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Abstract
Task scheduling in scientific workflows represents an NP-hard problem due to the number of interdependent tasks, data

transfers, and the possible execution infrastructure assignments in cloud computing. For this reason, metaheuristics are one

of the most widely applied optimisation techniques. Makespan is one of the main objectives in this problem. However, this

metric needs to be complemented with a quality measure with respect to the actual execution time in order to avoid

incurring more costs than expected by using an over-optimistic approximation. This research applies a new enhanced disk-

network-computing evaluation model, that takes into account the communication among the storage devices involved,

which plays an important role in actual schedules. The model is implemented in a genetic algorithm and the well-known

heuristic HEFT. We propose different hybridisation metaheuristics in conjunction with a new accuracy metric to measure

the difference between the makespan approximations and the real one. The new evaluation model is able to improve

accuracy with respect to the standard model, and the proposed hybrid methods significantly improve makespan in the case

of heterogeneous infrastructures.

Keywords Workflow scheduling � Hybrid genetic algorithm � Cloud computing � Evolutionary algorithms �
Makespan accuracy

1 Introduction

The Cloud has enabled a paradigm shift for researchers by

allowing access to a fully scalable, on-demand infrastruc-

ture. There are several service options offered by providers,

but the most notorious are Software as a Service (SaaS),

Platform as a Service (PaaS) and Infrastructure as a Service

(IaaS). The SaaS model is a fully managed Solution offered

by the provider, Office 365 is one of the main examples, in

which the client receives a software where the only concern

is the usage of the application. In the PaaS model, the client

pays for an environment ready for the deployment of

applications managed by the client, for example a Web

application, where the cloud provider offers a web server, a

database server and a backend. The third model is IaaS,

where the product is the ability to rent virtual machines

(VMs) with different capabilities and the ability to scale

massively both horizontally (number of VMs) and verti-

cally (the capabilities of a single server). The payment

model is to pay only for the computation resources (CPU

and RAM) and the customer has the option to pay per unit

of time. Most providers also charge for network and stor-

age usage on a pay-per-use basis. Examples include

Microsoft Azure, Google Compute Engine and Amazon

EC2. This model gives the user more control by allowing

them to choose a specific operating system (OS), CPU,

memory, bandwidth and data storage.

This research will focus on the use of the IaaS model as

it allows the researcher to create an infrastructure that can

be matched to the requirements of the workflow being

executed. Furthermore, it allows the researcher to have a

different infrastructure for each specific execution of the

different workflows.

Scientific workflows represent a complex scenario with

up to thousands of interdependent tasks that need to be

mapped to a myriad of possible hosts. Workflows are

typically represented using a Direct Acyclic Graph (DAG).
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Each task takes time to execute depending on the VM

selected. The storage unit and network connection between

VMs can also have a significant impact on the final exe-

cution time. The schedule is conditioned by a number of

quality of service (QoS) constraints. Typically, the

researcher will want to consider the completion time of the

DAG (makespan) or the cost, among other constraints. This

mapping of workflow tasks to VMs is known as the

Workflow Scheduling Problem and is considered an NP-

complete problem (Madni et al. 2017).

In the last decade, we can find in the literature numerous

methods that try to solve this problem. This is the case of

heuristic methods, such as the Heterogeneous Earliest

Finish Time (HEFT) heuristic proposed in Topcuoglu et al.

(2002), which provide a good balance between execution

time and performance, or MOHEFT, proposed by Durillo

and Prodan (2014), which is a multi-objective version.

However, for more complex workflows, metaheuristic

approximations are commonly used. Different bio-inspired

algorithms have been proposed, some of them based on

physical processes, this is the case of Yuan et al. (2021),

where Simulated Annealing is applied in a multi-objective

approach, Biswas et al. (2019) propose the use of a

Gravitational Search Algorithm (GSA), or Adhikari and

Amgoth (2019) apply an Intelligent Water Drop Algorithm

that optimises the makespan and the infrastructure

involved. There are also hybrid approaches, for example

Elaziz et al. (2019), propose a hybridisation of the Moth

Search Algorithm (MSA) and the Differential Evolution

(DE), or Ye et al. (2019), where a heuristic and a genetic

algorithm are combined to minimise the execution time of

the workflow.

A significant number of approaches seek to minimise

makespan because it is one of the most important goals for

scientists, but we have found that their makespan estimates

often do not receive the attention they deserve. Inaccurate

makespan values can have a negative impact if the scientist

take them as a source of truth. An algorithm may generate a

good schedule in real execution, but it is essential that it

does not deviate from the predicted makespan; a failure to

meet time constraints in a cloud computing scenario can

generate unexpected costs if the algorithm is over-opti-

mistic. To reduce this gap, the computational model must

avoid some simplifications; one commonly found is the

omission of disk communications when only network

transfers are considered. This inclusion can have a large

impact, making the model more accurate in workflows

where communication represents a significant part of the

execution time.

Traditionally, the network has been the bottleneck in

any intensive data transfer. However, as technology has

improved (e.g. self-balancing link aggregation of multiple

network adapters or fibre connections), this is no longer a

technical limitation but a budgetary issue. This is no the

case of public cloud providers such as Google, Amazon

and Microsoft which offer high-tech data centres that are

constantly upgrading their infrastructure in terms of pro-

cessors/networking/storage devices due to the competi-

tiveness of the market.

For instance, Fig. 1 illustrates the comparison of net-

work bandwidth and maximum disk speeds related to the

Google Cloud C2 machine series, a set of virtual machine

models designed for compute-intensive workloads, and the

available range of virtual storage devices and services in

this Cloud provider (Google 2023). As we can see, in

almost all configurations the bottleneck is storage speed

and not network bandwidth.

The model considered in this paper is the Disk-Network-

Communication (DNC) evaluation model previously

introduced in Barredo and Puente (2022), which is

designed to take into account storage communication times

in workflow tasks.

In the current paper we will develop an extended study

of this model, looking to evaluate its accuracy improve-

ments in both data-intensive and compute-intensive work-

flow problems, and its contribution to makespan

optimisation. We proposed some hybrid metaheuristics

combining elements of the HEFT heuristic and a Genetic

Algorithm, and contrast their results with those of the

previous standard Network-Computing (NC) evaluation

model.

The main contributions of the current paper are to:

– Reformulate of HEFT heuristic and a lamarckian GA

algorithm in terms of the new DNC evaluation model.

– Propose different hybrid algorithms combining the GA

and both components and heuristic solutions of the

well-known HEFT heuristic, to minimize makespan.

– Introduction of an accuracy metric to study the

similitude of estimated makespan with respect to real

execution times, based on simulations using Wrench

framework (Casanova et al. 2020).

– Design of two different cloud computing scenarios by

varying infrastructure sizes and specs, and solving

instances of seven real scientific workflow problems

from WFCommons repository (Coleman et al. 2022).

– Experimental study covering seven different real

scientific workflow applications. All workflow execu-

tion instances were generated from real Pegasus WMS

(workflow management system) executions, and avail-

able in WFCommons repository. The study covers

estimated makespans accuracy of DNC vs NC model,

and real makespan improvements of hybrid proposals

with respect to standard HEFT heuristic and the

proposed lamarckian genetic algorithm.
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The remainder of the paper is organised as follows. In the

next section, we give the formulation of the Scientific

Workflow Scheduling model. The proposed solving meth-

ods are described in Sect. 3. In Sect. 4, we report the results

of the experimental study. Finally, in Sect. 5, we sum-

marise the main conclusions and outline some ideas for

future work.

2 The scientific workflow scheduling model

Computational applications in distributed systems are

workflows modelled as a set of tasks interconnected by

precedence constraints. The execution of a task can be

initiated as soon as the necessary data are available, i.e.

after all predecessors have been completed. After execu-

tion, every task generates an output dataset. This dataset is

required by its successor tasks in the workflow before their

execution. Most workflow applications can be represented

in the form of a direct acyclic graph where the nodes are

the tasks, and the arcs are the precedence constraints. This

is the case for multiple scientific applications in very dif-

ferent research fields such as bioinformatics (1000genome,

Epigenomics, SoyKB, SRA Search), agroecosystem

(Cycles), Seismology (Seismic Cross Correlation) or

astronomy (Montage) (Juve et al. 2013).

2.1 Definition of the workflow scheduling
problem

Scientific workflows are represented as a direct acyclic

graph G ¼ ðT ;AÞ, where T ¼ ft1; t2; :::; tng is the set of

nodes representing the n tasks of the problem, and A ¼
fðti; tjÞj1� i� n; 1� j� n; i 6¼ jg represents the set of arcs

or dependency constraints among the tasks. The nodes are

labelled with their corresponding task sizes in MFLOPs

(Million Floating Point Operations), and the arcs are

labelled as data(i, j), i.e., the dataset size in MB to transfer

from ti to tj. Moreover, tentry and tend are fictitious tasks

with null computation and communication, representing

the entry and exit points of the workflow, respectively.

The resource model consists in a cloud service provider

that offers an IaaS platform as a set of mixed types of hosts,

or VMs, to its clients. Let M={vm1; vm2,...,vmm} be the set

of VMs, each one modelled as a tuple \pc; nb; ds[ ,

where pc, nb and ds are the processing capacity in

GFLOPS (GFLOPs per second), network bandwidth in

MB/s and disk reading/writing speed in MB/s respectively.

Now, given a workflow G ¼ ðT ;AÞ and an IaaS infras-

tructure as a set of VMs M, the goal of the Workflow

Scheduling Problem - defined by the tuple (G, M) - is

twofold. Firstly, we need to find a feasible solution S ¼
ðHosts;OrderÞ where Hosts is a mapping from tasks to

VMs and Order is a topological order of G. And then, we

want this schedule be optimal in the sense that its make-

span is minimal.

Specifically, the goal is:

minimize EFTðtexitÞ ð1Þ

where EFTðtexitÞ is the estimated finish time of the task texit.
The schedule of the tasks and the corresponding esti-

mated value of makespan are defined in accordance with

the applied evaluation model: the standard NC model or the

new DNC model. In the next subsections both models are

formally introduced.

2.2 Schedule evaluation models

In the context of metaheuristic optimization, thousands of

schedules are generated and subsequently evaluated.

Standard evaluation models tend to simplify the real

infrastructure factors involved in computational executions
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Fig. 1 Read and Write transfer speeds of different options of storage in Google Cloud infrastructure, compared against the network bandwidth in

its C2 machine series
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in Cloud or on-premise infrastructures. The main advan-

tage is that their low computational cost allows them to be

used as a decoding model in metaheuristic optimization

methods. However, the main drawback is the underesti-

mation of the real computational cost in an expensive pay-

per-use scenario.

The most common evaluation model for workflow

schedules is the one used in Ghorbannia Delavar and Aryan

(2014), Durillo and Prodan (2014), Zhu et al. (2016),

Chakravarthi et al. (2022), which only considers CPU

processing times and data sets network communications

between different hosts. This Network-Computation model

(NC) ignores all disk accesses from/to tasks in their data

sets acquisition/generation. Other common simplification

in NC model only considers the latest network communi-

cation time from predecessor tasks to establish the starting

time estimation of a successor task. For compute-intensive

workflows, the NC model may generate quite accurate

makespan approximations.

However, in a cloud computing environment (usually a

pay-per-use infrastructure environment) not only comput-

ing times or networking communications are relevant, but

also disk data input/output transference times. This extra

time should be considered at least in data-intensive work-

flows where data transfer operations are not negligible with

respect to computing times. In this paper we will focus in a

new extended evaluation definition called Disk-Network-

Computation model (DNC), proposed in Barredo and

Puente (2022), which considers network communications

and all disk operations.

To illustrate, we would present in the Fig. 2 a workflow

with 3 tasks of 1 TU (time unit) of computation each, said

tasks have to transfer 1 DU (data unit) of information.

Figure 3 illustrates the execution of the workflow having

two hosts: Host A has a disk with a speed of 1 DU per TU

and Host B has 0.5 DU per TU. For model a) we only have

to consider the network of 1 DU per TU (block C2;3), so the

makespan is 3 TU; for model b) there are some new con-

cepts, all tasks have to write data to disk (W_DiskA and

W_DiskB), but host B takes twice the time. Task T3 on host

A cannot start reading until all the files have been written,

then it can start reading the first file (R DiskA), and

because the files are read sequentially, the data from T2 has

to wait. Another key difference is in the idea of using the

slowest medium, the disk of host B is slower than the

bandwidth, so the transfer (C2;3) takes 2 TU. The final

important an often omitted factor is that the current task

may need to write its output data to disk, in this case it

takes 1 TU, giving a final makespan of 8 TU.

When we apply an evaluation model to a workflow

problem solution, we get the schedule and its correspond-

ing a priori or estimated makespan, but it is only after

execution of the workflow - which in this work will be

done via IaaS simulations - that we get the actual make-

span. In Barredo and Puente (2022) a robustness measure

was introduced to quantify the difference between a priori

makespan estimation and real makespan. In this work we

introduce the concept of accuracy of a makespan estima-

tion of an schedule s as its similarity degree with respect to

the real makespan, which is defined as:

accuracyðsÞ ¼ makespanestðsÞ
makespansimðsÞ

ð2Þ

where makespansimðsÞ is the actual makespan from the

simulation and makespanestðsÞ is the a priori makespan

estimated by the scheduler of the solution s. The surrogate

model used by the scheduler generates optimistic make-

span estimations, consequently, the accuracy value must be

� 1.

The main contribution of the DNC evaluation model is

the improved accuracy of the estimated makespan. An

accurate a priori makespan will offer scientists a relevant

information to take decisions about the computing infras-

tructure to rent depending on the budget and the urgency of

the results.

2.3 Disk-network-computing vs network-
computing processing model

In this section, the DNC model estimations are defined and

their differences to the NC model are highlighted. The

DNC model differs from standard NC model in commu-

nications and processing times, because only DNC model

considers disk accesses. The computation of tasks is similar

but it is necessary to reformulate the main concepts.

The makespan estimation using DNC model is calcu-

lated applying the following definitions:

Definition 1 The computation time of task ti on a machine

vmk, denoted ctki , is defined as:

ctki ¼ sizeðtiÞ=pck ð3Þ

where sizeðtiÞ is the size of the task ti measured in GFLOPs

and pck is the processing capacity of the virtual machine

vmk in GFLOPS.

T1 T2

T3

Start
Fig. 2 Workflow describing a 3

task with one fictitious entry

task to have one entry point and

one endpoint
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Definition 2 The data transfer time between tasks ti and tj
mapped on vmk and vml respectively is:

dtk;li;j ¼

dataði; jÞ
dsk

: k ¼ l

dataði; jÞ
minðdsk; nbk; nblÞ

: k 6¼ l

8
>>><

>>>:

ð4Þ

where data(i, j) is the output-data size from ti to tj, and vmk

and vml are the VMs where tasks are scheduled respec-

tively. In this DNC model, when tasks ti and tj are

scheduled in the same VM, data input files should be read

from local disk, dsk is the disk speed of vmk, and nbk and

nbl are the network bandwidths of vmk and vml respec-

tively. In NC model all data transfers from/to disk are

ignored, so in k ¼ l case of Eq. 4 the communication time

is zero.

Definition 3 The estimated finish time of task ti executed

on machine vmk involves not only the processing time but

also complete input and output data transfer operations. It

is defined as:

EFTðti; vmkÞ ¼ ESTðti; vmkÞ þ inputi;k þ ctki þ outputi;k

ð5Þ

where inputi;k is the communication time for input data of ti
on vmk from all its predecessors. It is defined as:

inputi;k ¼
X

tj2predðtiÞ
dtl;kj;i ð6Þ

where each predecessor task tj is executed on its corre-

sponding machine vml. The corresponding outputi;k is the

writing time for all output data of ti in the vmk local disk,

that is:

outputi;k ¼
P

tj2succðtiÞ dataði; jÞ
dsk

ð7Þ

NC model, in contrast to DNC model, considers only the

computation time ctki while all input/output data transfer-

ence is ignored.

Definition 4 The estimated starting time of task ti on vmk

is defined as:

ESTðti; vmkÞ ¼ avail i; k; max
tj2predðtiÞ

EFTðtj; vmlÞ
� �

ð8Þ

where each predecessor task tj is executed on its corre-

sponding machine vml and avail(i, k, m) is the earliest

available time slot of vmk after m to compute ti.

DNC model use an insertion policy which assigns the

earliest idle time slot between two already-scheduled tasks

on the assigned VM. The length of the time slot should be

W_DiskB

C2,3

R_DiskAHost A

Host B

T1

T2

W_DiskA

1 2 3

b) DNC Model MKP = 8 TU

C2,3

T3

4 5 Time6 7

Host A

Host B

T1

T2

1 2 3

a) NC Model MKP = 3 TU

T3

4 5 Time6 7

W_DiskA

8

8

Fig. 3 Processing phases of tasks execution in NC and DNC

evaluation models for the workflow in Fig. 2. In a NC model, only

input data from network transmissions of the last predecessor task to

finish are considered; in b DNC, on the other hand, we consider all

input data transmissions from both network and local disk, and only

after the last predecessor task has written its results to local disk.

Finally, the current task is not considered finished until data output is

written to local disk
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at least capable of cover not only computation but also data

transfer times of the considered task. Additionally,

scheduling in this idle time slot should preserve precedence

constraints.

3 Solving methods

In this work we propose different solving methods. First, a

reformulated version of HEFT, one of the most used

scheduling heuristics for makespan optimization in scien-

tific workflows. Second, an efficient genetic algorithm

based on Barredo and Puente (2022). And finally, we

combine both previous methods to generate several hybrid

genetic algorithms exploding HEFT’s components to

improve makespan quality with no loss of accuracy.

3.1 HEFT heuristic with DNC model

The original HEFT was proposed in Topcuoglu et al.

(2002), its main idea is to schedule tasks so that the earliest

finish time (EFT) is minimized for all the tasks. Both

phases of HEFT with classic NC model (HEFTNC), and

HEFT heuristic using new DNC model (HEFTDNC) are

described as follows:

Phase 1: Calculating priority of tasks

In this phase, the priority of each task is calculated

using average execution time and average communica-

tion time. The priorities are calculated from bottom to up

direction. The sequence of tasks will be generated from

highest to lowest priority, satisfying all workflow

precedence constraints. In HEFTNC the priority of task

ti is given by

prioNCðtiÞ ¼ cti þ maxtj2succðtiÞðdti;j þ prioNCðtjÞÞ ð9Þ

where, cti is the average execution time of task ti and

dti;j is the average communication time between task ti
and tasks tj. The main difference in HEFTDNC is that the

priority of a task includes not only average

communication with the highest priority successor task,

but with all its successors and predecessors, from Eq. 6

and Eq. 7. The priority is defined as follows:

prioDNCðtiÞ ¼inputi þ cti þ outputi

þ maxtj2succðtiÞðprioDNCðtjÞÞ
ð10Þ

where inputi and outputi are the average communication

times between task ti and all its predecessors and suc-

cessors respectively.

Phase 2: Mapping tasks to VMs

The actual mapping of tasks to VMs is performed in

this phase according to their priority. In HEFTNC the task

with the highest priority is scheduled first, by calculating

earliest finish time, considering only the computation

time, on all available VMs. In contrast HEFTDNC , using

eq. 5, considers not only computation time but also all

input/output data transference for a more realistic EFT

estimation.

3.2 Genetic algorithm

In this section, we introduce the main components of the

genetic algorithm proposed to solve the Workflow

Scheduling Problem and study the accuracy of the solu-

tions using both NC and DNC evaluation models. This

evolutionary algorithm combines previous algorithms from

Barredo and Puente (2022) and Palacios et al. (2015).

Algorithm 1 shows a pseudocode of the GA: it is a gen-

erational genetic algorithm with random mating selection

and replacement by tournament between parents and off-

spring, which confers the GA an implicit form of elitism.

The GA uses one of the two evaluation models: NC or

DNC. As a result we will have two different genetic

algorithms: NC-GA and DNC-GA respectively. Both

algorithms require the following parameters: population

size (popsize), number of generations (maxgens), crossover

and mutation probabilities (pc and pm).

Algorithm 1 Genetic Algorithm
Require: A Workflow instance, a VMs infrastructure and parameters (popsize, maxgens, pc

and pm)
Ensure: A schedule for workflow and tasks to VMs assignment
1: Generate a pool P0 of random solutions. /*initial population*/
2: Evaluate each chromosome of P0 using DNCevaluator
3: for t ← 0 to maxgens do
4: Selection: organize the chromosomes in Pt pairs at random
5: Recombination: make each pair of chromosomes and mutate both offspring in accor-

dance with pc and pm
6: Evaluation: evaluate offspring chromosomes
7: Replacement: make a tournament selection 4:2 among every pair of parents and their

offspring to generate Pt+1
8: return the best generated solution
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Coding Schema The coding schema is based on per-

mutations of tasks (Ye et al. 2019; Zhu et al. 2016), each

one with a specific VM assignment. So, a gene is a pair

(i,k), 1 � i� jTj and 1 � k� jMj, and a chromosome

includes a gene like this for every task. For example, given

an instance with 4 tasks and 2 VMs, a feasible chromosome

is the following: chr1: ((1 2) (4 1) (2 1) (3 2)) which

represents the task ordering (t1, t4, t2, t3) with VMs

assignments (vm2, vm1, vm1, vm2) respectively. We only

consider task orders that codify a topological order so

every task must be located in a gene after its last prede-

cessor and before its first successor in the chromosome.

Therefore, the individuals generated in the initial popula-

tion and by the genetic operators must be consistent with

the task dependencies constraints.

Decoding Schema The schedule represented by a chro-

mosome is calculated following the selected evaluation

model as a decoder. The genes are processed from left to

right in the chromosome sequence. For each gene (i,k), the

task ti is scheduled at the earliest free gap of vmk, after the

latest finish time of its predecessors in the workflow, where

the processing time of task ti (computation and commu-

nications - depending on the evaluation model) fits. The

makespan of the built schedule is the latest finish time of

all the workflow tasks. In order to accelerate the conver-

gence to optimal solutions, the lamarckian learning (Houck

et al. 1996) is considered as the last stage of decodification

and evaluation phase. As a result, the gene order of the

chromosome is recoded according to the resulting topo-

logical order of the generated schedule.

Crossover The mating operator must establish the order

and VM assignment of the tasks at the generated offspring.

A feasible schedule permutation must follow all the

dependencies which exist among tasks. For chromosome

mating, we follow Zhu et al. (2016) and the so called

CrossoverOrder algorithm. First the operator randomly

chooses a crossover position, which splits each parent

sequence into two subsequences. After that, the two first

substrings are taken to be the initial sequence of the off-

spring and then filling the remaining positions with the

genes representing the remaining tasks taken from the other

parent, while keeping their relative order. The resulting

task orders will not cause any dependency conflict since the

order of any two tasks should have already be present in at

least one parent.

Mutation The mutation operator cannot break the task

order dependencies. First, we select a random task Ti. Next,

we identify all predecessors and successors of Ti. Then the

operator locates the longest subsequence of genes holding

Ti that doesn’t include any predecessor or successor of Ti.

Finally, Ti is moved to a randomly chosen location inside

this subsequence. Consequently the assigned VM is

mutated to a random index in the set of VMs.

Initial Population The popsize initial individuals of the

population are generated at random but following a topo-

logical order of the tasks, and with valid VM index

assignments for all tasks.

We start with an empty chromosome, and then we

identify as candidate tasks those that have tstart as their only

predecessor in the workflow. At every step we extract at

random a task T from candidate tasks, this task will be

appended at the end of the partial chromosome. Then, we

update candidate tasks by adding all the successors of

T which have all their predecessors in the chromosome.

The process is repeated until the set of candidate tasks gets

empty. The resulting chromosome tasks sequence follows a

topological order.

The initial assignment of virtual machine k is selected at

random for every task Ti in range 1� k� jMj.

3.3 Hybrid genetic algorithms

Although HEFTDNC heuristic and previous genetic algo-

rithm methods bring reasonable quality solutions to the

workflow scheduling problem, hybridisation can be applied

to improve the quality of their results. The idea is to inject

the knowledge of the different two phases of HEFTDNC in

the DNC genetic algorithm (GADNC). As a result, two new

different hybrid genetic algorithms are available:

HGAPh1: in this algorithm the HEFTDNC tasks ranking is

used in all schedule generations. Therefore, the task

order information is omitted in chromosomes, and in the

decodification operation the tasks order is previously

fixed and only information about VMs assignment comes

from the chromosome.

HGAPh2: this version gets the task order from the

chromosome and assigns the tasks to the VM with the

lowest earliest completion time (EFT in eq. 5) of all

available VMs. Since the VM assignment information in

the chromosome is unnecessary, it is omitted.

A priori one of the advantages of the proposed hybrid

algorithms is the reduction of the solution space, so that the

same number of evaluated individuals represents a larger

explored subspace of solutions. On the other hand, the risk

of the injected heuristic information is the convergence

bias towards local minima.

Additionally, the heuristic individual generated by

HEFTDNC is considered in the initial population of the

proposed genetic and hybrid algorithms: GAH
DNC , HGA

H
Ph1

and HGAH
Ph2. They are all elitist algorithms, so we only

need to add one copy to the initial population to guarantee

that the quality of the final solution is as high as the

HEFTDNC version.
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4 Experimental study

This section evaluates the accuracy and quality of solutions

from the different solving methods presented in Sect. 3.

First, the workflow problems used, the evaluation metrics

and the simulation platform are described. Then, the

experimental study and its results, using a cloud simulator

built on top of the Wrench library (Casanova et al. 2020),

are analysed.

4.1 Workflows instances

The scientific workflows instances considered in this study

correspond to seven different problems from the

WFCommons repository (Coleman et al. 2022). All of

them are workflow execution instances generated using

Pegasus workflow management system (Deelman et al.

2019). The different problems present diverse characteris-

tics but can be classified in two main types: compute-in-

tensive and data-intensive workflows. In the data-intensive

there is another sub-type that can be described as ‘‘collision

prone’’ in where the tasks have a huge number of depen-

dencies and can produce exhaustion in the drives and

network interfaces. An example of a workflow of the for-

mer sub-type can be found in the Fig. 4.

All used workflow problems are now presented

accompanied by a brief description:

• 1000Genome This workflow uses data from the 1000

Genome projects and finds mutational overlaps in order

to provide a data for the evaluation of health conditions

caused by mutations.

• Cycles It is a Agroecosystem model used to simulate

the perturbations of biogeochemical process caused by

different agricultural practices.

• Epigenomics This workflow is related to genome

sequencing operations.

• Montage It consists in the reprojection and background

correction to compose a mosaic using Flexible Image

Transport System (FITS) telescope images.

• Seismology The workflows represent the process of

taking multiple seismic stations and cross-correlating

the measurements of acceleration.

• SoyKB Is the genomics pipe of re-sequencing the

soybean germplasm to change its traits.

• SRASearch This workflow is the process of searching

the Sequence Read Archive(SRA) and transforming the

data to have aligned sequencing reads.

To evaluate the impact of workflow dimensions of each

proposed problem we have selected four instances for each

problem, having four sizes: extra-small (50–100 task),

Fig. 4 Diagram of Montage Scientific Workflow (source: wfcommons.org)
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small (100–200), medium (200–500), and large

(5000–1000) if they are available in the repository.

Table 1 contains all instances used in the experimenta-

tion followed by the number of tasks and the communi-

cation to computation ratio (CCR) as a metric to know the

percentage of the total execution spent in communications

with respect to computation time (Xu et al. 2014) here

adapted to DNC model:

CCR ¼
X

i2T

inputi þ outputi
� �

cti
ð11Þ

where inputi and outputi are the average communication

times between task ti and all its predecessors and succes-

sors respectively, and cti is the average execution time of

task ti.

4.2 Benchmark platform and experimental
configuration

Wrench is a simulator library that can calculate the real

makespan of a given workflow on a specific infrastructure.

A simulator can provide us a close estimation of metrics

like makespan, energy or cost, without the need of buy/hire

real hardware. The selected software is a C?? library that

can be used to build a custom simulator.

We have simulated a processes/communications system

inspired by HTCondor (Thain et al. 2005), the High-

Throughput Computing environment under the well-known

Pegasus WMS, where each computing host has direct

access to a local disk, and remote disks from the rest of

hosts are accessible by their network interface connections

- such as the NFS service in Linux. Each host has a net-

work interface connected to a virtual switch interconnect-

ing all hosts. Tasks read files from local or remote disk, but

always store the output files in the local disk.

Table 1 Analysis of ccr for

every instance grouped by

problem

Problem Type Instance Tasks ccr (%)

Seismology Data Seismology-chameleon-100p-001 101 0.02

Seismology-chameleon-500p-001 501 0.02

Seismology-chameleon-700p-001 701 0.02

Seismology-chameleon-1000p-001 1001 0.02

Cycles Compute Cycles-chameleon-1l-1c-9p-001 67 0.06

Cycles-chameleon-2l-1c-12p-001 437 0.03

Cycles-chameleon-2l-1c-9p-001 133 0.04

Cycles-chameleon-5l-1c-12p-001 1091 0.06

Epigenomics Data Epigenomics-chameleon-hep-1seq-100k-001 41 1.55

Epigenomics-chameleon-ilmn-1seq-100k-001 125 1.13

Epigenomics-chameleon-hep-6seq-100k-001 507 0.84

Epigenomics-chameleon-ilmn-6seq-100k-001 863 1.74

SRASearch Data Srasearch-chameleon-10a-005 22 2.44

Srasearch-chameleon-20a-003 42 0.86

Srasearch-chameleon-40a-003 84 1.41

Srasearch-chameleon-50a-003 104 1.19

Montage Compute Montage-chameleon-2mass-005d-001 58 2.27

Montage-chameleon-2mass-01d-001 103 3.11

Montage-chameleon-dss-10d-001 472 2.15

Montage-chameleon-dss-125d-001 1066 5.09

SoyKB Data Soykb-chameleon-10fastq-10ch-001 96 17.24

Soykb-chameleon-10fastq-20ch-001 156 14.46

Soykb-chameleon-30fastq-10ch-001 256 15.67

Soykb-chameleon-40fastq-20ch-001 546 13.31

1000genome Data 1000genome-chameleon-2ch-250k-001 82 25.53

1000genome-chameleon-4ch-250k-001 164 19.09

1000genome-chameleon-12ch-250k-001 492 24.44

1000genome-chameleon-18ch-250k-001 738 24.14
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The hardware available in a scientific cluster can be

quite diverse, whether it is an on-premise cluster or one

available in the public cloud, and therefore the proposed

experimentation uses different clusters with diverse con-

figurations. For this reason, we have considered both

homogeneous and heterogeneous infrastructure

configurations.

To study the impact of the new DNC evaluation model

we have designed two scenarios: 1) ScFast, where there are

hosts with 441 GFLOPS CPU, a disk of 115 MB/s and a

network of 125 MB/s. 2) ScMixed, where half of the hosts

incorporate a 200 MB/s disk and the other half a 20 MB/s

disk, CPUs and network specs are the same of ScFast. For

each scenario we have different number of servers going

from 1 to 16 in powers of 2. The simulation was run on a

Linux computer with the following specs: Intel Core i7-

10700k@3.8Ghz, 32GB RAM 3200 MHz, 1TB SSD

2400MB/s.

We made a C?? application based on the GA imple-

mented in Barredo and Puente (2022) that contains several

methods for calculating the makespan of a given workflow

in a user-defined host infrastructure.

In all the experiments the genetic and hybrid algorithms

are configured exactly the same with an initial population

of 100 individuals and 1000 generations. The crossover has

a probability of 1.0 and the mutation is 0.1.

Each experiment is run 10 times per workflow instance

and number of hosts for both scenarios. Each run is vali-

dated with the simulator having the real makespan of each

individual run.

4.3 Accuracy study

In this section the accuracy of both evaluation models is

studied. Table 2 show the behaviour of NC and DNC

model using heuristic (HEFT) and metaheuristic (GA)

optimization algorithms in both scenarios (ScFast and

ScMixed). Problems are presented in ascending ordered of

average communication computation rate (ccr) of its

instances. Makespan Accuracy values presented are the

worst-case obtained for solutions on all different size

instances of the problem over the diverse set of hosts

considered.

In NC Model problems identified as compute-intensive

in Coleman et al. (2022) (Cycles and Montage) should, a

priori, get higher accuracy than the data-intensive ones

(1000genome, Seismology, Epigenomics, SRASearch and

SoyKB). However, actual results show that when ccr ratio

increases, meaning a higher communication load on the

problem, accuracy decreases notably. In ScFast scenery,

accuracy drops below 82% (in HEFT) and 81% (in GA) for

1000genome, the problem with worst results of the

benchmark. This accuracy reduction is even more dramatic

in ScMixed scenario, where accuracy levels drop below

48% (in HEFT) and 43% (in GA), respectively, again in

1000genome problem.

On the other hand, DNC model solves with remarkably

high accuracy rates (� 97%) in all scenarios and for almost

all problems and independently of their ccr. The only one

exception is Montage problem where accuracy drops below

of 95%=91% (HEFT) and 96%=93% (GA) in ScFast/

ScMixed scenarios, respectively. The nature of high com-

munications concurrency of Montage could justify these

Table 2 Accuracy of the NC

and DNC models. DNC gets

superior accuracy in all

configurations, as we can

observe

Model Problem (ccr) HEFT GA

ScFast (%) ScMixed (%) ScFast (%) ScMixed (%)

NC Seismology (0.02%) 99.66 99.16 99.66 99.23

Cycles (0.05%) 99.59 97.71 99.57 97.71

Epigenomics (1.31%) 95.47 81.50 95.69 85.49

SRASearch (1.47%) 96.82 88.34 96.09 85.92

Montage (3.15%) 86.97 72.07 92.36 78.55

SoyKB (15.17%) 87.08 54.03 87.08 54.03

1000genome (23.30%) 81.34 43.29 80.79 42.58

DNC Seismology 99.84 99.86 99.84 99.87

Cycles 99.99 99.99 99.99 99.99

Epigenomics 99.11 99.11 98.87 99.13

SRASearch 99.40 97.29 99.66 98.19

Montage 94.90 90.50 95.90 92.98

SoyKB 100 100 100 100

1000genome 99.99 99.99 99.99 100
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results because neither of the two models are designed to

manage this issue.

These results reinforce the decision of adopting DNC as

the evaluation model for scheduling scientific workflows

graphs in an IaaS independently of the hardware

configuration.

Now, using only DNC Model, Tables 3 and 4 summarise

the worst accuracy levels of the different proposed genetic

and hybrid algorithms evolving from random and heuristic

initial population. The accuracy levels do not vary with

respect to the pattern shown in the simple heuristic and

genetic algorithms. All values are above 97%, again with

the sole exception of Montage, the benchmark’s high

concurrency problem, where accuracy drops below 91%

and 95% in the worst cases of the ScMixed and ScFast

scenarios respectively. In conclusion, the different algo-

rithms presented seem to solve all instances in each sce-

nario studied with high accuracy when using the DNC

model, as opposed to the NC model, which gives signifi-

cantly worse results in heterogeneous infrastructures.

4.4 Makespan optimization study

In this section we study the efficiency of the different

proposed algorithms using the new evaluation model to

optimise the workflow completion time. Instead of directly

comparing makespan, which vary widely with the dimen-

sions of each workflow, we will use makespan percentage

error (MPE) as a performance metric:

MPE ¼ makespanHEFTNC � makespan

makespanHEFTNC
ð12Þ

makespan refers to the solution completion time to be

evaluated, and the denominator is the makespan of the

solution obtained from the HEFT heuristic using the pre-

vious NC model as a quality baseline, which is the com-

putational most inexpensive, but not necessarily least

accurate, of the studied methods in this work. Positive

values of MPE mean better quality solutions, and negative

values mean worse results, both with respect to HEFT.

Tables 5, 6, 7, 8 and 9 show average MPE results for all

instances of each problem and infrastructure scenario.

Firstly, we study the behaviour of the plain GA using

NC model and corresponding heuristic and genetic meth-

ods in DNC model. The average MPE results of each

problem in ScFast scenario are summarized in Table 5.

GANC is more efficient than HEFTNC in Montage, Seis-

mology and Epigenomics, except in the configuration with

maximum number of hosts in the last two problems, but it

is worse on the remaining four problems, mainly in con-

figurations with high number of hosts. Using the DNC

model, globally HEFTDNC has a marginal improvement in

its results in all problems, the exception being Montage

using the highest number of hosts where it obtains a sub-

stantial improvement. GADNC performs better on 6/7

problems, but fails on the configurations with the maxi-

mum number of hosts.

In ScMixed scenario, Table 6, GANC again improves

MPE on the same 3 problems. However, HEFTDNC and

GADNC obtain substantial improvements in almost all, 7/6

problems respectively, and mainly in the most complex

host configurations (16 hosts).

Table 3 Makespan accuracy,

worst value found for each

problem is shown (in bold best

value for each problem), using

DNC model, of genetic and

hybrid algorithms with random

and heuristic initial population

in ScFast infrastructure

ccr (%) Problem HGAPh1 (%) HGAPh2 (%) GAH (%) HGAH
Ph1 (%) HGAH

Ph2 (%)

0.02 Seismology 99.84 99.84 99.84 99.84 99.84

0.05 Cycles 99.99 99.99 99.99 99.99 99.99

1.31 Epigenomics 99.17 98.81 98.82 98.76 99.04

1.47 SRASearch 99.50 99.34 99.39 99.34 99.26

3.15 Montage 95.08 94.91 95.04 94.51 94.62

15.17 SoyKB 100 100 100 100 100

23.30 1000genome 99.99 99.99 100 99.99 99.99

Table 4 Makespan accuracy,

worst value found for each

problem is shown (in bold best

value for each problem), using

DNC model, of genetic and

hybrid algorithms with random

and heuristic initial population

in ScMixed infrastructure

ccr (%) Problem HGAPh1 (%) HGAPh2 (%) GAH (%) HGAH
Ph1 (%) HGAH

Ph2 (%)

0.02 Seismology 99.87 99.87 99.86 99.87 99.86

0.05 Cycles 99.99 99.99 99.99 99.99 99.99

1.31 Epigenomics 99.28 99.18 99.11 99.16 99.11

1.47 SRASearch 98.42 98.47 97.65 98.44 97.71

3.15 Montage 91.64 92.64 91.18 91.40 90.39

15.17 SoyKB 100 100 100 100 100

23.30 1000genome 99.99 99.99 100 100 99.99
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Table 6 shows that, in general, the algorithms using the

DNC model not only improve on the previous model, but

even in the more complex ScMixed scenario with a higher

number of hosts, these differences are maintained

(1000Genome, Cycles and Seismology) or even increased

(Epigenomics, Montage and SRSSearch). However, in the

instances of soyKB problem the differences between the

two models decrease as the number of hosts increases. This

is due to the combination of a graph topology with a sig-

nificant number of high in-degree nodes (i.e. tasks with a

high number of predecessors’ data dependencies) and a

huge volume of data to be transferred. This combination

generates high concurrency with a fast and long saturation

of communication channels, both disk and network. In

these cases, the new model has less room for improvement.
Due to the structural nature of these differences, these

conclusions also apply to the results obtained with the

Table 5 Summary of results from HEFT and GA methods using both

evaluation models in ScFast scenario

Problem Hosts GANC (%) HEFTDNC (%) GADNC (%)

1000genome 2 -0.04 0.14 0.14

4 0.02 0.43 0.79

8 1.41 0.25 2.17

16 -2.84 0.58 -1.71

Cycles 2 -0.35 -0.02 -0.35

4 -3.04 0.00 -3.01

8 -7.64 0.01 -8.15

16 -16.75 0.01 -17.68

Epigenomics 2 1.78 0.09 1.82

4 3.11 0.07 2.69

8 2.86 0.07 2.47

16 -0.60 0.18 -0.53

Montage 2 0.25 0.24 0.94

4 0.76 0.74 1.31

8 1.73 3.80 2.10

16 0.78 4.79 0.64

Seismology 2 0.01 0.00 0.01

4 0.01 0.00 0.01

8 0.05 0.00 0.05

16 -0.86 0.00 -0.83

SoyKB 2 0.03 0.22 0.37

4 0.01 0.48 0.56

8 -0.19 0.08 0.16

16 -0.65 0.02 -0.36

SRASearch 2 0.02 0.04 0.31

4 -0.01 0.09 1.18

8 -2.06 0.28 -1.71

16 -4.12 0.18 -4.83

Average makespan relative error (MPE) of all instances of each

problem are reported (in bold best value for each problem and number

of hosts)

Table 6 Summary of results from HEFT and GA methods using both

evaluation models in SCMixed scenario

Problem Hosts GANC (%) HEFTDNC (%) GADNC (%)

1000genome 2 0.27 37.05 37.98

4 -0.12 37.07 37.81

8 -2.78 36.57 37.02

16 -2.52 38.80 36.80

Cycles 2 -0.46 0.91 0.59

4 -2.96 0.83 -1.97

8 -7.39 0.79 -6.86

16 -16.67 0.72 -15.84

Epigenomics 2 2.93 5.93 7.29

4 5.14 7.33 9.80

8 5.28 9.14 11.88

16 4.07 14.02 14.43

Montage 2 -0.53 1.55 3.90

4 0.23 1.89 4.97

8 6.97 11.29 13.33

16 4.01 13.29 11.97

Seismology 2 0.02 0.08 0.09

4 0.00 0.07 0.06

8 0.09 0.10 0.19

16 -0.79 0.14 -0.36

SoyKB 2 -2.47 22.28 23.29

4 -1.41 18.71 19.01

8 -0.30 15.79 15.61

16 -0.96 11.20 11.24

SRASearch 2 1.56 4.94 7.13

4 -0.23 3.82 5.15

8 -0.10 6.86 6.43

16 2.65 9.86 6.98

Average makespan relative error (MPE) of all instances of each

problem are reported (in bold best value for each problem and number

of hosts)

Table 7 Summary of the statistical study comparing the makespan

quality of the heuristic and genetic proposed methods using both

evaluation models

Method HEFTNC GANC HEFTDNC GADNC

HEFTNC – – – –

GANC – – – –

HEFTDNC 4 4 – –

GADNC 4 4 – –

The symbol (4) means that the row method is significantly better than

the corresponding column method
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hybrid versions of the algorithms, as can be seen from

Table 9.

A statistical analysis using non-parametric Friedman test

for paired samples (using standard 0.05 significance level)

signals significant differences among the studied methods

(p-value \2:2e� 16). A Bonferroni post-hoc analysis

reveals both genetic and heuristic DNC versions are sta-

tistical significantly better than NC versions, Table 7

resumes statistical results.

Regarding the hybrid proposals, now using only the

DNC model, Table 8 and Table 9 show MPE results for

SCFast and SCMixed scenarios respectively. Globally,

while HGAPh1 is unable to achieve better results than the

genetic and heuristic methods, HGAPh2 outperforms both

previous methods in all problems. The only exception is

the computing intensive problem Cycles, where the hybrid

method is still unable to improve the heuristic HEFT.

Finally, in order to exploit the synergy between the

genetic and heuristic approaches, we have introduced the

HEFT solution in the initial population of the proposed

genetic (GAH) and hybrid algorithms (HGAH
Ph1 and

HGAH
Ph2). As a result, HGAH

Ph2 is the method with the best

solutions in all problems and scenarios. It is only outper-

formed by the genetic algorithm with heuristic population

(GAH) on the SRASearch and Montage problem on SCFast

scenario running on two hosts configuration. A new

Friedman test shows that there are significant differences

among the different methods using the DNC model (p-

value \2:2e� 16). Table 10 summarises the results of the

Bonferroni post-hoc tests, which show the significant

superiority of hybridising the genetic algorithm with the

scheduling phase of HEFT and using heuristic initial

population (HGAH
Ph2).

Table 8 Summary of results

from Hybridization methods

and inclusion of HEFT solution

in the initial population using

both evaluation models in

SCFast scenario

Problem Hosts HGAPh1 (%) HGAPh2 (%) GAH (%) HGAH
Ph1 (%) HGAH

Ph2 (%)

1000genome 2 0.14 0.14 0.14 0.14 0.14

4 0.14 0.97 0.80 0.58 0.98

8 -1.14 3.78 3.18 0.36 3.83

16 -4.23% 2.32 1.54 0.58 2.68

Cycles 2 0.06 -0.09 0.08 0.07 0.08

4 -1.73 -2.81 0.16 0.13 0.27

8 -7.30 -6.19 0.56 0.01 1.23

16 -15.57 -12.28 0.02 0.01 0.69

Epigenomics 2 -1.90 1.84 1.82 0.45 1.83

4 -12.00 3.96 2.59 0.18 3.96

8 -28.82 6.19 2.83 0.36 6.24

16 -37.88 7.43 0.56 0.11 7.50

Montage 2 0.52 0.89 0.67 0.48 0.61

4 0.25 2.32 1.46 0.72 2.00

8 1.62 5.48 4.71 3.80 5.00

16 1.70 5.86 5.30 4.51 5.80

Seismology 2 0.01 0.01 0.01 0.01 0.01

4 -0.07 0.04 0.04 0.01 0.05

8 -1.10 0.22 0.10 0.01 0.25

16 -3.36 0.08 0.01 0.00 0.34

SoyKB 2 -0.42 0.45 0.45 0.29 0.45

4 -0.48 0.80 0.69 0.48 0.80

8 -0.76 0.86 0.35 0.08 0.88

16 -0.95 0.93 0.19 0.02 0.97

SRASearch 2 0.01 0.21 0.27 0.07 0.15

4 0.43 1.06 0.99 0.73 1.07

8 -1.95 0.73 0.39 0.14 0.66

16 -4.07 0.59 -0.22 -0.16 0.57

Average makespan relative error (MPE) of all instances of each problem are reported (in bold best value for

each problem and number of hosts)
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5 Conclusions and future work

In this paper, we have presented the challenges of calcu-

lating the makespan of a scientific workflow and how

simplifications for the sake of computational speed can

affect the precision of the work. In the pay-per-use model

of cloud computing, an inaccurate estimate of makespan

will lead to a misleading decision about the necessary cost

and time of the hired infrastructure. We have analysed the

benefits of using a more appropriated computational model

Table 9 Summary of results

from Hybridization methods

and inclusion of HEFT solution

in the initial population using

both evaluation models in

SCMixed scenario

Problem Hosts HGAPh1 (%) HGAPh2 (%) GAH (%) HGAH
Ph1 (%) HGAH

Ph2 (%)

1000genome 2 37.10 39.01 38.08 37.23 39.05

4 36.90 39.26 37.70 37.22 39.31

8 34.09 38.79 37.55 36.57 40.28

16 35.09 39.34 38.83 38.80 41.13

Cycles 2 0.95 1.13 0.95 0.97 1.27

4 -0.89 -0.60 1.07 0.85 1.35

8 -5.86 -2.45 1.47 0.80 2.18

16 -14.22 -9.55 0.72 0.72 1.28

Epigenomics 2 3.67 7.77 7.22 6.25 7.78

4 -3.82 11.10 9.47 7.42 11.13

8 -18.52 15.11 11.59 9.14 15.28

16 -23.09 20.57 15.08 14.02 20.75

Montage 2 2.23 4.86 2.93 2.26 3.85

4 2.86 6.36 3.34 2.30 4.84

8 10.33 16.23 13.36 11.20 14.86

16 10.77 16.75 15.10 13.19 16.37

Seismology 2 0.08 0.11 0.09 0.08 0.11

4 0.01 0.12 0.09 0.09 0.13

8 -1.08 0.37 0.20 0.12 0.39

16 -3.42 0.28 0.14 0.14 0.53

SoyKB 2 22.05 24.83 23.59 22.56 24.80

4 17.34 20.00 19.26 18.71 19.87

8 14.01 16.57 15.98 15.79 16.66

16 8.98 12.36 11.48 11.20 12.29

SRASearch 2 5.95 7.78 7.06 5.97 7.78

4 4.98 6.44 5.31 5.19 6.55

8 7.03 10.62 7.23 9.29 10.82

16 7.49 11.23 10.11 9.87 11.85

Average makespan relative error (MPE) of all instances of each problem are reported (in bold best value for

each problem and number of hosts)

Table 10 Summary of the

statistical study comparing the

makespan quality of the DNC

versions of heuristic, genetic

and hybrid proposed methods

using random and heuristic

initial population

Method HEFT GA HGAPh1 HGAPh2 GAH HGAH
Ph1 HGAH

Ph2

HEFT – – 4 – – – –

GA – – 4 – – – –

HGAPh1 – – – – – – –

HGAPh2 4 4 4 – 4 4 -

GAH – – – – – 4 –

HGAH
Ph1

– – – – – – –

HGAH
Ph2 4 4 4 4 4 4 -

The symbol (4) means that the row method is significantly better than the corresponding column method
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(DNC) to improve the accuracy of the makespan estimates

generated by the optimisation algorithms. We have intro-

duced several improvements, (1) in this context lamarckian

evolution had improved the makespan quality of the hybrid

evolutionary algorithms solutions. (2) Different

hybridization algorithms of a well-known heuristic as

HEFT with the proposed genetic algorithm had been

developed to improve the makespan, with HGAH
Ph2 being

the one with the best solutions. (3) An accuracy measure

had been introduced and applied to study its correlation

with workflow problem typology, with respect to compu-

tation and communication ratio (CCR), in different cloud

IaaS scenarios and using current real-world scientific

workflow problems. We have observed how cloud infras-

tructure simulators include additional features, such as

concurrency and saturation levels of disk and network

transfer channels, which depends on the underlying hard-

ware being simulated, but its complexity and computa-

tional cost prevent its effective use in scheduler evaluation

models. For this reason, we want to use these simulator

features to extend the DNC model and improve the per-

formance of our solutions on mixed-feature workflows,

such as those in the Montage problem.

In testing different hybridisation methods, we found that

all the proposed algorithms have some kind of workflow

problems where they work best. For this reason, in future

work we want to explore the development of new popu-

lation-based evolutionary algorithms, applying different

heuristic decoding methods to each solution, and letting its

best estimate guide the evolution in a multi-decoding

approximation. In addition, we aim to experiment in a

multi-objective context to study the impact of this new

evaluation model, as well as to design new memetic pro-

posals (Tang and Pan 2015; Zuo et al. 2017; Mencı́a et al.

2022) which combine intensive search with an appropriate

exploration-exploitation balance (Guo et al. 2020; Lou

et al. 2021; Osuna-Enciso et al. 2022) to minimise other

valuable objectives in parallel, such as cost or energy

consumption.
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metric for population-based metaheuristic algorithms. Inf Sci

586:192–208
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