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Abstract: This study presents a novel methodology for determining the apparent thermal diffu-
sivity of subsoil in situ, employing two heat transfer models within the subsurface: one method
is based on heat conduction caused by air temperature oscillations, while the other considers heat
transmission via both conduction and convection due to groundwater flow. Differential equations
were solved, and non-linear regression analysis was employed. This method has direct applica-
tions in various engineering and environmental domains, such as underground transmission lines,
oil and gas pipelines, radioactive waste management, and geothermal systems, especially in the
context of implementing horizontal geothermal collectors (HGC). The apparent thermal diffusivity
value of 1.514 × 10−6 m2 s−1, within a 95% confidence interval spanning 1.512 × 10−6 m2 s−1 and
1.516 × 10−6 m2 s−1, was obtained from the section between 1.67 and 3.86 m depth in a research
borehole located in Asturias, Northern Spain, using twenty-one temperature sensors. The method
allowed for the calculation of the subsoil’s apparent thermal diffusivity up to a depth of 14.55 m.

Keywords: mathematical; model; conduction; convection; borehole; Darcy velocity; thermal diffusivity

1. Introduction

Thermal diffusivity quantifies a material’s ability to conduct heat relative to its heat
storage capacity [1]. It serves as a core factor in the field of heat transfer, governing the
rate at which heat propagates in response to temperature gradients [2], and is essential
for various applications related to heat transfer, such as geothermal systems, construction,
agriculture, biology, and more. Although its application is very broad, recent studies are
mainly focused on geothermal systems.

While thermal conductivity is widely recognized as a fundamental parameter in
the design of geothermal systems [3] and has been the subject of extensive research, the
measurement and analysis of thermal diffusivity, another crucial property, require further
investigation [4,5]. Ground thermal diffusivity exhibits considerable variability, influenced
by factors such as soil type, density, and water content. Thermal diffusivity values can vary
depending on the mineralogical composition of soils as well as on the differences in soil
density and moisture. This implies that, for a given soil and depth, thermal diffusivity may
fluctuate throughout the year, influenced by factors such as rainfall [6], with ground thermal
diffusivity values ranging from 1.72 × 10−6 m2/s to 3.0 × 10−6 m2/s [7]. Authors [8]
provided a range of values for sandy soil with a density of 1.46 × 103 kg/m3, which varied
between 0.3 × 10−6 m2/s and 1.1 × 10−6 m2/s based on its moisture content. Other authors
have reported that thermal diffusivity measured in borehole cores, specifically in siltstones,
varies from 1.1 × 10−6 m2/s to 1.6 × 10−6 m2/s [2].

Thermal diffusivity can be determined through measurements taken in soil samples
using transient methods. The most commonly used method for soft rocks is the needle
probe, initially described by [9,10]. In the case of hard rocks, measurements under transient
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conditions are conducted using flat or circular heat sources [11]. These methods can also be
applied to borehole cores [2,12]. Various commercial devices and standardized [13] proce-
dures are available for these measurements. The equipment used by [2], purchased from
TCS Lippmann & Rauen Gbr, (Achim, Germany), allows for the measurement of both ther-
mal conductivity and thermal diffusivity of samples or cores as small as 40 × 40 × 40 mm3

simultaneously. The thermal conductivity accuracy is 3%, with a measurement range of 0.2
to 25.0 W/mK, while the thermal diffusivity accuracy is 5%, with a measurement range
of 0.6 to 0.6 to 3.0 × 10−6 s. However, such measurements have limitations as they only
represent the specific core or sample, neglecting the subsurface’s inherent heterogeneity,
such as the presence of multiple layers.

This problem can be addressed by using methods for measuring thermal diffusivity
in situ. These methods can be grouped into two categories: The first system is based on
the thermal response test (TRT), as presented in studies such as [3,4,14–18], among others.
The second relies on extensive time series of naturally occurring ground temperature
measurements at different depths, as discussed by [19–28]. In this system, a number of
analytical, numerical, and experimental methods, developed based on the one-dimensional
heat conduction equation, are available to determine soil thermal properties. Long-term
temperature measurements in the subsurface are obtained by placing temperature sensors
in a borehole and storing the data at specified intervals.

The analytical methods provide explicit equations for apparent thermal diffusivity
based on the amplitude or phase of the temperature wave measured at different depths [29].
One of the first analytical methods for in situ estimation considered the first harmonic of
daily waves, as widely discussed in [30]. A modified version of the amplitude method
was proposed by [22]. Moreover, the so-called Arctangent method was proposed [31],
which considers two harmonics. Authors used the amplitude method, in which the thermal
diffusivity α in the depth interval z1–z2 is obtained by measuring the amplitudes of
temperature waves A1 and A2 [2]. They applied the method in a borehole drilled in the
Maritime Antarctic, using a chain of thermistors at various depths between 0.2 and 25 m.
The temperature was measured every 5 min, and the data were stored in a datalogger.
The same formula was used by [6] in temperature measurements taken in a geotechnical
borehole drilled for the construction of a house in the south of Spain. Twenty-four sensors
were placed 20 cm apart, and measurements were taken over the course of a year. Authors
estimated diffusivity up to a depth of 10 m based on temperature data collected by three
temperature sensors [32]. From a theoretical perspective, this method assumes that heat
transfer occurs only through conduction in the vertical direction and that the ground is
homogeneous and isotropic, with thermal diffusivity (α) not dependent on depth or time.
Consequently, this can be calculated from ground temperatures by integrating the heat
conduction equation, assuming that the temperature at the upper boundary is described by
a sinusoidal function on a daily basis. However, natural grounds are heterogeneous, which
is reflected in their physical properties.

The method called harmonic and numerical makes use of a large number of temper-
ature measurements to implicitly solve for apparent thermal diffusivity. The numerical
method is based on the evaluation of annual amplitude temperature decay and annual
damping depth during long-term observation of the ground thermal disturbance diffusion
resulting from the annual thermal flux at the ground surface [28]. The application of this
method allowed [33] to estimate the apparent thermal diffusivity of the soil at depths of less
than 2 m at two field sites in Melbourne based on temperature time series data collected at
different depths.

Operating from a theoretical perspective, [34] conducted a study of subsurface temper-
ature and its relationship with thermal diffusivity. The authors concluded that the depth
at which the temperature in the borehole stabilizes and equals the annual mean ambient
temperature depends on the thermal diffusivity of the subsurface.

In this work, a methodology is proposed for determining the thermal diffusivity in
the subsurface, specifically in the shallower regions where significant temperature varia-
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tions occur. This methodology applies regression methods to a time series of subsurface
temperatures at different depths and the equation governing the heat transfer process in
the subsurface. The subsurface’s thermal diffusivity is implicitly contained within this
equation. Therefore, the regression yields the value of thermal diffusivity, which minimizes
errors. In deriving the equation, two possibilities are considered: heat transfer in the
subsurface due to conduction induced by temperature variations in the environment and
heat transfer in the subsurface due to the combined effects of conduction and convection.
In either case, the equations only represent the vertical component of heat flow.

The initial part of the article explains the derivation of the equations to be used
and discusses the parameters within them. In the experimental section, the geothermal
survey with the temperature measurement and recording system are described within the
geological and hydrogeological context. Information from a gamma-ray log for the survey
is available, and nearby water intake surveys provide insights into potential water levels
in the borehole. The paper proceeds with sections dedicated to results, discussion, and
ultimately presents the study’s conclusions.

2. Methodology and Results

The methodology has been structured into several sections. On one hand, in the
Theoretical Background section, the search for the equation relating subsurface temperature
to its thermal parameters is addressed. On the other hand, in the Site section, we emphasize
the process of measuring subsurface temperature over an extended period in a specific
geological and hydrogeological environment. These measurements were conducted in
the context of a geothermal research pilot borehole located in Asturias, Northern Spain.
Finally, in the Results section, we address the determination of which thermal parameters
of the subsurface yield the best fit between actual temperature values and the derived
equations. Calculations are performed for various soil layers, observed using core samples
and geophysical records.

2.1. Theoretical Background Section

Temperatures in the subsurface can be influenced by various factors, such as the
daily and seasonal fluctuations in air temperature as well as by the groundwater flow,
while at deeper depths they are mainly determined by the geothermal gradient. In this
work, we omit the latter factor and only consider temperatures in the upper layers of
the subsurface, where temperature fluctuations are evident due to changes in ambient
temperature and groundwater flow. In particular, Model I allows for the determination of
the subsurface temperature at a specific depth and moment as a consequence of the vertical
heat flow driven by conduction, resulting from the temperature difference between the
subsurface and the external environment. Model II discusses the case of heat transmission
in the subsoil due to the combined effect of heat transmission through conduction (solar
radiation) and convection (underground water flow). In addition, it considers the heat flow
due to the potential of the groundwater flow.

Model I also assumes:

• The ground surface is horizontal.
• The subsoil is composed of homogenous and isotropic layers.
• Subsoil temperature variations are a consequence of surface air temperature variations.

Isotherms are horizontal.
• Heat flow is vertical.
• The air temperature Ta(t) as a function of time, t, can be described by a periodic

function. This temperature is defined as a boundary condition to solve the main
equation for conduction in the ground.

Ta(t) = Tm + A0· sin(ω·t −∅0) (1)

where:



Energies 2023, 16, 8108 4 of 20

• Tm represents the average air temperature over period P,
• P denotes the period of the study,
• A0 indicates the amplitude of air temperature during period P,
• ω stands for the angular frequency of the periodic variation, satisfying ω = 2·π

P ,
• ∅0 signifies the sinusoidal oscillation delay from the surface ground temperature at

the beginning of the measurement period.

As is known, the vertical heat transport by conduction in a medium is mathematically
represented as:

∂T
∂t

= α·∂
2T

∂z2 (2)

where T represents the temperature of the porous medium, and α represents the bulk
thermal diffusivity, defined as α = λ

ρCp
, with λ as the bulk thermal conductivity, and ρCp as

the volumetric heat capacity of the bulk porous medium.
The solution of the Equation (2), with the hypotheses indicated earlier and the bound-

ary condition described in Equation (1), is the following:

T(z, t)− Tm = A0·e−d·z·sin(ω·t −∅0 − d ·z) (3)

where
d =

√
ω/(2·α)

The Equation (3) can be expressed as:

T(z, t)− Tm = Amax,i·sin(ω·t −∅i)

where:
Amax,i = A0·e−d·zi

and
∅i = ∅0 + d ·zi

The thermal diffusivity, α, is incorporated into the expression for d, and it impacts
both Amax,i and ∅i. This equation characterizes the model referred to as Model I.

In Model II, we account for the presence of water in the subsoil. In this scenario, the ver-
tical component of the heat flow in the subsoil is additionally included and mathematically
represented by Equation (4):

∂T
∂t

= α·∂
2T

∂z2 − W·∂T
∂z

(4)

where W is defined by the expression W = Cw
Cr
·uz, with uz representing the volumetric flow

or the vertical component of Darcy velocity and assigned positive values as z increases.
Additionally, Cw = 4.186 × 106 J/m3 represents the volumetric heat capacity of water, and
Cr is the volumetric heat capacity of rocks. While Cw can be directly sourced from the
literature, Cr is intrinsic to the rock and needs to be determined for each specific case. Given
that both Cw and Cr are specific to the rock, the term W is a function of uz, and has units
of velocity. The volumetric heat capacity of rock Cr can be calculated from n, the porosity
fraction of the rock, and Cs, the volumetric capacity of the solid components of the rock, as
defined according to [35] with the following expression:

Cr = n·Cw + (1 − n)·Cs

A general solution for Equation (4) is:

T(z, t, uz) = B + A·e(a·z+b·t) (5)

where a and b are complex and constant numbers, while B and A are real numbers. By
applying the boundary condition, it is demonstrated that b = i·ω, B = Tm and A = Ao. To
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determine the values of a and b, the partial derivatives ∂T
∂t , ∂T

∂z and ∂2T
∂z2 are calculated from

Equation (5). The obtained results are then substituted into Equation (4), resulting in:

b = α·a2 + W·a (6)

Solving Equation (6) for a yields two solutions:

a =
−W ±

√
W2 + 4·i·α·ω
2·α = ar + ai·i

To obtain the values of ar and ai, consider:√
W2 + 4·i·α·ω = rr + ri·i

where rr and ri are given by:

rr =
2·α·ω

±
√
−W2 ±

√
W4+16·α2·ω2

2

ri = ±

√
−W2 ±

√
W4 + 16·α2·ω2

2

Consequently, the real and imaginary parts of a are expressed as follows:

ar = − W
2·α +

√
2·ω√

−W2 +
√

W4 + 16·α2·ω2

ai = −
√
−W2 +

√
W4 + 16·α2·ω2

2·
√

2·α
As a result, Equation (5) transforms into:

T(z, t, uz)− Tm = A0·e((ar+ai ·i)·z+i·ω·t) = A0·e(ar ·z)·e(ai ·i·z+i·ω·t)

By replacing the root signs and conducting a coherence study, the expression simpli-
fies to:

T(z, t, uz)− Tm = A0·e
−(− W

2·α +
√

2·ω√
−W2+

√
W4+16·α2 ·ω2

)·z
· sin

(
ω·t −∅0 −

√
−W2 +

√
W4 + 16·α2·ω2

2·
√

2·α
·z
)

(7)

Here, we define:

M =
1
d
·
[
− W

2·α +

√
2·ω√

−W2 +
√

W4 + 16·α2·ω2

]
(8)

N =
1
d
·
[√

−W2 +
√

W4 + 16·α2·ω2

2·
√

2·α

]
(9)

Equation (7) can be further expressed as:

T(z, t, uz)− Tm = A0·e−M·d·z· sin(ω·t −∅0 − N·d·z) (10)

This can be represented as:

T(zi, t, uz)− Tm = A′
max,i· sin

(
ω·t −∅′

i
)

(11)
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In this case, A′
max,i = A0·e−M·d·zi and ∅′

i = ∅0 + N·d·zi, where M and N are dimen-
sionless variables dependent on uz and α. In simpler terms, the thermal diffusivity α
influences d, M and N, while uz impacts W and consequently to M and N.

Equation (10) exhibits a resemblance to Equation (3). Both equations depict the tem-
perature variation with depth. Therefore, temperature can be determined as the product of:

1. An exponential function independent of time, dependent on depth and ground char-
acteristics. This expression defines the maximum amplitude of the temperature in the
subsoil.

2. A periodic function that considers time in addition to the parameters mentioned
above. This function characterizes the delay of the maximum temperature change in
the subsurface.

Both functions differ in their arguments: M only affects the temperature damping, and
N only affects the temperature delay. Both variables appear as factors multiplied by d·z.
As indicated above, M and N depend on uz and α. Hence, for a given lithology, if uz = 0,
W = 0; then, M and N are equal to 1, and Equation (10) reduces to Equation (3).

Then, a theoretical study of M and N is presented for the hypothetical case where the
thermal diffusivity is set to 1 × 10−6 m2/s and the ratio Cw/Cr is 1.85. Figure 1 represents
the calculated values of M and N based on Equations (8) and (9) for a range of uz between
−0.1 × 10−6 m/s and 0.1 × 10−6 m/s. These values are within a reasonable range, and this
estimation provides insight into the behavior of M and N.

Energies 2023, 16, 8108 6 of 20 
 

 

𝑇(𝑧, 𝑡, 𝑢𝑧) − 𝑇𝑚 = 𝐴0 · 𝑒−𝑀·𝑑·𝑧 · 𝑠𝑖𝑛(𝜔 · 𝑡 − ∅0 − 𝑁 · 𝑑 · 𝑧) (10) 

This can be represented as: 

𝑇(𝑧𝑖 , 𝑡, 𝑢𝑧) − 𝑇𝑚 = 𝐴𝑚𝑎𝑥,𝑖
′ · 𝑠𝑖𝑛(𝜔 · 𝑡 − ∅𝑖

′) (11) 

In this case, 𝐴𝑚𝑎𝑥,𝑖
′ = 𝐴0 · 𝑒−𝑀·𝑑·𝑧𝑖 and ∅𝑖

′ = ∅0 +  𝑁 · 𝑑 · 𝑧𝑖, where 𝑀 and 𝑁 are dimen-

sionless variables dependent on 𝑢𝑧 and 𝛼. In simpler terms, the thermal diffusivity 𝛼 in-

fluences 𝑑, 𝑀 and 𝑁, while 𝑢𝑧 impacts 𝑊 and consequently to 𝑀 and 𝑁. 

Equation (10) exhibits a resemblance to Equation (3). Both equations depict the tem-

perature variation with depth. Therefore, temperature can be determined as the product 

of: 

1. An exponential function independent of time, dependent on depth and ground char-

acteristics. This expression defines the maximum amplitude of the temperature in the 

subsoil. 

2. A periodic function that considers time in addition to the parameters mentioned 

above. This function characterizes the delay of the maximum temperature change in 

the subsurface. 

Both functions differ in their arguments: 𝑀 only affects the temperature damping, 

and 𝑁 only affects the temperature delay. Both variables appear as factors multiplied by 

𝑑 · 𝑧. As indicated above, 𝑀 and 𝑁 depend on 𝑢𝑧 and 𝛼. Hence, for a given lithology, if 

𝑢𝑧 = 0, 𝑊 = 0; then, 𝑀 and 𝑁 are equal to 1, and Equation (10) reduces to Equation (3).  

Then, a theoretical study of 𝑀 and 𝑁 is presented for the hypothetical case where the 

thermal diffusivity is set to 1 × 10−6 m2/s and the ratio 𝐶𝑤 𝐶𝑟⁄  is 1.85. Figure 1 represents the 

calculated values of 𝑀 and 𝑁 based on Equations (8) and (9) for a range of 𝑢𝑧 between −0.1 

× 10−6 m/s and 0.1 × 10−6 m/s. These values are within a reasonable range, and this estima-

tion provides insight into the behavior of 𝑀 and 𝑁. 

 

Figure 1. Simplified depiction of M and N trends with Darcy velocity in our theoretical study. Back-

ground arrows indicate groundwater flow direction. The white arrows indicate the vertical direc-

tion of groundwater flow. 

This figure illustrates that 𝑀 consistently decreases with increasing 𝑢𝑧. Additionally, 

𝑀 > 1 when 𝑢𝑧 < 0 and 𝑀 < 1 for 𝑢𝑧 > 0. In simpler terms, if the flow is upward, 𝑀 > 1, 

resulting in a lower value for 𝑒−𝑀·𝑑·(𝑧𝑗−𝑧𝑖)  in Equation (10) compared to the case when M 

= 1. Conversely, when 𝑀 < 1, 𝑒−𝑀·𝑑·(𝑧𝑗−𝑧𝑖) is higher than it would be if 𝑀 = 1. 

Figure 2 illustrates the theoretical temperature variation, represented as 𝑇(𝑧, 𝑡) −

𝑇𝑚(𝑡), using Equation (3) (solid lines) and (10) (dashed lines) for different depths (0, 2, 4, 

and 6 m). In both cases, 𝐴0 is set to 5.2 [°C], and ∅0 is set to 0. When employing Equation 

(10), the values of 𝑀 and 𝑁 used in the equations are derived from Figure 1 by fixing the 

𝑢𝑧value. For Figure 2A, a 𝑢𝑧 value of −1 × 10−6 m/s is considered, and for Part B, the value 

Figure 1. Simplified depiction of M and N trends with Darcy velocity in our theoretical study.
Background arrows indicate groundwater flow direction. The white arrows indicate the vertical
direction of groundwater flow.

This figure illustrates that M consistently decreases with increasing uz. Additionally,
M > 1 when uz < 0 and M < 1 for uz > 0. In simpler terms, if the flow is upward, M > 1,
resulting in a lower value for e−M·d·(zj−zi) in Equation (10) compared to the case when
M = 1. Conversely, when M < 1, e−M·d·(zj−zi) is higher than it would be if M = 1.

Figure 2 illustrates the theoretical temperature variation, represented as T(z, t)− Tm(t),
using Equation (3) (solid lines) and (10) (dashed lines) for different depths (0, 2, 4, and
6 m). In both cases, A0 is set to 5.2 [◦C], and ∅0 is set to 0. When employing Equation
(10), the values of M and N used in the equations are derived from Figure 1 by fixing the
uz value. For Figure 2A, a uz value of −1 × 10−6 m/s is considered, and for Part B, the
value is 1 × 10−6 m/s. For each depth z, the solid curves (Model I, Equation (3)) represent
the maximum amplitude, Amax,i, as

[
A0·e(−d·z)

]
, with ∅i indicating [d·z]. In the case of

the dashed curves (Model II, Equation (10)), the maximum amplitude is determined by[
A0·e(−M·d·z)

]
, and ∅i corresponds to [N·d·z].
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Figure 2. Effect of uz on temperature variation at different depths, for uz equal to −1 × 10−6 m/s
(A), and for uz equal to 1 × 10−6 m/s (B), modelled using Equations (3) and (11). Continuous
black curve represents air temperature variation. The white arrows indicate the vertical direction of
groundwater flow.

In the case where M > 1 (uz < 0, Figure 2A), the temperature amplitude variation
would be less than what it would be if there were no water flow. In other words, the
temperature is more damped than in the case of only heat transmission via conduction.
Conversely, if M < 1, (uz > 0, Figure 2B), the subsoil temperature is less damped. It
appears that M has a significant impact on temperature damping in the subsoil.

Figure 2 also shows that N forms a parabola, with a minimum value of 1 corresponding
to uz = 0. As N is always greater than 1 and symmetric to the vertical axis, the effect of
vertical groundwater flow depends only on the velocity value, not the flow direction.

Figure 2 indicates that the vertical velocity of water has a more pronounced effect on
temperature amplitude than on the delay, which is negligible.

The delay is in the order of hours, which means it cannot be detected in curves where
the horizontal axis represents days.

In both models, the general Equations (2) and (4) are solved using the boundary
represented by Equation (1). However, the actual ambient temperature poorly aligns with
Equation (1) due to various factors (clouds, rain, etc.). Fortunately, these external influences
diminish with depth. To apply the previously presented methodology, Equation (1) is re-
placed by the boundary condition provided by Equation (12), representing the temperature
at a specific depth zi in the same format as Equation (1).

T(zi, t) = Tmi + A0,i· sin(ω·t −∅0) (12)

where

• Tmi is the average temperature at depth zi,
• A0,i is the amplitude at depth zi, which was previously referred to as Amax,i.

With this boundary condition, the new Equation (13) replaces the previous Equation (3)
in Model I.

T
(
zj, t
)
− Tmi = A0, i·e−d·(zj−zi)·sin

(
ω·t −∅0 − d ·

(
zj − zi

))
(13)

For model II, Equation (10) takes the form:

T
(
zj, t, uz

)
− Tmi = A0, i·e−M·d·(zj−zi)· sin

(
ω·t −∅0 − N·d·

(
zj − zi

))
(14)
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The equations enable the determination of the thermal diffusivity of the subsoil,
incorporated as the parameter d. If αA(i,j) represents the diffusivity obtained from the
analysis of A0,i between depths

(
zi, zj

)
, and αφ(i,j) represents the diffusivity derived from

the analysis of αφ(i,j) between the same depths, these values can be calculated using the
following equations:

αA(i,j) =
ω·
(
zi − zj

)2

2·
[
ln
(

A0,i/A0,j
)]2 (15)

αφ(i,j) =
ω·
(
zi − zj

)2

2·
(
∅i −∅j

)2 (16)

The difference between the previous expressions lies in their respective denominators.
Equation (15) relates to amplitudes, while Equation (16) concerns delays. Under Model
I, the equations are expected to possess an equality, where ln

(
A0,i
A0, j

)
equals

[
∅i −∅j

]
.

However, if the results do not match, this suggests Model I is unsuitable, making Model
II applicable. Analyzing Figure 2 and the related calculations reveals that when M > 1,
(uz < 0, Figure 2A), the ratio surpasses 1, resulting in

[
ln
(

A0,i
A0, j

)]
>
[
∅i −∅j

]
. Conversely,

the ratio falls below 1 if M < 1, (uz > 0).
Figure 3 exhibits a graph illustrating the ln

(
A0,i
A0, j

)
values plotted against

[
∅i −∅j

]
for various uz values, ranging from −1 × 10−6 m/s to 1 × 10−6 m/s. This graph is based
on the dataset from a prior theoretical study. As previously mentioned, it includes a line
with a slope of 45◦, indicating instances where the value pairs relate to Model I. The lines
positioned above the 45◦ line in the graph, referred to as Zone a, represent Model II with
uz < 0. The background in this area is marked with upward-pointing arrows for clarity.
Similarly, lines located below the 45◦ line, denoted as Zone b, signify the Model II with
uz > 0. The graph’s background in this area is shaded with downward-pointing arrows.
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Figure 3. Relationship between indicated parameters for various uz values derived from theoretical
study. The white arrows indicate the vertical direction of groundwater flow.

The theoretical background has been covered before this point. The utility of these
models lies in their straightforward application when subsurface temperature data at
various depths are available. A0,i and ∅i are computed for diverse depths from this data,
generating a graph like the preceding one. The calculated value pairs are charted and,
based on their alignment with Zones a, b, or the 45-degree line, the respective equations of
Models I and II are employed.

Subsequently, the underground temperature data are adjusted using non-linear re-
gression methods to conform to the corresponding equations, yielding the sought-after
parameters: thermal diffusivity for Model I and thermal diffusivity along with uz for
Model II.
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The method is suitable for depths where temperature fluctuations are detectable,
typically within shallow depths that vary according to location-specific circumstances. A
study published by [35] uses the term “convergence depth” for the depth at which the
difference in temperature between the subsurface temperature at that depth and the annual
average ambient temperature cannot be distinguished by a standard resolution temperature
sensor. This convergence depth, typically around 20 m, determines the maximum applicable
depth for the methodology presented in this paper. The ensuing sections demonstrate the
practical application of these methods through a case study.

2.2. Site

The previously displayed Models I and II were utilized to analyze an extensive series
of temperature data measured and recorded within a geothermal pilot borehole at varying
depths. The borehole, referred to as Q-Thermie, is positioned 26 m above sea level and 3 km
from the coastline, situated within the Campus de Viesques, University of Oviedo (Gijón,
Spain), at coordinates longitude 5◦37′16′ ′ W and latitude 43◦31′23′ ′ N, and is adjacent to
a meteorological station operated by the State Meteorology Agency (Agencia Estatal de
Meteorología, AEMET, Madrid, Spain) (Figure 4).
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Figure 4. Location of the geothermal pilot well near Gijón, Spain [36].

Some interesting characteristics of the borehole are detailed in Table 1.

Table 1. Characteristics of the geothermal pilot borehole.

Drilling
Method Diameter Depth

Rotation with continuous drilling core 125 mm 52 m

Geothermal pipes
Type Diameter outside tube Diameter inner tube

Coaxial 50 mm 25 mm

Geothermal backfill
Type Trademarck Model

Grout composition: silica sand and
sulfate-resistant cement enhanced with additives Energrout Energrout HD 2.3

The Q-Thermie borehole is embedded within the Asturian Jurassic succession. This
borehole intersects the “Gijon formation”, characterized by the alternation of marly lime-
stone and grey dolomite [37].

The Gijon geological formation serves as a carbonate aquifer renowned for its high per-
meability, transmissivity, and storage coefficients, rendering its use expensive. However, the
presence of loamy-clayey levels within the aquifer interrupts its hydraulic connection [37].
The drilling of cores allowed us to measure the porosity of the penetrated materials. A
mercury injection porosimeter was used, determining the porosity to be 0.50%.
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Figure 5 illustrates the recorded surface air temperature data obtained from the me-
teorological station (Meteorology State Agency, Government of Spain, AEMET) located
adjacent to the pilot borehole over the observed period.
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Figure 5. Surface Air Temperature: 30 October 2015, to 30 October 2016 (Data provided by
AEMET. [36]). The red curve represents the best-fitting temperatures to Equation (1).

Prior to the installation of the geothermal probes, a gamma-ray probe from a Mount
Sopris 3000 device was employed in the borehole. Figure 6 shows, among other aspects,
the acquired gamma-ray log.
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 Figure 6. On the left: Lithologic column and gamma-ray log. Center: Depth of the sensors. On
the right: Temperature–depth profiles for the specified months, referencing the convergence depth
established by [35].

The central part of Figure 6 shows the positions of temperature sensors spaced about
2 m apart, ranging from 1.67 to 43.41 m in depth. The 2-m spacing between sensors was es-
timated before drilling and determined according to communication system requirements.

Temperature monitoring in the subsoil involves twenty-one DS18B20 temperature
sensors connected via a 1-wire cable, placed in a borehole for long-term observation. A
detailed description of the instrumentation is presented in [38], although we describe some
of its features and limitations below.
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The DS18B20 sensors (manufactured by Maxim Integrated, San José, CA, USA) supply
12-bit temperature readings. According to the manufacturer’s specifications, the standard
sensitivity of sensors is 0.5 ◦C, and the mean standard error for the temperature range of
10 ◦C to 20 ◦C is between −0.45 and −0.11 ◦C. However, the manufacturer specifies that
the sensitivity can be further enhanced through the individual calibration of each sensor.
In this case, individual calibration has been performed on each sensor, resulting in a final
sensitivity of ±0.06 ◦C within the subsurface temperature range.

The information is sent to/from the DS18B20 over a 1-wire interface, so that only one
wire needs to be connected from a central microprocessor to the DS18B20 sensors. The
sensors were connected to an Arduino-datalogger, programmed to record the temperature
of each sensor. These sensors continuously recorded the temperature every five minutes
over a period of one year. Figure 7 displays a sectional and depth view of the arrangement
of the sensors (highlighted in red) within the borehole, attached to the 1-wire cable.
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Figure 7. Diagram of Q-Thermie Uniovi Geothermal Pilot Borehole. The sensors are indicated in red.

On the right side of Figure 6, temperature–depth profiles for specific months are
displayed. The temperatures depicted are the average values recorded during the initial
week of November, February, May, and August, respectively.

The Gijón municipal water company (Empresa Municipal de Aguas, EMA, Gijón,
Spain) manages multiple boreholes providing water supply to Gijón, situated near the
study area [39]. Figure 8 illustrates the positions of both EMA’s and Q-Thermie boreholes.
The water level information about these boreholes is available for an extended period. These
data are used to extract valuable information that is presented later in the Results section.

From the porosity of core samples y, n was determined using a Hg injection porosime-
ter (n = 0.50%). From study [40] Cs = 2.25× 106 J·m−3K−1, and Cw = 4.18× 106 J·m−3K−1,
so volumetric heat capacity, Cr = 2.26 × 106 J·m−3K−1.
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2.3. Results

In this section, we present two key sets of results. First, we cover general findings
from the borehole and its immediate surroundings. This includes air temperature analysis,
the lithological column from the geothermal borehole, subsurface temperature trends with
depth, and insights from the EMA’s boreholes. Then, we apply the methodology detailed
in the Theoretical Background to determine the subsurface’s thermal properties in our
case study.

The study of air temperature, as depicted in Figure 5, established an amplitude of
A0 = 5.2 ◦C and observed a temporal delay, ∅0, between the theoretical sinusoidal function
(∆T = 0 when t = 0 s) and the actual sinusoidal function. However, the R2 value, as
detailed in Table 2, indicates a notably low fit, suggesting that employing this equation as
a boundary condition may yield poor results. The graph (Figure 9) shows the best fitting
curve, represented by the red curve in relation to Equation (1).

The stratigraphic sequence, deduced from continuous drilling core samples and the
gamma-ray log, is visually presented in the Figure 6. The sequence of dolomite, limestone,
marly limestone, and shale layers is clear. Dolomite predominates the uppermost zone
notably. Extensive fracturing in the dolomite layers necessitated drilling from inside
the casing.

From the analysis of underground temperatures depicted in Figure 6, it is inferred
that temperatures converge around the 15 m depth mark, known as the convergence depth.
Additionally, according to [35], the depth at which the heat flux reverses is observed to be
approximately 5 m.

Figure 9 illustrates the values of T(zi, t) at various depths. A significant observation is
the reduction in temperature amplitude with greater depth. Notably, at a depth of 20.14 m
the temperature amplitude nearly reaches zero. Furthermore, the graph demonstrates a
rightward delay as depth increases.

Table 2. Fitting Surface Air Temperature data provided by [38] to Equation (1). SSE: sum of squared
errors; R2: R square; RMSE: root-mean-square error.

A0 [◦C] ∅i [Days] SSE R2 R2 Ajusted RMSE

5.224 4.84 0.4623 0.4623 0.4623 3.8560
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Figure 9. Temperature recorded by DS18B20 sensors at different depths. Best fitting curve of the
temperatures to Equation (13) (in red) assessed through regression method.

Table 3 displays the A0,i and ∅i values obtained from temperature adjustments at
various sensor depths, in alignment with Equation (10). It also includes coefficients (with
95% confidence bounds) and goodness of fit. Beyond 14.55 m in depth, the thermal gradient
is so minor that changes are hardly noticeable. It is also observed that the correlation
coefficient decreases with increasing depth.

Table 3. Goodness of fit between the temperature data collected from various DS18B20 sensors and
Equation (10).

zi [m] A0, i [◦C] ∅i [Days] SSE R2 R2 Ajusted RMSE

1.67 3.86
(3.85, 3.85) 24.16 9232 0.9965 0.9965 0.3152

3.86 2.19
(2.19, 2.18) 56.52 1211 0.9939 0.9939 0.1142

6.08 1.32
(1.32, 1.32) 87.54 483.2 0.9934 0.9934 0.07212

8.23 0.81
(0.81, 0.81) 114.61 293.6 0.9904 0.9904 0.05622

10.31 0.53
(0.53, 0.53 145.28 152.7 0.9893 0.9893 0.04055

12.44 0.33
(0.33, 0.33) 167.13 137.2 0.9764 0.9764 0.038

14.55 0.14
(0.14, 0.14) 219 292.2 0.7515 0.7515 0.056

Beyond 14.44 m in depth, the thermal fluctuations in the subsurface are so minimal
that they are hardly noticeable, which worsens the fit and consequently the correlation co-
efficient.

During the month of September, for which the isopiestic lines are depicted as reported
in Figure 8, the piezometric level is observed to be at its lowest level, as illustrated in
Figure 10. By early March, it stabilizes between 7 and 13 m above this level.
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Figure 10. Evolution of piezometric levels over four years in boreholes close to the Q-Thermie
borehole. (Elevations above sea level).

The Q-Thermie borehole was drilled in early November, and the water level stabilized
at a depth of 13 m, indicating that the piezometric level in the borehole was 13 m above sea
level, consistent with the data from the EMA boreholes. The direction of water flow was
inferred from this study.

Next, underground temperatures were analyzed to determine the thermal properties
of the subsurface. The temperature data we analysed in accordance with three approaches
to determine the apparent thermal diffusivity of the subsoil.

In the initial analysis, data from adjacent sensors were considered in order to calculate
the pairs ln

(
A0, i
A0,j

)
and

[
∅i −∅j

]
using the A0, i and ∅i values from Table 3. The temper-

ature data from greater depths were taken into account but are not shown because the
temperature variations are so small that it is impossible to detect the amplitudes or delays.

The necessary pairs were generated to create a graph akin to that of Figure 3. These
value pairs have been plotted in Figure 11.
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Figure 11. Relationship between the specified parameters for the dataset in the case study. The white
arrows indicate the vertical direction of groundwater flow.

Following the initial analysis, it is evident that points 1, 2, 3, and 6 align with the
‘conduction only’ line. As a result, Model I can be applied to temperatures within the ranges
of 1.67–3.86 m, 3.86–6.08 m, 6.08–8.23 m, and 12.44–14.55 m, while Model II is suitable for
temperatures within the depth range of 8.23–12.44 m.

In the second analysis, and Ni,j values between depths zi and zj were estimated using
a minimization approach based on Equation (10).
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This involved directly measuring T
(
zj, t, u

)
and using the determined values of A0, i

and Tmi (as indicated in Table 3). The resulting values for Mi,j and Ni,j and R2 are presented
in Table 4.

Table 4. Values of Mi,j and Ni,j derived from Equation (12) for depths between zi and zj.

Depth of Sensors zi, zJ Mi,j Ni,j R2

1.67–3.86 1.056 1.037 0.9939

3.86–6.08 1.119 1.179 0.9934

6.08–8.23 1.148 1.103 0.9904

8.23–10.31 0.9317 1.152 0.9893

10.31–12.44 1.306 1.072 0.9764

12.44–14.55 1.281 1.285 0.9157

14.55–16.72 0.6234 1.031 0.4793

16.72–18.01 0.2542 0.5492 0.1553

From the analysis of the correlation coefficients presented in this table, it can be inferred
that the reliability of the M and N values diminishes with increasing depth. Specifically,
R2 is greater than 0.9 down to a depth of 14.55 m, and even greater than 0.99 up to almost
10.31 m. However, it decreases to 0.47 at a depth of 14.55 m. For this reason, results at
depths greater than 14.55 m are not considered and are excluded from the study.

Based on the information provided in this table, the subsoil within the depth range of
10.31–12.44 m exhibits a significantly higher value of Mi,j than 1, which corresponds to the
upward flow zone (Figure 11). Conversely, the section spanning 8.23–10.31 m displays an
Mi,j value noticeably below 1, consistent with a zone of descending flow, as indicated in
Figure 1. The remaining sections have Mi,j values that are nearly equal to 1.

Moreover, the N values consistently exceed 1, although the differences were not
statistically significant.

In a third analysis, thermal diffusivity was estimated using Model I and Model II.
Based on the previous outcomes, Model I was applied to subsurface temperature

data within the depths of 1.67–3.86 m; 3.86–6.08 m; 6.08–8.23 m; and 12.44–14.55 m, while
Model II was used for temperatures recorded between depths of 8.23–12.44 m. Figure 12
illustrates the evolution of ∆T = T

(
zj, t
)
− Tm,i against t for the four mentioned intervals,

derived from Equation (11), with the best-fitting curve obtained through the optimization
procedure shown in red.

Regression analysis enables the determination of thermal diffusivity with a 95% con-
fidence interval. The fit results and the coefficients indicating the goodness of the fit are
presented in Table 5 for the specified intervals. The correlation coefficient in the uppermost
layers exceeds 0.99 with a considerably narrow confidence interval.

Using [14], we applied Model II within the depth range from 8.23 m to 12.44 m allowed
for the estimation of thermal diffusivity αi,j, and uz. Figure 13 illustrates the measured
∆T = T

(
zj, t, uz

)
− Tmi values for the sensors, along with the best-fitting red curve.

Similar to the previous case, regression analysis was used to determine the thermal
diffusivity within a 95% confidence interval. Table 6 displays the fitting results and the
corresponding goodness-of-fit coefficients for the specified intervals. In this case, the
correlation coefficients are comparatively lower. The correlation coefficient decreases with
depth due to the reduced variance between the minimum and maximum temperatures.
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Table 5. Thermal diffusivity αi,j obtained for the intervals between the indicated depths using
Equation (13) (Model I).
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1.67−3.86
1.51 × 10−6

(1.51 × 10−6,
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1211 0.9938 0.9938 0.1147
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Table 6. Thermal diffusivity αi,j obtained for the intervals between the indicated depths using
Equation (12) (Model II).

Sensor Depths zi, zj
(m) αi,j [m2s−1 ] SSE R2 R2 Ajusted RMSE

8.23−10.31
1.51 × 10−06

(1.51 × 10−06,
1.52 × 10−6)

152.7 0.9893 0.9938 0.1147

10.31−12.44
3.13 × 10−06

(3.11 × 10−06,
3.14 × 10−06)

137.2 0.9764 0.993 0.07436

The application of Model II to the subsurface temperature records at the specified
depths enables the determination of uzi,j alongside the thermal diffusivity. In this case of
consecutive layers, calculations for uzi,j were conducted for the entire range from 8.23 m to
12.44 m, treating this range as a single hydrogeological unit. The fitting results for uzi,j are
presented in Table 7.

Table 7. uz values for deep intervals using Equation (14).

Sensor Depths
(m) uzi,j [m s−1] SSE R2 Adjusted R2 RMSE

8.23 − 12.44
0.20 × 10−07

(0.19 × 10−07,
0.20 × 10−07)

137.9 0.9763 0.9763 0.03853

3. Discussions

The proposed models (Model I and Model II) provided significant results in the
analysis of thermal diffusivity in the subsurface. They showed the prevalence of heat
transmission through conduction in shallow layers and the more significant influence of
convection in deeper layers. The values obtained for thermal diffusivity reflect excellent
accuracy at all depths. For instance, in the range between 1.67 and 3.86 m, applying Model
I yielded a thermal diffusivity of 1.514 × 10−6 m2 s−1 with a 95% confidence interval
between 1.512 × 10−6 m2 s−1 and 1.516 × 10−6 m2 s−1, representing an accuracy of 0.264%.
This highlights the robustness and high precision of the proposed method, surpassing
commercial equipment precision.

It is important to emphasize that the methodology used is valid only up to a certain
depth, known as the convergence depth, where thermal oscillations become indiscernible.
The depth varies based on the subsurface’s thermal diffusivity, which, in this study, was
observed at 14 m. The various types of TRT procedures can be employed for in situ
determination of thermal diffusivity in deeper zones.

It is noteworthy that, in this work, the temperature sensors were distributed in sections
determined by their position, without a precise representation of the different lithologies
encountered. In future research, positioning the temperature sensors more appropriately in
terms of lithological sections will provide a more detailed characterization.

The calculation of the vertical component of Darcy velocity yielded notable values,
indicating very low vertical hydrodynamic flow (uzi,j =0.20 × 10−7 m s−1) typical of
low-permeability terrains, as encountered in the study case. The determination of the
piezometric level was performed indirectly by consulting neighboring borehole piezometric
levels, showing consistency between both results. There is a recognized need for more
precise control of the piezometric level around the borehole to enhance the understanding
of subsurface hydrology and, therefore, geothermal model precision.
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4. Conclusions

The study underscores the importance of considering thermal models that incorporate
both conduction and convection in the analysis of heat transport in the subsurface. The
validated models allow for the determination of thermal diffusivity in various shallow
subsurface sections. The high precision of the proposed method for measuring thermal
diffusivity, as evidenced by the narrow confidence intervals and the representativeness of a
range of sample values, highlights its superiority over standard laboratory equipment and
its ability to more faithfully represent the characterized terrains.

A comparison with literature values demonstrates the method’s capability to pro-
vide more precise and detailed measurements than conventional approaches, making it
a valuable tool for understanding subsurface thermal behavior in various contexts and
depths. Additionally, it suggests a need for more comprehensive research in order to better
understand the behavior of Darcy velocity and its relation to thermal diffusivity in differ-
ent geothermal contexts. This deeper exploration could provide additional insights into
hydrodynamic flow dynamics and their influence on subsurface heat transport, thereby en-
hancing the overall understanding of geothermal processes and their practical applications.
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