
Citation: Cascelli, N.;

Gotor-Fernández, V.; Lavandera, I.;

Sannia, G.; Lettera, V.

Spectrophotometric Assay for the

Detection of 2,5-Diformylfuran and

Its Validation through

Laccase-Mediated Oxidation of

5-Hydroxymethylfurfural. Int. J. Mol.

Sci. 2023, 24, 16861. https://doi.org/

10.3390/ijms242316861

Academic Editors: Rebecca Pogni

and Maria Camilla Baratto

Received: 20 October 2023

Revised: 18 November 2023

Accepted: 24 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Spectrophotometric Assay for the Detection of
2,5-Diformylfuran and Its Validation through Laccase-Mediated
Oxidation of 5-Hydroxymethylfurfural
Nicoletta Cascelli 1,2 , Vicente Gotor-Fernández 2 , Iván Lavandera 2 , Giovanni Sannia 1 and
Vincenzo Lettera 1,3,*

1 Biopox srl, Viale Maria Bakunin 12, 80125 Napoli, Italy; cascellinicoletta@uniovi.es (N.C.);
sannia@biopox.com (G.S.)

2 Organic and Inorganic Chemistry Department, University of Oviedo, Avenida Julián Clavería 8,
33006 Oviedo, Spain; vicgotfer@uniovi.es (V.G.-F.); lavanderaivan@uniovi.es (I.L.)

3 Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci Cubo 12/D,
87036 Cosenza, Italy

* Correspondence: vincenzo.lettera@unical.it; Tel.: +39-0984-493311

Abstract: Modern biocatalysis requires fast, sensitive, and efficient high-throughput screening meth-
ods to screen enzyme libraries in order to seek out novel biocatalysts or enhanced variants for
the production of chemicals. For instance, the synthesis of bio-based furan compounds like 2,5-
diformylfuran (DFF) from 5-hydroxymethylfurfural (HMF) via aerobic oxidation is a crucial process
in industrial chemistry. Laccases, known for their mild operating conditions, independence from
cofactors, and versatility with various substrates, thanks to the use of chemical mediators, are appeal-
ing candidates for catalyzing HMF oxidation. Herein, Schiff-based polymers based on the coupling
of DFF and 1,4-phenylenediamine (PPD) have been used in the set-up of a novel colorimetric assay
for detecting the presence of DFF in different reaction mixtures. This method may be employed for
the fast screening of enzymes (Z’ values ranging from 0.68 to 0.72). The sensitivity of the method
has been proved, and detection (8.4 µM) and quantification (25.5 µM) limits have been calculated.
Notably, the assay displayed selectivity for DFF and enabled the measurement of kinetics in DFF
production from HMF using three distinct laccase–mediator systems.

Keywords: colorimetric assay; 2,5-diformylfuran; colorimetric screening; 5-hydroxymethylfurfural;
laccase–mediator system

1. Introduction

Cellulosic sugars are currently the subject of extensive studies for their conversion
into furan derivatives [1–4], which are heterocyclic compounds with great possibilities
as alternatives to compounds derived from fossil resources in the energy and chemical
industry. Amongst all of these bio-based compounds, 2,5-diformylfuran (DFF, Figure 1) has
received considerable attention due to the wide range of potential applications in the syn-
thetic industry as a renewable and versatile building block [5]. Containing a furan ring and
two aldehyde groups, DFF is a valuable substrate for polymer synthesis to obtain materials
such as plastics, coatings, adhesives, and resins [6–8], as well as pharmaceuticals [9,10].
DFF can be condensed with other molecules to make, for instance, poly-imines [7,11,12],
polyesters, polyamides and polyurethanes [13], and polymers that display unique proper-
ties in performances that compete with those from petroleum-based materials [14]. For this
reason, DFF is considered as a bridge connecting renewable biomass and the petroleum
industry. This compound offers sustainable alternatives to chemicals employed in the
pharmaceuticals, fuel, and polymers sectors, and it is currently commonly derived from
fossil source manufacturing processes [15]. A noteworthy application of DFF was revealed
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by Dhers et al., who demonstrated the synthesis of a polyimine vitrimer used in dynamic
film design, boasting an entirely renewable carbon content of 100% [7]. Several other valu-
able DFF derivatives have found industrial applications, for instance, furan-2,5-dicarbonyl
chloride (FDCC) [16], 2,5-bis(aminomethyl)furan (BAMF) [17], 2,5-bis(hydroxymethyl)-
tetrahydrofuran [18], 2,5-dicyanofuran [19], and 2,5-bis(aminomethyl)furan [20]. Moreover,
DFF is also investigated as a potential platform for the production of high-value specialty
chemicals that can be used as solvents or further processed to produce biofuels such as
biodiesel and jet fuel [21–23].
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Laccases are copper-containing oxidoreductases that exist naturally in many organisms, 
which catalyze the oxidation of a wide range of phenolic compounds, aromatic amines, 
and other substrates by reducing molecular oxygen to water. They have found applica-
tions in biosensors, pulp and paper manufacturing, organic synthesis, textiles, cosmetics, 
and both synthetic and degradative processes, highlighting their significance across mul-
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FDCA, 2,5-furandicarboxylic acid.

DFF can be efficiently synthesized under aerobic conditions from 5-hydroxymethylfurfural
(HMF, Figure 1), one of the most versatile furan-based compounds, derived from biomass-
based feedstock [1,24,25]. The selective conversion of HMF into DFF, via homogeneous
or heterogeneous catalysis, has been widely reported [26–28]. DFF chemical syntheses
via traditional oxidative catalytic processes involve base-metal-containing heterogeneous
catalysts, mainly from ruthenium [29], vanadium [30], manganese [31], or copper [32],
among others, either in aqueous or organic media [33]. Nevertheless, these processes
require, in some cases, several reaction steps, expensive catalysts and hazardous organic
solvents, and a careful control of harsh reaction conditions, such as high temperatures and
pressures, to avoid the formation of overoxidized co-products, for instance, HFCA, FFCA,
and FDCA (Figure 1) [34,35].

In addition to these traditional catalytic processes, more environmentally friendly
transformations have been investigated towards DFF synthesis. More recently, the con-
version of renewable and cheap carbohydrates (i.e., fructose) has been proposed as a
sustainable approach to produce this compound [36]. Additionally, new strategies involv-
ing biocatalysis [37–41], photocatalysis [42–45], and electrocatalysis [46,47] starting from
HMF have been embraced. Among all, enzymatic oxidations are extensively reported,
showing, in some cases, an excellent selectivity for DFF formation over other possible
oxidized derivatives. Several enzymes have efficiently performed HMF oxidation using
oxygen or other oxidants as electron acceptors. Glucose oxidases [48], copper radical
oxidases [49], aryl-alcohol oxidases [41,50], and HMF oxidases [51] are the most appealing
so far, while galactose oxidase (GOx) is the most reported [52].

Among oxidative enzymes, laccases have also been utilized in the oxidation of HMF.
Laccases are copper-containing oxidoreductases that exist naturally in many organisms,
which catalyze the oxidation of a wide range of phenolic compounds, aromatic amines,
and other substrates by reducing molecular oxygen to water. They have found applications
in biosensors, pulp and paper manufacturing, organic synthesis, textiles, cosmetics, and
both synthetic and degradative processes, highlighting their significance across multiple
industrial sectors [53–55].

Laccases often exhibit low activity towards non-phenolic substrates such as alcohol
derivatives and therefore face challenges in directly oxidizing certain derivatives. For this
reason, these enzymes must be combined with small molecules, forming a laccase–mediator
system (LMS). The mediator oxidized by the laccase acts as an intermediate species between
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the enzyme and the target substrate, mediating the electron transfer towards the substrate
that is otherwise difficult to oxidize. Finally, the laccase is activated again by the oxygen
from air [56–60].

Despite that, the selective synthesis of DFF has proven to be quite challenging; none
of the proposed enzymatic systems are practical solutions for high-scale DFF production,
among other factors, due to the solubility, selectivity, and stability issues of the selected bio-
catalysts. There are still some challenges ahead in the development of biotransformations,
such as productivity and scalability. In order to fine-tune enzymes or boost their catalytic
activity and operational stability, protein engineering has been proposed as an enabling
technology. In general, biocatalyst engineering strategies include directed evolution and
site-directed mutagenesis, two powerful tools that can be used, alternatively or simultane-
ously, to optimize and diversify enzyme functions for a wide range of applications [61–63].
These methodologies have been successfully pursued to improve the properties of many
different proteins [64]. With this scenario, the implementation of rapid and selective high-
throughput screenings is a need to test up to millions of enzyme variants towards a specific
transformation [65,66].

As already mentioned, the search for new enzymes that are able to oxidize HMF into
DFF may open new unexplored biocatalytic routes. The main obstacle in approaching these
strategies is related to the lack of a fast and sensitive screening method for specific DFF
identification. To date, the most common related high-throughput assays deal with the
detection of co-products derived from the oxidation of HMF. In this context, one of the
most representative contributions is the one reported by Turner and co-workers [67], who
generated a library of GOx variants via the site-directed mutagenesis of selected residues in
the active site of the enzyme, finding a suitable catalyst for HMF oxidation. This library was
screened towards this substrate by measuring the amount of the co-product H2O2 through
a coupled peroxidase-based colorimetric reaction via the co-oxidation of 4-chloronaphthol
or ABTS [68]. This assay allowed for the best performing hits to be selected without any
selective detection of DFF, which was only measured using analytical methods (GC and
HPLC) for the selected variants. This approach, however, cannot be employed when
working with enzymes that do not generate hydrogen peroxide as a co-product.

As far as we know, a versatile screening methodology for the selective direct DFF
detection has not yet been reported. In this contribution, we developed an assay to be
used as a fast method to reveal DFF in a solution, with a special focus on the chemical
selectivity. The design of this rapid assay for DFF revelation is proposed to be consisting
of the polymeric condensation of this dialdehyde with an aromatic diamine, namely 1,4-
phenylenediamine (p-phenylenediamine, PPD) [69]. The assay aims to provide a linear
and sensitive response to the analyte, avoiding interferences with the starting material and
other possible co-products. Moreover, the effectiveness in the synthesis of DFF of three
distinct LMSs was tested through the assay.

2. Results and Discussion
2.1. Rationale and Set-Up of the Assay Methodology towards DFF

The selective oxidation of HMF into DFF is gaining increasing importance since it
is considered an ideal platform for producing value-added compounds. Unlike tradi-
tional chemical oxidations, the enzymatic conversion of HMF is preferred, assuring high
selectivity in DFF synthesis as well as a more sustainable process. However, enzymes
actively performing this transformation are scarce. In this regard, directed evolution stud-
ies may impart a pivotal contribution by enhancing the promiscuous activities of natural
enzymes as well as by enabling the screening of numerous new biocatalysts. The design
of such complex approaches can be limited mainly by the absence of sensitive and easy
high-throughput screening technologies. Thus, a fast and simple analytical method for
the selective detection of DFF in mixtures is needed. Few detection methods, including
colorimetric and fluorometric ones, have already been reported for several furan-based
compounds [70,71], including HMF [72,73]. Conversely, DFF has never been considered as
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the main target for the design of such assays, despite the increasing interest in its selective
synthesis from HMF.

Polymeric Schiff bases, formed mainly through the reaction of diamines with dialde-
hydes such as DFF, have already been disclosed [74–76]. All of these studies have been
proposed as proof-of-concept for the preparation of new bio-based polymeric materials.
Whereas the characterization of DFF-based poly-imines has been presented as promising
polymers with relevant conducting properties [69], or forming furan-based porous organic
frameworks [11], they have not been effectively exploited for their colorimetric properties
in the design of, e.g., a selective assay for DFF detection.

The herein developed method is based on the selective reaction of DFF with the
aromatic diamine PPD, exploiting its reactivity towards the target compound. The assay
is designed to reveal DFF as an oxidation product from HMF. Nevertheless, the aldehyde
moiety of HMF could also react with PPD to form the corresponding imine, which could
undergo dimerization but no further polymerization due to the presence of the hydroxyl
functionality, although it might contribute to the formation of color. In order to set-up
a selective colorimetric screening for DFF, the conjugated structures obtained via PPD
incubation with HMF must not interfere with the absorbance of DFF in the UV/Vis region
(Scheme 1).
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Scheme 1. Representation of the concept of the designed screening assay described in this contri-
bution. HMF oxidation leads to DFF accumulation. Then, PPD incubation can selectively reveal
DFF.

Since this assay is intended to be applied in biocatalytic oxidative transformations,
the incubation occurred in an aqueous medium at a slightly basic pH (KPi buffer 100 mM,
pH 7.5), thus favoring the formation of the Schiff base. As a first step, the spectrophoto-
metric UV/Vis characterization of HMF, DFF, and PPD alone (equimolar mixtures, 20 µM)
confirmed that the compounds singularly did not significantly absorb in the visible region
(above 380 nm, Figure 2a). Thus, HMF and DFF were separately incubated in the presence
of PPD, using up to 100 µM of each compound. A positive response was only detected for
DFF at a wavelength of 350–500 nm (Figure 2b–d).
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at (b) 20, (c) 50, and (d) 100 µM incubated with PPD (same concentration) in KPi buffer 100 mM,
pH 7.5.

Then, a simulated reaction progress with 2% HMF conversion into DFF was mimicked
by mixing HMF (4.9 mM) and DFF (100 µM, Figure 3). The single compounds were
incubated with PPD (5 mM), as well, for comparison. Initially, assays were conducted
in 1 mL of the total volume at room temperature. The profile peak of DFF reacting with
PPD (red line, Figure 3) reflected the previous evidence of the shift in the absorbance
detected at 450–500 nm instead of the lower absorbance values when reacting HMF with
PPD (green line, Figure 3), which was set as the background noise of the assay under the
explored conditions. The same trend at wavelengths of 500–600 nm was observed when
HMF reacted with PPD in the presence of such little amount of DFF (purple line, Figure 3),
with an increase in the overall absorbance values due to the contribution of the polymer
formed between DFF and PPD.
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A point-by-point evaluation of the difference in increasing absorbance, attributed to
the presence of DFF even in the presence of a high excess of HMF (indicated by the purple
line), revealed comparability. Three values within this range (500, 550, and 600 nm) were
selected, and the linearity of the response in the presence of increasing DFF concentrations
was assessed. After confirming the suitability of all three wavelengths for detecting DFF
(Appendix A, Figure A1), 500 nm was chosen, which was also due to the lower R2 value, to
validate the method and investigate the sensitivity of the assay.

Likely, the formation of Schiff polymers derived from the reaction of DFF in the
presence of PPD, even in small amounts, accounted for the major color that was formed
(Figure 4). While the development of an orange color was revealed with only HMF (panel a),
the formation of a red precipitate was clear when PPD was incubated with DFF (panel b),
or in a mixture of HMF and DFF (panel c). Moreover, the color intensity in the assay was
obviously related to the DFF amount, as higher concentrations led to intensely red-colored
solutions (panel d).
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HMF—panel (a); DFF—panel (b); or in an HMF:DFF equimolar mixture—panel (c). A shift in color
was observed at increasing DFF concentrations (units in µM in the in vitro system—panel (d)).

2.2. Linearity and Sensitivity of the Assay

The linearity of the assay was assessed by measuring the variation of the absorbance
at increasing analyte concentrations (Figure 5). Nevertheless, DFF synthesis from HMF has
proven to be efficient in the presence of organic (co)solvents, mainly due to the solubility
limits of furans in aqueous buffer systems [77]. Moreover, thinking about the scalability of
biocatalytic systems, there will be a need for cosolvents for HMF and DFF solubilization at
higher concentrations. Amongst all of the reported solvents commonly investigated for the
dehydration of carbohydrates and HMF oxidation, dimethylsulfoxide (DMSO) was chosen
for further investigation [78–80]. However, DMSO interfered with DFF detection, slowing
down the response; thus, the DMSO concentration was fixed to 15% v/v.
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DMSO has a beneficial effect on organic substrate solubilities, providing a one-phase
system, and its efficiency in enzymatic reactions has been previously proven with many
enzyme classes (ADHs, ATAs, etc.) [81–83]. Also, the three laccases were previously
efficiently tested at high DMSO concentrations, revealing a good stability [84,85]. Gladly,
when performing the assay under these reaction conditions, no relevant interference was
observed. Thus, the linearity of the assay was proven in both plain buffer (KPi 100 mM, pH
7.5) and DMSO buffer systems up to 200 µM of DFF (Figure 5). In the latter, the slope of the
curve obtained from the regression analysis was even slightly improved, suggesting a DFF
solubility limit in a plain buffer and a more homogeneous system in the presence of DMSO.

To investigate the sensitivity of the assay, the limit of detection (LOD) and limit of
quantification (LOQ) were measured in multi-well plates for both systems (plain buffer and
with DMSO, 15% v/v, Appendix B, Figure A2). The method turned out to be remarkable
in detecting DFF in both media. The LOD and LOQ values for the DMSO–water system
(8.4 µM and 25.5 µM, respectively) were slightly lower than the ones calculated in the plain
buffer (Table 1).

Table 1. Calibration curve regression analysis for determination of LOD and LOQ of the colorimetric
assay in plain buffer or with 15% (v/v) DMSO.

Reaction System Linear Range
(µM) Calibration Curve a SD of Calibration

Curve LOD (µM) LOQ (µM)

Plain Buffer b 6–200 A = 0.0008 × C − 0.0003 2.182 × 10−3 8.8 26.7
DMSO 15% (v/v) 6–300 A = 0.0014 × C − 0.0038 3.556 × 10−3 8.4 25.5

a Absorbance value; C: concentration. b KPi buffer 100 mM, pH 7.5.

2.3. Robustness of the Assay: Interference of Side Products

The oxidative conversion of HMF towards DFF can result in a number of derivatives
due to the presence of two reactive moieties, alcohol and aldehyde, which can form
other compounds such 5-formyl-2-furancarboxylic acid (FFCA), 2,5-furandicarboxylic acid
(FDCA), and 5-hydroxymethyl-2-furancarboxylic acid (HFCA), that could, therefore, be
present in the reaction mixture (Figure 1) [86–89]. Hence, the interference of these side
products, along with HMF as an unreacted substrate, with respect to DFF detection, was
tested. Also, in this case, DMSO (15% v/v) was used to ensure the solubilization of all furan
derivatives. For this purpose, different putative side product/DFF mixtures at various
concentrations were prepared, simulating possible results in the enzymatic transformations.
Each side product did not show any significant contribution to the absorbance at 500 nm
when incubated with PPD (Appendix B, Figure A3). When combined with DFF, all of the
investigated compounds did not interfere with the analyte detection (grey lines in panels,
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Figure 6a–d). As a reference, the response of the assay in the presence of only DFF was also
reported (orange lines in panels, Figure 6a–d).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 8 of 18 
 

 

helpful indication of the effectiveness of the method, and it is an intrinsic factor that is 
used to assess the quality of an assay without the use of real samples, and thus, it can be 
further used for better development and optimization. The calculated values for each side 
product‒DFF pair produced were in the range of 0.60–0.72, demonstrating the reliability 
of the method in identifying a positive hit (Table 2). Acceptable values are those >0.5, with 
our results appearing in the range of, e.g., those that Straathof and co-workers reported in 
the set-up of a high-throughput assay for amino acid decarboxylase activity detection [93]. 

 
Figure 6. Effects of (a) HMF, (b) HFCA, (c) FFCA, and (d) FDCA on the colorimetric assay. Grey line: 
side product + DFF + PPD (as equimolar mixtures). Orange line: DFF + PPD. The data shown are 
representative of experiments performed in triplicate. 

Table 2. Z’ values calculated for each couple of compounds (DFF + side product). 

Side Product Combined with DFF Z’ Value 
HMF 0.72 

HFCA 0.68 
FFCA 0.60 
FDCA 0.70 

This evidence shows the potential of our colorimetric assay as an easy, fast, and sen-
sitive tool to be applied in the high-throughput screening of enzymes for the conversion 
of HMF to DFF in an aqueous solution under mild conditions. The analyte can be selec-
tively detected at low concentrations, in the presence of DMSO as cosolvent, and without 
interferences of other possible co-products derived from HMF oxidation. However, a val-
idation of the assay in the screening of enzyme libraries is still pending. 

2.4. Application of the Colorimetric Assay: Kinetics Measurements 
After testing the assay on DFF and its mixture with different oxidized derivatives of 

HMF, the method was effectively applied on a real transformation. HMF oxidation into 
DFF was investigated by applying different LMSs. Among the described ones, the biocat-
alytic system with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a free radical 

Figure 6. Effects of (a) HMF, (b) HFCA, (c) FFCA, and (d) FDCA on the colorimetric assay. Grey line:
side product + DFF + PPD (as equimolar mixtures). Orange line: DFF + PPD. The data shown are
representative of experiments performed in triplicate.

To further prove the robustness of the assay, the Z’ values were measured for each
DFF–side product couple (see Experimental Section) [90–92]. This parameter offers a
helpful indication of the effectiveness of the method, and it is an intrinsic factor that is
used to assess the quality of an assay without the use of real samples, and thus, it can be
further used for better development and optimization. The calculated values for each side
product–DFF pair produced were in the range of 0.60–0.72, demonstrating the reliability of
the method in identifying a positive hit (Table 2). Acceptable values are those >0.5, with
our results appearing in the range of, e.g., those that Straathof and co-workers reported in
the set-up of a high-throughput assay for amino acid decarboxylase activity detection [93].

Table 2. Z’ values calculated for each couple of compounds (DFF + side product).

Side Product Combined with DFF Z’ Value

HMF 0.72
HFCA 0.68
FFCA 0.60
FDCA 0.70

This evidence shows the potential of our colorimetric assay as an easy, fast, and sensi-
tive tool to be applied in the high-throughput screening of enzymes for the conversion of
HMF to DFF in an aqueous solution under mild conditions. The analyte can be selectively
detected at low concentrations, in the presence of DMSO as cosolvent, and without interfer-
ences of other possible co-products derived from HMF oxidation. However, a validation of
the assay in the screening of enzyme libraries is still pending.
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2.4. Application of the Colorimetric Assay: Kinetics Measurements

After testing the assay on DFF and its mixture with different oxidized derivatives of
HMF, the method was effectively applied on a real transformation. HMF oxidation into DFF
was investigated by applying different LMSs. Among the described ones, the biocatalytic
system with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a free radical mediator is
one of the most applied [56,94–96], enabling the oxidation of non-activated substrates, such
as alcohols and amines, and providing water as the only co-product (Scheme 2) [94,97,98].
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Scheme 2. Overview of the laccase/TEMPO system to oxidize non-activated substrates.

Based on our previous results in the oxidation of primary alcohols into the correspond-
ing aldehydes [97,99], including the formation of furfural from furfuryl alcohol [86] using
the laccase/TEMPO system, herein, HMF oxidation into DFF was studied by employing
three fungal laccases, one from Trametes versicolor (LTv) [100], and two isolated from Pleuro-
tus ostreatus (POXA1b and POXC) [101]. In fact, TEMPO/laccase systems have already been
investigated for HMF transformations [102], providing FFCA [103] or FDCA [104,105] as
the main achieved compounds in aqueous systems depending on the laccase and reaction
conditions. Nevertheless, in the first stages of HMF oxidation, DFF is produced as a reaction
intermediate. Therefore, to assess the validity of our colorimetric assay, the initial rates of
the three different LMSs for DFF production were measured (Figure 7).
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Figure 7. Time course of DFF production from HMF (40 mM) using the colorimetric assay at 30 ◦C
under optimum conditions for each laccase: (a) POXC (pH 6.5, 0.25 U, grey dots) and LTv (pH 5, 0.25
U, orange dots); (b) POXA1b (pH 5.5, 2.5 U), DMSO 15% v/v, and TEMPO (20 mol%) as mediator.
Mol% is defined as moles of mediator per mol of substrate (%). The data shown are representative of
experiments performed in triplicate and are presented as mean standard deviation.

In our experiments, the mediator is responsible for the chemical oxidation of HMF,
being then re-oxidized by the laccase. Its amount was kept constant in all tests (20 mol%).
Accordingly, the comparison between the three different LMSs with regard to the initial
rate for DFF appearance showed the different behavior and efficiency of the three laccases
for TEMPO recycling. Concomitantly, DFF can undergo overoxidation within the time
when the recycling system is particularly rapid. For this reason, lower amounts of enzyme
were added for the most rapid systems (0.25 U for POXC and LTv). Since the reaction was
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slower for the POXA1b system, the enzyme amount was increased up to 2.5 U to detect
significant amounts of DFF in the same time slots. After the desired time was reached
(5, 10, or 15 min), the medium was basified to favor the imine formation, and PPD (40 mM)
was added. After 5 min at rt, the absorbance at 500 nm was measured. The initial rates for
the different LMSs to produce DFF from HMF were then normalized by unit of enzyme
(Table 3).

Table 3. Initial rate estimation for DFF production from HMF, applying the three LMSs. DFF was
detected with the colorimetric method under the reported conditions, and its concentration was
obtained via interpolation in the calibration curve.

Laccase Reaction Medium a
Initial Rate for DFF

Production from HMF
(µmol DFF·min−1·U−1)

LTv Citrate buffer, 100 mM, pH 5 21.7
POXC Phosphate buffer, 100 mM, pH 6.5 13.9

POXA1b Citrate buffer, 100 mM, pH 5.5 5.3
a [HMF] = 40 mM, TEMPO (20 mol%), DMSO (15% v/v).

In the LTv-mediated system, great DFF accumulation was observed at short reaction
times. Similarly, in the POXC-mediated reactions, good DFF amounts were produced at
brief time frames; meanwhile, in the case of the POXA1b-mediated system, the accumula-
tion of DFF was lower, directly connected to the rapidity of the laccases in re-oxidizing the
radical TEMPO at short reaction times. The assay could be successfully applied to aqueous
reaction mixtures performed at different pHs and buffer types, suggesting the possibility
of using the assay for high-throughput screening and to assess the kinetics parameters for
other HMF oxidizing enzymes, by determining DFF accumulation in the reaction mixture
within the time.

3. Materials and Methods

Materials were purchased from Sarstedt (Nümbrecht, Germany). All chemicals were
of the highest purity grade from commercial sources. Commercially available HMF was
purchased from Manchester Organics (Runcorn, Cheshire, UK). DFF, FFCA, HFCA, and
FDCA were purchased from Sigma-Aldrich (St. Louis, MO, USA). LTv laccase was ob-
tained from Sigma-Aldrich. Recombinant POXA1b from Pleurotus ostreatus expressed in
the yeast Pichia pastoris [106,107], and POXC laccase produced and purified from Pleu-
rotus ostreatus [108,109], were provided by BioPox srl (Napoli, Italy). The absorbance
spectra of the mixtures were registered at room temperature using a Jasco V-530 UV/Vis
spectrophotometer (Jasco International Co., Ltd., Tokio, Japan).

3.1. Colorimetric Assay Conditions

A suitable volume (150 µL) of a solution containing DFF and the other components at
appropriate concentrations, dissolved in KPi buffer at 100 mM and pH 7.5 (when present,
DMSO was used at 15% v/v), was transferred into each well of a 96-well plate. 1,4-
Phenylenediamine was then added as reactant to each well (50 µL, 5 mM), shifting towards
an orange color, according to the DFF concentration of the sample, to obtain a reddish
precipitate. The plates were kept at room temperature for 5 min, and the increase in the
absorbance at 500 nm was measured. The limit of absorption was set up to the formation
of the precipitate, which caused a heterogeneous solution.

3.2. Determination of LOD and LOQ Values

LOD and LOQ were defined by IUPAC as “the limiting value of the true signal (related
to some non-zero analyte concentration) which is significantly different from the blank
signal value” and “the smallest concentration which can be quantitatively analyzed with
reasonable reliability by the given procedure”, respectively [110]. LOD and LOQ values
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were calculated as three- and ten-fold, respectively, of the ratio between the standard
deviation value of the DFF calibration curve and the numerical value of the slope [111].

3.3. Determination of Z’ Values

The Z’ factor is an intrinsic parameter that gives information about the quality of the
assay without using real samples. The Z’ value is calculated using positive (DFF in our
case) and negative reference controls (side products). Z’ values for by-product/DFF pairs
close to 1.0 show the robustness of the method. To evaluate the overall performance of the
assay and its application in an HTS format, values obtained either at 200 µM of DFF or the
corresponding side product were used as positive and negative reference controls. The Z’
values of each side product–DFF pair were calculated using the following equation [90]:

Z′ = 1−
3SDDFF + 3SDside product∣∣∣meanDFF −meanside product

∣∣∣
3.4. Laccase Activity Assay

Laccase activity was measured following the standard ABTS assay. ABTS
(ε420 = 36,000 M−1·cm−1) test was performed at room temperature in 100 mM citrate
buffer at pH 3.0, and 2 mM was the final concentration of the substrate. A suitable amount
of enzyme necessary to obtain an absorbance of 0.5–1 was added after approximately 1 min.
The increasing radical cation (ABTS+•) was tracked at 420 nm. One unit of laccase activity
was defined as the enzyme amount that was able to oxidize 1 µmol of the substrate per
minute [112].

3.5. Reaction Progress Curves for the Laccase–Mediator Systems and Initial Rate Measurements

To prevent leakages when spreading small volumes, the reagents were combined
beforehand and then placed in the multiplate. The reaction progress curve (Figure 7)
was obtained, dispensing 125 µL of the reaction mixture in each well, consisting of 30 U
of laccase per mmol of substrate for POXA1b, 4 U per mmol of substrate for LTv and
POXC laccases, 20 mol% of TEMPO as mediator (mol of mediator per mol of substrate),
and 40 mM of HMF starting concentrations (the concentration was selected after trials at
different HMF amounts). Citrate buffers 100 mM and pH 5 and 5.5 were used for LTv
and POXA1b laccases, respectively, and KPi buffer 100 mM and pH 6.5 were used for
POXC. All of the reaction mixtures were incubated in a rotary shaker into a multi-well
plate (96 well) at 30 ◦C, 250 rpm. The reaction was stopped via enzyme inactivation by
adding an aqueous 10 M NaOH solution (25 µL), and then PPD (40 mM) was added. The
mixture was incubated for 5 min at room temperature, and finally, the absorbance at 500 nm
was measured.

4. Conclusions

The development of accurate and easy-to-use high-throughput screening methods is a
critical step in identifying novel biocatalysts or improving them for a specific application.
In this work, we exploited the knowledge of an established reaction, a Schiff base formation
followed by polymerization, to design a new colorimetric assay to directly detect DFF in
aqueous reaction mixtures.

DFF is one of the high-value chemical platform compounds that are commonly ob-
tained from HMF, so finding a method for its selective detection with respect to other
possible by-products coming from HMF is highly appealing. In this manner, this assay
may be efficiently used for screening libraries of redox biocatalysts looking for new or
improved variants, as well as for assessing the kinetics properties of oxidative enzymes
for DFF production. Hence, by employing a simple and cheap diamine compound such
as 1,4-phenylenediamine, we have proven a sensitive, selective, and robust colorimetric
assay towards DFF. The Z’ values, indeed, confirmed the absence of interferences due to
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the presence of HMF and other related furan derivatives that can be obtained after the
oxidation of easily accessible HMF.

As a proof of concept, the performances of three different laccases with TEMPO
applied to the synthesis of DFF were compared, displaying its utility in avoiding the
expensive, time-consuming, and technically demanding analyses via chromatographic
methods. As a fact, among the tested laccase–mediator systems, the assay showed that LTv
was the most efficient in producing DFF at short reaction times, with POXA1b being the
less efficient one. All of this evidence reinforces the significance of the assay supporting
not merely the search, but even the characterization of novel oxidative biocatalysts for the
selective HMF oxidation into DFF.
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