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1Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences, Heriot-Watt University,
Edinburgh, U.K. (dr38@hw.ac.uk; G.Goussetis@hw.ac.uk)

2Department of Electrical Engineering, Group of Signal Theory and Communications, Universidad de Oviedo,
3320 - Gijón, Spain (arrebola@uniovi.es; jelofer@uniovi.es; mpino@uniovi.es)

3Information, Processing and Telecommunications Center, Universidad Politécnica de Madrid, 28040 - Madrid, Spain
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Abstract— This contribution describes a general
framework for the optimization of very large reflec-
tarrays for space applications. It employs the general-
ized Intersection Approach with a series of techniques
to accelerate computations. In particular, a machine
learning technique is used to obtain a surrogate model
of the reflectarray unit cell. Also, the gradient com-
putation is accelerated by employing differential con-
tributions on the radiated field. Computations may
also be accelerated with the NUFFT employing a non-
uniform grid in the spectral domain. Finally, instead
of optimizing the crosspolar pattern, the XPD or XPI
are optimized, improving both the antenna and al-
gorithm performance. Relevant numerical examples
are provided to show the capabilities of the proposed
framework and acceleration techniques.

I. INTRODUCTION

The requirements of antennas for satellite telecommuni-
cation missions are very stringent in terms of bandwidth
and radiation patterns [1]. Although reflector antennas
have been the classic solution for these applications they
are bulky, expensive and difficult to fold and deploy.
Other concepts with advantages from the mechanical or
electrical point of view have been studied in the last years.
Planar antennas such as reflectarrays [2] or transmitar-
rays [3, 4] have been proposed for telecom missions, first
for DBS (Direct Broadcast Satellite) missions [5, 6] and
more recently as mutibeam antennas [7]. They are inter-
esting from a mechanical point of view while significant
improvements in bandwidth, which has traditionally been
a key concern, have been recently achieved [8]. However,
the requirements in terms of beam shaping and crosspolar
level call for synthesis and optimization techniques in the
design process that do not compromise accuracy [9]. As
a result, the design process can be difficult to manage or
even be considerably slow since the reflectarray is made
up of thousands of elements, each one with one or sev-
eral degrees of freedom to optimize, and high accuracy
implies the use of accurate and typically slow analysis
techniques.

In this contribution, an efficient technique for the opti-

mization of large reflectarray antennas is proposed, dis-
cussed and validated with several test cases, with appli-
cation in radiation pattern synthesis and crosspolar reduc-
tion. The technique is based on the generalized Inter-
section Approach framework [10] using the Levenberg-
Marquard Algorithm (LMA) [11] as backward projector.
The accuracy of the approach is ensured by the analysis
of the reflectarray elements through a full-wave analysis
technique based on spectral domain Method of Moments
assuming Local Periodicity (MoM-LP) [12] and using
the First Principle of Equivalence in electromagnetics for
the evaluation of the radiation pattern. Starting from this
framework, several improvements are introduced involv-
ing the calculation of the radiated field, the gradient com-
putation, the modelling of the reflectarray elements and
the definition of the cost function in order to greatly speed
up the technique to handle very large reflectarrays com-
prised of several thousands of elements. In addition, the
convergence of the algorithm is also improved and as a
consequence the performances of the final antenna. Sev-
eral test cases on satellite telecommunication missions
are considered, including very large multibeam reflec-
tarrays and shaped-beam reflectarrays for DBS missions
with improved XPD and XPI levels.

II. OPTIMIZATION FRAMEWORK

The optimization framework is based on the generalized
Intersection Approach (IA) presented in [10] and particu-
larized for the crosspolar optimization of reflectarray an-
tennas in [9]. Figure 1 shows the flowchart of the algo-
rithm. Starting from the initial layout, it applies itera-
tively two operations: the forward and the backward pro-
jection. In the forward projection, the radiation pattern is
calculated and trimmed according to some specification
templates given in the form of upper and lower masks.
Then, in the backward projection the trimmed pattern is
employed as reference for a local optimization procedure
using the LMA.

The technique presented in [9] employed a MoM-LP as
analysis technique to obtain an accurate prediction of the
electromagnetic behaviour of the unit cell. However, this
caused the algorithm to be relatively slow and to only be
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Figure 1: Flowchart of the generalized Intersection Ap-
proach particularized for the optimization of reflectarray
antennas.

practical for very large reflectarrays using workstations.
In any case, the good convergence properties of the gen-
eralized IA [13, 14] allow to handle tens of thousands of
optimizing variables while obtaining good results. This is
done by minimizing the number of local minima by work-
ing with the squared field amplitude (or equivalently the
gain) and performing the optimization in several steps,
incrementing the number of optimizing variables as sug-
gested in [10].

From a computational point of view, [9] introduced a
number of strategies to accelerate computations of the
main building blocks of the LMA in the backward pro-
jection (see Figure 1), since the computing time of the
forward projection is negligible. First, the computation
of all building blocks is parallelized, the cost function
and Jacobian matrix using OpenMP and the matrix multi-
plication and linear equation solver using the Intel MKL
libraries. In addition, the number of calls to the MoM-
LP routine in the Jacobian matrix computation are min-
imized since only one element per column is modified
when the derivative is evaluated using finite differences.
Also, as linear equation solver the Cholesky factorization
is used, since it is the fastest exact solver available. Fur-
ther details may be consulted in [9,11]. Despite the com-
putational improvements introduced to the generalized
IA, there is still room for further improvements which
will be addressed next.

III. FURTHER IMPROVEMENTS IN ANALYSIS AND
OPTIMIZATION OF REFLECTARRAYS

This section introduces two new improvements for a
faster analysis of reflectarray antennas based on Sup-
port Vector Machines (SVMs) and the Non-Uniform FFT
(NUFFT) with direct application in the optimization pro-
cedure; plus two new techniques specifically focused on
accelerating and improving the optimization algorithm,
namely, differential contributions to the radiated field
(DFC) and the direct optimization of the crosspolar dis-
crimination (XPD) and isolation (XPI).

A. Surrogate Model with Support Vector Machines
Although the full-wave MoM-LP employed [12] is con-
siderably faster than other general purpose full-wave
commercial solutions, it makes the optimization slow
since the MoM-LP routine is called thousands of times.
Some approaches to accelerate the simulation of the unit
cell consist on the use of databases, artificial neural net-
works or Support Vector Machines (SVM). The latter is
the approach followed in this work.

SVMs are automatic and supervised learning algorithms
which are used to solve regression and classification
problems. In the present case, the SVM regression char-
acteristics are adapted to seek a surrogate model of the
unit cell. A complete description of the SVM theory
background and training strategies may be found in [15].
Only the basic features will be described here for com-
pleteness.

For a given training set of inputs and outputs, S =
{~xi,yi}i=1,2, ...,Nr , with~xi ∈ χ ⊆ RL and yi ∈ R, the SVM
is used to obtain a function f which estimates the output
ỹ that corresponds to a new input~x as:

ỹ = f (~x) , (1)

where f follows the expression:

f (~x) = b+
Ns

∑
i=1

[(
α−i −α+

i
)

K(~xi,~x)
]
, (2)

and b is known as the offset, Ns is the total number of sup-
port vectors, α+

i and α−i are the optimal Lagrange multi-
pliers, and K is the kernel function, which in the present
case is a Gaussian kernel:

K(~x,~x ′) = exp
(
−γ ‖~x−~x ′‖2) , (3)

where ‖ · ‖ is the Euclidean norm and γ a tunable param-
eter.

The obtained function f in (2) minimizes a regular-
ized risk functional that accounts for the empirical errors
(weighted by a tunable parameter C) and for the flatness
of f . When the flatness is maximized, f has good gen-
eralization properties. On the other hand, the empirical
errors account for how well it fits the training samples.
Thus C provides a trade-off between the two. The param-
eters γ and C determine the shape of function f and must
be carefully selected through a grid search in the (C,γ)
plane [15].
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Figure 2: For the reflection coefficient ρyx with (θ =
35°,ϕ = 35°), comparison between (a), (b) the MoM-LP
simulation and (c), (d) SVM simulation for the (a), (c)
magnitude in dB and (b), (d) phase in degrees. Differ-
ence of the (e) magnitude is in dB and of the (f) phase in
degrees.

The SVM is used to obtain the surrogate model of the
matrix of reflection coefficients Rmn for the unit cell de-
scribed in [9]. As in [15], only two geometric vari-
ables are considered, Tx and Ty. Due to the low losses
and good behaviour of the direct coefficients ρxx and
ρyy, the error is very low. It is more difficult to obtain
a good surrogate model of the cross-coefficients. Fig-
ure 2 shows a comparison in magnitude and phase of the
cross-coefficient ρyx for an oblique angle of incidence
(θ = 35°,ϕ = 35°). The magnitude difference is very
low, always below −40 dB. However, the phase differ-
ence shows high values where there are abrupt changes
which the SVM simulation tends to soften. In any case,

Table 1: Computational time study for an FFT resolution
of 512×512 (44 748 points considered in the optimiza-
tion) and 7 993 optimizing variables. All values are in
seconds.

Tool Cost function Jacobian JTJ Solver

MoM-LP 30.08 90.73 17.66 1.20
SVM 0.22 48.30 17.73 1.21

the mean absolute deviation (MAD) is 4° for this case,
and 4.5°for the phase of ρxy, which are considered very
low values for a cross-coefficient (for the phases of ρxx
and ρyy the MAD is lower than 0.6°). The mean rela-
tive error of the training for all reflection coefficients is
−33 dB following [15], which will provide a high degree
of accuracy in the predicted radiation patterns, as it will
be shown later.

Apart from a high degree of accuracy with regard to the
MoM-LP simulations, the SVM considerably accelerates
the computation of the Rmn matrix. For instance, for a
reflectarray comprised of 5 180 elements for DBS, it took
116.70 s to MoM-LP while for the SVM the computation
of the reflection coefficient matrices only took 34.8 ms,
which supposes a speed-up factor of 3350. This accel-
eration factor corresponds to the computation of Rmn.
When applied to the design of the reflectarray layout, us-
ing MoM-LP it took 4 655.98 s (1 h and 18 min), while
using SVM it took only 8.24 s, which correspond to a
speed-up factor of 565.

Finally, Table 1 shows the impact of using SVM in the op-
timization algorithm. The computation of the cost func-
tion is accelerated by a factor greater than 130. It is
smaller than the layout design speed-up since the cost
function also requires the computation of several spec-
trum functions with the FFT to obtain the far field, which
are not accelerated by the SVM. On the other hand, the
Jacobian matrix computation takes close to half the time
with SVM than with MoM-LP. However, the acceleration
is very small in this case. The reason is that each column
of the Jacobian substitutes one call to the MoM-LP rou-
tine for a SVM simulation. However, each column still
requires the computation of eight spectrum functions for
dual-polarized reflectarray antennas, and since they are
not accelerated by the SVM, it penalizes the computation
speed.

B. Acceleration of Far Field Computation with Adaptive
Grid and NUFFT
The most time consuming operation when computing the
radiation pattern of an aperture is the computation of the
spectrum functions, which take the form [16]:

P(u,v) = K
N

∑
i=1

[
Ei(xi,yi) exp

(
jk0 (uxi + vyi)

)]
, (4)

where Ei is one generic component of the tangential field,
(xi,yi) are the coordinates of the i-th sample or element,
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k0 the free-space wavenumber, K the unit cell pattern [16]
and u = sinθ cosϕ , v = sinθ sinϕ .

When P(u,v) is efficiently computed by means of the
FFT, it reduces the time cost from O(NM) of the direct
evaluation of (4) to O(M logM), where M the number of
points in the (u,v) grid where the far field is computed.
However, the use of the FFT might present some lim-
itations, especially regarding new applications, such as
multibeam, where very large reflectarrays, with narrow
beams are being studied. For instance, the reflectarray
proposed in [7] has more than 20 000 elements with a
beam spacing smaller than 0.6°. Thus, high resolution in
the spectral domain (u,v) is required to correctly charac-
terize the main beam, including gain, side lobes, etc.

Using the FFT imposes a fixed (u,v) grid [2], whose
memory footprint grows exponentially with the resolu-
tion. Typically, the FFT grid is of the form M = 2n×2n,
with n ∈ N controlling the resolution. This means that
for highly directive antennas, memory usage might be-
come prohibitive. A solution could be to compute the
spectrum functions by brute force in O(NM) only in the
region of interest with high resolution. However, due to
the high number of elements, it is computationally very
inefficient. One possible solution to this problem is the
use of the Non-Uniform FFT (NUFFT).

The NUFFT is a generalization of the FFT that allows
for non-uniform grids in both domains, the physical do-
main (x,y) (reflectarray aperture) and the spectral do-
main. Thus, it reduces the time cost of evaluating (4)
from O(NM) to O(M logM). However, although the
computational complexity scaling is the same as the FFT,
the NUFFT is slower and precision dependent. There is
a parameter ψ that controls the accuracy of the obtained
results. For the two-dimensional case, a more accurate
description of its time complexity is [16]:

O(M logM+M log2 ψ−1), (5)

where ψ can be set to obtain an arbitrary low error at the
expense of slower computations.

To evaluate the technique, a multibeam antenna [7] with
high resolution and very narrow beamwidth is consid-
ered. The reflectarray is elliptical with 247× 241 el-
ements in its main axes, and with a total of 46 751
unit cells. The working frequency is 19.7 GHz and
the periodicity is 7.5×7.5 mm2. The feed is placed at
(−661,0,2726)mm from the reflectarray center and is
modelled as a cosq θ function with q = 24. For this ex-
ample, the NUFFT is employed to efficiently compute the
points only in the principle plane. This is equivalent to
perform a 2D to 1D transformation. In practise, the spec-
tral domain is considered a rectangle with a dimension
smaller than the distance between two adjacent samples.

To test the technique, the main cut will be non-uniform:
high resolution will be imposed around the main beam in
u ∈ [0.15,0.30], with a step of 2−14; a medium resolution
in u ∈ [0,0.15]∪ [0.30,0.45] for the closest side lobes,
with a step of 2−12; and low resolution in the rest of the
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Figure 3: Comparison of the main cut computed in an
adaptive grid with multi-resolution using the NUFFT and
two typical values of n using the FFT plus spline interpo-
lation.

cut for the farthest side lobes, with a step of 2−10. (Due to
the relation between θ and u for v = 0, the discretization
in the corresponding intervals in θ is non-uniform.) Fig-
ure 3 shows the computed cut around the main beam for
the NUFFT and two typical values of n for the FFT plus
a spline interpolation of a FFT simulation. As shown, the
NUFFT provides high resolution while the memory us-
age is negligible (< 1MB). To achieve the same angular
resolution with the FFT, a value n = 14 is needed, since
the step between adjacent points in the main beam is 2−14

for the NUFFT. With that resolution, the FFT would have
a memory footprint of 4 GB per spectrum function. The
points computed by the FFT with n = 9, 10 lie exactly
on the curve computed by the NUFFT, but do not pro-
vide enough density of points for a proper representation,
including the value of maximum gain. When using the
spline interpolation for the FFT with n = 10, side lobes
are not well predicted, and worse results were obtained
for the intepolation for the FFT with n = 9.

A direct evaluation may be used to compute the main cut.
The computation of the spectrum functions in the visi-
ble region is slower using this method, but the number of
points in a single cut is considerably lower. A time study
was performed comparing the direct evaluation and the
NUFFT and it is shown in Figure 4. Despite the reduc-
tion in the number of points, the direct evaluation is still
slower due to the large amount of reflectarray elements,
and is only faster than the NUFFT for ξ = 10−8 in the
case with the smallest number of points in the tested cut.

This technique may be used to reduce the total num-
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Figure 4: Comparison of computing time between the di-
rect evaluation and NUFFT when computing the radia-
tion pattern only in the main cut.

ber of points where the far field is computed (M), effec-
tively reducing the size of the Jacobian matrix leading to
a faster Jacobian matrix evaluation and matrix multipli-
cation (JT J).

C. Accelerating Gradient Computation with Differential
Contributions
Using the SVM greatly accelerated the cost function, as
shown in Table 1. However, the Jacobian matrix compu-
tation, though faster with the SVM than with MoM-LP,
did not show a good enough speed-up factor since the
computation of the far field starting from the tangential
field is not accelerated, although it may be accelerated
using an adaptive grid with the NUFFT. However, the
lying issue with the gradient computation is that when
performing a direct optimization of the layout, there is
no analytical expression relating the optimizing variables
and the cost function that it is easy to derive analytically,
as opposed to the POS, which can be done either for near
field or far field. Thus, finite differences must be used to
compute the derivatives. However, the gradient compu-
tation may be accelerated by employing the technique of
differential contributions to the radiated field.

The Jacobian matrix may be formed with the gradient of
a multidimentional scalar cost function of the form:

∇ f (~r, ξ̄ ) =

(
∂ f (~r, ξ̄ )

∂ξ1
, · · · , ∂ f (~r, ξ̄ )

∂ξi
, · · · , ∂ f (~r, ξ̄ )

∂ξP

)
,

(6)
where ξ̄ = (ξ1, . . . ,ξi, . . . ,ξP) is a vector of P optimiz-
ing variables and ~r ∈ {~r1, . . . ,~rt , . . . ,~rM} an observation
point where the radiated field is computed. Since there is
no analytical expression to calculate each derivative, they
are computed using finite differences. Using a backward
lateral difference the derivative is:

∂ f (~r, ξ̄ )
∂ξi

=
f (~r, ξ̄ )− f (~r, ξ̄ −hêi)

h
+O(h), (7)

where h is a small positive scalar [11], and êi is the ith
unit vector such that:

ξ̄ −hêi = (ξ1, . . . ,ξi−h, . . . ,ξP) . (8)

For the computation of the derivative by means of (7),
the cost function f (~r, ξ̄ ) depends on the radiated field

~E(~r, ξ̄ ) and it is common to all P derivatives in (6), so
it only needs to be computed once. On the other hand,
f (~r, ξ̄ −hêi) depends on ~E(~r, ξ̄ −hêi), and it is computed
for each derivative. Since the reflectarray analysis as-
sumes local periodicity, the modification of one element
(variable) does not affect the others, and the perturbed
field may be computed with the differential contribution:

~E(~r, ξ̄ −hêi) = ~E(~r, ξ̄ )+∆~E(~r,ξi), (9)

where ∆~E(~r,ξi) is the differential contribution to the radi-
ated field produced by the reflectarray element depending
on variable i:

∆~E(~r,ξi) = ~E(~r,ξi−h)−~E(~r,ξi). (10)

Thanks to the linearity of Maxwell’s equations, there ex-
ists a linear relation between the field at the aperture and
the radiated field (either near or far field). If we denote by
~Eref,k(~r ′k,ξi) the reflected tangential field of element k at
location~r ′k, with k = 1, . . . ,N and depending on variable
ξi, (10) can be expressed writing the radiated field as a
function of the tangential field:

∆~E(~r,ξi) = ~E(~r,~Eref,k(~r ′k,ξi−h))−~E(~r,~Eref,k(~r ′k,ξi)).
(11)

Since the radiated field is linear with respect to the tan-
gential field:

∆~E(~r,ξi) = ~E(~r,∆~Eref,k(~r ′k,ξi)), (12)

where:

∆~Eref,k(~r ′k,ξi) = ~Eref,k(~r ′k,ξi−h)−~Eref,k(~r ′k,ξi). (13)

Thus, (12) indicates that to compute one derivative, only
the differential contribution of one element is necessary.
In practise, this means that, starting from the tangential
field, the time cost of computing the far field is reduced
from O(M logM) when using the (NU)FFT to O(M) us-
ing the Differential Contributions (DFC) technique in the
computation of each derivative [17].

As an example, the technique of DFC was implemented
for POS using the generalized IA detailed in [18] and
compared, for a periodic reflectarray, with the computa-
tion of the far field with the NUFFT, the FFT and the ana-
lytic derivative. Figure 5 shows the measured computing
time comparing different techniques. As it can be seen,
the DFC is faster than the FFT, NUFFT and even the ana-
lytic derivative for the computation of the Jacobian matrix
(gradient). In this case, the analytic derivative and DFC
present the same time complexity scaling, but the DFC
requires fewer operations inside the loop sweeping all M
points. The mean speed-up of the DFC is 94.2%, 56.9%
and 29.8% with regard to the use of the NUFFT, FFT and
analytic derivative, respectively.

The DFC technique was also implemented for the direct
optimization of the layout with both MoM-LP and SVM.
Table 2 shows the updated results when using the DFC.
The Jacobian matrix computation is substantially acceler-
ated by the combination of the SVM and DFC. By itself,
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(ψ = 10−2), Differential Contributions (DFC) and ana-
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of optimizing variables using a UV grid of 512× 512
points and computations parallelized with 20 threads.

Table 2: Computational time study for an FFT resolution
of 512×512 (44 748 points considered in the optimiza-
tion) and 7 993 optimizing variables. All values are in
seconds.

Tool Cost function Jacobian JTJ Solver

MoM-LP 30.08 90.73 17.66 1.20
MoM-LP + DFC 30.08 61.77 19.23 1.22
SVM 0.22 48.30 17.73 1.21
SVM + DFC 0.22 4.06 18.77 1.22

the DFC technique accelerates the computation of the Ja-
cobian, going from taking almost 91 seconds to approxi-
mately 62 seconds. However, when combining SVM and
DFC the gradient computation is accelerated more than
one order of magnitude, reaching a speed up factor of
22.3 in the present case.

D. XPD and XPI Optimization
The usual approach to perform crosspolar optimization
is to impose some requirements directly on the crosspo-
lar pattern with the aim of reducing it [9]. However, in
some space applications, such as DBS, the figure of merit
for cross-polarization performance is the crosspolar dis-
crimination (XPD) or the crosspolar isolation (XPI). If
the crosspolar pattern is optimized, the XPD and XPI are
optimized indirectly, providing suboptimal results. Thus,
it is proposed to directly optimize the XPD and XPI in
order to improve the performance of the antenna. This is
achieved by a proper redefinition of the backward projec-
tor presented in [9], substituting the crosspolar templates
by XPD and XPI templates.

The crosspolar discrimination (XPD) is defined, in lin-
ear scale, as the ratio point by point of the copolar and
crosspolar gain:

XPD(u,v) = Gcp(u,v)/Gxp(u,v), ∀ (u,v) ∈Ω, (14)

where Ω is the coverage zone. For the present case, the
worst XPD value is considered in the optimization, cor-
responding to its minimum:

XPDmin = min{XDP(u,v)} . (15)

−u =−sinθ cosϕ

v
=

si
n

θ
si

n
ϕ

Zone 1

Zone 2

Figure 6: Europe footprint with two coverage zones for
DBS application with (u,v) coordinates in the antenna co-
ordinate system.

On the other hand, the crosspolar isolation (XPI) is de-
fined in linear scale as follows:

XPI =
min

{
Gcp(u,v)

}

max
{

Gxp(u,v)
} , (u,v) ∈Ω. (16)

The goal of the optimization algorithm is to maximize the
XPDmin and XPI values for each coverage zone. Thus,
only minimum templates are imposed in the backward
projector. If Tmin{XPDmin} and Tmin{XPI} are the minimum
templates, the following condition should be met:

Tmin{XPDmin} ≤ XPDmin,

Tmin{XPI} ≤ XPI.
(17)

Given the formulation of the backward projector in [9],
the crosspolar templates are substituted with (17). The
copolar templates are maintained to keep the copolar
pattern within specifications while the cross-polarization
performance of the antenna is improved.

IV. OPTIMIZATION OF A VERY LARGE
REFLECTARRAY

A. Antenna Specifications
The considered reflectarray is elliptical, has a total of
4 068 elements in a regular grid with 74 and 70 cells
in its main axes. The periodicity of the unit cell is
14mm×14mm and the working frequency is 11.85 GHz.
The feed is modeled as a cosq θ function with q = 23,
generating an illumination taper of −17.9dB. Also, the
feed is placed at (−358,0,1070)mm, while the whole an-
tenna is on a satellite in geostationary orbit at 10° E lon-
gitude. In addition, one SVM is trained per angle of inci-
dence. A total of 136 pairs of (θ ,ϕ) angles are obtained,
which are further reduced to 68 pairs using symmetries.
Finally, Figure 6 shows the contour requirements for Eu-
rope with two coverage zones. The copolar requirements
are 28.5 dBi for zone 1 and 25.5 dBi for zone 2. The op-
timization will be carried out in dual-linear polarization
using the same template specifications for both polariza-
tions.
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Figure 7: Radiation pattern in dBi for polarization X ob-
tained after the POS. (a) Copolar. (b) Crosspolar.

B. Results
The starting point for the crosspolar optimization is a lay-
out obtained after a POS with the generalized IA [18].
The simulated radiation pattern for polarization X is
shown in Figure 7 and perfectly complies with the speci-
fications for the copolar pattern. Similar results were ob-
tained for polarization Y.

For the crosspolar optimization, three different strategies
are compared: the optimization of the crosspolar pattern,
the XPDmin and the XPI. The goal is to show that directly
optimizing the figure of merit for cross-polarization per-
formance achieves better results. The three approaches
were tested with the generalized IA, which was run for
80 iterations until the error stagnated. The final results
are summarized in Table 3, which also includes the start-
ing point corresponding to the pattern of Figure 7 and the
minimum copolar gain for both coverage zones and lin-
ear polarizations. As it can be seen, the XPDmin and XPI
are effectively improved in all cases. However, directly
optimizing their values provides better results. For in-
stance, for zone 1 the XPDmin reaches a value of 35.10 dB
when optimizing the crosspolar pattern, but it improves to
39.64 dB and 39.53 dB when optimizing the XPDmin and

XPI, respectively, in polarization X. This supposes an in-
crement of more than 4 dB with the new proposed strat-
egy over the usual approach, and more than 8 dB over the
starting point (31.46 dB). This improvement occurs for
both polarizations and both coverage zones as shown in
Table 3.

V. CONCLUSIONS

This contribution has presented a series of techniques
for the improvement of a general framework for the op-
timization of very large reflectarrays for space applica-
tions. They include the use of SVMs to obtain a fast and
accurate surrogate model to substitute the MoM-LP tool
in the computations, accelerating the analysis and lay-
out design more than three and two orders of magnitude,
respectively. Also, the technique of differential contri-
butions on the far field allows to substantially acceler-
ate the gradient computation in local-search algorithms,
including also POS. The use of the NUFFT allows to
have a non-uniform spectral grid with high resolution in
the areas of interest and low resolution elsewhere, reduc-
ing both computing time and memory usage with regard
to the FFT. Finally, the direct optimization of the XPD
or XPI allows to improve the cross-polarization perfor-
mance of the optimize antenna with regard to the opti-
mization of the crosspolar pattern. These techniques were
demonstrated with the optimization of a large reflectarray
with European coverage, showing promising results.
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