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Abstract We discuss error estimates for the numerical analysis of Neumann boundary 
control problems. We present some known results about piecewise constant 
approximations of the control and introduce some new results about continuous 
piecewise linear approximations. We obtain the rates of convergence in i ^ ( r ) . 
Error estimates in the uniform norm are also obtained. We also discuss the 
semidiscretization approach as well as the improvement of the error estimates 
by making an extra assumption over the set of points corresponding to the active 
control constraints. 

keywords: Boundary control, semilinear elliptic equation, numerical ap­
proximation, error estimates. 

1. Introduction 
This paper continues a series of works about error estimates for the numerical 

analysis of control problems governed by semilinear elliptic partial differential 
equations. In [1] a distributed problem approximated by piecewise constant 
controls was studied. In [7] the control appears in the boundary. This makes 
the task more difficult since the states are now less regular than in the distributed 
case. Piecewise constant approximations were used in that reference. The ad­
vantage of these is that we have a pointwise expression both for the control and 
its approximation, which we can compare to get uniform convergence. The 
reader is addressed to these papers for further references about error estimates 
for the approximation of linear-quadratic problems governed by partial differ-
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ential equations and for the approximation of control problems governed by 
ordinary differential equations. 

In the case of continuous piecewise linear approximations of the control, there 
exists not such a pointwise formula in general. If the functional is quadratic with 
respecto to the control, recent results in [8] about the stability of L^ projections 
in Sobolev W^''P{T) spaces allow us to obtain uniform convergence and adapt 
the proofs. The general case is more delicate. Results for distributed control 
problems can be found in [3]. The main purpose of this paper is to obtain similar 
results for Neumann boundary controls. This is done in Theorem 10. 

We also refer to the works for distributed linear-quadratic problems about 
semidiscretization [9] and postprocessing [10]. The first proposes only dis-
cretizing the state, and not the control. The solution can nevertheless be ex­
pressed with a finite number of parameters via the adjoint-state and the problem 
can be solved with a computer with a slightly changed optimization code. The 
second one proposes solving a completely discretized problem with piecewise 
constant approximations of the control and finally construct a new control using 
the pointwise projection of the discrete adjoint state. We are able to reproduce 
the first scheme for Neumann boundary controls, a general functional and a 
semilinear equation. 

The rest of the paper is as follows. In the next section, we define precisely 
the problem. In Section 3 we recall several results about this control problem. 
Section 4 contains the main results of this paper: we discretize the problem and 
obtain error estimates for the solutions. 

2. Statement of the problem 
Throughout the sequel, O denotes an open convex bounded polygonal set of 

R^ and T is the boundary of O. We will also take p > 2. In this domain we 
formulate the following control problem 

inf J{u)= I L{x,yu{x))dx + / l{x,yu{x),u{x)) du{x) 

<̂P) ^ subject to {yu,u) e H\^) X X~( r ) , 
ueU'''^ = {ue L ~ ( r ) | a < u{x) < P a.e. x e r } , 
{yu, u) satisfying the state equation (1) 

-Ay„(x) = ao(x,y„(x)) in O 
dvVuix) = bo{x,yu{x))+u{x) on T, 

where —oo < a < p < +oo. Here u is the control while y„ is said to be the 
associated state. The following hypotheses are assumed about the functions 
involved in the control problem (P): 
(Al) The function L : Q x H —> R is measurable with respect to the 
first component, of class C^ with respect to the second, L(-,0) e L^{fl), 

(1) 
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dL d'^L. 
^ (•, 0) e L^{n) — f̂-, 0) (E L°°(f2) and for all M > 0 there exists a con-
ay oy^ 

stant C L M > 0 such that 
dy ,2V >̂2/2J 2(3^)2/1) < C'i,M|2/2 - m l , for 

a.e. X eCL and |?/|, |yj| < M, i = 1,2. 

(A2) The function / : F x R^ —y R is Lipschitz with respect to the first 
component, of class C^ with respect to the second and third variables, Z (•, 0,0) € 
L^{T), Dfy^^^l(-,0,0) e L°°{T) and for all M > 0 there exists a constant 
C; M > 0 such that 

dl ^ dl dl ^ 91 
-g-{x2,y,u) - —{xi,y,u) < CI,M\X2-XI\, 

\D. ,u)Kx,y2,U2) - Dfy^^-^l{x,yi,Ui)\\ < Cl^M{\y2 -~yi\ + \U2 -Ui\), 

for a.e. x,Xi e T and \y\, \yi\, \u\, \ui\ < M, i = 1, 2, where D? d denotes 
the second derivative of I with respect to (y, u). Moreover we assume that there 
exists A > 0 such that 

Q2I 
—-^(x,y,u)>A, a.e. X G r and (y,M) G R^. (2) 

Let us remark that this inequality implies the strict convexity of I with respect 
to the third variable. 

(A3) The function ao : f2 x R —> R is measurable with respect to the 
first variable and of class C^ with respect to the second, ao(-,0) G I^ifl), 

~{;0) e L ~ ( 0 ) , ^ ( - , 0 ) G L~(0) , ^{x,y) < 0 a.e. x G fiandy G 

R and for all Af > 0 there exists a constant Cao,M > 0 such that 

< CaoM\y2-yi\ a.e. a; G fi and |?/i|, \y2\ < M. —^{x,y2)~^:^{x,yi) 
9j/2 9y2 

(A4) The function 60 : T x R —> R is Lipschitz with respect to the first 
variable and of class C^ with respect to the second, 6o(-, 0) G VK^~^/P'P(r), 
a2u QL 

TT-^i-, 0) G i ° ° ( r ) , - ^ ( x , y) < 0 and for all M > 0 there exists a constant 
oy^ ay 
Cbo,M > 0 such that 

dbo . dbo. ^ ^ r^ , , 
-^-{x2,y) - -^{xi,y) < Cb„,M\x2 - xi\, 
dy dy 
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d%o, , a25o 
a;,J'2) - -K-^i^^Vi) < Cbo,M\y2 -yil-

Qy2 ' Qy2 

for a.e. a:;,2;i,a;2 G T and |y|, |2/i|, |y2| < -^• 

(A5) At least one of the two conditions must hold: either -——(x, w) < 0 in 
dy 

EQ X R with EQ C Q of positive n-dimensional measure or ^r—(x, y) < 0 on 
dy 

i?r X R- with Er CT of positive (n — l)-dimensional measure. 

3. Analysis of the control problem 
Let us briefly state some useful results known for this control problem. The 

proofs can be found in [7]. 

T H E O R E M 1 For every u G L'^ (T) the state equation (1) has a unique solution 
yu S H^'"^(O), that depends continuously on u. Moreover, there exists po > 2 
depending on the measure of the angles in T such that ifu G W^~^'^'^{r) for 
some 2 <p < po, then y„ e W'^'P{Vl). 

Let us note that the inclusion i?^/^(Q) C C(f2) holds for Lipschitz domains 
in R^. As a consequence of the theorem above, we know that the functional J 
is well defined in i ^ ( r ) . Let us discuss the differentiability properties of J. 

T H E O R E M 2 Suppose that assumptions (A3)-(A4) are satisfied. Then the 
mapping G : L ~ ( r ) —> H^/^{n) defined by G(w) = |/„ is of class C^. 
Under the assumptions (A1)--(A4), the functional J : I/°°(r) —> R is of class 
C^. Moreover, for every u.,v G L°°(r) 

I ^ { x , y „ , i i ) + (pu] vda. 
fdl_ 

IT \du^ 

where the adjoint state (pu G H^''^{^) is the unique solution of the problem 

. dao, , dL, N . ^ 
-Av? = — (x ,y„) ( / J+— (x,2/„) mil 

dbo dl N -p 
Ow^-=-K-KX,yu)H:> +-^{x,yu-,u) onV. 

Expressions for the derivatives of G and the second derivative of J can be found 
in [7]. 

The existence of a solution for problem (P) follows easily from our assump­
tions (Al )-(A5). In particular, we underline the important fact that the function 
/ is convex with respect to the third variable. See (2). The first order optimality 
conditions for Problem (P) follow readily from Theorem 2. 
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T H E O R E M 3 Assume that u is a local solution of Problem (P). Then there exist 
y,!f e H^/'^{Ct) such that 

-Ay{x) = ao{x,y{x)) in O 
d„y{x) = bo{x,y{x))+u{x) on T, 

-Aip = —-{x,y)(p+^-{x,y) m O 
dy dy ^^^ 

a - ^^0, ^^- dl 
"•"V "= -K-{x,y)'^ + ^-{x,y,u) on T, 

/ \^{x, y, u) + < )̂ (u - €) du{x) >Oyu€U' ad (5^) 

First order optimality conditions allow us to deduce extra regularity for the 
optimal control. 

T H E O R E M 4 Suppose that u is a local solution of(P), then for all x e T the 
equation 

dl 
^{x) + -7rA.x,y{x),t) = 0 

has a unique solution t = s{x). The mapping s : T —> R is Lipschitz and it 
is related with u through the formula 

u{x) = PTOj\^a^p]{s{x)) = max{a,min{/?, s(x)}}. (6) 

Moreover ue C° ' i ( r) andy,(p e W^'PiQ.) c C°'\Q) for some p > 2. 

In order to establish the second order optimality conditions we define the cone 
of critical directions. The derivative of J can be represented by the function in 

dl _ ^ 
d{x) =̂  — ( x , y{x), u{x)) + ip{x). 

The cone is: 

C^^{ve L^{T) satisfying (7) and v{x) = 0 if \d{x)\ > 0}, 

, ^ _ J > 0 for a.e. x G F where uix) = a, 
- j < 0 for a.e. x eV where u{x) = /?. ^ ' 

Now we formulate the second order necessary and sufficient opdmality con­
ditions. See Casas and Mateos [4] 
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T H E O R E M bifu is a local solution of(P), then J"{u)v^ > 0 holds for all 
V e Cu- Conversely, ifuE U°''^ satisfies the first order optimality conditions 
(3)—(5) and the coercivity condition J"{u)v'^ > 0 holds for all v £ Cu\ {0}, 
then there exist 5 > Q and e > 0 such that 

J{u) > J{u) + 5\\u - •u||i2(r) 

is satisfied for every u G U°''^ such that \\u — 'u||ic»(n) < £• 

4. Discretization 

Here, we define a finite-element based approximation of the optimal con­
trol problem (P). To this aim, we consider a regular family of triangulations 
{Th}h>o of n:n = \JT^rJ. 

For fixed /i > 0, we denote by {Tj}-}:-^' the family of triangles of Th with 

a side on the boundary of F. If the edges of Tj n F are Xp and Xp then 

[4,4^^] •- Tj n F, 1 < i < N{h), with xp ̂ '*)+̂  = 4 . 

4.1 Discretization of the state equation 

Associated with this triangulation we set 

Yh = {Vh e Cin) I VhiT e Vu for all T e Th}, 

where Vi is the space of polynomials of degree less than or equal to 1. For each 
u € L°°{T), we denote by yh{u) the unique element of Yfi that satisfies 

a{,yh{u),Zh) = / ao{x,yh{u))zhdx+ / [bo{x,yh{u))'^u]zhdx ^Zh € Yh, 

(8) 
where a :Yh xY^ —> R is the bilinear form defined by 

aiyh,Zh)= / Vyhix)Vzh{x)dx. 
Jo, 

The existence and uniqueness of a solution of (8) follows in the standard way 
from the monotonicity of ao and 60 (see [7]). 

Let us now introduce the approximate adjoint state associated to a control. 
To every u G Uad we relate ^phiu) G Yh, the unique function satisfying 

a{(phiu),Zh) = / (-~{x,yhiu))(phiu) + -rr-{x,yh{u))\ Zhdx+ 

y-g^(x,yh{u))iphiu) + -—{x,yh{u),u)\ Zhda{x) Mzh G Yh-
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The following approximation properties are essential to study the approxima­
tion of the control problem. They follow from real interpolation. See Brenner 
and Scott [2, Section 12.3] and [5]. Proof of inequality (9) is more technical. 
It is done adapting the proof of Aubin-Nietsche Lemma to semilinear equa­
tions as in [5] and taking into account the H^/'^{Vl) regularity of the solution 
of the Neumann problem with data in L'^iV). A full proof will appear in the 
forthcoming paper [6]. 

T H E O R E M 6 (i) For every u e H^f^iV) there exists C > 0, depending con­
tinuously on \\u\\fji/2iYy such that 

hu-yh{u)\\H''{n) + \\Vu-Vh{u)\\H^(n) < Ch'^'" for alio < s < 1, 

and 

lb« - yh{u)\\L2(r) + IIV« - ^h{u)\\L^(r) < Ch^/^. (9) 

(ii) For every u £ L^ (F) there exists Co > 0, depending continuously on 
\\u\\i^2(Y\, such that 

\\yu-yh{u)\\B'{n) + \Wu-''fh{u)\\H^o.) < Coh^^'^'" for all 0 < s < 1. 

(Hi) For every ui,U2 G ̂ ^ ( r ) there exists a constant C > 0 such that 

\\yui -y«2llFi(n) + \\yh{ui) - yh{u2)\\H^{n) + 

WVui -VU2\\HHQ) + \\fh{u\) - 'Ph{u2)\\HHQ) < C\\U1 - • "2 | | i 2 ( r ) . 

(iv)Moreover, ifu^ ~^ u weakly in L'^(r), thenyh{uh) -^ yuandiph{uh) -^ 
(fu strongly in C{fl). 

4.2 Discrete optimal control problem 
We have several choices to write a discrete optimal control problem. Set 

K = {ue L°°(r) I ti|(̂ .̂ _ ĵ,+i) e Vo for 1 < i < N{h)}, 

Ul^{ue C{T) I U|(,.^_4+i) G Vi for 1 < j < N{h)}. 

and, following Hinze [9], we can semidiscretize the problem and take U^ = 
Z/^(r). The corresponding approximated control problems are, fori e {0,1,2}, 

!

mmJh{ufi) ^ / L{x,yh{uh){x))dx + l{x,yh{uh)ix),Uh{x))da{x), 

subject to {yh{uh),Uh) G Y^ x f/̂ '̂ '' satysfying (8), 
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where f/°'''' = C/̂  n V"^. 
The first order optimality conditions can be written as follows: 

T H E O R E M 7 Fix i G {0,1,2} and assume that Uh is a local optimal solution 
of(P\). Then there exist ijh and (ph in Yh satisfying 

a{yh,Zh)= / ao{x,yh)zhdx+ {bo{x,yh)+Uh)zhdx \/zheYh, 
i n Jr 

a{(ph,Zh) = I (-7~{x,yh)<fh + ^ix,yh)] Zhdx+ 

/ i-Q^{x,yh)v'h + -7^{x,yh,Uh)jZhd(T{x) \/zheYh, 

REMARK 8 At this point, we can show the difficulty introduced by the fact 
that Ul is formed by continuous piecewise linear functions instead ofpiecewise 
constant functions. To make a clear presentation, let us assume for a while 

that l{x, y, u) — £{x, y) + -ziJ?- In the case where U^ is formed by piecewise 

constant functions, we get from (10) that 

^M(44+') ^ -̂ ™-̂ 'l">/3] f ̂  A I J ^h{x)du{x)\ . 

Comparing this representation ofuh with (6) we can prove that Uh —^ u strongly 
inL°°{r);see[7]. 

Since we are considering piecewise linear controls in the present paper, no 
such pointwise projection formula can be deduced. We only can say that Uh 
is the convex projection of --j^(ph{x). More precisely, Uh is the solution of 
problem 

min \\(ph + ^Vh\\\2,Y)- (11) 
Vh&Uh ^ ' 

This makes the analysis of the convergence more difficult than in [7]. In partic­
ular, we can prove that Uh ^ u strongly in L'^{T), but this convergence cannot 
be obtained in L°° (T) in an easy way as done in [7]. The reader is also referred 
to [8] for the study of problem (11). 

We next can state a convergence result. 
T H E O R E M 9 Fix i e {0,1,2}. For every h > 0 let Uh be a solution of(P{). 
Then there exist subsequences {uh)h>Q converging in the weak* topology of 
-L°°(r) that will be denoted in the same way. Ifu/^-^u in the mentioned 
topology, then u is a solution of(P) and 

lim Jh{uh) = Ji'O') <^nd lim \\u — 'Uh||L2/r) ~ 0. 
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Moreover, for i G {0, 2}, lim/i^o \\u ~ Uh\\L°°(T) ~ 0-

The main result of the paper is the following. 

T H E O R E M 10 Let u be a solution of problem (P) such that J" {u)v^ > 0 holds 
for all V G Cu\{0} and u\ a sequence of solutions of(P\) converging in 1? (F) 
to u. Then 

I There exists a constant C > 0 and ho > 0 such that for 0 < h < HQ 

ll^--^*°llL2(r) < Ch; 

h^O h 

3 For every 0 < £ < 1/2 there exists a constant C > 0 and ho > 0 such 
that for 0 < h < ho, \\u - •u^liL2(r) < Ch^/'^~'^. 

In many practical cases when we make the full discretization using continuous 
piecewise linear controls (i = 1), the order of convergence observed for the 
controls in L'^{T) is h^^^. Let us show why. We will make two assumptions 
that are fulfilled in many situations: 

(Ql) l{x, y, u) = £{x, y) + e{x)u + -zu^, where A > 0 and 

• the function £ : F x R —> R is Lipschitz with respect to the first 
component, of class C^ with respect to the second variable, ^(-,0) G 

dy"^ 
; M > 0 such that 

L^{V), ^-^(-,0) G L°°(F) and for all M > 0 there exists a constant 

I da. da 
| ^ ( x 2 , 2 ; ) - ^ ( x i , y ) 

^,{x,y,)~-—^{x,. 

for a.e. x,Xi eT and \y\, \yi\ < M, i = 1,2; 

< Q,Mb2 -yi\ 

• the function e : F —> R is Lipschitz and satisfies the following approxi­
mation property: there exists Ce > Osuchthat ||e—n;ie||2^2(r) < Cgh^^^-
This assumption is not very constraining. Although it is not true for Lip­
schitz functions in general, it is true for a very wide class of functions. 
For instance for Lipschitz functions that are piecewise in H^^^(T). 

(Q2) If we name Fg = {x G F : u{x) = a or u{x) ~ /?}, then the number of 
points in OFg -the boundary of Tg in the topology of F - is finite. 
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THEOREM 11 Suppose (Ql) and (Q2) are satisfied. Let u be a solution of 
problem (P) such that J"{u)v'^ > 0 holds for all v a Cu\ {0} and Uh a 
sequence of solutions of (P\) converging in L'^iT) to u. Then there exists 
C > 0 such that 

\\uh~u\\L2ij^) <Ch^l'^ 

REMARK 12 Using the inverse inequality 

\\uh\\L-^(T) < Ch'^^l'^WuhW^i^Y^foralluh e Ul 

We can get error estimates for continuous piecewise linear approximations for 
the control. This is important, since we have not been able to establish even 
uniform convergence up to now 

About the proof of Theorem 10. For « = 0 see [7]. Using second order 
sufficient conditions, we prove tiiat there exists v > Q and /ii > 0 such that for 
all 0 < /i < /ij 

i^ll" - •"/j|li2(r) ^ {J'{uh) - J'iufjiuh - u). (12) 

This is the most difficult part since we do not have uniform convergence of the 
states and we cannot apply the same techniques as in [3, 7]. 

Using (12) and first order optimality conditions (5) and (10) we have that 

î ll̂ ft " ^'lli,2(r) ^ (J'hiuh) ~ J'{u)){ul - u) + 

+ J'{u){ul - -u) + {J'hiuh) ~ J'{Uh)){u - Uh). 

For i — 1, u\ = II/j-u is the unique function in U\ such that n?itZ(xp) = 
U{XY) for j = 1, • • •, N{h). In this case first and second terms are of order 
olK^). For i — 2 (semidiscretization), u*^— u and the first two terms are zero. 
Third term is more difficult. Since we do not know yet if {uh} is bounded in 
H^/'^iV) a direct proof as in the distributed case (see [3]) would lead to a bad 
estimate. With a small turnaround, we can prove that for every p > 0 and every 
0 < e < 1/2 there exists Cp^^ > 0 independent of h such that the third term 
can be estimated by 

'" + p\\u}, - u||i,2(r)j \\uh - -"||L2(r). 

We must take p small enough to conclude the proof.Q 
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