer, the output of each node
is calculated in the same way as in any of the previous layers. Given the structure of an
ANN, even with a limited number of neurons and hidden layers, the number of variables
involved in the network is large enough to make it difficult to find a direct solution to
the best configuration of the network. Therefore, an optimisation or training process is
required to reach the final configuration.

To carry out the training process, it is necessary to define a certain cost function
and use learning algorithms, whose objective is to obtain for each neuron the weights
and biases defined in Equation (20), that optimise the value of the cost function. The
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results are evaluated by comparing the ANN output with the target value using some
statistical indicator.

There are several algorithms that can be used to optimise the network’s functioning,
such as genetic or gradient algorithms. In general, no one algorithm can be considered
better than another, although, depending on the characteristics of the systems, some
algorithms may achieve results quicker than others, or be more appropriate for complex
network configurations. In this sense, genetic algorithms are more suitable for the latter,
since they are more prone to avoid getting stuck in local solutions of the cost function. In
any case, the aim of this work is to analyse the feasibility of the simplest possible solution,
i.e., a network with a single hidden layer and a number of neurons to be determined.
Thus, a gradient algorithm is used to optimise the parameters of the ANN during the
training process. However, as the whole process is based on a stochastic process, the final
optimisation of the ANN may be different, depending on the algorithm used, the execution
of the training process, as well as its starting point. This means that the training must be
performed repeatedly until an acceptable solution is reached. Additionally, aiming to avoid
an overfitting of the ANN towards the training data, optimal neuron numbers are pending
further adequacy analysis, based on the results obtained for the test data.

As mentioned above, this work considers two different approaches to characterise the
performance of a Stirling engine, depending on the input variables used. Consequently,
two different groups of ANNSs are presented, depending on the number of variables. ANN
models in the G1 and G2 groups have, respectively, three and eight different nodes in the
input layer, one for each input variable. To facilitate the comparison with linear regression-
based models, all the networks in this paper have an output layer with a single neuron.

2.3. Experimental Data

Reasonably reliable performance data has been found for the 34 engines shown in
Table 1, which comprise a representative variety of existing Stirling engines.

Table 1. Stirling engines with data analysed in this article.

No. No. Engine No. Engine
1 Mitsubishi&Daihatsu [25] 13 Ecoboy-SCMS81 [25,27] 25 Philips-Ford 4-215 [14]
2 GM-GPU3 [25-27,34] 14 DMC-3 [35] 26 United Stirling 4-275 [14]
3 Philips MP102C [25-27] 15 Genoa 2 cylinder [36] 27 AIST/MITI MELSE II [14]
4 United Stirling P-40 [14,25-27] 16 Mitsubishi NS-03M [16] 28 Sunpower Rice husk [14]
5 SOLO V-160 [26,27,37] 17 Toshiba NS-03T [16] 291 JCGS System 7 [14]
6 SOLO V-161 [26,27,37] 18 Aisin Seiki NS-30A [16] 301 Harwell Fluidyne pump [14]
7 STO05G [27,38-40] 19 Sanyo NS-30S [16] 311 Sunpower RE-1000 [14]
8 Karabulut-1 test engine [41] 20 4-95 DA Advenco [42] 321 MTI TDE [14]
9 Karabulut-2 test engine [43,44] 21 STM 4-120 [42] 331 GE Proto-2 [14]
10 Yamanokami-2 [25,27,45] 22 Allison PD-46 [46] 34 Philips 400 HP /cyl. [27,42]
11 Kockums V4-275R Mark 1II [24] 231 Magnetic-type actuator [47]
12 Yamanokami-1 [24,27] 24 Philips 1-98 [14]

! Free-piston engine.

2.3.1. Data for Analysis of Models in Group G1

Appendix A shows the 89 operating points corresponding to the engines listed in
Table 1, which have been used as the basis for developing the G1-group models. Table A1 in-
cludes 23 operating points, corresponding to the first 11 engines listed in Table 1, operating
with air, nitrogen, helium, and hydrogen, at mean pressures in the range of 1-150 bar, with
heater wall temperatures ranging from 368 to 1173 K. These data have been used to build
the correlations of the G1-1R and G1-2R models, and as training data for the development
of the G1-3ANN and G1-4ANN models. Since the proportion of available data is not equal
for all ranges of operating variables, this selection has been made to attempt to avoid bias
towards any kind of engine, and to leave a significantly larger percentage of data than
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usual for testing purposes. Table A2 includes 66 operating points, used to validate the
correlations of the G1-1R and G1-2R models, and as test data for the development of the
G1-3ANN and G1-4ANN models. The data correspond to 29 engines, identified in Table 1
as No. 2-5, 7-9, and 12-33, being the last 11 operating points among those used as the basis
for West’s correlation. The ranges of variation of the variables used in the models of this
group are probably the widest considered so far, as can be seen in Table 2.

Table 2. Ranges of variables in models of group G2.

Vo TwE Twe Pm Pp max n;,max T v Np CB,max NI*VIA,max
(cm®) (X) (19] (bar) W) (rpm) -) - =) =) =)
Training  min 64.19 533 286 1.013 1.6 186 0.267 1.40 1.19-10° 0.0675  0.00076
data max 20,106.19 1173 336 150 65,000 5150 0.815 1.67 1.42-108 02615  0.00453
Testing min 0.049 373 273 1 0.01 33 0.261 1.40 7.66-10° 0.0258  0.00013
data max 25,132.74 1173 350 220 125,000 5000 0.777 1.67 1.16-108  0.2608  0.00721
It should be noted that inconsistencies could be found in the literature regarding
the volume used to express the dimensionless power developed by a Stirling engine. In
general, both the symbols and the terms used may lead to confusion. For example, Vi, is
the most commonly used symbol for both the volume swept by the working piston and the
amplitude of the total volume. Both values are the same for beta or gamma Stirling engines,
but differ for alpha engines. To avoid ambiguity, the symbol V} is used in this article to
designate the amplitude of the total volume.
2.3.2. Data for Analysis of Models in Group G2
Appendix B shows 54 operating points, corresponding to the 11 engines identified in
Table 1 as No. 2-7, 10, 12, 13, and 34, which have been used as the basis for developing the
G2 group models. Table A3 includes 18 operating points from nine engines, working with
air, nitrogen, helium and hydrogen, at mean pressures in the range of 1-150 bar, with heater
wall temperatures ranging from 403 to 1173 K. These data have been used to construct
correlations for the G2-5R to G2-8R models, and as training data for the development of the
G2-9ANN to G2-12ANN models. Table A4 includes 36 operating points from four engines,
which have been used to validate the correlations of the G2-5R to G2-8R models, and as
testing data for the development of the G2-9ANN to G2-12ANN models. Tables 3 and 4
show the ranges of the variables used in the models.
Table 3. Ranges of ordinary variables in models of group G2.
Vo TwE Twc Pum ThR Lg Piygmax  Msmax  PBmax  Mymax
(ecm®) (K) (K) (bar) (mm) (mm) W) (W) W) (rpm)
Training min 64.19 368 286 1 0.020 20.0 115 165 60 135
data max 25,132.74 1173 336 150 0.124 56.3 77,365 7120 45,245 5150
Testing min 64.19 771 303 4.1 0.020 28.0 113 532 82 448
data max 15,000 1173 333 110 0.056 75.0 325,020 3480 266,433 2365
Table 4. Ranges of dimensionless variables in models of group G2.
gO ﬁ'@*ﬁ'{ Y ).:l‘dx Np T Hde Hdc gind,max NMA,max gB,max N;/IA,max
Training min  0.0325 2487-107° 140 0776 2.69-10° 0267 0.088 0.088 0.0171  0.00242 0.0154 0.00211
data max  0.4303 2034107 1.67 3730 1.26:108 0.815 1243 1243 02869  0.00591 0.2615 0.00453
Testing min  0.1685 1.191-107% 140 0749 2.69-10° 0261 0.088 0.088 0.1024  0.00269  0.0891 0.00198
data max 04310 1.368-107° 1.67 2.034 191-108 0.777 0723 0.678 0.2869  0.00496  0.2608 0.00424
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2.4. Statistical Indicators

Various criteria have been proposed to assess the fit between the experimental data and
model estimates, but none of them is free of limitations [48]. Since the percentage results
facilitate interpretations, in this article, the performance of the models is assessed using
dimensionless statistical indicators, namely the relative root mean square error RRMSE, the
relative mean bias error RMBE, and the coefficient of determination RZ. The RRMSE value
is used as an optimisation criterion for both least squares regression-based models, and for
training ANN-based models. To facilitate comparisons with results from other authors, the
Nash-Sutcliffe coefficient of model efficiency, NSE, and the normalised values of the root
mean square error and mean bias error, NRMSE and NMBE, respectively, have also been
calculated, using the mean values of the experimental data as references for the latter two.
R? values range from 0 to 1, and NSE values range from —oo to 1. Negative NSE values
suggest that the mean of the measurements is a better predictor than the model estimates
themselves [49]. Some authors warn against the risk of identifying the meaning of R? and
NSE [50], while others try to avoid confusion by classifying the former as an indicator of
dispersion and the latter as an indicator of overall performance [51]. For example, while
R? = 0.8 indicates that the model explains 80% of the variance in the observed data, the
value NSE = 0.8 has a very different meaning, i.e., that the model mean squared error
represents 20% of the observed variance. The cause of possible confusion may be that
R? can be interpreted as a maximum potential value for NSE, as the following equation
reduces to NSE = R? for the optimal case of 5; = 0; and 03, = R [49]:

—  —\ 2
NSE = 204,R — 02, — (S‘Uol) (21)
(o]

Taylor diagrams have been recommended for visualising results in model analyses [52].
In this article, this type of chart is used as an alternative to the usual scatterplots, because it
provides a concise statistical summary of how well patterns match each other in terms of
their correlation, their root-mean-square difference, and the ratio of their variances. The
Taylor diagram is based on the definition of the centred pattern RMS difference E’ [52],
which is related to key statistical indicators by means of the following equations:

RMSE = (5; —0;)* + E? (22)

Equation (22) and the law of cosines are the basis for the graphical representation of
the degree of closeness between a model and the reference data set, using dimensionless
variables (Figure 2).

(Model)

0 1 (Ref.)

Figure 2. Geometric basis of Taylor diagram.
3. Results

3.1. Regression-Based Models of Group G1

Figure 3 provides a picture of the dispersion between the 89 dimensionless maximum
brake power data points included in Tables Al and A2, and the predictions based on
Equations (9)-(11).



Inventions 2023, 8, 88

10 of 27

0.300

0.250

0.200

0.150

0.100

DIMENSIONLESS MAXIMUM BRAKE POWER

0.050

0.000

— — Walker (1979)
Reader an Hooper (1983)
— — West (1986)

A West correlation data
< Training data

+ Testing data

0.0

0.1

0.2 0.3

04 0.5 0.6
TEMPERATURE RATIO

0.7 0.8

Figure 3. Comparison between classical correlations of dimensionless maximum brake power.

Based on Equation (13), the following correlation has been obtained, which fits the
23 operating points included in Table A1 with RRMSE = 22.2% and R? = (.7847:

éB,max = 7.645')/7()'0287*1.621NF;O.357

(24)

This equation fits the 89 operating points included in both Tables A1 and A2 with
RRMSE = 22.2% and R?> = 0.7940. Figure 4 facilitates comparisons between data and

model predictions.
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® Karabulut-2 (He, 4 bar, 533K)

Figure 4. Comparison between experimental data and G1-1R model predictions.

Based on Equation (15), the following correlation has been obtained, which fits the
23 operating points included in Table A1 with RRMSE = 30.1% and R? = 0.9569:

N1 max = 0.00016827 3070780 \D172

(25)

This equation fits, with RRMSE = 25.3% and R? = 0.9598, the 82 total operating points
that result after excluding the FPSE data, because of their different operating principle, and
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operating point No. 84, because its Ny, , ...

0.0080

value is significantly higher than those known
for engines with a kinematic drive mechanism, from Tables A1 and A2. Figure 5 facilitates
comparisons between data and model predictions.
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Figure 5. Comparison between experimental data and G1-2R model predictions.

3.2. ANN-Based Models of Group G1

The optimal number of neurons in the hidden layer is usually determined statistically
by some variant of the mean square error and the coefficient of determination [53]. In this
paper, the optimisation is based on RRMSE and R?, whose weighting is obtained by the
normalised centred pattern RMSE, E,,. Table 5 and Figure 6 show that the optimal number
corresponds to 7 and 10 neurons for the G1-3ANN and G1-4ANN models, respectively. In
addition, Figure 7 allows comparisons to be made between the data and the predictions of
the models configured with the optimal number of neurons.

Table 5. Statistical results during training for ANN-based models in group G1 as a function of the

number of neurons in the hidden layer.

Neurons 1 2 3 5 7 10 12 15
RRMSE (%) 30.31 27.72 29.94 26.41 14.84 19.69 30.11 19.69
G1-3ANN R? 0.5527 0.6345 0.4026 0.6286 0.8820 0.7402 0.3944 0.7402
E’,, (%) 67.67 60.51 79.32 61.15 35.32 50.99 78.55 50.99
RRMSE (%) 23.80 15.81 22.49 16.89 12.47 12.82 17.00 20.36
G1-4ANN ! R2 0.5264 0.7774 0.5022 0.6250 0.8386 0.8738 0.6378 0.5795
E;q (%) 75.81 50.21 74.66 61.54 41.67 38.66 60.54 78.26

! Excluding FPSEs and Sunbird Rice Husk engine.
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Figure 6. Taylor diagrams to compare training results as a function of the number of neurons:
(a) G1-3ANN model; (b) G1-4ANN model.
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Figure 7. Comparison between data and predictions of models with optimal number of neurons:
(a) G1-3ANN model; (b) G1-4ANN model.

3.3. Regression-Based Models of Group G2

Model G2-5R is based on the following equation, which fits the 18 available experi-
mental data points with RRMSE = 3.20% and RMBE = —0.17%:

0.0209 _
1.0716 r%RLR —0.1696 0.0527 0.0184,.0.1932 —0.1012 0-0518
Gind max = 0828060 2| Tl O 3 T B (26)
0

Figure 8 facilitates comparisons between data and model predictions.

Model G2-6R is based on the following equation, which fits the 18 experimental data
points with RRMSE = 6.35% and RMBE = 0.43%:
5 0.1131
"irLr

NpmA,max = 0.000356@0_20664 «

—1.8519
—0.8828 z —0.0106 -—2.7810,,0.5639 , 0.0189
Y ( de) Np T Hixe Hdxc (27)

Figure 9 facilitates comparisons between data and model predictions.
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Figure 9. Comparison between experimental data and G2-6R model predictions.

Model G2-7R is based on the following equation, which fits the 18 experimental data
points with RRMSE = 6.39% and RMBE = —0.44%:
0.1123

)
"irLy

~1.6930
05 max = 0.8358 €O—0.2918 07655 ( Z#dx ) Np—0.0406T—1.2756 ngem yd—xoc.o429 (29)

Figure 10 facilitates comparisons between data and model predictions.
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Figure 10. Comparison between experimental data and G2-7R model predictions.

Model G2-8R is based on the following equation, which fits the 18 experimental data
points with RRMSE = 10.93% and RMBE = —5.15%:
V%R LR 0.0322

Niitamax ~ 0.000220, 1084 !

—0.9204 0.0178
—1.5436 0.0500.-—1.6547 ,,0.1708 ,, — -
Y ( § ,de) Np T HBaxe Haxe (29)

Figure 11 facilitates comparisons between data and model predictions.
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Figure 11. Comparison between experimental data and G2-8R model predictions.

3.4. ANN-Based Models of Group G2

Table 6 and Figure 12 allow the selection of optimal neuron numbers for the G2-9ANN
to G2-12ANN models, while Figure 13 provides comparisons between the data and the
predictions of the models with optimal neuron numbers.
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Table 6. Statistical results as a function of the number of neurons during training for ANN-based

models in group G2.
Neurons 1 2 3 5 7 10
RRMSE (%) 3.15 3.13 3.13 0.55 3.80 3.80
G2-9ANN R? 0.9978 0.9979 0.9979 0.9999 0.9971 0.9970
EJ, (%) 497 4.77 4.77 0.90 5.59 5.67
RRMSE (%) 7.13 7.34 10.88 20.01 16.89 21.71
G2-10ANN R2 0.8421 0.9131 0.6948 0.3886 0.3196 0.6574
E;, (%) 40.06 29.48 56.72 97.92 95.95 78.96
RRMSE (%) 3.69 3.68 4.60 4.60 5.19 3.70
G2-11ANN R? 0.9944 0.9944 0.9925 0.9810 0.9936 0.9935
EJ}, (%) 7.57 7.54 8.68 13.77 8.12 8.06
RRMSE (%) 10.07 8.68 15.62 13.37 16.89 17.75
G2-12ANN R2 0.7259 0.7767 0.5754 0.7521 0.3196 0.6817
E! (%) 53.18 49.71 71.09 54.57 51.57 72.47
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Figure 12. Taylor diagrams to compare training results as a function of the number of neurons:
(a) G2-9ANN model; (b) G2-10ANN model; (c) G2-11ANN model; (d) G2-12ANN model.
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Figure 13. Comparison between data and predictions of models with optimal number of neurons:
(a) G2-9ANN model; (b) G2-10ANN model; (c) G2-11ANN model; (d) G2-12ANN model.

4. Discussion and Future Work

The ability of a model to accurately predict the performance of a set of Stirling en-
gines depends on the influence between the input and output variables of the model,
the representativeness and quality of the data sample used for training and testing, and
the mathematical procedure of the model. High accuracy cannot be expected from the
models in group G1, because they only use three input variables, although they are un-
doubtedly influential on the outputs. Consistent with these observations, it follows from
Figures 3, 4 and 7a that the G1-1R and G1-3ANN models are able to estimate {p max With
relative errors within +25% for most of the Appendix A operating points, while the classi-
cal correlations are not adequate for a significant number of data. Table 7 and Figure 14
facilitate comparisons using statistical indicators.

With respect to particular operating points, for the G1-1R model, the largest percentage
deviations are observed for the Ecoboy and Yamanokami-1 engines and, to a lesser extent,
for the Karabulut-2 engine. Itis interesting to note that this model predicts {p max acceptably
for the FPSE analysed, including the magnetic micro-actuator of only 10 mW and 0.05 cm?®,
values that are well outside the range of operating points used to build the model. The
G1-3ANN model fits the training data somewhat better, but is less accurate for the testing
data. The largest percentage deviations are observed for the Ecoboy engine, for several
FPSEs and, especially, for the 2-cylinder Genoa engine.
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Table 7. Statistical indicators of the performance of the {p max models of group G1.
RRMSE NRMSE RMBE NMBE ) o
(%) (%) (%) (%) NSE R n By ()
Beale correlation 193.01 53.28 72.56 18.49 —0.1370  0.0397 0.0000  100.00
Teain West correlation 49.44 49.15 14.42 —6.26 0.0324 0.0720 0.4232 97.57
rgmmg Reader and Hooper ~ 156.88 62.45 17.41 18.71 —0.5622  0.0761 09817  119.25
ata GIl-1R 22.18 23.74 2.54 —1.27 0.7743 0.7847 0.9849 47.44
G1-3ANN 14.84 18.37 —22 —5.13 0.8647 0.8820 0.8572 35.31
Beale correlation 120.03 4279 37.65 6.13 —0.0209  0.0173 0.0000  100.00
West correlation 44.03 46.46 —2.80 —1822  —0.1924  0.0388 0.0444 10045
Alldata  Readerand Hooper  102.50 53.85 10.54 1.99 —0.6019  0.0401 1.0002 12648
GI-1R 22.15 20.21 —2.64 —6.32 0.7710 0.7940 0.9141 4545
G1-3ANN 34.74 26.47 —0.53 —5.76 0.6072 0.6417 0.9275 61.17
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Figure 14. Comparison between the performances of the g max models of group G1 based on:
(a) training data; (b) all data.

Regarding G1-model estimates of Ny, ..., it is clear from Figure 5 that the G1-2R
model gives results with relative errors within £25% for most of the data, after excluding
the FPSEs and Sunpower’s Rice Husk engine, as mentioned before. The largest percentage
deviations are observed for the Mitsubishi&Daihatsu and Karabulut-1 engines and, to a
lesser extent, for several operating points of the Karabulut-2 engine, and for the point No.
35 of the MP102C engine in Table A2, previously associated with a measurement error [27].
The estimates of the G1-4ANN model with 10 neurons in the hidden layer are acceptable
for the training data, but worse for the testing ones, due to high percentage deviations
for several operating points at low values of Ny, , -, as shown in Figure 7b. However, it
should be noted that such low values of Ny, 4 ... indicate that the degree of development
of the gas circuit of the corresponding engines can be improved [24], i.e., the coefficients of
indicated power losses are high, as can be seen from Equations (5) and (6). Table 8 shows
the statistical indicators obtained for both G1-2R and G1-4ANN models.

In summary, in group G1, the proposed regression-based models are slightly better
than the ANN-based models, with balanced relative errors for the total training and test
data in Appendix A.

With respect to G2-model estimates of {;,4 max, both models G2-5R and G2-9ANN
provide very accurate estimates for the training data, especially the G2-9ANN model. The
results are also good for the testing data, with almost all relative deviations within +10%,
as shown in Figures 8 and 13a, and Table 9.
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Table 8. Statistical indicators of the performance of the Ny, , ... models of group G1.

RRMSE NRMSE RMBE NMBE 2 ! o
(%) (%) (%) (%) NSE R Gon By O0)
Training G1-2R! 30.09 21.72 3.60 —1.86 0.9569 0.9569 0.9792 20.77
data G1-4ANN! 12.82 11.91 —1.67 —0.66 0.8504 0.8738 1.0873 38.66
1 G1-2R! 25.28 21.34 —0.31 —4.64 0.9590 0.9598 0.9510 20.25
All data G1-4ANN' ! 44.80 19.03 8.73 0.64 0.6729 0.6832 0.9261 57.16
! Excluding FPSEs and Sunbird Rice Husk engine.
Table 9. Statistical indicators of the performance of the {4 max models of group G2.
RRMSE NRMSE RMBE NMBE
E 2 E (%
(%) (%) (%) (%) NS R Tsn n (%)
Training G2-5R 3.20 2.60 —-0.17 —0.34 0.9979 0.9981 0.9905 4.49
data G2-9ANN 0.55 0.52 —0.01 —0.01 0.9990 0.9999 0.9997 0.90
G2-5R 8.18 8.33 3.77 4.01 0.9700 0.9767 1.0753 17.58
All dat G2-5R! 6.42 6.78 3.07 3.35 0.9804 0.9848 1.0636 14.25
ata G2-9ANN 6.86 7.04 3.00 3.21 0.9679 0.9762 1.0280 15.93
G2-9ANN ! 4.81 5.25 2.32 2.56 0.9825 0.9875 1.0239 11.57

! Excluding the operating point No. 33 of Table A4.

Moreover, both models show the aforementioned anomaly of operating point No. 33
in Table A4. It is interpreted that the quality of these models is mainly due to the inclusion
of the dimensionless quasi-static work per cycle {y among the input variables, since the
ratio ingmax/Co is bounded, as indicated by Equation (4). Accuracy is also enhanced
by the inclusion of additional variables, reflecting the influence of dead volume and
regenerator geometry.

Regarding G2-model estimates of Np14 max, Figure 9 shows that the predictions of the
G2-6R model have a good degree of accuracy, with practically all relative errors within
£10%, again excluding point No. 33 in Table A4.

In contrast, Figure 13b shows that the predictions of the G2-10ANN model with two
neurons in the hidden layer, although acceptable for the training data, show high relative
deviations, not only as expected for the operating point No. 33 of Table A4, but also for
the operating point No. 54. The statistical indicators listed in Table 10 show that the
G2-6R model is somewhat better than the G2-10ANN model, especially for operating point
No. 54. However, deviations for operation point No. 54 can be considered less relevant, as
this prototype was never built [46], and the corresponding values of the input variables
Co, rﬁRLR /Vo, ¥ tax and Nj are outside the range of the training data variables and at
the extremes of the test data range. In summary, it seems that a neural network with a
more complex structure would be necessary to outperform the accuracy of the Nja max
predictions obtained by the regression-based model.

With respect to G2-model estimates of {pmax, Figure 10 and Table 11 show that
the predictions of the G2-7R model fit most of the data used for its construction, but
the deviations are relatively large for several of the test data. The highest percentage
deviations are for some points of the MP102C engine operating at 873 K and the STO5G
engine, although it should be noted that the latter data are from simulations. The relative
deviations of points No. 33 and No. 54 are again outside the limits of £10%.
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Table 10. Statistical indicators of the performance of the Njj4 max models of group G2.

RRMSE  NRMSE RMBE NMBE

2 " (o
(%) (%) (%) (%) NSE R o By 0
Training G2-6R 6.35 7.30 043 0.02 0.8932 0.8934 0.9320 32.68
data G2-10ANN 7.34 6.64 —0.54 —0.88 0.9116 0.9131 0.9591 29.48
G2-6R 9.94 0.23 —4.93 —0.10 0.6589 0.7325 1.1284 58.46
G2-6R1! 8.74 0.16 —4.29 —0.07 0.8209 0.8649 1.1407 42.37
All data G2-10ANN 13.54 12.53 2.14 0.81 0.6103 0.6160 0.8490 62.30
G2-10ANN'! 12.91 11.07 2.87 1.80 0.6801 0.6917 0.8878 55.81
G2-10ANN 2 12.28 10.60 3.62 2.35 0.7019 0.7172 0.8229 53.23
! Excluding the operating point No. 33 of Table A4. 2 Excluding the operating points No. 33 and No. 54 of
Table A4.
Table 11. Statistical indicators of the performance of the {p max models of group G2.
RRMSE  NRMSE RMBE NMBE > N
(%) (%) (%) (%) NSE R T Ey (%)
Training G2-7R 6.39 5.23 —0.44 -1.02 0.9930 0.9935 0.9812 8.21
data G2-11ANN 3.68 4.73 —0.14 —0.43 0.9943 0.9944 0.9869 7.54
G2-7R 11.74 14.26 —1.04 —0.72 0.9183 0.9241 1.0360 28.55
G2-7R ! 11.24 13.87 —1.58 —1.27 0.9238 0.9284 1.0270 27.50
All datal G2-7R 2 11.11 13.72 —1.29 —0.85 0.9256 0.9311 1.0371 27.22
ata G2-11ANN 18.14 15.98 —-1.13 0.15 0.8655 0.8911 1.1038 36.67
G2-11ANN'! 17.94 15.68 —1.65 —-0.37 0.8730 0.8969 1.0993 35.63
G2-11ANN 2 17.28 13.98 —2.43 —1.44 0.9009 0.9139 1.0655 31.32

1 Excluding the operating point No. 33 of Table A4. 2 Excluding the operating points No. 33 and No. 54 of
Table A4.

The results are similar using the G2-11ANN model, as shown in Table 11 and Figure 13c,
apart from the 400 HP/cylinder prototype, for which this model predicts higher relative
deviation. These observations show that both types of models can be acceptable for prelimi-
nary design, although their estimation capability is limited by not including input variables
related to the mechanical losses of indicated power. Future improvements can be expected
from the inclusion of input variables representative of mechanical efficiency, the availability
of more operational data, and the use of neural networks with more complex structure.

In the case of the G2-model estimates of Ny 4 ..., Figure 11 shows that the predictions
of the G2-8R model are accurate for most of the data used to construct the correlation,
as they are virtually all included within the +10% deviation limits. For the test data, in
general, the model predictions are biased below the target data. Apart from operating point
No. 33 in Table A4, the largest percentage deviations, in the order of —25%, correspond to
points in the STO5G engine series.

Furthermore, Figure 13d shows that the predictions of the G2-122ANN model with two
neurons in the hidden layer are acceptable for the training data, but show high relative
deviations for operating point No. 54 of Table A4 and, to a lesser extent, for several points
in the STO5G engine series. In order to improve the results, the G2-12ANN model was
modified by arranging one neuron in the hidden layer, with the statistical effects shown
in Table 12, depending on whether or not operating points No. 33 and 54 are included.
Figure 15 shows the results with the modified model.
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Table 12. Statistical indicators of the performance of the Ny, , ... models of group G2.

RRMSE NRMSE RMBE NMBE

2 7 (o,
(%) (%) (%) (%) NSE R Tsn Ey (%)
Traini G2-8R 10.93 11.56 ~5.15 592 0.7164 0.7925 0.1804 84.34
rzmtmg G2-12ANN ! 8.68 10.85 —0.76 ~1.16 0.7500 0.7767 1.0358 49.71
ata G2-12ANN 2 10.07 11.69 ~0.96 ~1.87 0.7097 0.7259 0.9455 53.18
G2-8R 13.32 14.82 —8.71 —9.61 0.3629 0.5947 0.8238 63.88
G2-8R 3 12.50 13.30 ~8.19 ~8.89 0.4527 0.6733 0.8648 57.33
G2-8R 12.45 13.28 —8.64 ~925 0.4437 0.6824 0.8774 56.59
All datal G2-12ANN ! 43.37 35.72 333 1.33 ~2.7100 0.0541 1.8922 192.36
ata’  G2-12ANN 13 19.47 19.13 ~1.66 ~2.36 ~0.1500 0.3347 1.2670 106.74
G2-12ANN 2 30.13 25.36 2.49 0.22 —0.8675 0.0835 1.2640 136.65
G2-12ANN 23 30.18 25.24 3.05 0.96 ~0.9793 0.0888 1.3301 140.59
G2-12ANN 24 12.63 13.24 —0.73 ~2.03 0.4454 0.4812 0.8447 73.59

1 Using 2 neurons in the hidden layer. 2 Using 1 neuron in the hidden layer. 3 Excluding the operating point
No. 33 of Table A4. 4 Excluding the operating points No. 33 and No. 54 of Table A4.
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Figure 15. Comparison between experimental data and modified G2-12ANN model predictions.

As in the case of the {p max models in group G2, future improvements of the G2-8R
and G2-12ANN models could be based on more complexly structured neural networks
and on seeking reliable training and test data, whose ranges of variation are similar once
expressed in dimensionless variables.

Allin all, the most pressing need for future work is to increase the amount of available
experimental data. Uncertainty of existing data can be addressed by different techniques al-
ready successfully used in artificial intelligence and deep learning, such as clustering, back-
propagation, Benders decomposition or option value [54-56]. Furthermore, variants of the
procedure used in this article for eight-input models could be interesting for other energy
conversion systems, since Equation (2) is applicable to other thermodynamic cycles [27].

5. Conclusions

Regression-based models and simple ANNs have been developed and compared to
estimate the peak power values for feasibility studies and the preliminary design of Stirling
engines. The main findings are summarised below:

e  Models using three dimensionless input variables fit the 89 operating data points
from 34 engines, with relative errors of about +25%. The classical correlations are not
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adequate for a significant number of data, and do not provide criteria for estimating
the speed corresponding to the peak power points;

e  Estimates of the dimensionless maximum indicated power from models using eight
dimensionless input variables match practically all the operating data, with rela-
tive errors within +£10%, for both regression-based and ANN-based models. The
regression-based model estimates are also quite accurate for the corresponding di-
mensionless engine speeds, while the ANN-based model predicts acceptable relative
errors for the training data, but larger deviations for some test data;

e  Estimates of dimensionless maximum brake power from models using eight dimen-
sionless input variables are also acceptable for data used in building regression models
or training ANN models, but the deviations are somewhat less accurate for test data.
The predictions of the corresponding engine speeds show similar relative deviations
for both regression-based and ANN models. Such deviations are related to the lack of
input variables involved in the mechanical efficiency, whose inclusion is recommended
for future works.
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Nomenclature

Awx Wetted area of space x, m?

E' Centred pattern RMSE = /07 + 02 — 20,05R
E;, Normalised centred pattern RMSE = E’ /0,
Lr Regenerator length, m

MBE Mean bias error = }_!' ;(s; —0;)/n

NMBE Normalised mean bias error = (¥} ;(s; —0;)/n)/0;
NRMSE  Normalised root mean square error = ( Yiq(si— oi)2 / n) /0;
NSE Nash-Sutcliffe model efficiency = 1 — Y/ (s; — oi)2 /Xt (0i — 07)2

RMSE Root mean square error = /Y ;(s; — oi)2 /n
RMBE Relative mean bias error = }!' ;((s; — 0;)/0;)/n

RRMSE  Relative root mean square error = \/ Yiq((si—0i)/ 0;)/n

Np Beale number = (g max = Pp ../ (Pm V01 max)
Nro Characteristic regenerator Fourier number
Npyia Characteristic Mach number

*

Njyamax Characteristic Mach number at maximum brake power = n;max Vol/ 3/ /RTyc
Npamax Characteristic Mach number at maximum indicated power = 715 max VO1 137y RT,c

N, Characteristic pressure number = py Vi’ / (114/RTc)
NtcRr Characteristic regenerator thermal capacity number
s Engine speed, rev/s

s, max Engine speed at maximum indicated power, rev/s

Mg max Engine speed at maximum brake power, rev/s

Pg Brake power, W

P4 Indicated power, W

p Pressure, Pa

Pm Mean pressure, Pa

R Specific gas constant, J/(kg-K)



Inventions 2023, 8, 88

22 of 27

Coefficient of determination

= [Ty (s — 50) (01 = 37) /0y (51— 57) 2Dy (05 — 7))
Thy Hydraulic radius of space x, m

Tyoc  Cooler wall temperature, K

Tye  Heater wall temperature, K

1% Volume, m?

Vir  Dead volume of space x, m
Vo Volume amplitude of the cycle = Vinax — Vinin, m3
Wy  Quasi-static work per cycle, |

2

3

o Phase angle, rad

aypy  Dimensionless wetted area of space x = Ayx/ VOZ/ 5

o} Coefficient of lineal indicated power losses

0% Adiabatic coefficient of working fluid

Anx  Dimensionless hydraulic radius of space x = 7,/ Vol/ 3
U Working fluid viscosity at reference temperature, Pa-s

Hgy  Dimensionless dead volume of space x = Vy,./Vp
1v Regenerator volumetric porosity
b4 Coefficient of quadratic indicated power losses

o) Standard deviation of experimental data = \/ (X (0 — 07)2) /n

s Standard deviation of simulated data = \/ (2 (si— 5)%) /n
Osn Normalised standard deviation = o5/ 0,

T Temperature ratio = Tyyc / TyyE

(B Dimensionless brake power = P/ (pm Vons)

lina  Dimensionless indicated power = P;,,;/ (pm Vons)

Co Dimensionless quasi-static work per cycle = Wy / (pm Vo)
Subscripts

C,c  Compression or cold space
E,e  Expansion or hot space
max Under maximum power conditions

0 Observed value
R Regenerator

5 Simulated value
xc Cooler

xe Heater
Appendix A

Tables A1l and A2 list the data used, respectively, for training and testing the models
with three input variables (group G1).

Table Al. Database of operating points for training models of group G1.

Working Vo TwE TwC Pm P B,max n;,max

No. Engine Gas m®»d ® (K (ban) W @pm) CBmx Nvamax  Ref.
Mitsubishi- .
1 . Helium 7330.30 1173 313 108.00 44,095 495 0.0675  0.00199 [25]
Daihatsu

2 GM GPU-3 Hydrogen 119.70 977 288 27.60 2700 3600 0.1362  0.00271 [25-27,34]
3 GM GPU-3 Helium 119.70 977 286 27.60 1600 2350 0.1237  0.00250 [25-27,34]
4 Philips MP102C Air 64.19 1073 333 4.14 153 1475 0.2342  0.00318 [25-27]
5 Philips MP102C Air 64.19 1073 333 12.41 415 1425 0.2194  0.00308 [25-27]
6 Philips MP102C Air 64.19 1173 333 12.41 489 1513 0.2433  0.00327 [25-27]
7 Philips MP102C Air 64.19 1173 333 4.14 184 1593 0.2615 0.00344 [25-27]
8 US P-40 Hydrogen 134.40 1023 333 150.00 45,245 4835 0.0696  0.00352 [25-27]
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Table Al. Cont.

*

. Workin Vo TwE Ty Pm Pg max Mg max *
No. Engine Gas T emdy © © (e W) @pm  Bmax Naiamax Ref.
9 US P-40 Helium 134.40 1023 333 150.00 29,695 3265 0.0677  0.00335 [25-27]
10 US P-40 Nitrogen 134.40 1023 333 150.00 19,525 1670  0.0870  0.00453 [25-27]
11 SOLO V-160 Helium 194.55 898 336 120.00 8355 2460  0.0873  0.00284 [25-27,37]
12 SOLO V-160 Helium 194.55 898 323 80.00 5270 2235  0.0909  0.00263 [25-27,37]
13 SOLO V-160 Helium 194.55 898 309 40.00 2115 1750  0.0932  0.00211 [25-27,37]
14 SOLO V-161 Hydrogen  194.55 1005 328 112.20 17,860 5150  0.0953  0.00428 [25-27,37]
15 ST05G Air 425.59 773 298 7.00 362 679 0.1074  0.00291 [27,39]
16 ST05G Air 425.59 873 298 7.00 471 752 0.1261  0.00322 [27,39]
17 ST05G Air 425.59 973 298 7.00 514 800 0.1294  0.00343 [27,39]
18 ST05G Nitrogen 425.59 723 288 10.00 260 500 0.0733  0.00214 [27,38]
19 ST05G Nitrogen 425.59 923 288 10.00 508 600 0.1194  0.00257 [27,38]
20 Karabulut-1 Air 231.00 533 293 1.013 13.95 215 0.1664  0.00076 [41]
21 Karabulut-2 Helium 230.00 533 293 4.00 183 600 0.1989  0.00078 [44]
22 Yamanokami-2 Air 20,106.19 368 300 7.00 670 186 0.0154  0.00287 [25,27,45]
23 4_2K%Cé“ﬁ2ik q Helium 38891 993 308 12700 65000 2000 0.0987  0.00304 [24]
Table A2. Database of operating points for testing models of group G1.
. Workin Vo Twe Tuc P PpB max n;,max *

No Engine Gas ] (cm®) R A% (b?r) W) (rpm) {Bmax N, MA,max Ref.

24 Yamanokami-1 Air 25,132.74 403 313 1.00 146 1335  0.0258  0.00220 [24-27]

25 Ecoboy-SCM81 Air 81.43 703 323 8.00 59 990 0.0549  0.00235 [24-27]

26 Philips MP102C Air 64.19 873 333 4.14 82 1120  0.1652  0.00242 [27]

27 Philips MP102C Air 64.19 873 333 5.52 118 1229 0.1623  0.00265 [27]

28 Philips MP102C Air 64.19 873 333 6.90 148 1274 0.1570  0.00275 [27]

29 Philips MP102C Air 64.19 873 333 8.28 168 1280  0.1484  0.00276 [27]

30 Philips MP102C Air 64.19 873 333 9.66 194 1299  0.1448  0.00280 [27]

31 Philips MP102C Air 64.19 873 333 11.03 202 1265  0.1356  0.00273 [27]

32 Philips MP102C Air 64.19 873 333 12.41 190 1178  0.1214  0.00254 [27]

33 Philips MP102C Air 64.19 973 333 4.14 116 1288  0.2040 0.00278 [27]

34 Philips MP102C Air 64.19 973 333 5.52 171 1392 0.2078  0.00301 [27]

35 Philips MP102C Air 64.19 973 333 6.90 233 1966  0.1602  0.00424 [27]

36 Philips MP102C Air 64.19 973 333 8.28 257 1411  0.2054 0.00305 [27]

37 Philips MP102C Air 64.19 973 333 9.66 281 1368  0.1990  0.00295 [27]

38 Philips MP102C Air 64.19 973 333 11.03 290 1393  0.1766  0.00301 [27]

39 Philips MP102C Air 64.19 973 333 12.41 287 1324  0.1633  0.00286 [27]

40 Philips MP102C Air 64.19 1073 333 5.52 222 1615  0.2328  0.00349 [26,27]

41 Philips MP102C Air 64.19 1073 333 6.90 282 1650  0.2315  0.00356 [26,27]

42 Philips MP102C Air 64.19 1073 333 8.28 333 1635  0.2299  0.00353 [26,27]

43 Philips MP102C Air 64.19 1073 333 9.66 361 1545 0.2261 0.00334 [25-27]

44 Philips MP102C Air 64.19 1073 333 11.03 392 1490  0.2230  0.00322 [26,27]

45 Philips MP102C Air 64.19 1173 333 5.52 269 1745  0.2608  0.00377 [27]

46 Philips MP102C Air 64.19 1173 333 6.90 340 1773 0.2602  0.00383 [27]

47 Philips MP102C Air 64.19 1173 333 8.28 391 1710  0.2578  0.00369 [27]

48 Philips MP102C Air 64.19 1173 333 9.66 369 1459  0.2449 0.00315 [27]

49 Philips MP102C Air 64.19 1173 333 11.03 461 1570  0.2491  0.00339 [27]

50 SOLO V-160 Helium 194.55 898 3164 60.00 3675 2045 0.0924 0.00243 [26,27,37]

51 SOLO V-160 Helium 194.55 898  329.8 100.00 6835 2365  0.0891 0.00276 [26,27,37]

52 GM GPU-3 Hydrogen  119.70 866 288  27.60 2110 3000 0.1277  0.00226 [25-27,34]




Inventions 2023, 8, 88

24 of 27

Table A2. Cont.

*

. Workin Vo Twe Tuc P Pgmax  Msmax +
No Engine Gas ] (cm?) () K) (bar) W) (rpm) IBmax  Npa max Ref.
53 GM GPU-3 Hydrogen 119.70 922 288 27.60 2450 3500 0.1271  0.00264 [25-27,34]
54 GM GPU-3 Helium 119.70 977 286 27.60 2675 2500 0.1943  0.00266 [25-27,34]
55 GM GPU-3 Helium 119.70 866 286  55.20 2950 2500 0.1072  0.00266 [25-27,34]
56 GM GPU-3 Helium 119.70 922 286 55.20 3350 2750 0.1106  0.00293 [25-27,34]
57 Karabulut-2 Helium 230.00 473 293 2.80 51.93 453 0.1068  0.00059 [43]
58 Karabulut-2 Helium 230.00 453 293 1.00 38 450 0.2203  0.00059 [44]
59 Karabulut-2 Helium 230.00 453 293 2.00 61.5 500 0.1604  0.00065 [44]
60 Karabulut-2 Helium 230.00 453 293 3.00 52 425 0.1604  0.00056 [44]
61 Karabulut-2 Helium 230.00 493 293 3.00 117 530 0.1920  0.00069 [44]
62 Karabulut-2 Helium 230.00 533 293 3.00 125 540 0.2013  0.00071 [44]
63 DMC3 Air 28.65 1023 323 10.70 109 1500 0.1422  0.00251 [35]
64 Genoa 2 cyl. Air 741.87 1023 293 15 2900 600 0.1303  0.00312 [36]
65 Mitsubishi Helium 161.00 971 313 62 3810 1401 0.1635 0.00157 [16]
NS-03M
66 Toshiba NS-03T Helium 268.70 991 313 64 4140 1299 0.1112  0.00173 [16]
67 Aisin Seiki Helium 209.30 933 313 147 30,400 1500 0.0988 0.00184 [16]
NS-30A
68 Sanyo NS-30S Helium 205.06 958 313 155 45,600 1805  0.1192  0.00220 [16]
69 4-95 DA Hydrogen 134.67 1023 328 101.30 44,000 5000 0.0968  0.00367 [42]
Advenco
70 STM4-120 Helium 167.19 1073 318 110 40,000 3000 0.1087 0.00339 [42]
71 Allison PD46 Helium 77.50 933 349 102 3000 3000 0.0759  0.00250 [46]
72 ST05G Nitrogen 425.59 693 296 5.30 156 494 0.0842  0.00209 [27]
731 ST05G Air 425.59 573 288 8 198 455 0.0767  0.00198 [40]
741 ST05G Air 425.59 673 288 8 329 538 0.1078  0.00235 [40]
751 ST05G Air 425.59 773 288 5 313 633 0.1394  0.00276 [40]
76 1 ST05G Air 425.59 773 288 8 478 633 0.1331  0.00276 [40]
771 ST05G Air 425.59 773 288 10 575 633 0.1281 0.00276 [40]
78 2 Magnetic Air 0.05 373 273 1.00 0.01 600 0.2033  0.00013 [47]
micro-actuator
793 Philips 1-98 Helium 98.00 1123 323  220.00 15,000 3000 0.1391  0.00281 [14]
803 United Stirling ~ Hydrogen  135.00 1083 323 150.00 52,000 4000 0.0963  0.00296 [14]
4-95 /P40
813 Philips-Ford Hydrogen 305.00 1023 338 200.00 125,000 4500 0.0683  0.00428 [14]
4-215
823 United Stirling Helium 390.00 1123 293 150.00 118,000 2600 0.1164 0.00406 [14]
4-275
833 AIST/MITI Air 427.00 973 279 48.00 3600 1000 0.1054 0.00444 [14]
MELSE II
843 Sunpower Rice Air 6900.00 793 350 5.00 4000 720 0.0966  0.00721 [14]
husk
8523 JCGS System 7 Air 0.56 773 323 18.00 5.3 2400 0.1314  0.00108 [14]
8623 Harwell Air 2320.00 633 298 1.00 14 33 0.1097  0.00025 [14]
Fluidyne pump
8723 Sunpower Air 67.00 883 298 71.00 1200 1820 0.0832  0.00421 [14]
RE-1000
8823 MTI TDE Air 92.00 773 288 40.00 1200 2700 0.0725  0.00707 [14]
8923 GE Proto-2 Air 133.00 933 308  82.00 1750 1810  0.0532 0.00518 [14]

1 Numerical simulation. 2 Free-piston engine. 3 Used for West correlation.

Appendix B

Tables A3 and A4 list the data used, respectively, for training and testing the models
with eight input variables (group G2).
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Table A3. Database for training G2 models [27].

No. Engine W(();l’:‘(sll'lg o r%% Y Y pax Np T Hdxe Hdxc gind,max NMa,max gB,max N;/IA,max
1 GPU3 Hydrogen 0.3121 1681077 1.41 1.661 1.43-107 0.295 0.587 0.110 0.1554 0.00339 0.1362 0.00271
2 GPU3 Helium 03138 1681077 1.67 1.661 1.03-107 0.293  0.587 0.110 0.1553 0.00309 0.1237 0.00250
3 MP102C Air 0.4041 137107 1.40 0.776 8.07-10° 0.310  0.088 0.088 0.2694 0.00325 0.2194 0.00308
4 MP102C Air 0.4041 137107 1.40 0.776 2.69-10° 0.310 0.088 0.088 0.2693 0.00340 0.2342 0.00318
5 MP102C Air 0.4303 1.37-107° 1.40 0.776 8.07-10° 0.284  0.088 0.088 0.2869 0.00333 0.2433 0.00327
6 MP102C Air 0.4303 137107 1.40 0.776 2.69-10° 0.284  0.088 0.088 0.2869 0.00360 0.2615 0.00344
7 P-40 Hydrogen 0.1833 2441077 141 1.794 6.77-10 0326  0.270 0.229  0.0997 0.00421 0.0696 0.00352
8 P-40 Helium  0.1833 244.1077 1.67 1.794 482107 0326 0.270 0.229 0.1025 0.00426 0.0677 0.00335
9 P-40 Nitrogen  0.1833 2441077 140 1.794 1.26:108 0326  0.270 0.229 0.1070 0.00524 0.0870 0.00453
10 V-161 Hydrogen 0.2019 6.04-1078 141 2.005 5.83-107 0.326 0.974 0.678 0.1088 0.00591 0.0953 0.00428
11 V-160 Helium  0.1907 6.04-10°% 1.67 1.729 432107 0374 0.723 0.678 0.1006 0.00396 0.0873 0.00284
12 V-160 Helium  0.1975 6.04-10°% 1.67 1.729 3.02-107 0360 0.723 0.678 0.1045 0.00408 0.0909 0.00263
13 V-160 Helium 02052  6.04-10°8 1.67 1.729 1.59-107 0344 0.723 0.678 0.1085 0.00422 0.0932 0.00211
14 Ecoboy Air 0.1140 8701077 1.40 3.439 5.85-10° 0459  1.228 1.228 0.0576 0.00437 0.0481 0.00273
15 ST05G Nitrogen  0.2662 2.03-107° 1.40 2.034 149-107 0312  0.419 0.298 0.1644 0.00295 0.1194 0.00257
16 ST05G Nitrogen  0.2183 2.03-107° 1.40 2.034 1.49-107 0398  0.419 0.298 0.1322 0.00242 0.0733 0.00214
17 Yam-1 Air 0.0675 2.49-107° 1.40 2.480 5.14-10° 0.777 1.192 1.192  0.0337 0.00269 0.0258 0.00220
18 Yam-2 Air 0.0325 249-107° 1.40 3.730 3.53.107 0.815 1.243 1.243 0.0171 0.00439 0.0154 0.00287

Table A4. Database for testing G2 models [27].

No. Engine nga(sl 18 gO r%# Y Z Hax N, P T Hdxe Hdxc ‘:ind,max N, MA,max gB,max NX/IA,max
19 MP102C Air 0.4041 137107 1.40 0.776 7.17-10° 0310 0.088 0.088 0.2698 0.00341 0.2230  0.00322
20 MP102C Air 0.4041 137107 1.40 0.776 6.28-10° 0.310  0.088 0.088 0.2694 0.00355 0.2261 0.00334
21 MP102C Air 0.4041 1.37-10°% 1.40 0.776 5.38-10° 0.310  0.088 0.088 0.2698 0.00378  0.2299 0.00353
22 MP102C Air 0.4041 1.37-107° 1.40 0.776 449-10° 0310 0.088 0.088 0.2696 0.00381 0.2315 0.00356
23 MP102C Air 0.4041 137107 1.40 0.776 3.59-10° 0.310 0.088 0.088 0.2697 0.00374  0.2328 0.00349
24 MP102C Air 0.4303 13710 1.40 0.776 7.17-10° 0.284  0.088 0.088 0.2869 0.00348 0.2491 0.00339
25 MP102C Air 0.4303 13710 1.40 0.776 6.28-10° 0.284  0.088 0.088 0.2815 0.00324 0.2449 0.00315
26 MP102C Air 0.4303 137107 1.40 0.776 5.38-10° 0.284  0.088 0.088 0.2869 0.00385 0.2578  0.00369
27 MP102C Air 0.4303 1.37-107° 1.40 0.776 449-10° 0284 0.088 0.088 0.2869 0.00400 0.2602  0.00383
28 MP102C Air 0.4303 1.37-107° 1.40 0.776 3.59-10° 0.284  0.088 0.088 0.2869 0.00394  0.2608 0.00377
29 MP102C Air 0.3745 137107 1.40 0.776 8.07-10° 0.342  0.088 0.088 0.2170 0.00305 0.1633  0.00286
30 MP102C Air 0.3745 137107 1.40 0.776 717106 0342  0.088 0.088 0.2249 0.00322  0.1766  0.00301
31 MP102C Air 0.3745 1.37-107° 1.40 0.776 6.28-10° 0.342  0.088 0.088 0.2455 0.00314  0.1990 0.00295
32 MP102C Air 0.3745 13710 1.40 0.776 5.38-10° 0.342  0.088 0.088 0.2475 0.00326  0.2054 0.00305
33 MP102C Air 0.3745 137107 1.40 0.776 449-10° 0342 0.088 0.088 0.1884 0.00496 0.1602  0.00424
34 MP102C Air 0.3745 137107 1.40 0.776 3.59-10° 0342  0.088 0.088 0.2443 0.00325 0.2078 0.00301
35 MP102C Air 0.3745 137107 1.40 0.776 2.69-10° 0342  0.088 0.088 0.2386 0.00302 0.2040 0.00278
36 MP102C Air 0.3406 137107 1.40 0.776 8.07-10° 0.381  0.088 0.088 0.2123 0.00261 0.1214  0.00254
37 MP102C Air 0.3406  1.37-107° 1.40 0.776 7.17.10° 0381  0.088 0.088 0.2139 0.00282  0.1356 0.00273
38 MP102C Air 0.3406 137107 1.40 0.776 6.28-10° 0.381  0.088 0.088 0.2134 0.00292  0.1448 0.00280
39 MP102C Air 0.3406  1.37-107° 1.40 0.776 5.38-10° 0.381  0.088 0.088 0.2095 0.00292  0.1484 0.00276
40 MP102C Air 0.3406  1.37-107° 1.40 0.776 4.49-10° 0381  0.088 0.088 0.2093 0.00296  0.1570 0.00275
41 MP102C Air 0.3406 1.37-107° 1.40 0.776 3.59-10° 0.381  0.088 0.088 0.2076 0.00291 0.1623  0.00265
42 MP102C Air 0.3406 13710 1.40 0.776 2.69-10° 0.381  0.088 0.088 0.2055 0.00269 0.1652  0.00242
43 V-160 Helium 0.1940 6.04-10°8 1.67 1.729 3.68-107 0.367 0.723 0.678 0.1024 0.00402 0.0891 0.00276
44 V-160 Helium 02011 6.04-10°8 1.67 1.729 2.32-107 0352  0.723 0.678 0.1063 0.00414 0.0924 0.00243
45 ST05G Nitrogen  0.2038 2.03-107° 1.40 2.034 7.59-10° 0427 0.419 0.298 - - 0.0842  0.00209
46 ST05G Air 02250 2.03-107° 1.40 2.034 9.84-10° 0.386  0.419 0.298 - - 0.1074 0.00291
47 ST05G Air 02491 2.03-107° 1.40 2.034 9.84-10° 0.341  0.419 0.298 - - 0.1261  0.00322
48 ST05G Air 0.2697 2.03-107° 1.40 2.034 9.84-10° 0.306  0.419 0.298 - - 0.1294 0.00343

491 ST05G Air 02319 2.03-107° 1.40 2.034 1.47.107 0373 0419 0.298 - - 0.1281 0.00276
501 ST05G Air 02319 2.03-107® 140 2034 11710 0373 0419  0.298 - - 0.1331  0.00276
511 ST05G Air 02319 20310 1.40 2.034 7.34-10° 0373 0419 0.298 - - 0.1394 0.00276
521 ST05G Air 0.2034 20310 1.40 2.034 1.17-107 0428  0.419 0.298 - - 0.1078 0.00235
531 ST05G Air 0.1685 2.03-10°¢ 1.40 2.034 1.17-107 0503  0.419 0.298 - - 0.0767  0.00198
54 HEOC?,L Helium 04310 119107 167 0749 191.10° 0313 0280 0111 02221 000275 02160 0.00232

I Numerical simulation.
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