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Abstract

Recently, results have been published showing that first order stochastic

dominance implies statistical preference and diff-stochastic dominance, when

the copula relating the compared variables is either Archimedean, the prod-

uct copula, or one of the Fréchet-Hoeffding bounds.

In the present paper, we rely on known results on multivariate stochas-

tic orders to extend these results and simplify the proofs. The results are

expanded in two directions: First, we show that it suffices for the copula

to be symmetric. Second, we reveal that first stochastic dominance entails

a wider range of stochastic preferences beyond statistical preference and

diff-stochastic dominance.

We further analyze whether first stochastic dominance implies statistical

preference for the case of asymmetric copulas. We observe that, when at

least one of the marginal cumulative distribution functions has no discon-

tinuity jumps, the family of asymmetric copulas for which the implication

holds is at least as large as the one for which it does not.

Keywords: Decision under uncertainty, (Multivariate) stochastic ordering,

First stochastic dominance, Statistical preference, Copula

1. Introduction

In the context of decision making under uncertainty, different binary re-

lations between random variables have been introduced under terms such

as “order”, “preference” or “stochastic dominance”. Some of these rela-

tionships can be expressed in terms of the marginal distributions of the

random variables involved, so that they are binary relations between one-

dimensional probability distributions, while others involve the joint distri-

bution. Examples of the first case are “n-order stochastic dominance”, for
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any n ≥ 1, among others. Examples of the second are Condorcet preference

[1] (also referred to as “statistical preference” [2] or “sign-preference” [3])

and “stochastic precedence” [4, 5, 6, 7].

Studies have examined the comparative strength between first order

stochastic dominance and statistical preference, and the results suggest that

the former is not necessarily stronger than the latter, as evidenced by De

Santis et al. ([7]) and Montes and Montes ([8]) counterexamples.

However, under certain conditions concerning the copula that connects

both marginal distributions, it has been established that first-order stochas-

tic dominance is stronger than statistical preference. Thus De Schuymer

et al. [9] showed that this implication holds when the two compared vari-

ables are independent. Later De Meyer et al. [10] showed that it also holds

when they are coupled by the comotonicity copula and the marginals are

Gaussian.

More recently, Montes and Montes [8] proved that it also holds when the

copula connecting the two variables is either the Fréchet-Hoeffding upper

bound or an Archimedean copula, and some additional conditions concerning

the marginal distributions are fulfilled. In a later paper Montes et al. [11]

introduced a new notion of preference called “diff-stochastic dominance”,

which is stronger that statistical preference. They showed that, for the

same copulas, as well as for the Fréchet-Hoeffding lower bound, first-order

stochastic dominance is also stronger than “diff-stochastic dominance”. Very

recently, Belzunce and Mart́ınez-Riquelme [12], extended one of the results in

[11] to a type of copulas that contains, as a particular case, the Archimedean

copulas.

In this paper, we demonstrate that first stochastic dominance proves to

be stronger than diff-stochastic dominance for any symmetric copula, with

no additional requirements regarding the marginal distributions. Moreover,

we generalize these results to encompass a broader family of preference rela-

tions, which includes diff-stochastic dominance (and consequently statistical

preference) as specific instances. This broader family of preference relations

was already considered by Shanthikumar and Yao [13] and bears similar-

ities to SSD model [14, 15] and has been recently used in the context of

certain machine learning tasks (intelligent condition monitoring of engines)

[16]. Based on existing results on multivariate stochastic orders, the proof

is significantly shorter and simpler than those offered in [11], [12] and [8].

2



We also investigate the conditions that non-symmetric copulas must

meet for stochastic first dominance to imply statistical preference. Our

study unveils that when we consider pairs of marginals, with at least one

of them having a continuous cumulative distribution function (CDF), the

set of asymmetric copulas that demonstrate this implication is at least as

extensive as the set that does not.

The rest of the paper is divided into three sections: Section 2 shows some

preliminary definitions and results on stochastic preferences and copulas.

Section 3 studies the relationships between first-order stochastic dominance

and other preference relationships based on the joint distribution for the case

of symmetric copulas. Section 4 focuses on the study of the relationships

between first-order stochastic dominance and statistical preference for the

case of non-symmetric copulas.

2. Preliminaries

Throughout the paper, we will often refer to bivariate random vectors

(X,Y ) : Ω → R2 defined on a probability space (Ω,A, P ). We denote the

respective (marginal) cumulative distribution functions (CDFs) of X and Y

as FX and FY , and their joint cumulative distribution function as F(X,Y ).

The induced joint probability measure will be denoted as P(X,Y ).

2.1. Copulas

An n−dimensional copula is a multivariate cumulative distribution func-

tion over [0, 1]n with uniform marginals. Copulas are useful for capturing

the dependence structure between random variables and constructing multi-

variate distributions from their marginal distributions ([17, 18, 19]). In this

paper, we will restrict ourselves to the bivariate case.

Definition 1. ([20]) A two-dimensional copula is a mapping C : [0, 1]2 →
[0, 1], satisfying the following conditions

(i) C(u1, v1) +C(u2, v2) ≥ C(u1, v2) +C(u2, v1) for all (u1, v1), (u2, v2) ∈
[0, 1]2 such that u1 ≤ u2, v1 ≤ v2.

(ii) C(u, 0) = C(0, u) = 0 and C(u, 1) = C(1, u) = u for any u ∈ [0, 1].

(As a consequence, C is increasing in both components.)
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The transpose CT of a copula C : [0, 1]2 → [0, 1] is the copula defined

as CT (u, v) = C(v, u), ∀ (u, v) ∈ [0, 1]2. A copula C : [0, 1]2 → [0, 1] is said

to be symmetric if it coincides with its transpose. If a copula associated to

the random vector (X,Y ) is symmetric then the random vector (Y,X) is

associated to the same copula.

Some special types of symmetric copulas are the product copula, the

Fréchet-Hoeffding upper and lower bounds and the family of Archimedean

copulas. The interested reader is referred to [21] for further details.

Any multivariate (in our case, bivariate) cumulative distribution function

can be obtained by combining a copula with the corresponding marginal

CDFs. Formally, we have:

Theorem 1. ([20], Sklar Theorem) Given a bivariate random vector (X,Y )

there exists a copula C such that F(X,Y )(x, y) = C(FX(x), FY (y)), ∀ (x, y).

2.2. Stochastic preferences and orders

Some well-known stochastic orders and preferences include:

• First stochastic dominance ([22]): we say that X ≤FSD Y if

P (X > t) ≤ P (Y > t), ∀ t ∈ R or equivalently if FX ≥ FY .

• Statistical preference ([1, 2]). X ≤sp Y if P (X > Y ) ≤ P (Y > X).

• Diff-stochastic dominance ([11]) or weak joint stochastic dominance

([12]). X ≤diff Y if X − Y ≤FSD Y − X. This relation is clearly

stronger than statistical preference.

We will refer to a family that contains the three above stochastic pref-

erences as particular cases. It is based on the following family of mappings

already considered by Shanthikumar and Yao ([13]):

G2
st = {f : R2 → R : f(x1, y2) ≤ f(x2, y1), ∀x1 ≤ x2, y1 ≤ y2}.

From now on, we will use the term G-expectation dominance, to refer to the

stochastic preferences generated by subsets of that family, as shown below:

Definition 2. Consider a subfamily G of G2
st. X is said to be G−expectation

dominated by Y if

E[f(X,Y )] ≤ E[f(Y,X)], ∀ f ∈ G,
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or equivalently if EP(X,Y )
[f ] ≤ EP(Y,X)

[f ], ∀ f ∈ G,

for any f for which the corresponding expectations exist.

In the particular case where the subfamily is a singleton G = {f}, we

will simply refer to f -expectation dominance. This preference relation will

be denoted X ≤G Y .

This formulation is reminiscent of the skew-symmetric bilinear (SSB)

model of Kreweras ([14]) and Fishburn ([15]), who consider a preference re-

lation between probability distributions, that can be reformulated as follows

in terms of random variables:

X ≤FG Y if EPX⊗PY [f ] ≤ EPY ⊗PX [f ], ∀ f ∈ G2
st, (1)

where PX ⊗ PY denotes the product probability1.

Since the set of joint probability distributions over R2 strictly contains

the set of product distributions, Equation 1 determines a (strict) subset

of the family of preferences characterized by Definition 2. Fishburn ([15])

characterized the set of rules of reasoning (also called “coherence rules” by

some authors) that must be satisfied when ordering alternatives so that the

ranking can be expressed in terms of Equation 1. These reasoning rules

constitute a subset of the list of conditions proposed by Savage in his sub-

jective expected utility (SEU) model ([23]). One of the conditions that is

eliminated from this SEU model is the transitivity property, already ques-

tioned earlier by Kreweras ([24]), and later discussed by Fishburn ([15, 25]).

Fishburn formulation also bears some relation to Loomes-Sugden’s “regret

theory” ([26]).

Example 1. We easily observe that the three examples of stochastic pref-

erences and orders mentioned at the beginning of Subsection 2.2 are part of

the family of G-expectation dominance relations. Indeed:

• First stochastic dominance coincides with GFSD-expectation dominance

for GFSD = {fc : c ∈ R} with fc(x, y) = 1{(x,y)∈R2 : x>c}, for all c ∈ R,

(where 1A denotes the indicator function of A ⊆ R2).

1I.e. the one whose marginals are the probability distributions respectively induced by
X and Y , and its copula is the product copula.
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• Statistical preference coincides with fsp-expectation dominance for

fsp(x, y) = 1{(x,y)∈R2 : x>y}.

• Diff-stochastic dominance coincides with Gdiff-expectation dominance

for Gdiff = {1{(x,y)∈R2 : x−y>c} : c ∈ R}.

Remark 1. Some additional stochastic orders and preferences from recent

literature not named in Example 1 such as second-order dominance [27,

28] or Savage dominance [23] are special cases of G-expectation dominance.

Further well known preference relations also fit the formulation:

Y is preferred to X if E[f(X,Y )] ≤ E[f(Y,X)], ∀ f ∈ F ,

but for some family of functions F not necessarily included in G2
st. This is

the case, for instance, of “less dangerous than” order ([29]), “tail dispersive

ordering” ([30]) or “bidirectional ordering” ([31]). These two examples do

not fit the idea of “taking larger values” but with other ideas such as taking

values farther away from some point (like the value 0) or simply taking more

dispersed values. All these examples could be alternatively expressed in terms

of a non-necessarily increasing function h : R→ R as “h(Y ) F ′-expectation

dominates h(X)”, for some F ′ ⊆ G2
st.

3. FSD and G2
st-expectation preference for symmetric copulas

In the introduction, we referred to the existence of results in the literature

that formally connect the concepts of first stochastic dominance, statistical

preference, and diff-stochastic dominance. As a compilation of the most

recent studies on this matter, the following two results are cited:

Theorem 2. ([8, Theorem 45]) Let X and Y be two random variables.

X ≤FSD Y implies X ≤sp Y under any of the following conditions:

1. X and Y are independent.

2. X and Y are absolutely continuous and comonotone.

3. X and Y are absolutely continuous and countermonotone.

4. X and Y are discrete with finite supports and comonotone.

5. X and Y are discrete with finite supports and countermonotone.

6. X and Y are absolutely continuous random variables coupled by a strict

Archimedean copula with a twice differentiable generator.

6



7. X and Y are absolutely continuous random variables coupled by a nilpo-

tent Archimedean copula with a twice differentiable generator.

Theorem 3. ([11, Theorem 15]) X ≤FSD Y implies X ≤diff Y whenever

X and Y satisfy any of the following properties:

1. X and Y are independent.

2. X and Y are comonotone or countermonotone.

3. X and Y are coupled by an Archimedean copula with a twice differen-

tiable generator.

Now, we will show that existing results in the literature on multivariate

stochastic orders allow us to extend all these findings, and to considerably

shorten the proofs. On one hand, we will relax the conditions required to

the copula, as we only need it to be symmetric. Furthermore we will replace

diff-stochastic dominance by G2
st-expectation dominance.

Concretely, the following equivalence holds when the marginals are con-

nected by a symmetric copula:

X ≤FSD Y if and only if X ≤G2st Y.

Let the reader notice that the necessity is immediate, since GFSD is in-

cluded in G2
st, as showed in Example 1. Theorem 4 deals with the proof of

the sufficiency. We will first remind the definition of usual stochastic order

between random vectors, which relies on the use of “upper sets”.

Definition 3. ([32]) A set U ⊆ Rd is called an upper set if, for any pair

of vectors (u1, . . . , ud) ∈ U and (v1, . . . , vd) ∈ Rd satisfying the inequalities

vi ≥ ui, ∀ i = 1, . . . , d, (v1, . . . , vd) ∈ U .

Definition 4. ([32]) Consider two d-dimensional random vectors X and Y.

X is said to be smaller than Y in the usual stochastic (multivariate) order

if P (X ∈ U) ≤ P (Y ∈ U), for every measurable upper set U ⊆ Rd It will

be denoted by X ≤st Y.

Theorem 4. If X ≤FSD Y , and they are connected by at least one sym-

metric copula, then X ≤G2st Y .

Proof: First, we recall that, for every copula C associated with (X,Y ),

the copula C ′(u, v) = u − C(u, 1 − v) is associated with (X,−Y ) (see [33,
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Theorem 2.4.4]). Moreover, since C is symmetric, it is also a copula for

(Y,X). Thus, C ′ is a copula for (Y,−X) too.

Now, if X ≤FSD Y , then −Y ≤FSD −X (see [32, Theorem 1.A.3]).

Thus, it follows from [34, Theorem 4.1], that (X,−Y ) ≤st (Y,−X) since

(X,−Y ) and (Y,−X) have at least one copula in common. But (X,−Y ) ≤st

(Y,−X) is equivalent to X ≤G2st Y in view of [13, Theorem 4.8], which is

the desired assertion.

Since the set of functions G2
st contains the set Gdiff , which in turn contains

the singleton {1{(x,y)∈R2 : x>y}}, we can state the following:

Corollary 1. If X ≤FSD Y , and they are connected by at least one sym-

metric copula, then X ≤diff Y and X ≤SD Y.

In other words, Corollary 1 (and thus also Theorem 4) generalize the

entirety of the results stated in [11] and [8], which have been encompassed

in the above Theorems 2 and 3.

On the other hand, Belzunce and Mart́ınez-Riquelme [12] have very re-

cently extended the third part of Theorem 3 ([11, Theorem 15]) to a more

general case of copulas, as follows:

Theorem 5. ([12, Theorem 2.9]) Let (X,Y ) be a bivariate random vector

with absolutely continuous distribution and copula C. If X ≤FSD Y and

∂

∂p
C(u, v1) ≤ ∂

∂q
C(v2, u), ∀u, v1, v2 ∈ (0, 1) such that v1 ≤ v2, (2)

then X ≤diff Y.

Remark 2. Given a copula C, consider the family of mappings fC; (v1,v2) :

R→ [−1, 1] defined as follows:

fC; (v1,v2)(u) = C(u, v1)− C(v2, u), ∀u ∈ (0, 1), ∀ 0 ≤ v1 ≤ v2 ≤ 1. (3)

Using this notation, Equation 2 can be formally rewritten as follows:

f ′C; (v1,v2)(u) ≤ 0, ∀u ∈ (0, 1), ∀ 0 < v1 ≤ v2 < 1. (4)

We show below that the requirement of Equation 2 (i.e. the requirement

of Equation 4) implies the symmetry of the copula:
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Proposition 1. Consider a copula C : [0, 1]2 → [0, 1] and the family of

mappings defined from it in Equation 3. If they satisfy Equation 4, then C

is symmetric.

Proof: Taking into account the properties of copulas, we can easily

check that fC;(v1,v1)(0) = fC;(v1,v1)(1) = 0 for every v1 ∈ [0, 1], fC;(0,0)(u) =

fC;(1,1)(u) = 0, ∀u ∈ [0, 1], and fC;(v1,v1) is continuous in u = 0. Further-

more, if Equation 4 holds, fC;(v1,v1) is monotone decreasing (non increasing)

in (0, 1) for every v1 ∈ (0, 1). Thus, fC;(v1,v1)(u) = C(u, v1) − C(v1, u) = 0

for every u ∈ [0, 1] and every v1 ∈ [0, 1], which means that the copula is

symmetric.

Thus, according to Proposition 1, the copulas considered by Belzunce

and Mart́ınez-Riquelme in [12, Theorem 2.9] are particular instances of sym-

metric copulas, and therefore Corollary 1 also generalizes their result.

Remark 3. We must emphasize that, if the copula is not symmetric, the

implication mentioned in Theorem 4 and, in particular, the two implica-

tions of Corollary 1 are not fulfilled in general. The interested reader may

note that, indeed, the examples of Montes and Montes [8] and De Santis et

al. ([7]) in which pairs of variables are shown such that X ≤FSD Y and

yet X 6≤sp Y correspond to cases where X and Y are not connected by a

symmetric copula.

4. FSD and statistical preference for asymmetric copulas

Once we have seen the relationship between first-stochastic order domi-

nance and statistical preference for the case in which the copula connecting

X and Y is symmetric, it is worth asking whether any formal relation can be

found in other cases. The work of De Santis et al. [7] makes some progress

in that direction.

In the following, given two CDFs F,G : R → [0, 1] and a copula C :

[0, 1]2 → [0, 1], the notation (X,Y ) ≡d (C;F,G) will be used to indicate

that the joint CDF associated with the random bivariate vector (X,Y ) is:

F(X,Y )(x, y) = C(F (x), G(y)), ∀ (x, y) ∈ R2.

In other words, this notation means that the marginal CDFs of (X,Y ) are

respectively F and G and they are connected by copula C.
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Given an arbitrary copula C : [0, 1]2 → [0, 1] and a pair of CDFs F and

G, Santis et al. [7] introduce the notation η(C;F,G) to refer to the following

quantity

η(C;F,G) = P (X ≤ Y ),

for any (X,Y ) ≡d (C;F,G), and they prove the following equalities:

η(C;F, F ) = η(C;G,G), ∀F,G ∈ H, ∀C ∈ C,

where H denotes the family of CDFs that are continuous and strictly in-

creasing in the subset of the domain where they take values in (0, 1). Thus,

they can univocally define the quantity η(C) = η(C;F, F ), where F is an

arbitrary CDF in H. In particular, η(C) can be expressed as P (U1 ≤ U2), for

any pair of variables U1 and U2, both with uniform marginal distribution on

[0, 1] and connected by the copula C. In other words, η(C) = P (U1 ≤ U2)

for any bivariate random vector (U1, U2) whose joint cumulative distribution

function coincides with C on [0, 1]2. The authors prove that the following

equality holds for any copula C:

η(C) = inf{P (X ≤ Y ) : X ≤FSD Y, X and Y are coupled by C}.

The authors conclude that, if (X,Y ) ≡d (C;F,G) with F ≥ G and

η(C) ≥ γ, then P (X ≤ Y ) ≥ γ. In particular, the following implication can

be derived from their results:

If X ≤FSD Y and η(C) ≥ 0.5, then P (X ≤ Y ) ≥ 0.5.

However, as they remark, we cannot infer that Y is statistical preferred to

X, as the condition P (X ≤ Y ) ≥ 0.5 does not imply in general the inequality

P (X < Y ) ≥ P (X > Y ).

Notwithstanding, and with these precedents in mind, we will investigate

the formal relationship between stochastic dominance and statistical prefer-

ence for non necessarily symmetric copulas. In particular, we will focus on

the copulas that satisfy the following property:

Definition 5. A copula C is said to be FSD-sp consistent if

X ≤FSD Y ⇒ X ≤sp Y, ∀ (X,Y ) ∈ XC ,
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where XC denotes the following family of bivariate random vectors:

XC =

{(X,Y ) : FX or FY is continuous on R and F(X,Y )(·, ·) = C(FX(·), FY (·))}. (5)

In our analysis, in addition to η(C), we need to consider the quantities

ν(C) and I(C) defined as follows:

ν(C) := P (U1 < U2), I(C) = P (U1 = U2),

where (U1, U2) represents any bivariate vector whose CDF coincides with C

on [0, 1]2. Furthermore, we will denote by CD the set of those copulas C

satisfying the condition I(C) = 0.

Now we will prove a result connecting the above values for any copula

and its transpose. This result will serve as a support in a later discussion.

Lemma 6. Consider a copula C : [0, 1]2 → [0, 1] Then:

(a) ν(C) + I(C) = η(C)

(b) µ(C) = η(C) if and only if I(C) = 0.

(c) I(C) = I(CT ).

(d) ν(C) + ν(CT ) = 1− I(C)

(e) ν(CT ) = 1− ν(C) if and only if C ∈ CD.

Proof: Consider a bivariate random vector (U1, U2) whose CDF is C.

The proof of the above results is immediate if we just take into account that

C coincides the joint CDF associated with (U1, U2) and CT coincides the

joint CDF associated with the (U2, U1) on [0, 1]2.

Lemma 7. [35, Prop 1, Section 7] If a cumulative distribution function

F : R → [0, 1] is continuous on R then the generalized inverse defined on

[0, 1] as F−1(p) = inf{x : F (x) ≥ p} is strictly increasing.

Lemma 8. Consider an arbitrary copula C and two CDFs F,G : R→ [0, 1],

and suppose that at least one of them is a continuous function on R. Assume
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that F ≥ G (in other words, F is stochastically dominated by G). Consider

a bivariate vector (X,Y ) ≡d (C;F,G) and suppose that X ≤FSD Y . Then:

P (X < Y ) ≥ ν(C) and P (X > Y ) ≤ ν(CT ).

Proof: We will assume that F is a continuous function (an analogous

proof will serve for the case where G is continuous). Consider a bivariate

random vector (U1, U2) with joint CDF equal to C on [0, 1]2, and define the

random variables X∗ = F−1 ◦U1, (X ′)∗ = F−1 ◦U2 and Y ∗ = G−1 ◦U2. We

see that (X∗, (X ′)∗) ≡d (C;F, F ), (X∗, Y ∗) ≡d (C;F,G) and (X ′)∗ ≤ Y ∗

(a.s.) Thus we observe that:

P (X < Y ) = P (X∗ < Y ∗) ≥ P (X∗ < (X ′)∗) and

P (X > Y ) = P (X∗ > Y ∗) ≤ P (X∗ > (X ′)∗).

Furthermore, as F is continuous, its generalized inverse F−1 is strictly in-

creasing (see Lemma 7). Therefore, as (X∗, (X ′)∗) = (F−1 ◦ U1, F
−1 ◦ U2),

P (X∗ < (X ′)∗) = P (U1 < U2) and P (X∗ > (X ′)∗) = P (U1 > U2). If we

join all the above inequalities we arrive at the thesis of the lemma:

P (X < Y ) ≥ P (U1 < U2) = ν(C) and P (X > Y ) ≤ P (U1 > U2) = ν(CT ).

If G is continuous, we can consider (Y ′)∗ = G−1 ◦ U1 and proceed with

an analogous proof.

Concerning the relationship with the results presented by Santis et al.

([7]), in which the authors characterize “γ-stochastic precedence” (P (Y ≥
X) ≥ γ), we can highlight the following points. Lower bounding P (Y ≥ X)

does not imply lower bounding P (Y > X) and consequently, we cannot

replicate the argument employed in the proof of [7, Theorem 6], where they

consider the closure of the set A = {(x, y) : x ≤ y}, in order to lower bound

its probability. A different line of reasoning is therefore necessary in our

proof for Lemma 8, where we find a lower bound for the probability of the

(open) set A′ = {(x, y) : x < y}. In this context, we need to require the

continuity of at least one marginal CDF to ensure the strict monotonicity

of the corresponding generalized-inverse. Furthermore, as we do not impose

the condition P (X = Y ) = 0, Lemma 8 does not follow from the results
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established in [7]. Lemma 8 is instrumental for Corollary 2 and Theorem 9.

Corollary 2. Consider an arbitrary copula C. Then:

(a) C is FSD-sp consistent if and only if ν(C) ≥ ν(CT ).

(b) C is FSD-sp consistent if and only if ν(C) ≥ 1−I(C)
2 .

(c) C is FSD-sp consistent if and only if ν(CT ) ≤ 1−I(C)
2 .

(d) If C is symmetric then ν(C) = 1−I(C)
2 = ν(CT ).

From Corollary 2 and Lemma 6, we can derive the following result:

Theorem 9. Consider an arbitrary copula C. If C is not FSD-sp consistent,

then CT is.

In other words, if we restrict ourselves to the set XC of bivariate random

vectors (X,Y ) considered in Equation 5, one of the following situations may

occur:

• C = CT (i.e., C is symmetric), and then ν(C) = ν(CT ), so that C is

FSD-sp consistent (something we already knew by virtue of Corollary

1 proved in the previous section).

• C 6= CT . In that case, either ν(C) ≥ ν(CT ), and then the copula is

FSD-sp consistent, or, ν(C) < ν(CT ) and then the transpose copula

is FSD-sp consistent.

In short, the family of consistent asymmetric copulas is at least as large

as the family of non-consistent ones. Moreover, it can be verified that the

family of nonconsistent copulas is nonempty. In fact, Santis et al. [7] recall

an indexed family of copulas such that η(Cθ) = θ, ∀, θ ∈ (0, 1]. It is the

family of copulas, N = {Cθ : θ ∈ [0, 1]} defined by Nelsen [21] and Siburg

& P. Stoimenov [36] as follows:

Cθ(u, v) = min{u, v, (u− θ)+ + (v − (1− θ))+}, ∀ (u, v) ∈ [0, 1]2,

where x+ = max{x, 0}, ∀x ∈ R.
According to [21, 36], Cθ is singular, with probability mass θ uniformly

distributed on the line segment from point (0, 1−θ) to (θ, 1), and mass 1−θ

13
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Figure 1: The support of Cθ.

uniformly distributed on the line segment joining (θ, 0) to (1, 1 − θ). See

Figure 1 for further clarification.

According to the location of these two segments with respect to the sets

A = {(u, v) : u ≤ v} and AT = {(u, v) : u ≥ v}, we see that, if (U θ1 , U
θ
2 )

has CDF Cθ, then

η(Cθ) = P (U θ1 ≤ U θ2 ) = θ

and

η(CTθ ) = P (U θ2 ≤ U θ1 ) = 1− θ,

∀ θ ∈ (0, 1]. (The interested reader can consult [7, Proposition 7] for more

explicit calculations). Moreover C1−θ = CTθ , ∀ θ ∈ [0, 1]. For every θ 6∈
{0, 0.5, 1} the copula Cθ is asymmetric and included in CD. This means that

not only η(Cθ) = θ, but also ν(Cθ) = θ, ∀ θ ∈ (0, 1).

If we consider the family N ∗ = N \ {C0, C0.5, C1}, and according to

Corollary 2, there exists a one-to-one correspondence between the subfami-

lies of FSD-sp consistent and nonconsistent copulas, associating each copula

Cθ for θ ∈ (0.5, 1) to its transpose CTθ = C1−θ.

For the (asymmetric) copulas included in N ∗∗ = {Cθ : θ ∈ (0, 0.5)},
first stochastic dominance does not imply statistical preference, nor diff-

stochastic dominance, nor any other more restrictive G-expectation prefer-

ence. In particular, if we choose a pair of random variables X and Y , both

uniform in the same interval, and with a copula included in N ∗∗, we will

have that Y stochastically dominates X and yet is not statistically preferred

to it.
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5. Conclusion

The entirety of the extensive results contained in [11] and [8], in addition

to Theorem 2.9 from [12], have been generalized in a single result (Theorem

4), whose proof is very short. From this, we deduce that none of the specific

examples of copulas considered in those prior works (such as comonotone,

antitone, Archimedean, etc.) exhibits any distinctive characteristics in the

relationship between first stochastic dominance and diff-stochastic domi-

nance, beyond their inherent symmetry.

Additionally, in Section 4, we demonstrate that when we restrict our

analysis to random vectors with at least one continuous marginal CDF,

first stochastic dominance implies statistical preference for at least as many

asymmetric copulas as those for which it does not. It should be noted that

we do not require any of the marginals to have a density function. We just

require that at least one of them has no singletons with strictly positive

probability.

Furthermore, we have identified an infinite and indexed set of asymmet-

ric copulas for which first stochastic dominance does not entail statistical

preference. Consequently, it does not either imply diff-stochastic dominance

or any other stronger form of G-expectation dominance.
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[31] M. López-Dı́az, A stochastic ordering for random variables with appli-

cations, Australian & New Zealand Journal of Statistics 52 (1) (2010)

1–16.

[32] M. Shaked, J. G. Shanthikumar, Stochastic orders, Springer, 2007.

[33] R. B. Nelsen, An introduction to copulas, Springer, 2006.

[34] A. Müller, M. Scarsini, Stochastic comparison of random vectors with

a common copula, Mathematics of Operations Research 26 (4) (2001)

723–74.

[35] P. Embrechts, M. Hofert, A note on generalized inverses, Mathematical

Methods of Operations Research 77 (2013) 423–432.

[36] K. Siburg, P. Stoimenov, Symmetry of functions and exchangeability

of random variables, Statistical Papers 52 (2011) 1–15.

18



Declaration of interests 

  

☒ The authors declare that they have no known competing financial interests or personal relationships 

that could have appeared to influence the work reported in this paper. 

  

☐ The authors declare the following financial interests/personal relationships which may be considered 

as potential competing interests: 

 

 

  

  

  

 


