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1 Introduction

The AdS2/CFT1 correspondence plays a key role in the microscopical description of extremal
black holes, AdS2 being part of the geometry that appears in their near horizon limit in
any dimension. It presents however important conceptual problems that have to do mainly
with the non-connected nature of the AdS2 boundary and the fact that AdS2 gravity is
non-dynamical.

In recent years new examples of AdS2 geometries with different supersymmetries have
been constructed [1–8] (see also [9, 10]) that show that when extra fluxes are added AdS2
gravity ceases to be non-dynamical, and allows for a non-vanishing central extension from
which the black hole entropy can be computed. These examples extend the AdS2 geometries
with constant electric fields proposed early on in [11–15]. In some of these constructions
the dual superconformal quantum mechanics (SCQM) was also identified, and it was
possible to check the conjecture in [13], namely, that a consistent quantum gravity on
AdS2 should be dual to a chiral half 2d CFT, with explicit realisations. Indeed, in these
constructions the supersymmetric quantum mechanics from which the SCQMs arise in the
IR are compactifications of 2d (0,4) SCFTs, and have the same superconformal algebras
associated to them. This has been used to compute the central charge of the SCQMs, and
perfect agreement has been found with the corresponding holographic expressions. The
proposed SCQMs thus provide explicit scenarios where the entropy of extremal black holes
can be computed microscopically.

Another useful application of the AdS2/CFT1 correspondence is to the holographic
description of superconformal line defects in higher dimensional CFTs [6–8, 16–19]. Geo-
metrically, a sign that an AdS2 solution may be describing a superconformal line defect
is that it flows asymptotically locally to a higher dimensional AdS background, dual far
from the defects to the higher dimensional CFT in which they are embedded. In some
of these constructions it has been shown that the quiver quantum mechanics dual to the
AdS2 solutions can be embedded within the quivers that describe the higher dimensional
SCFTs [6, 7]. In some instances the defects are described by quivers living in brane boxes [7],
with the latter finding in this way a powerful holographic realisation.

In this paper we present general results on the construction of AdS2 solutions to Type
II supergravity via U(1) and SL(2) T-dualities. We then exploit these to construct new
classes of small N = 4 solutions in Type II supergravity and study the dual field theory
description of a subclass of these solutions, for which the SCQM arises once more upon
compactification of a 2d (0,4) SCFT. The intricacy of the brane set-up associated to these
solutions reveals an interesting defect interpretation in terms of baryon vertices and ’t Hooft
loops within higher dimensional CFTs.

The paper is organised as follows. We start in section 2 presenting general results
on the generation of AdS2 solutions in Type II supergravity from AdS3 solutions via
U(1) and SL(2) T-dualities, paying special attention to the conditions for preservation
of supersymmetry. This section is supplemented by appendices A–D. In section 3 we
focus on the particular classes of solutions to Type IIB supergravity preserving N = 4
supersymmetry obtained from the AdS3× S3×M4 solutions to massive IIA with N = (0, 4)
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supersymmetry and SU(3) structure constructed in [20]. We show that the solutions with a
3-torus isometry can be embedded into a more general class of solutions, that we construct
via double analytical continuation from the AdS3 solutions in Type IIB with N = (0, 4)
supersymmetry constructed in [21]. Then in section 4 we move to the field theory description
of a subclass of the previous solutions, consisting on AdS2 × S3 × T3 foliations over a 2d
Riemann surface, parametrised by two non-compact directions (ρ, r). We show that the
associated quantum mechanics lives in D1-branes stretched between NS5-branes along the ρ
direction, with D3, D5 and D7 branes contributing with flavour groups to the resulting (0,4)
quantum mechanics, that, we propose, flows in the IR to the SCQMs dual to the solutions.
Making contact with similar 1d quivers proposed in the literature in the description of
bubbling dyonic monopoles in 4d N = 2 supersymmetric field theories living in D3-D7
systems [22–25], we identify our quiver constructions as describing the bubbling sector of
vanishing effective magnetic charge in these 4d theories. In turn, the disposition of the
branes along the r direction allows us to interpret the F1-strings present in the brane set-up
in relation to baryon vertices in the 5d theory living in the D5-NS5-D7 subset of branes. We
check our holographic proposal with the computation of the central charge on both sides
of the AdS/CFT correspondence. On the field theory side we compute the central charge
from the R-symmetry anomaly, using the same expression valid in two dimensions. We find
perfect agreement with the holographic result. Appendix E contains technical details of the
construction of the 1d quivers discussed in section 4.

2 Generating AdS2 solutions from U(1) and SL(2) T-duality on AdS3

In this section we present some general results on generating AdS2 solutions of Type II
supergravity from AdS3 solutions via U(1) and SL(2) T-dualities. In particular we present
the general form of such solutions and explain how they preserve supersymmetry. The
content of this section is extensively supplemented by the technical appendices A–D where
the results are derived.

An AdS3 solution of Type II supergravity can in general be decomposed in the form

ds2 = e2Ads2(AdS3) + ds2(M7),

H(10) = c0vol(AdS3) +H, F = f± + e3Avol(AdS3) ∧ ?7λf±, (2.1)

where (e2A, f±, H) and the dilaton Φ have support on M7, c0 is a constant and the
upper/lower signs are taken in IIA/IIB. We shall be interested in a subset of these for which

c0 = 0, H(10) = H, (2.2)

ie those with purely magnetic NS 3-form flux, otherwise the potential for H(10) will not be
SL(2) invariant and we will be unable to perform a non-Abelian T-duality transformation
on it.1 The Bianchi identities the fluxes should obey (away form the loci of sources) reduce

1Note that an electric component of the NS flux does not pose a problem for U(1) T-duality on the Hopf
fiber of AdS3, however the dual solution would not have a round AdS2 factor — this would instead appear
with a U(1) fibred over it in the dual solution.
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to the d = 7 conditions

dH = 0, (d−H∧)f± = 0, (d−H∧)(e3A ?7 λ(f±)) = 0. (2.3)

When an AdS3 solution preserves at least N = 1 supersymmetry it admits at least a pair of
Majorana spinors (χ1, χ2) on M7 such that one can define a pair of d = 10 Majorana-Weyl
spinors decomping as

ε1 = ζ ⊗ θ+ ⊗ χ1, ε2 = ζ ⊗ θ∓ ⊗ χ2, (2.4)

where ζ is a Majorana Killing spinor on unit radius AdS3 obeying the equation

∇AdS3
µ ζ = s

2γµζ, µ = 0, 1, 2 s2 = 1. (2.5)

For such spinors the necessary conditions for supersymmetry ultimately reduce to a set
of d = 7 conditions involving only (χ1, χ2) (see (D.8a)–(D.8f)). The specific sign s takes
is related to the type of chiral algebra one has on the boundary of AdS3, N = (1, 0) or
N = (0, 1). Which corresponds to which sign is a matter of convention and the literature
has no set standard. The remaining terms θ± are 2 dimensional vectors which account for
d = 10 chirality, again the upper/lower signs are taken in Type IIA/IIB — further details
can be found in appendix D.1. Of course a generic AdS3 solution can preserve N = (p, q)
supersymmetry for p, q integers such that p+ q ≤ 8 [26]. In this case one will actually have
p independent versions of (2.4) coupled to Killing spinors on AdS3 that obey (2.5) for one
sign and a further q versions with AdS3 Killing spinors obeying the opposite sign — each of
these comes equipped with an independent (χ1, χ2) pair.

It is possible to generate an AdS2 solution from an AdS3 background by performing a
U(1) T-duality on the Hopf fiber of AdS3. The result of doing this to (2.1) with c0 = 0 is
the following

ds2
u(1) = e2A

4 ds2(AdS2) + e−2Adr2 + ds2(M7), e−Φu(1) = e−Φ+A,

Hu(1) = −s2dr ∧ vol(AdS2) +H, Fu(1) = t

(
f± ∧ dr ∓

1
4e

3Avol(AdS2) ∧ ?7λf±

)
, (2.6)

where t2 = 1 and the upper/lower signs refer to whether the original solution was in IIA/IIB,
with the dual solution presented above in IIB/IIA. The vector ∂r is Killing with respect to
the entire solution, and if M7 was bounded the generated AdS2 solution will be likewise
bounded if r is periodically identified. It is a simple matter to show that the Bianchi
identities of the dual flux

(d−Hu(1)∧)Fu(1) = 0, dHu(1) = 0, (2.7)

are implied by (2.3). Likewise the remaining equations of motion of the bosonic supergravity
fields (A.4) are implied by those following from (2.1).

If the original solution was supersymmetric the dual solution preserves all of the chiral
supercharges of a single chirality, determined by the choice s = 1 or s = −1 so if the original
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solution was N = (p, q) supersymmetric the dual can preserve one of N = p or N = q

supersymmetry. The dual d = 10 Killing spinors share the same internal spinors as (2.4),
they take the form

ε
u(1)
1 = ζ2 ⊗ θ+ ⊗ χ1, ε

u(1)
2 = −tγrζ2 ⊗ θ± ⊗ χ2, (2.8)

where ζ2 are Killing spinors on unit radius AdS2 obeying

∇AdS2
µ ζ2 = s

2γµζ2, µ = 0, 1 s2 = 1, (2.9)

and there exists frames where ζ = ζ2.
Generating AdS2 solutions from AdS3 with Hopf fiber T-duality is an old idea, a more

novel way to generate AdS2 solutions is to instead utilise SL(2) non-Abelian T-duality, as
recently done in [3, 4]. For completeness we spell out the process of how this is done in
appendix C. The result of applying an SL(2) T-duality on (2.1) with c0 = 0 is the following
solution in Type IIB/IIA

ds2
sl(2) = e2A

4∆ ds2(AdS2)+e−2Adr2 +ds2(M7), e−Φsl(2) = e−Φ+Ar
√

∆,

Hsl(2) =− s

2∆rvol(AdS2)+H, ∆ = 1− e
4A

4r2

Fsl(2) = t

[
f±∧

(
r− se

4A

8∆ vol(AdS2)
)
∧dr∓ e

3A

2

(
−s+ r

2∆vol(AdS2)
)
∧?7λf±

]
, (2.10)

where again t2 = 1. Unlike the case of U(1) T-duality, ∂r is not an isometry of (2.10) and
cannot be periodically identified. In fact as with SU(2) T-duality the dual r coordinate is
now a semi-infinite interval: As r →∞ the metric exhibits no regular zeros or singularites so
r is not bounded from above, conversely as r approaches loci for which ∆ = 0 the behaviour
of OF1 planes (which are the S-dual of O1 planes) is recovered [4]. Again one can show
that the Bianchi identities of the fluxes

(d−Hsl(2)∧)Fsl(2) = 0, dHsl(2) = 0, (2.11)

are implied by (2.3), and that the rest of the Type II equations of motion (A.4) are implied
by the reduced d = 7 conditions following from (2.1).

An interesting fact emerges while comparing (2.10) to (2.6), given that ∆ → 1 as
r →∞. It quickly becomes clear that the NS sector of the U(1) T-dual is recovered from
that of the SL(2) T-dual as

lim
r→∞

(ds2
sl(2), Hsl(2), re

Φsl(2)) = (ds2
u(1), Hu(1), e

Φu(1)). (2.12)

A similar map can be obtained for the RR sector, when weighted by the dilaton, ie

lim
r→∞

eΦsl(2)Fsl(2) = eΦu(1)Fu(1), (2.13)

holds in general. Similar observations have been made for SU(2) T-duality [27].
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If the original AdS3 solution is supersymmetric, like the U(1) case, the dual solution
can preserve all the spinors corresponding to a given chirality determined by the sign of s.
The dual Killing spinors take the form

ε
sl(2)
1 = (N+ +N−γr)ζ2 ⊗ θ+ ⊗ χ1, ε

sl(2)
2 = −t(N+ −N−γr)γrζ2 ⊗ θ± ⊗ χ2,

N± = 1
2∆ 1

4

(√
∆+ ±

√
∆−

)
, ∆± = 1± e2As

2r , (2.14)

where again ζ2 are Killing spinors on AdS2 obeying (2.9).
In the next section we shall utilise the technology presented in this section to generate a

new class of AdS2 solutions in Type II supergravity preserving small N = 4 supersymmetry.

3 New classes of small N = 4 AdS2 solutions in Type IIB

In section 3.1 we derive a new class of small N = 4 AdS2 solutions of Type II supergravity via
SL(2) T-duality. In section 3.2 we present two solutions within this class whose geometries
are warped products of AdS2 × S3 × T3 × Σ2. We then derive a general class of solutions
with this topology in section 3.3 with a view towards “completing” the SL(2) T-duals within
global solutions with bounded internal space in the future. As a first step we confirm that
they do indeed lie within this broader class.

3.1 A small N = (0, 4) AdS3 class in IIA and its SL(2) T-duality

We are interested in studying the SL(2) T-duality of a class of small N = (0, 4) AdS3
solutions in massive IIA first derived in [20]. The general class has a NS sector of the form

ds2 = q√
h

(
ds2(AdS3) + ds2(S3)

)
+ g
√
hdx2

i + gdρ2
√
h
, e−Φ = h

3
4
√
g
,

H = ∂ρ(gh)dx1 ∧ dx2 ∧ dx3 −
1
2εijk∂xigdxj ∧ dxk ∧ dρ, (3.1)

where i = 1, 2, 3 with Einstein summation conventions assumed, g = g(xi), h = h(ρ, xi), q
is a constant and εijk is the flat space Levi-Civita symbol. All possible d = 10 RR fluxes
are non trivial and take the form

F0 = ∂ρh

g
, F2 = −1

2εijk∂xihdxj ∧ dxk, F4 = 2q
(
vol(AdS3) + vol(S3)

)
∧ dρ. (3.2)

The Bianchi identities of the NS and RR fluxes, away from the loci of sources require that
we impose that

d

(
∂ρh

g

)
= 0, ∂2

xi
g + ∂2

ρ(gh) = 0, ∂2
xi
h+ F0∂ρ(gh) = 0. (3.3)

If these requirements are satisfied then (3.1) and (3.2) always yield a solution of the full
Type IIA equations of motion preserving at least N = (0, 4), however this is actually
enhanced to (4,4) when h = constant.
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With the recipe presented in the previous section it is a simple matter to compute the
SL(2) T-dual of the above class of solutions, we need only put it in the form of (2.1) to
read off the answer. We have

eA =
√
q

h
1
4
, ds2(M7) = q√

h
ds2(S3) + g

(
√
hdx2

i + dρ2
√
h

)
, e−Φ = h

3
4
√
g
,

f+ = ∂ρh

g
− 1

2εijk∂xihdxj ∧ dxk + 2qvol(S3) ∧ dρ+ 2qghdx1 ∧ dx2 ∧ dx3 ∧ vol(S3), (3.4)

with H simply given as in (3.1). The sign appearing in the AdS3 Killing spinor equation (2.5)
that [20] takes is

s = 1, (3.5)

so we should choose this sign for small N = 4 to be preserved in the dual solution. Just to
make a concrete choice we additionally fix t = −1.

The SL(2) T-dual solution in Type IIB supergravity then has the following NS sector

ds2 = q√
h

( 1
2∆ds2(AdS2) + ds2(S3)

)
+
√
h

q
dr2 + g

√
hdx2

i + gdρ2
√
h
, e−Φ = r

√
qh∆
g

,

H = − 1
2∆rvol(AdS2) + ∂ρ(gh)dx1 ∧ dx2 ∧ dx3 −

1
2εijk∂xigdxj ∧ dxk ∧ dρ, (3.6)

where now ∆ = 1− q2

4r2h . The RR sector on the other hand is given by

F1 = qdρ− ∂ρh

g
rdr,

F5 = qd
(
(1− 2∆)r2

)
∧ vol(S3) ∧ dρ

+ q

2∆vol(AdS2) ∧
[
rghdx1 ∧ dx2 ∧ dx3 −

q

8εijk∂xi log hdr ∧ dxj ∧ dxk
]
, (3.7)

F3 = − q

2∆vol(AdS2) ∧
(
rdρ− q∂ρh

4gh dr
)
− qghdx1 ∧ dx2 ∧ dx3 + r

2εijk∂xihdr ∧ dxj ∧ dxk.

As with the original solution, the Bianchi identities and remaining Type II equations of
motion hold when (3.3) or its source corrected equivalent do.

We will now focus on the SL(2) T-duals of two solutions found and studied in [20] for
which concrete CFT duals have been proposed.

3.2 Two solutions on AdS2 × S3 × T3 × Σ2

Two interesting classes of AdS2 solutions arise by imposing that xi span a 3-torus which
the warp factors respect the isometries of. Thus we restrict to h = h(ρ) and g = g(ρ). One
then has that the last of (3.3) reduces to simply

F0∂ρ(gh) = 0, (3.8)

representing a branching of possible solutions. Either h ∝ g−1 or F0 = 0 which requires
h = constant and that g is locally a linear function — we present these respective cases in
sections 3.2.1 and 3.2.2.
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3.2.1 AdS2 case with hg ∝ 1

For the first case we solve the whole of (3.3) as

h =
√
u, g = c√

u
, u = u(ρ), (3.9)

where u is a linear function (ie u′′ = 0 locally) and c is a constant. As a consequence we
have ∂ρ(gh) = 0 and so the NS 3-form becomes purely electric. Globally in massive IIA
this tuning of (h, g) gives rise to AdS3 × S3 × T3 foliated over an interval bounded between
D8/O8 singularities and with D8 branes along the interior.

The SL(2) T-dual of the solution described above takes the following form

ds2 = q

u
1
4

( 1
4∆1

ds2(AdS2) + ds2(S3) + cds2(T3)
)

+ u
1
4

(
dr2

q
+ cdρ2

u

)
, e−Φ = r

√
qu∆1
c

,

H = dB, B = − r

2∆1
vol(AdS2), ∆1 = 1− q2

4r2√u
. (3.10)

As there is a well defined NS 2-form for this solution we find it convenient to express the
RR sector in terms of their Page flux avatars defined as

F̂ = e−B ∧ F, (3.11)

which are closed if (d−H∧)F = 0. We find the following

F1 = qdρ− ru′

2c dr, F̂3 = −r
2u′

4c vol(AdS2) ∧ dx− qcvol(T3), F̂5 = 2qrvol(S3) ∧ dr ∧ dρ,

F̂7 = vol(S3) ∧
(
qr2vol(AdS2) ∧ dr ∧ dρ+ cqvol(T3) ∧

(
2rdr − q

2d
(
u−

1
2
)))

,

F̂9 = cqr2vol(AdS2) ∧ vol(S3) ∧ vol(T3) ∧ dr, (3.12)

where of course F̂1 = F1. One has a solution away from the loci of sources so long as u′′ = 0,
making u linear. Globally however u needs only be piecewise linear with the discontinuities
in u′ giving rise to delta function sources in u′′, which are D7 branes smeared over r. Such
objects behave like D8 branes, ie the metric and dilaton neither go to zero nor blow up at
their loci, as such they can be placed along the interior of the interval spanned by ρ.

3.2.2 AdS2 case with h = constant

The second way to solve (3.8) is to fix F0 = 0 which, given that the solution must also
respect the isometries of T3 means we shall fix

h = h0, (3.13)

for h0 a constant. We then have that (3.3) reduces to

g′′ = 0, (3.14)
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away from the loci of sources. In massless IIA this tuning of (h, g) gives rise to another
solution with AdS3× S3×T3 foliated over an interval. This time instead of D8 branes there
are NS5 branes, that are smeared over all but one of their co-dimensions, placed along the
interior of the interval and giving rise to delta function source corrections to (3.14).

The SL(2) T-dual solution has a NS sector of the following form

ds2 = 1√
h0

(
q

4∆2
ds2(AdS2) + qds2(S3)

)
+
√
h0
q
dr2 + g

(√
h0ds

2(T3) + 1√
h0
dρ2

)
,

e−Φ =
√
h0kq∆2

g
, H = −1

2d
(
r

∆2

)
∧ vol(AdS2) + h0g

′vol(T3), ∆2 = 1− q2

4h0r2 .

(3.15)

Note thatH no longer has a well defined NS 2-form so using (3.11) to simplify the expressions
of the RR sector is no longer appropriate. The d = 10 RR fluxes are given by

F1 = qdρ, F3 = −q
(

r

2∆2
vol(AdS2) ∧ dρ+ h0gvol(T3)

)
,

F5 = qr

(
h0g

2∆2
vol(AdS2) ∧ vol(T3) + 2vol(S3)dr ∧ dρ

)
. (3.16)

In section 4 we study the SCQM dual to this class of solutions, as the starting point
for a more general study of SCQMs dual to AdS2 solutions with N = 4 supersymmetries
that would include the solutions with hg ∝ 1 and the broader class that we construct in
the next subsection. We argue that the solutions in this subsection describe geometrically
the bubbling of monopoles in 4d N = 2 D3-D7 theories.

3.3 Embedding into a general class of AdS2 × S3 × T3 × Σ2 solutions

An ever present issue with applying non-Abelian generalisations of U(1) T-duality to the
AdS/CFT correspondence is that they give rise to solutions with an unbounded internal
space. SL(2) T-duality is no different, the T-dual coordinate r is only bounded at one end.
This is often a sign that the putative dual CFT/CQM is ill defined, although it may also
indicate that the geometry is dual to a defect in a higher dimensional CFT. Significant
progress on both the geometry and CFT side has been made towards making sense of such
geometries in recent years. The CFT dual of a non-Abelian T-dual geometry can often
be viewed as an infinite linear quiver that one can make finite, by instead choosing to
terminate it at a flavour node [4, 7, 27–32]. To realise such a method geometrically one
needs to embed the non-Abelian T-dual geometry into a broader class of solutions and
essentially glue another solution onto it at finite r, such that the interval spanned by r
becomes bounded and the dual CFT well defined. This has been successfully achieved in
several contexts. With this in mind in this section we are interested in embedding the
solutions of sections 3.2.1 and 3.2.2 into a more general class of AdS2×S3×T3×Σ2 solutions
preserving small N = 4 supersymmetry. To our knowledge such a class does not currently
exist, so here we shall derive one by double Wick rotating (a subclass of) a broad class of
solutions on AdS3 × S2 found in [21].
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The relevant class of AdS3 × S2 × M5 solutions is presented in section 3.3 of [21].
The internal manifold M5 is spanned by coordinates (y, x, z1, z2, z3), with the former 2
coordinates fibered over the latter. Generically the class is quite complicated but undergoes
a pronounced simplification if one assumes that ∂zi are isometries of the solutions spanning
a 3-torus. It is then possible to perform a coordinate transformation in the (x, y) directions
to diagonalise the metric. Let us describe the process briefly, note that (λ, g0, h0, u0) refer
to functions defined in [21] (the latter 2 not containing the subscript zero in that work).
After imposing that ∂zi are isometries one first performs the coordinate transformation

x→ x̃ = x, y → 4ỹ = 4ỹ(y, x) (3.17)

in such a way that
λ = ∂ỹ

∂x
, g0 = ∂ỹ

∂y
, (3.18)

which leads to a diagonal metric. One then redefines

g0 = 4
K
, h0 = 4S, u0 = v, m = 1, (3.19)

where K = K(x, y), S = S(x, y) and v = v(x). Finally we send ỹ → y to uncluttered
notation.

The resulting class of small N = (0, 4) AdS3 solutions has a NS sector of the following
form

ds2 = v√
KS

(
ds2(AdS3) + 1

Ξds
2(S2)

)
+
√
SK

v
dx2 + 1√

SK
dy2 +

√
S

K
ds2(T3),

e−Φ = K

√
SΞ
v
, H = 1

2d
(

vv′

4KSΞ − x
)
∧ vol(S2) + ∂yS

K
vol(T3), Ξ = 1 + v′2

4KS .

(3.20)

It supports the following non trivial d = 10 RR fluxes

F1 = ∂xKdy −
1
v
∂y(KS)dx, F5 = (1 + ?10)f5

F3 =
(
−v
′∂y(KS)
8KSΞ dx+ vv′∂x logKdy

8SΞ − 1
2Kdy

)
∧ vol(S2)− ∂xSvol(T3),

f5 = 1
8KSΞ

(
4KS2 − v2v′∂x

(
S

v

))
vol(T3) ∧ vol(AdS2). (3.21)

One has a solution whenever the Bianchi identities of the fluxes hold, in the absence of
sources these reduce to the following PDEs

∂yS

K
= constant = b, ∂2

xK + 1
v
∂2
y(SK) = 0, ∂2

xS + b

v
∂y(SK) = 0, v′′ = 0. (3.22)

Notice that this is a very similar system of PDEs to that of the massive IIA class in (3.3) —
here it is now b, which is related to the NS flux through T3, that plays the role that F0
previously did.
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We now need to double Wick rotate the above class to get to a class of solutions on
AdS2 × S3 × T3 × Σ2 — this is achieved as follows: First we wick rotate the coordinates of
AdS2 and S3 so that they become AdS3 and S2 respectively. The rules are

ds2(AdS3)→ −ds2(S3), ds2(S2)→ −ds2(AdS2),
vol(AdS3)→ −vol(S3), vol(S2)→ −ivol(AdS2). (3.23)

In addition to this one needs to analytically continue the various functions appearing in the
class as

v → iv, K → −iK, S → −iS, x→ ix, (3.24)

so that the metric has the correct signature and is real. Finally we supplement the procedure
by sending

e−Φ → −e−Φ, F → −F, (3.25)

which ensures that the dilaton is real. When the dust settles we arrive at a class of AdS2
solutions with the following NS sector

ds2 = v√
KS

( 1
4Ξ̃
ds2(AdS2) + ds2(S3)

)
+
√
S

K
ds2(T3) +

√
KS

v
dx2 +

√
K

S
dy2,

e−Φ = K
√
S
√

Ξ̃√
v

, H = −1
2d
(

vv′

4KSΞ̃
+ x

)
∧ vol(AdS2) + 1

K
∂ySvol(T3), Ξ̃ = 1− v′2

4KS
(3.26)

and the following d = 10 RR fluxes

F1 = ∂xKdy −
1
v
∂y(KS)dx, F5 = (1 + ?10)f5

F3 =
(
v′∂y(KS)

8KSΞ̃
dx− vv′∂x logKdy

8SΞ̃
− 1

2Kdy
)
∧ vol(AdS2)− ∂xSvol(T3),

f5 = 1
8KSΞ̃

(
4KS2 + v2v′∂x

(
S

v

))
vol(AdS2) ∧ vol(T3). (3.27)

One has a solution to the Type IIB equations of motion whenever the Bianchi identities of
the fluxes hold, these still reduce to the PDEs in (3.22) away from the loci of sources. This
class of AdS2 solutions should preserve small N = 4 supersymmetry like the AdS3 class we
generated it from.

In the next sections we show how to recover the solutions of section 3.2.1 and 3.2.2
from this more general class of AdS2 solutions. This actually also serves as evidence to
our claim that the general class preserves small N = 4 supersymmetry, because these two
specific solutions certainly do.
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3.3.1 Recovering the hg ∝ 1 case

The solution of section 3.2.1 is recovered from (3.26)–(3.27) by fixing

S = cqv0(x), K = q

c
p(y)v0(x), v = q2v0, (3.28)

where the functions v0, p obey

∂2
xv0 = 0, ∂2

yp = 0, (3.29)

which solves all of (3.22) for b = 0. To precisely reproduce the form of the solution in 3.2.1
one needs to do an implicit coordinate transformation such that

p(y) =
√
u(ρ). (3.30)

The resulting solution is actually a mild generalisation of the solution in section 3.2.1 which
depends on the linear function v0. Specifically if one fixes v0 = x one recovers the solution
of section 3.2.1, but if one fixes v0 = constant one instead recovers its U(1) T-dual analogue.
Such hybrid T-dual/non-Abelian T-dual solutions were previously found in [33].

3.3.2 Recovering the h = constant case

Likewise the solution of section 3.2.2 is recovered from (3.26)–(3.27) by fixing

S = q
√
Q(y)v0(x), K = h0qv0(x)√

Q(y)
, v = q2v0(x), (3.31)

where
∂2
xv0 = 0, ∂yQ = 2bh0, (3.32)

which solves (3.22). To get to the precise form of the solution in section 3.2.2 one needs to
change coordinates from y to ρ in such a way that

Q(y) = h2
0g(ρ)2 (3.33)

which requires that one identifies
b = h0∂ρg. (3.34)

Again the result of doing this is actually a T-dual/non-Abelian T-dual hybrid of the solution
we seek: Fixing v0 = x recovers the solution of section 3.2.2 while v0 = constant gives rise
to its U(1) T-dual analogue.

4 Field theory analysis

In this section we study the 1d SCFTs dual to the AdS2 × S3 × T3 × Σ2 solutions with
F0 = 0 constructed in section 3.2.2, as a first step towards a more general analysis of the
field theories dual to our broader class of N = 4 solutions, in particular the ones constructed
in section 3.2.1. We construct explicit quivers that we conjecture flow in the IR to the
SCQMs dual to the solutions, and check our proposal with the computation of the field
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t z1 z2 z3 x4 x5 x6 x7 x8 x9

D1 x x
D3 x x x x
D5 x x x x x x
D7 x x x x x x x x
NS5 x x x x x x
F1 x x

Table 1. 1
8 -BPS brane intersection underlying the N = 4 AdS2 solutions constructed in section 3.2.2.

t is the time direction where the 1d dual CFT lives; (z1, z2, z3) parametrise the T3; x4 is the field
theory direction; x5 is the direction where the F1-strings lie, and (x6, x7, x8, x9) are the directions
associated to the isometries of the S3.

theory and holographic central charges. We propose an interpretation of the solutions as
holographic duals of monopole bubbling in 4d N = 2 theories living in D3-D7 branes, and of
baryon vertices in 5d N = 1 theories living in D5-NS5-D7 branes. These two interpretations
are based on the disposition of the branes that make the brane set-up associated to the
solutions along the two non-compact directions of the 2d Riemann surface.

4.1 Hanany-Witten brane set-up and quantised charges

Even if we have not constructed the brane solution whose near horizon geometry is described
by the geometry specified by equations (3.15) and (3.16),2 one can see that the brane
intersection shown in table 1 is consistent with the fluxes, preserved supersymmetries and
the bosonic symmetries of the solutions. As it typically happens the xi coordinates will mix
upon taking the near horizon limit to give rise to the radius of AdS, the two non-compact
directions r and ρ and the coordinates along the S3. In this configuration the D1-branes
play the role of colour branes, and x4 of field theory direction, and the F1-strings stretch
along x5. As we will show below once the near horizon limit is taken the D1-branes will
effectively stretch along the ρ direction and the F1-strings along r. We will also see that
the D1-branes carry as well electric charge, which allows one to interpret them as baryon
vertices for the D7-branes. The same interpretation is found for the D3-branes with respect
to the D5-branes. We can indeed check in table 1 that these branes have the right relative
orientations that allow to infer this. Alternatively, as we will discuss, the brane set-up
can be interpreted as describing the super conformal quantum mechanics associated to the
bubbling of dyonic monopoles in the 4d theory living in the intersection of the D3 and D7
branes, in a brane scenario in which the D3-D7 branes and the D1-F1 strings are put inside
a 5-brane web.

Let us start our discussion with the computation of the quantised charges. To this end
we find it helpful to decompose the NS 3-form into its electric and magnetic parts as

H = He +Hm, He = −1
2d

 r

1− q2

4h2
0r

2

 ∧ vol(AdS2), Hm = h0g
′vol(T3). (4.1)

2This is a difficult task when a non-Abelian T-duality transformation is involved (see [34, 35]).
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We start analysing the D7-D5-NS5 brane subsystem. The quantised charge associated to
the D7-branes is obtained integrating the magnetic component of F1, as

QD7 =
∫
f1 = q

∫
dρ. (4.2)

To proceed we need to define the domain of integration of the ρ-direction, which is in turn
related to the way we define the Page fluxes in our backgrounds. Indeed, the standard
definition of Page fluxes given by (3.11) cannot be used for our solutions, since there is no
globally defined magnetic B-field. Instead, we note that the definition3

f̂p = fp +Hm ∧ Cmp−3, (4.3)

is equivalent to (3.11) for the magnetic part of the Page fluxes. This definition of the Page
fluxes has the non-trivial implication that instead of having Dp-branes being created as
NS5-branes are crossed, which is the usual way the Hanany-Witten brane creation effect is
understood at the level of the fluxes, it describes Dp-branes being created as D(p+2)-branes
are crossed. In particular, for the D5-branes we have

f̂3 = f3 +HmC0. (4.4)

From this expression we see that f̂3 is sensitive to gauge transformations of C0. In order
to carefully account for these we demand that C0 lies in the range C0 ∈ [0, q]. In order to
accomplish this we need to take

C0 = q(ρ− k) for ρ ∈ [k, k + 1]. (4.5)

Then, given that the D7-brane charge is obtained computing

Q
(k)
D7 =

∫ k+1

k
dC0, (4.6)

this imposes that q D7-branes are created in this interval. This clarifies the role played
by the large gauge transformations of C0, as generating a strong coupling realisation of
the Hanany-Witten brane creation effect by which D7-branes, instead of NS5-branes, are
positioned along the field theory direction. In turn, the large gauge transformation in (4.5)
modifies f̂3 as f̂3 → f̂3 − qkHm such that

f̂3 = qh0
(
g′(ρ− k)− g

)
vol(T3) in ρ ∈ [k, k + 1]. (4.7)

Recall that away from the loci of sources the Bianchi identities require that g′′ = 0, which
makes g a linear function. However globally we need only impose that g is continuous, while
g′ is allowed to have discontinuities that give rise to delta function sources in g′′, signaling
the presence of smeared NS5-branes at ρk = k. Therefore, we take g piecewise linear such
that

gk = 1
2πh0

(
αk + βk(ρ− k)

)
for ρ ∈ [k, k + 1]. (4.8)

3We use fp to denote p-form RR magnetic fluxes, and an m superscript to denote magnetic components.
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Here αk and βk are integer numbers, since they are related to the numbers of D5 and
NS5-branes in the kth interval, according to

Q
(k)
D5 = − 1

(2π)2

∫
T3
f̂3 = qαk, (4.9)

Q
(k)
NS5 = 1

(2π)2

∫
T3
Hm = βk. (4.10)

As well defined global solutions should have a continuous metric and dilaton this amounts
to requiring that αk, βk must satisfy

αk+1 = αk + βk =
k∑
j=0

βj . (4.11)

The value of βk is not fixed however, indeed we allow it to change between intervals, this
means that in the vicinity of ρ = k we have

g′′ = 1
2πh0

(βk − βk−1)δ(ρ− k) (4.12)

and so we have source NS5 branes with charge βk − βk−1 at ρ = k that are extended in
AdS3× S3 and smeared over T3. Note that this does not induce any source terms in the RR
sector as should be clear from examining (3.16), which is independent of g′. Next we need
to care about how the space ends on the ρ-direction. We choose to take ρ ∈ [0, P + 1] and
impose that at both ends g vanishes. This implies that in the [0, 1] and [P, P + 1] intervals
we must have

g0 = β0
2πh0

ρ, gP = 1
2πh0

(
αP + βP (ρ− P )

)
, (4.13)

with βP = −αP . The behaviour close to both ends of the space is then that of an ONS5
orientifold fixed plane (S-dual of an O5) that is smeared on the T3.

Summarising our results so far, we have seen that there are qαk D5-branes stretched
between q D7-branes located at ρk = k, ρk+1 = k + 1 with βk perpendicular NS5-branes in
each [ρk, ρk+1] interval.

Let us analyse now the D1-D3-F1 subsector of the brane set-up. As we have mentioned,
the D1 and D3-branes carry electric charges, which allows us to interpret them as baryon
vertices. These charges are obtained integrating the Page fluxes associated to the electric
components of F3 and F5 in (3.16), defining these is a little subtle in this case. The electric
part of H in (4.1) allows for a globally defined NS 2-form, given by

Be = −1
2

r

1− q2

4h0r2

vol(AdS2). (4.14)

We need to define some combinations of the fluxes whose integrals maybe be interpreted as
charges, as such they should be closed (away from sources). It is not hard to see that if one
decomposes the magnetic fluxes as4

F ep = dCep−1 −Hm ∧ Cep−3 +Be ∧ fp−2 (4.15)
4We use an e superscript to denote electric components.
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for Cep some electric RR potentials, we get the correct Bianchi identity for the electric part
of the flux, ie dF ep = Hm ∧F ep−2 +He ∧ fp−2. This suggests defining the electric Page fluxes
as

F̂ ep = F ep +Hm ∧ Cep−3 −Be ∧ fp−2, (4.16)

which are closed (away from sources) by construction. In turn, the F1-strings are electrically
charged with respect to B, with charge

QeF1 = 1
(2π)2

∫
AdS2

Be, (4.17)

with Be given by (4.14). One can easily see that regularising the volume of AdS2 as
Vol(AdS2) = 4π and dividing the r direction in intervals of length 2π a F1-string lies at
each such interval. This can be linked to the condition that the integral of Be lies in the
fundamental region. In this case a large gauge transformation of gauge parameter n must
be performed for r ∈ [2nπ, 2(n+ 1)π], such that

Be =

−1
2

r

1− q2

4h0r2

+ nπ

 vol(AdS2), (4.18)

and an F1-string is created. We identify the beginning of the space at r0 = q
2
√
h0

with 2π,
consistently with the fact that, as we showed in section 2, the behaviour of the metric and
dilaton at this point is that associated to an OF1-plane. This fixes h0 = q2

16π2 .
Substituting in (4.16) we then find in the interval r ∈ [2nπ, 2(n+ 1)π] that

F̂ e3 = −nπq dρ ∧ vol(AdS2), ⇒ Ce2 = −2πnq(ρ− l)

F̂ e5 = 1
2nq(g + (ρ− l)g′)vol(AdS2) ∧ vol(T3) (4.19)

where l is an integration constant. Given this we find

Q
e(n)
D1 = − 1

(2π)2

∫
F̂ e3 = nq = nQ

(k)
D7, (4.20)

meaning that there are nq units of electric D1 charge within the cell r ∈ [2nπ, 2(n+ 1)π],
thus for consistency we should constrain

0 < −Ce2 < nq ⇒ l = k. (4.21)

We then have that the electric D3 brane charge is given by

Q
e(n)
D3 = 1

(2π)4

∫
F̂ e5 = nqαk = nQ

(k)
D5. (4.22)

The brane set-up associated to these quantised charges is depicted in figure 1. Clearly,
as r is a non-compact direction we need to care about its global definition. This will be
important later on when we compute the central charge associated to the solutions. We
choose to complete the solutions in this direction by glueing them to themselves, at a certain
point rP ′+1 = 2(P ′ + 1)π. The completed brane set-up is depicted in figure 2. Specifically,
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 D1 

D7 

𝛼𝑘  D3 

 2 D1 

D7 

 𝑛 D1 

D7 

𝛼𝑘  D5 𝛼𝑘  𝐷5 

2𝛼𝑘  D3 

𝛼𝑘  D5 

𝑛𝛼𝑘  D3 

𝑟 

Figure 1. Brane set-up in the r direction for ρ constant, in units of q. The numbers of D7 and D5
branes at each interval are given by their respective magnetic charges. Instead, for the numbers of
D1 and D3 branes we give their electric charges (computed in (4.20) and (4.22)) as these are the
ones that play a role in their interpretation as baryon vertices.

𝐷1

𝐷7

𝛼𝑘  𝐷3

2 𝐷1

𝐷7

P'𝐷1

𝐷7

𝛼𝑘  𝐷5

2 𝐷1

2𝛼𝑘  𝐷3

𝛼𝑘  𝐷5

𝐷1

𝐷7

𝛼𝑘  𝐷3

𝐷7

𝛼𝑘  𝐷5 𝛼𝑘  𝐷5

2𝛼𝑘  𝐷3

𝛼𝑘  𝐷5

P'𝛼𝑘  𝐷3

(P'+1)𝐷1

𝐷7

𝛼𝑘  𝐷5

(P'+1)𝛼𝑘  𝐷3

P'𝐷1

𝐷7

𝛼𝑘  𝐷5

𝐷7

𝛼𝑘  𝐷5

P'𝛼𝑘  𝐷3

𝑟

Figure 2. Completed brane set-up in the r direction for ρ constant, in units of q. The branes in
blue are used to glue the brane set-up with itself.

the solutions are extended beyond the [2π, 2(P ′ + 1)π] interval by gluing a second solution
onto it which takes the form of (3.15)–(3.16), but with r → 4(P ′ + 1)π − r and for which
r ∈ [2(P ′ + 1)π, 2(2P ′ + 1)π]. One can easily check that the metric and fluxes of this global
completion are continuous across r = 2(P ′ + 1)π. The r ∈ [2(P ′ + 1)π, 2(2P ′ + 1)π] part of
the interval is likewise divided in P ′ intervals of length 2π where F1-strings are created,
associated to the large gauge transformations of the Be field, that we complete as

Be =


(
−1

2
r3

r2−(2π)2 +nπ
)
vol(AdS2) , r∈ [2π,2(P ′+1)π](

−1
2

(4(P ′+1)π−r)3

(4(P ′+1)π−r)2−(2π)2 +(4(P ′+1)−n)π
)
vol(AdS2) , r∈ [2(P ′+1)π,2(2P ′+1)π]

(4.23)
Note that with this completion of the solutions a new singularity associated to an OF1-plane
arises at r = 2(2P ′ + 1)π, where the space now ends.

4.2 Baryon vertex interpretation

Our previous analysis shows that there is one F1-string extended in r for r ∈ [2nπ, 2(n+1)π]
for n = 1, 2, . . . 2P ′. At each of these intervals there are nq units of D1-brane electric charge
and nqαk units of D3-brane electric charge for n = 1, 2, . . . , P ′+1, as well as (4(P ′+1)−n)q
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𝑄𝐷3  𝐷3 

𝑋5 

Figure 3. Wilson loops in the QD7-th and QD5-th antisymmetric representations of U(QD1) and
U(QD3), respectively.

units of D1-brane electric charge and (4(P ′ + 1)− n)qαk units of D3-brane electric charge
for n = P ′ + 1, P ′ + 2, . . . , 2P ′ + 1. Recalling the existence of the following couplings in the
WZ actions of the D1 and D3 branes,

SD1 = T1

∫
f1 ∧At, SD3 = T3

∫
f̂3 ∧At, (4.24)

where At is the electric component of the Born-Infeld vector field, we find that a D1-brane
extended in ρ between [ρk, ρk+1] and located at a fixed position in the r ∈ [2nπ, 2(n+ 1)π]
interval behaves as a baryon vertex for the D7-branes, since it carries QeD1 = nq = nQD7
units of F1-string charge if n = 1, 2, . . . , P ′ + 1, and QeD1 = (4(P ′ + 1) − n)QD7 if n =
P ′+ 1, . . . , 2P ′+ 1. Similarly, a D3-brane wrapped on the T3 and located at a fixed position
in the r ∈ [2nπ, 2(n+ 1)π] interval carries QeD3 = nqαk = nQD5 units of F1-string charge if
n = 1, 2, . . . , P ′+ 1 and QeD3 = (4(P ′+ 1)− n)QD5 if n = P ′+ 1, . . . , 2P ′+ 1, and therefore
behaves as a baryon vertex for the D5-branes. Indeed, the relative orientation between the
D1 and the D7 branes and between the D3 and the D5 branes in the brane set-up is the one
that allows to create F1-strings stretched between the D1 and the D7 branes and between
the D3 and the D5 branes, as depicted in figure 3.

As we have mentioned, the location of the branes along the r direction is the one
depicted in figure 2. As explained in detail in [2] this brane configuration can be related by
a combination of a T-duality, an S-duality, successive Hanany-Witten moves and a further
T-duality to the brane set-up depicted in figure 4. After these transformations the analogy
with the description of half-BPS Wilson loops in antisymmetric representations labelled by
the Young tableau depicted in figure 5, proposed in [36, 37], is evident. In these references if
was shown that a Wilson loop in the (l1, l2, . . . , lM ) antisymmetric representation is realised
by a configuration of stacks of branes separated a distance L from the colour branes with
(l1, l2, . . . , lM ) F1-strings stretched between the stacks. This is completely analogous to our
configuration in figure 4. In our case we encounter the particular situation in which the
sum of the F1-strings stretched between each D1 (D3) and the flavour D7 (D5) branes
coincides with the rank of the gauge group of the D1 (D3) branes, which implies that the
Wilson lines are in the fundamental representation of the gauge groups. Therefore, the
D1-D3 branes behave as baryon vertices for the D7-D5 branes.
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Figure 4. Hanany-Witten brane set-up equivalent to the brane configuration in figure 2, in units
of q.

Figure 5. Young tableau labelling the irreducible representations of U(N).

Our analysis in this subsection suggests that the AdS2 solutions constructed in sec-
tion 3.2.2 could find an interpretation as backreacted D1-D3-F1 baryon vertices in the
5d N = 1 theory living in a D5-D7-NS5 brane intersection. Indeed, our discussion so far
mimics the interpretation of the AdS2 solutions found in [2–4, 6, 7], as dual to baryon
vertices in 5d Sp(N), 4d N = 4 and 4d N = 2 superconformal field theories. However, a key
difference with our construction in this paper is that the AdS2 solutions discussed in these
references asymptote locally to the AdS6 or AdS5 solutions dual to the higher dimensional
SCFTs where the baryon vertices are embedded, while this is not the case for our AdS2
solutions. Based on this it is likely that in our construction in this paper the branes could
play a different role, a possibility that we will further discuss in section 4.4, where we will
see that they allow for an alternative interpretation in terms of dyonic monopoles in the 4d
theory living in D3-D7 branes.
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4.3 Quiver quantum mechanics

In the previous subsection we computed the electric charges of the D1 and D3 branes,
which are the relevant ones for the construction of Wilson lines or baryon vertices. In this
subsection we are interested instead in the construction of the quiver quantum mechanics
dual to our solutions, for which the relevant charges are the magnetic ones.

Analogously to our discussion for the D7-D5-NS5 brane subsystem, the D1 and D3-
branes are magnetically charged with respect to the Page fluxes defined by

f̂7 = f7 +Hm ∧ Cm4 , f̂5 = f5 +Hm ∧ Cm2 . (4.25)

These expressions show that the numbers of D1 and D3 branes are sensible to gauge
transformations of C4 and C2, respectively. In particular, we have for our background

f̂5 = dCm4 = 2qrvol(S3) ∧ dr ∧ dρ (4.26)

and, upon integration
Cm4 = 2qrρvol(S3) ∧ dr. (4.27)

Taking ρ ∈ [k, (k + 1)] a large gauge transformation of parameter k, such that

Cm4 = 2qr(ρ− k) ∧ vol(S3) ∧ dr, (4.28)

creates a number of D3-branes in this interval given by

Q
(k)
D3 = q

{
n+ 1

2 , for n = 1, 2, . . . , P ′
4(P ′ + 1)− n− 1

2 , for n = P ′ + 1, . . . , 2P ′ . (4.29)

Similarly, substituting in f̂7 above we find,

f̂7 = 2qh0r
(
g − g′(ρ− k)

)
dr ∧ vol(T3) ∧ vol(S3), (4.30)

from which we compute

Q
(k)
D1 = 1

(2π)6

∫
f̂7 = qαk.

{
n+ 1

2 , for n = 1, 2, . . . , P ′
4(P ′ + 1)− n− 1

2 , for n = P ′ + 1, . . . , 2P ′ . (4.31)

Combining with our results for the magnetic charges for the D7 and D5 branes, reported in
subsection 4.1, the picture that arises is a non-perturbative setting in which qαk D5-branes
are stretched between stacks of q D7-branes located at ρk = k and ρk+1 = (k + 1), and
q(n + 1

2)αk ≡ qpαk D1-branes are stretched between stacks of qp D3-branes located at
the same positions. This is so for r ∈ [2nπ, 2(n + 1)π] intervals with n = 1, 2 . . . , P ′,
with the obvious changes implied by equations (4.29) and (4.31) in the intervals with
n = P ′ + 1, . . . , 2P ′.

In this non-perturbative brane scenario D1-branes are created when D3-branes are
crossed, while D5-branes are created when D7-branes are crossed. These are non-perturbative
realisations of Hanany-Witten brane set-ups, in which Dp-branes are stretched between
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𝜌 

Figure 6. Brane set-up along the ρ direction, for r constant, in units of q.

D(p+2)-branes located at fixed positions in the field theory direction with orthogonal NS5-
branes lying between the stacks of D(p+2)-branes. In our case the D5-branes will finally
contribute with flavour groups, leaving just the D1-branes stretched between D3-branes as
the ones giving rise to colour groups. Note that the configuration consisting on D1-branes
stretched between D3-branes is precisely the Type IIB description of smooth monopoles in
the 4d theory living in D3 or D3-D7 brane systems, according to the Nahm construction [38].
Our solutions describe naturally this type of configurations, because of the definition of
Page fluxes that needs to be taken in the absence of a globally well-defined B field. We will
come back to this discussion in subsection 4.4 when we relate our SCQM to the bubbling of
singular loops in the 4d theory living in D3-D7 branes.

From the previous quantised (magnetic) charges we can now proceed with the con-
struction of the quiver that describes the supersymmetric quantum mechanics that, we
propose, flows in the IR to the SCQM dual to our solutions. In order to extract it we
need to account for the ordering of the NS5-branes along the ρ-direction, together with the
net number of D1-branes ending on them and the number of orthogonal D3-branes lying
between NS5-branes. Similarly, in order to account for the number of D5-branes in each
interval we need to compute the net number of them ending on NS5-branes together with
the number of orthogonal D7-branes between NS5-branes. The massless modes that give
rise to the quiver quantum mechanics arise then from the open strings that connect the
D-branes in the same interval between NS5-branes or adjacent ones.

Given that in our brane set-up, depicted in figure 6, the D1 and D5 branes stretch,
respectively, between D3 and D7 branes with NS5-branes orthogonal to them, we need to
perform a series of Hanany-Witten moves that create D1 and D5 branes stretching between
NS5-branes, with orthogonal D3 and D7 branes lying between them. This is explained in
detail in appendix E, following closely [20], where the same analysis was carried out for the
D2-D4-NS5 brane system underlying the AdS3 solutions studied therein. We will find the
same field content as in the 2d D2-D4-NS5 brane system discussed in [20] with the D2-branes
replaced by D1 (or wrapped D5) branes and the D4-branes by D3 (or wrapped D7) branes,
with 1d N = 4 multiplets described in terms of 2d (0,4) multiplets in the standard way.
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Figure 7. Quiver associated to the D5-D7-NS5 brane subsystem for r constant. Circles denote (4,4)
vector multiplets and black lines (4,4) bifundamental hypermultiplets. The gauge groups with ranks
αk, with k = 1, . . . , P − 1 to the left of the gauge group with rank αP have U(1) flavour symmetries.
The gauge group with rank αP has U(2) flavour symmetry. The rest of gauge groups do not have
attached any flavours. We have used units of q.

2𝑝 

𝑝 𝑝 𝑝 

𝜌 

𝑝 𝑝 𝑝𝛼1 𝑝𝛼2 2𝑝 𝑝𝛼𝑃− 1 𝑝𝛼𝑃  𝑝(𝛼𝑃 −  1) 

2𝑝 

Figure 8. Quiver associated to the D1-D3-NS5 brane subsystem for r constant. Circles denote
(4,4) vector multiplets and black lines (4,4) bifundamental hypermultiplets. The gauge groups with
ranks pαk, with k = 1, . . . , P − 1 to the left of the gauge group with rank pαP have U(1) flavour
symmetries. The gauge group with rank pαP has U(2) flavour symmetry. The rest of gauge groups
do not have attached any flavours. We have used units of q.

The results in appendix E show that the D5-D7-NS5 and D1-D3-NS5 subsystems of
the brane set-up are described by the (4,4) quivers depicted in figures 7 and 8. Our next
step is to couple these two quivers to each other. This will reduce the supersymmetries
to (0,4). The new massless modes that arise are the ones associated to the open strings
stretched between the D1 and the D5 and D7 branes, given by:

• D1-D5 strings: Strings with one end on D1-branes and the other end on orthogonal
D5-branes in the same interval between NS5-branes contribute with fundamental (0,4)
twisted hypermultiplets, associated to the motion of the string along the (x6, x7, x8, x9)
directions, which are charged under the R-symmetry. Strings with one end on D1-
branes and the other end on D5-branes in adjacent intervals between NS5-branes
contribute with fundamental (0,2) Fermi multiplets, since all the scalars are fixed.

• D1-D7 strings: Strings with one end on D1-branes and the other end on D7-branes in
the same interval contribute with fundamental (0,2) Fermi multiplets. This can be
seeing more concretely by noting that the set-up is T-dual to the D0-D8 system.

These new massless modes thus render the quiver (0,4) (or N = 4 in 1d) supersymmetric.
The resulting quiver is depicted in figure 9. Our proposal is that this quiver describes
a supersymmetric quantum mechanics that flows in the IR to the SCQM dual to our
solutions. Similar quivers to the ones constructed in this subsection have been proposed in
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Figure 9. Quiver associated to the D1-D3-D5-D7-NS5 brane system for r constant. Circles denote
(4,4) vector multiplets, black lines (4,4) bifundamental hypermultiplets, red lines (0,4) bifundamental
twisted hypermultiplets and dashed lines bifundamental (0,2) Fermi multiplets. The gauge groups
associated to the D5-branes have become flavour groups since these branes are much heavier than
the D1-branes. One can check that all gauge nodes are balanced (ie 2Nc = Nf , with Nc the number
of colours and Nf the number of flavours) but the ones with ranks pαk, with k = 1, 2, . . . , P − 1 to
the left of the gauge group with rank pαP . We have used units of q.

the literature in order to describe the bubbling sector of singular ’t Hooft monopoles in 4d
N = 2 theories living in D3-D7 branes, in particular in the presence of D5-branes (see [25]).
We will come back to this discussion in subsection 4.4. Previous to that we will check our
proposal with the computation of the central charge.

4.3.1 Computation of the central charge

As a check of our proposal we proceed now to the computation of the field theory and
holographic central charges. We start with the field theory calculation.

It is well-known that an N = 4 quantum mechanics can be described in terms of 2d
(0, 4) multiplets, and that both theories share the same superconformal algebra. Therefore,
we can use that the superconformal algebra relates the (right-moving) central charge to the
R-symmetry anomaly (the level of the superconformal R-symmetry) to compute the central
charge also in one dimension. The relation is that

cR = 6(nhyp − nvec), (4.32)

where nhyp stands for the number of (0,4) untwisted hypermultiplets and nvec for the
number of (0,4) vector multiplets. Indeed, this expression has been successfully5 used in
previous computations of the central charge of N = 4 SCQMs (see [1–4, 6, 7]). For the
quiver depicted in figure 9 this gives,

n
(n)
hyp = q2p2

(
2
αP−1∑
k=1

k(k + 1) +
P−1∑
k=1

αk + 2αP
)

(4.33)

5In the sense that it agrees with the corresponding holographic results.
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and

n(n)
vec = q2p2

(
2
αP−1∑
k=1

k2 + α2
P

)
, (4.34)

with p = (n+ 1
2), and finally

c
(n)
R = 6q2p2

P∑
k=1

αk. (4.35)

This gives the contribution to the central charge of the r ∈ [2nπ, 2(n+ 1)π] interval with
n = 1, 2, . . . , P ′. Adding these contributions plus the ones with n = P ′ + 1, P ′ + 2, . . . , 2P ′,
for which p→ 2(P ′ + 1)− p, we find

cR = q2
(
4P ′3 + 12P ′2 + 11P ′

) P∑
k=1

αk ∼ 4q2P ′3
P∑
k=1

αk (4.36)

to leading order in P ′.
Let us proceed now with the computation of the holographic central charge. We use

that [1]
chol = 3

4πGN

∫
d8ξ e−2Φ√detg8, (4.37)

which gives for our solutions

chol = q2
(
4P ′3 + 12P ′2

) P∑
k=1

αk ∼ 4q2P ′3
P∑
k=1

αk, (4.38)

to leading order in P ′. In fact, the quantity that needs to be compared to the holographic
central charge is

chol ←→
cL + cR

2 (4.39)

with
cL = cR + Trγ3, (4.40)

where the trace is over the Weyl fermions in the theory and γ3 is the chirality matrix in
2d. The (4,4) multiplets in the quiver quantum mechanics depicted in figure 9 contain the
same number of left-handed and right-handed multiplets. Therefore, the only ones that
contribute to the previous expression are the ones in (0,4) multiplets, right-handed, and the
ones in (0,2) Fermi multiplets, left-handed. We obtain

Trγ3 = −2q2
P ′∑
n=1

(
n+ 1

2

) P−1∑
k=1

αk = −q2P ′(P ′ + 2)
P−1∑
k=1

αk. (4.41)

Putting this result together with the field theory computation (4.36) we get

cL + cR
2 = q2

(
4P ′3 + 23

2 P
′2 + 10P ′

) P∑
k=1

αk + 1
2q

2P ′(P ′ + 2)αP ∼ 4q2P ′3
P∑
k=1

αk, (4.42)

to leading order in P ′. Therefore, we find perfect agreement between the field theory and
holographic results, to leading order in P ′.
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Figure 10. Brane realisation of singular ’t Hooft monopoles in 4d D3-brane systems.

t x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 x x x x
D7 x x x x x x x x
NS5 x x x x x x
D1 x x

Table 2. Brane set-up for the bubbling sector of 4d N = 2 D3-D7 theories.

4.4 ’t Hooft defect interpretation

Quiver quantum mechanics like the ones discussed in the previous subsection have been
used in the literature in localization computations of monopole bubbling contributions [39]
to supersymmetric ’t Hooft loops, in 4d N = 2 supersymmetric gauge theories [22–25]. In
these calculations the contribution of the monopole bubbling sector is computed as the
index of a supersymmetric quantum mechanics, defined from the string theory realisation
of the ’t Hooft loop bubbling sector.

In 4d D3-D7 systems smooth monopoles are realised by D1-branes stretched between the
D3-branes, according to the Nahm construction [38]. In turn, singular ’t Hooft monopoles
are realised by introducing spatially transverse NS5-branes [23, 40], which source ±1

2 units of
magnetic charge in the worldvolume of the D3-branes (see figure 10). Since these D1-branes
have Dirichlet and Neumann boundary conditions at opposite ends they do not carry any
degrees of freedom, as expected from ’t Hooft operators. Monopole bubbling occurs when
the smooth monopoles are absorbed by the ’t Hooft defect, decreasing its effective magnetic
charge [23, 40]. In the brane setting this occurs when D1-branes stretched between adjacent
D3-branes coincide with NS5-branes [22, 23]. The SQM from which the bubbling sector
is computed arises then as the low energy theory on the D1-branes of the brane set-up,
depicted in table 2. This has been supported by localization computations that show that
the monopole bubbling contribution to the partition function of the 4d theory is obtained
as the Witten index of the SQM living in the D1-branes [22, 24, 25].

Interestingly, it was shown in [25] that in order to correctly account for the bending of
the NS5-branes caused by the branch cut of the D7-branes, extra D5-branes need to be
introduced in the previous brane set-up, along with F1-strings. The D5-branes introduce
new fields in the SQM, coming from the D1-D5 open strings, that also contribute to
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

D3 x x x x
D7 x x x x x x x x
NS5 x x x x x x
D1 x x
D5 x x x x x x
F1 x x

Table 3. Brane set-up for the bubbling sector of 4d N = 2 D3-D7 theories including D5 and F1
branes [25].

the Witten index. The introduction of the D5 and F1 branes renders the whole brane
intersection realising the SQM S-duality symmetric, such that it can describe at the same
time the bubbling of ’t Hooft loops, associated to the NS5-D1 subsector, of Wilson loops,
coming from the D5-F1 branes, or of dyonic loops. It was in fact argued in [25] that the
bubbling sector computed from the SQM is associated to dyonic loops, given the presence
of both D1 and F1-strings in the brane configuration. The brane set-up that arises when
the D5-branes and the F1-strings are added is the one depicted in table 3, which is no other
than the brane intersection proposed in table 1 as underlying our AdS2 solutions. It is thus
natural to expect that our solutions may provide a geometrical description of the bubbling
of dyonic loops in 4d N = 2 D3-D7 systems.

Further to this, it was shown in [22] that the bubbling sector of ’t Hooft loops in the
4d N = 2 SU(N) theory living in D3-branes in an Omega background is described by
quiver quantum mechanics consisting on N-1 balanced quivers6 of length the number of
NS5-branes in each interval between two D3-branes, connected by N-2 unbalanced gauge
nodes. The N D3-branes of the 4d theory contribute to these quivers with flavour groups,
that couple to the unbalanced gauge nodes. The detailed structure of the unbalanced
quivers contains the information about the particular bubbling sector described by the
quiver QM, as carefully explained in [22]. These constructions were then extended in [24]
to include Nf D7-branes in the 4d SU(N) gauge theory. Interestingly, in reference [25]
these quivers were improved to account for the bending of the NS5-branes caused by the
D7-branes. In this completed brane set-up the D3 and D7 branes are interpreted as sitting
inside a 5-brane web. The resulting QM living in the completed brane set-up is a (0,4)
supersymmetric quiver theory built out of (4,4) vector multiplets coming from each gauge
node, (4,4) bifundamentals coming from D1-D1 branes across NS5-branes, twisted (0,4)
bifundamentals coming from D1-D5 strings ((0,2) bifundamentals if across an NS5-brane)
and (0,2) bifundamental Fermi multiplets coming from D1-D7 strings. This is exactly the
field content of the quiver quantum mechanics depicted in figure 9, which can thus be
interpreted as describing dyonic loops in 4d N = 2 theories living in D3-D7 branes.

Let us analyse in a bit more detail this interpretation. In the bubbling description the
number of NS5-branes between stacks of D3-branes has to be an even integer number, for

6That satisfy that Nf = 2Nc, with Nf the number of flavours that couple to the gauge node and Nc

its rank.
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them to induce an integer magnetic charge in the worldvolume of the D3-branes (see for
instance [25]). This fixes βk ∈ 2Z, pαk ∈ Z, and therefore the number of D1-branes in each
interval to an integer number. Second, we can identify the precise bubbling sector that
our quiver quantum mechanics is describing. For this we can follow the analysis in [22]
for the D1-D3-NS5 brane subsystem, where the information about the bubbling sector is
encoded. Comparison with the quivers proposed in [22] shows that our quiver in figure 9
would describe the bubbling sector in which all the magnetic charge of the defect has been
screened,7 of the 4d SU(qp(P +1)) gauge theory living in the D3-branes, with Nf = q(P +1)
flavour groups coming from the D7-branes, in a given r ∈ [2nπ, 2(n+ 1)π] interval. One
can check that our quiver consists indeed of P balanced sub-quivers of length βk, with
k = 0, 1, . . . , βP−1, separated by P − 1 unbalanced ones,8 to which the flavour groups
introduced by the D3-D7 strings couple. Note that in our quantum mechanics the condition
for a gauge node to be balanced is inherited from the 2d theory, where the cancellation of
the gauge anomaly imposes that the number of (0,2) Fermi multiplets connected to a given
gauge node must be twice the number of (0,4) hypermultiplets that couple to this node.

A related question to address is whether the 4d theory living in the D3-D7 branes is
conformal. Our construction gives Nc = qp(P + 1) = (n+ 1

2)Nf , and therefore differs from
the condition Nc = 1

2Nf required by conformal invariance. However, one can note that it is
possible to cancel the term proportional to n by adding a worlvolume flux with instanton
number

∫
R4 F ∧ F = 8π2n, that would render the 4d theory conformally invariant.

The interpretation of the D1-D3-NS5 subsystem of the brane set-up as associated to
’t Hooft loops becomes clearer when one notices that this part of the brane set-up is just
the S-dual of the F1-D3-D5 subsector used to describe Wilson loops (or baryon vertices).
Indeed, dualising the Born-Infeld vector field in the worldvolume of the D3-branes to its
electric-magnetic dual Ã, one finds a coupling

SD3 = T3

∫
B ∧ dÃ = −T3

∫
H ∧ Ã, (4.43)

that shows that a D1-string with electric charge nq induces nqβk D3-brane electric charge.
Adding the contributions of all ρ-intervals one finds a total QeD3 = nqαk electric charge, as
found in (4.22). This is illustrated in figure 11, which can be obtained from the D1-D3-NS5
sector of the brane set-up depicted in figure 6 after a sequence of Hanany-Witten moves,
where in this case we use electric instead of magnetic charges to count the numbers of D3
and D1 branes. The D3-branes thus find a dual interpretation: as baryon vertices together
with the F1 and the D5 branes, in the r-space, and as ’t Hooft lines together with the D1 and
the NS5-branes in the ρ-space. The ’t Hooft line is again in the completely antisymmetric
representation of U(qnα1)× U(qnα2) × . . . U(qnαP ), and could thus be interpreted as a
sort of magnetic baryon vertex. The reader can check the similarity between figure 11 and
the D3-F1-NS5 sector of figure 4, up to the different global completions used for the ρ and
r directions.

Our analysis in this subsection suggests an interpretation of the AdS2 solutions con-
structed in section 3.2.2 as geometric duals of SCQMs describing the bubbling sector of

7The sector with v = diag(0, . . . , 0) in the notation of [22].
8Note that our quivers are scaled by a factor qp compared to the ones in [22].
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𝛽0 𝑁𝑆5 

𝛽1 𝑁𝑆5 

𝛽𝑘− 1 𝑁𝑆5 

𝑛𝛼1 𝐷3 𝑛𝛼2 𝐷3 𝑛𝛼𝑘  𝐷3 

.

.

.

𝑛 𝐷1 

𝑛 𝐷1 

𝜌 

. ..

Figure 11. D1-D3-NS5 sector of the brane set-up depicted in figure 6 after a sequence of Hanany-
Witten moves, where in this case we use electric instead of magnetic charges for the D3 and D1 branes.

vanishing effective magnetic charge in 4d N = 2 SCFTs living in D3-D7 systems. It would
be interesting to investigate whether the broader solutions constructed in section 3.3 could
geometrically describe more general bubbling sectors. Note that based on this interpretation
one would expect that the solutions (3.15)–(3.16) asymptoted locally to the AdS5 spacetime
dual to the 4d SCFT living in the D3-D7 branes. This is however not the case for our
class of solutions. Indeed, in the two different interpretations that we have discussed the
D3-branes either play the role of background branes, in their interpretation in this section,
or defect branes, in the baryon vertex interpretation discussed in section 4.2. Therefore,
compared to the simpler configurations studied in [2, 3, 6, 7], in this case there is no clear
distinction between defect and background branes, and one should not expect that a higher
dimensional AdS space, that is typically identified as the near horizon geometry of the
background branes, arises asymptotically locally from the solutions, in agreement with our
findings. It would be interesting to construct the explicit brane intersection that underlies
the solutions to shed further light on their possible defect interpretation.

Related to our previous observation, it is worth mentioning that the brane intersection
given in table 1 can more generally be regarded as a coupled 5d-4d-1d system, from which
one can compute the bubbling sectors of ’t Hooft loops in the 4d theory living in the D3-D7
branes but also the instanton sectors of the 5d theory living in the 5-brane web. The latter
approach was the one taken in [41], where the same brane set-up depicted in table 1 was
proposed for the study of loop operators in the 5d theory living on D5-NS5 branes. In
this setting the D3-branes introduce Wilson lines, together with the F1-strings, and S-dual
Wilson lines, together with the D1-branes, that in this case connect the D3-branes with
the NS5-branes of the 5-brane web. Note that the condition for the 5d theory to flow to a
conformal point in the UV, given by 2Nc ≥ Nf + ccl is satisfied by the D5-D7-NS5 subsector
of our quiver mechanics. Connecting to our discussion in the previous paragraph, it is worth
stressing that in this interpretation the D3-branes would play the role of defect branes in
both the instanton and baryon vertex interpretations, with the D5-D7-NS5 branes playing
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the role of background branes also in both interpretations. Thus, one could expect that the
AdS6 geometry arising in the near horizon of the 5-brane web may emerge asymptotically
locally from the solutions. As we discussed in section 4.2 this is however not the case. As
mentioned above the explicit construction of the brane intersection underlying the solutions
would be very enlightening in clarifying this issue.

5 Conclusions

In this paper we have presented general results on the generation of AdS2 solutions to Type
II supergravities from AdS3 backgrounds using U(1) and SL(2) T-dualities, paying special
attention to the conditions for preservation of supersymmetry. We have discussed in detail
the solutions that arise from the AdS3 × S3 solutions with N = (0, 4) supersymmetries and
SU(3) structure studied in [20], in particular to the ones constructed via SL(2) T-duality
with h constant. We have shown that these solutions belong to the more general class
obtained from the AdS3×S2 solutions to Type IIB supergravity constructed in [21] through
a double analytical continuation.

We have initiated the study of the field theory duals to the new AdS2 solutions focusing
on the previously alluded to SL(2) T-dual, consisting on AdS2 × S3 × T3 foliations over a
2d Riemann surface, parametrised by two non-compact directions (ρ, r). We have proposed
that these solutions are dual to SCQMs arising in the IR from supersymmetric quantum
mechanics living in D1-branes extended in the ρ direction between NS5-branes, with flavour
groups arising from D3, D5 and D7 branes. We have seen that the F1-strings also present
in the brane set-up play the role, together with the D3-branes, of baryon vertices for
the D5-branes, and, together with the D1-branes, of baryon vertices for the D7-branes.
This structure is revealed by looking at the position of the branes along the r direction.
The D3-D5-F1 and D1-D7-F1 brane subsystems are indeed displayed exactly as in the
D3-D5-F1 brane configurations studied in [36, 37], describing Wilson lines in antisymmetric
representations in 4d N = 4 SYM. As encountered in previous examples of AdS2 solutions
associated to baryon vertex configurations [2–4, 6, 7], one can associate the solutions to
D5-D7-NS5 brane intersections, where a 5d N = 1 theory lives, in which one dimensional
defects are introduced. In the IR the gauge symmetry on the D5-D7-NS5 system becomes
global, turning them from colour to flavour branes, with the defect branes becoming the new
colour branes of the backreacted geometry. In our construction in this paper, however, the
presence of the second non-compact direction in the geometry (not present in the examples in
the previous references), playing the role of field theory direction along which the D1-branes
extend, renders the D1-branes the only remaining colour branes of the configuration.

The intricate brane set-up associated to the solutions unveils, moreover, a similar
structure along the ρ-direction, to the one arising along the r-direction, with the D1-branes
playing the same role as the F1-strings now in conjunction with the D3-branes and the
NS5-branes, to describe, in this case, ’t Hooft monopoles in the 4d theory living on D3-D7
branes. Quiver quantum mechanics like the ones we have explicitly constructed have
been proposed in the literature in the description of monopole bubbling in 4d N = 2
supersymmetric theories living in these 4d intersections [22–25]. These constructions involve
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the D1-D3-NS5-D7 subsystem of the brane set-up associated to the solutions. Interestingly,
in order to account for the bending of the NS5-branes due to the branch cuts introduced by
the D7-branes it was shown in [25] that D5-branes (and F1-strings) need also be introduced
in the description, such that the final brane set-up must be precisely the one underlying our
solutions. Our AdS2 solutions thus find a natural interpretation as geometrical descriptions
of monopole bubbling in 4d N = 2 D3-D7 systems. As discussed in the paper, the bubbling
sector described by our quantum mechanics would be the one of vanishing effective magnetic
charge. It is likely that the more general solutions presented in section 3 would provide
the geometrical description of more general bubbling sectors. It would be interesting to
investigate this further.
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A Conventions

We follow democratic like conventions of [42] for Type II.
The bosonic sector of Type II supergravity consists of the NS-NS and RR sectors. The

former containing the metric, dilaton Φ and NS 3-form H. The later can be expressed in
term of a polyform F such that

F =

F0 + F2 + F4 + F6 + F8 + F10 IIA

F1 + F3 + F5 + F7 + F9 IIB
(A.1)

The polyform is subject to a self duality constraint which halfs its degrees of freedom,
namely

F = ?λ(F ), (A.2)

where λ(Ck) = (−1)[ k
2 ]Ck. The Hodge dual is defined in terms of the d = 10 vielbein eM as

? eM1...Mk = 1
(d− k)!ε

M1...Mk
Mk+1...Md−k

eMk+1...Md−k , (A.3)

where the d = 10 indices M are curved and M are flat.
A solution to type II supergravity is one that solves the following equations of motion

dHF = 0, dH = 0, d(e−2Φ ?10 H)− 1
2(F, F )8 = 0,

2R(10) −H2 − 8eΦ(∇(10))2e−Φ = 0, R
(10)
AB + 2∇(10)

A ∇(10)
B Φ− 1

2H
2
AB −

eΦ

4 (F )2
AB = 0,

(A.4)

where (F, F )8 is the 8-form part of F ∧ λ(F ) and we refer the reader to [42] for further
details. In the presence of sources these equations get modified.
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A solution of Type II supergravity preserves supersymmetry if the following spinorial
conditions can be solved for non trivial d = 10 Majorana-Weyl spinors ε1,2(

∇(10)
M − 1

4HM

)
ε1 + eΦ

16FΓM ε2 = 0, (A.5a)

(
∇(10)
M + 1

4HM

)
ε2 ±

eΦ

16λ(F )ΓM ε1 = 0, (A.5b)
(
∇(10) − 1

4H − dΦ
)
ε1 = 0, (A.5c)

(
∇(10) + 1

4H − dΦ
)
ε2 = 0, (A.5d)

where the Clifford map is assumed and we define the spin covariant derivative as

∇M = ∂M + 1
4ωM

PQΓPQ, deM + ωMN ∧ eN = 0. (A.6)

The upper/lower signs are taken in IIA/IIB and for the chirality matrix defined as Γ̂ = Γ0...9

we have that
Γ̂ε1 = ε1, Γ̂ε2 = ∓ε2. (A.7)

We also have the useful identities

Γ̂Ck = ?λ(Ck), Γ̂Ck = −λ(?Ck). (A.8)

Throughout the next sections we shall make use of a 3+7 split of the d = 10 gamma matrices
such that

Γµ = γµ ⊗ σ3 ⊗ 18, µ = 0, 1, 2,

Γa = 12 ⊗ σ1 ⊗ γa, a = 1, . . . , 7, iγ1...7 = 18 (A.9)

where γµ = (iσ2, σ1, σ3)µ and are thus real. The d = 10 intertwiner defining Majorana
conjugation as εc = B(10)ε∗ and chirality matrix are then

B(10) = 12 ⊗ σ3 ⊗B, B−1γaB = −γ∗a, Γ̂ = −12 ⊗ σ2 ⊗ 18 (A.10)

B AdS3, its isometries and Killing spinors

In this appendix we explore some details of the isometries of AdS3, the Killing vectors it
supports and what they are charged under. This will be used in the following appendices.

One can express the Hopf fibration of unit radius AdS3 as

ds2(AdS3) = 1
4ds

2(AdS2) + 1
4(dr + V )2, dV = svol(AdS2), s2 = 1, (B.1)

where ∂r is an isometry. A useful parameterisation for what follows is to take

ds2(AdS2) = − cosh2 xdt2 + dx2, V = −s sinh xdt. (B.2)
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AdS3 has a global SO(2,2) symmetry with 2 distinct SL(2) subgroups we shall label as
SL(2)L/R with L/R standing for left and right. We define the generators of sl(2) to be

τi = 1
2(iσ2, σ1, σ3)i, (B.3)

for σ1,2,3 the Pauli matrices. These obey the Lie bracket relation

[τi, τj ] = f k
ij τk, (B.4)

where the structure constants can be easily computed and indices are raised and lowered
with the standard mostly positive Minkowki3 metric η = Diag(−1, 1, 1). We define an
element of SL(2) to be

G = e−stτ1e−sxτ2e−srτ3 , (B.5)

with left/right invariant 1-forms on AdS3 defined in terms of this as

Li = −2sTr
[
τ iG−1dG

]
, Ri = −2sTr

[
τ idGG−1

]
, (B.6)

which both span AdS3 as
ds2(AdS3) = 1

4LiL
i = 1

4RiR
i, (B.7)

and obey the following differential relation

dLi = s

2f
i
jkL

j ∧ Lk, dRi = −s2f
i
jkR

j ∧Rk. (B.8)

The vectors dual to the left/right invariant forms define the SL(2)R/L Killing vectors as

Ki
R/L = 1

4(L/R)iµ(gAdS3)µν∂µ, (B.9)

with the factor of 1
4 taken such that (Ki

L/R)µ((R/L)j)µ = ηij , we also have the relations

LKi
L/R

(L/R)j = 0, LKi
L/R

(R/L)j = (+/−)f ijk(R/L)k. (B.10)

With respect to our specific parameterisation the Killing vectors are

K1
R ±K2

R = e±sr(s tanh x∂r + sech x∂t − ∂x), K3
R = ∂r,

K3
L + iK2

L = eist(sech x∂r − s tanh x∂t+ i∂x), K1
L = −∂t, (B.11)

so in particular it SL(2)R that includes the U(1) isometry corresponding to ∂r.
AdS3 supports two physically distinct types of spinors that transform as doublets with

respect to one of SL(2)L/R whilst also being singlets with respect to SL(2)R/L. To see this
let us define the following frame maintaining the Hopf fibration structure,

e
µ

3 = 1
2(cosh xdt, dx, (dr + V ))µ, (B.12)

– 31 –



J
H
E
P
0
7
(
2
0
2
3
)
0
4
1

where an underscore indicates that an index is flat. We shall define the independent spinors
on (unit radius) AdS3 to solve the Killing spinor equations

∇µζR/L = (+/−)s2γµζR/L. (B.13)

One can show with respect to the above frame that these constraints are solved by

ζR = e
s
2xσ1e

s
2 tiσ2ζ0

R, ζL = e−
s
2 rσ3ζ0

L, (B.14)

where ζ0
R/L are arbitrary constant spinors, they need only be real for ζR/L to be Majorana

in our conventions. In terms of these we can define our spinor doublets: Defining unit norm
constant spinors ζ0

± such that σ3ζ
0
± = ±ζ0

± we have that

ζAR =
(
e

s
2xσ1e

s
2 tiσ2ζ0

+
e

s
2xσ1e

s
2 tiσ2ζ0

−

)A
, ζAL =

(
e−

s
2 rσ3ζ0

+
e−

s
2 rσ3ζ0

−

)A
(B.15)

are such that
LKi

R/L
ζAR/L = 0, LKi

R/L
ζAL/R = (−/+)s(τi)ABζBL/R. (B.16)

We thus find that it is ζR that is a singlet with respect to the isometry ∂r, and likewise the
rest of SL(2)R, spanned by Ki

R. An important thing to also appreciate is that the Killing
spinor ζR additionally solves the Killing spinor equation on round AdS2, namely

∇AdS2
µ2 ζR = s

2γµ2ζR, (B.17)

when the frame is e
µ2
2 = (cosh xdt, dx)µ2 and µ = (µ2, r).

In the main text we are interested in performing T-duality transformations on the
isometries of AdS3. Previous results, [43, 44] on the preservation of supersymmetry under
U(1) and SU(2) T-dualities suggest that T-dualising on AdS3 will only lead to a solution
that preserves supersymmety when its spinors are singlets with respect to the dualisation
isometry. Thus any AdS3 solution of Type II supergravity that preserves supersymmetry
better be compatible with the spinors ζR for supersymmetry to be preserved after T-dualising
on ∂r. For SL(2) T-duality we have two options for dualisation isometry, we shall choose
to dualise on SL(2)R as this contains the U(1) of the Hopf fiber. Thus far our discussion
on spinors has been with respect to the frame (B.12), note however that this is not the
appropriate frame for SL(2) T-duality, for that the vielbein should also respect an SL(2)
isometry. We shall take

e
µ

3,SL(2) = 1
2(R1, R2, R3)µ. (B.18)

We could also use Li to span the frame, however we choose the right SL(2) to relate
to the case of U(1) T-duality. The difference between the 2 frames is simply a Lorentz
transformation, specifically

e
µ

3,SL(2) = Rµνeν3 , R =

 1 0 0
0 cos t s sin t
0 −s sin t cos t


 cosh x 0 s sinh x

0 1 0
s sinh x 0 cosh x

 . (B.19)
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Under such a transformation the spinors also transform as ζ → Sζ where S solves the
equation

S−1γµS = Rµνγν , (B.20)

we find
S = e−

s
2 tiσ2e−

s
2xσ1 (B.21)

and so in the frame (B.18) we have

ζR,SL(2) = SζR = ζ0
R, ζL,SL(2) = SζL = e−

s
2 tiσ2e−

s
2xσ1e−

s
2 rσ3ζ0

L = Gζ0
L. (B.22)

C Deriving the SL(2) T-duality dual fields

In this appendix we shall derive the dual NS and RR fields that one gets after performing
an SL(2) non-Abelian T-duality transformation on an AdS3 solution of the form (2.1). The
procedure for doing this in the presence of non trivial RR fields was first worked out in [45]
with a more detailed, and easier to follow, account given by [46]. Both of these works focus
on SU(2) T-duality, but the SL(2) case is rather analogous so we shall be brief here and refer
the reader to [46] for more details. The reader can also check [4] where SL(2) T-duality was
applied to AdS3 × S3 × T3 and a briefer account on the content of this section, especially
on the part regarding the transformation of the spinors, was also given.

The dual NS sector is computed via a non Abelian Buscher procedure: One first defines
a sigma model with worldvolume coordinates σ± in terms of the NS fields with components
along the SL(2) isometry directions. For a solution of the form (2.1), with trivial electric
NS flux we have

ds2 = gijR
iRj + . . . , B = . . . , dB = H, gij = e2A

4 ηij (C.1)

where . . . have no components along the SL(2) directions and are thus spectators to the
Buscher procedure. The Lagrangian of our sigma model is then simply

L0 = gijR
i
+R

j
−, (C.2)

where Ri± = −2sTr
[
τ i∂±GG

−1
]
for G ∈ SL(2) and τi the generators of sl(2), consistent

with the previous section.
The next step of the Buscher procedure is to rewrite L0 in a locally equivalent form.

For that one gauges the SL(2) isometry by introducing SL(2) gauge fields A± = (A±)iτi
such that

∂±G→ D±G = ∂±G−A±G, (C.3)

but one additionally adds a Lagrange multiplier term to the action of the form Tr(vF±),
where F± is the non-Abelian field strength of A± — this term setting F± = 0 on shell.
A dual sigma model is then generated if one integrates out the gauge fields. This theory
generically depends on the 3 coordinates packaged within G and the Lagrange multipliers
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vi, and one needs to gauge fix such that only 3 of these remain. The simplest way to do
this is to set

G = 1. (C.4)

The Lagrangian of the resulting dual sigma model is then given by

L̂ = ∂−vi(M−1)ij∂−vj , Mij = gij + sf k
ij vk, (C.5)

where f k
ij are the structure constants of SL(2). From this the dual metric and NS flux can

be read off as

dŝ2 = dvi(M−1)(ij)dvj + . . . , B̂ = 1
2(M−1)[ij]dvi ∧ dvj + . . . , (C.6)

where . . . are the spectator parts of the original metric and NS 2-form. To compute the
dual dilaton one needs to also consider quantum effects. These lead to

e−Φ̂ = ce−Φ√detM, (C.7)

where c is an arbitrary constant which can be set to any value by rescaling gs.
The dual RR sector can be computed as in [45]. One first observes that the dual sigma

model defines a pair of canonical frames. In the seed geometry, we had that the d = 10
vielbein along the AdS3 could be expressed in an SL(2) invariant way as

ei = eA

2 Ri, (C.8)

while the Buscher procedure defines 2 frames in the dual solutions

ei+ = eA

2 (M−T )ijdvj , ei− = eA

2 (M−1)ijdvj . (C.9)

These are related by a Lorentz transformation

e+ = Λe−, Λ = M−TM. (C.10)

As usual one can generate an action on spinors from the above ε → Ωε by solving the
equation

Ω−1ΓMΩ = ΛMNΓN (C.11)

where ΓM are a basis of d = 10 flat index gamma matrices. The main contribution of [45]
was to realise (through analogy with [43]) that it is through the action of Ω that the dual
RR sector is generated. It is possible to show that Ω is given by

Ω = e3A

8
√

detM

(
sΓ012 + 4

e2A viΓ
i−1
)
, (C.12)

where we have fixed an arbitrary sign. The dual RR fluxes can then be extracted from the
following polyform identities

eΦ̂F̂ = teΦFΩ−1, t2 = 1, (C.13)

where Ω−1 acts on F through the Clifford map.
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Let us now examine the symmetries of the dual solution. To this end we find it
convenient to fix

v3 = −1
2sr sinh x, v2 = 1

2rs cosh x sin t, v3 = 1
2 cos t cosh x, c = 4. (C.14)

The dual NS sector then becomes

dŝ2 = e2A

4∆ ds2(AdS2)+e−2Adr2 + . . . , B̂ =− sr

2∆vol(AdS2)+ . . . , e−Φ̂ = e−Φ+Ar
√

∆,

ds2(AdS2) =−cosh2 xdt2 +dx2, vol(AdS2) = coshxdt∧dx. (C.15)

So we see that the NS sector respects the SL(2) isometry of AdS2. To compute the dual
RR fluxes we use that

teΦ−Φ̂Ω−1 : 1→ t

(
r− se

4A

8∆ vol(AdS2)
)
∧dr, e3Avol(AdS3)→ t

e3A

2

(
−s+ r

2∆vol(AdS2)
)
.

(C.16)
We thus find the dual d = 10 flux is

F̂ = t

[
f± ∧

(
r − se4A

8∆ vol(AdS2)
)
∧ dr ∓ e3A

2

(
−s+ r

2∆vol(AdS2)
)
∧ ?7λf±

]
, (C.17)

which also respects the isometries of AdS2.
Finally before moving on to address the issue of supersymmetry let us give a frame

that also respects the isometries of AdS2, as ei± do not. Defining ê = R̂e+ for

R̂ =

 cosh Y − sinh Y 0
− sinh Y cosh Y 0

0 0 1

R−1, Y = log
(∆−

∆+

)
, ∆± = 1± e2As

2r , (C.18)

where R is defined in (B.19), we arrive at

êi =
(

eA

2
√

∆
cosh xdt, eA

2
√

∆
dx, e−Adr

)i
. (C.19)

The corresponding action on d = 10 spinors (where S is defined in (B.21)) is

Ŝ = e−
1
2Y Γ01S−1 ⊗ 116, (C.20)

which will be useful in the next section.

D Proving SL(2) T-duality preserves supersymmetry

In this appendix we shall prove that SL(2) T-duality preserves supersymmetry. We begin by
deriving the reduced d = 7 constraints for AdS3 vacua, which will be necessary for proving
that supersymmetry of the dual solutions is implied by that of the original solutions.
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D.1 Supersymmetry constraints for AdS3 solutions

In this appendix we derive reduced d = 7 spinorial conditions that AdS3 vacua of the
form (2.1) must obey to be supersymmetric. As in the main text we focus on those with
purely magnetic NS 3-form, ie those for which c0 = 0.

Given our choice of gamma matrices in (A.9) the d = 10 spinors should decompose as

ε1 = ζ ⊗ θ+ ⊗ χ1, ε2 = ζ ⊗ θ∓ ⊗ χ2, (D.1)

where ζ are real Killing spinors on AdS3 obeying the relation

∇AdS3
µ ζ = s

2γµζ, s2 = 1, (D.2)

and χ1,2 are independent Majorana spinors on M7. The objects θ± are auxiliary 2d vectors
which are needed to make the dimensionality of the d = 10 spinors correct when decomposed
in terms of 3 and 7 dimensional ones. They are defined as

θ+ = 1√
2

(
1
−i

)
, θ− = 1√

2

(
1
i

)
, (D.3)

such that ε1,2 are indeed Majorana-Weyl. The ± signs indicate d = 10 chirality and so
as before the upper/lower signs are taken in Type IIA/IIB. We also have the following
identities which we will make much use of in the coming computations

σ1θ± = ∓iθ∓, σ3θ± = θ∓, σ1σ3θ± = ±iθ±. (D.4)

Our task now is to insert our ansatz for the spinor into the necessary conditions for
supersymmetry (A.5a)–(A.5d). To achieve this we must first decompose the d = 10 spin
covariant derivative in terms of the factors that appear in the warped product. The curved
space analogue of Γµ in (A.9) is

Γµ = eAγµ ⊗ σ3 ⊗ 18, (D.5)

as such we find that

∇(10)
µ = ∇AdS3

µ + 1
2ΓµdA, µ = 0, 1, 2,

∇(10)
a = ∇a, a = 3, . . . , 9, (D.6)

where ∇a is the spin covariant derivative on M7. Making use of (D.2) and (D.4) and the
identities

F = (I32 + Γ̂)f±, λ(F ) = (I32 ∓ Γ̂)λ(f±), (D.7)

which follow from (A.8), we find that (A.5a)–(A.5d) reduce to the following d = 7 conditions

(se−A − idA)χ1 + 1
4e

Φβ±f±χ2 = 0, (D.8a)

(se−A ± idA)χ2 + 1
4e

Φβ∗±λ(f±)χ1 = 0, (D.8b)
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(
∇a −

1
4Ha

)
χ1 + 1

8e
Φiβ∗±f±γaχ2 = 0, (D.8c)

(
∇a + 1

4Ha

)
χ2 −

1
8e

Φiβ∗±λ(f±)γaχ1 = 0, (D.8d)
(3

2se
−A − i

(3
2dA+∇+ i

4H − dΦ
))

χ1 = 0, (D.8e)
(3

2se
−A ± i

(3
2dA+∇+ 1

4H − dΦ
))

χ2 = 0. (D.8f)

where β± is a constant, specifically

β+ = 1, β− = i. (D.9)

D.2 U(1) T-duality on the Hopf fiber of AdS3

In this appendix we show that U(1) T-duality on the Hopf fiber of AdS3 preserves super-
symmetry.

As first established in [43], U(1) T-duality preserves the portion of the supercharges in
the orginal solution that are not charged under the U(1). When one performs a Hopf fiber
T-duality on AdS3 then, we should identify ζ in (D.1) with the SL(2)R invariant Killing
spinor ζR in (B.14). Given an AdS3 solution of the form (2.1), in the conventions of B the
result of T-dualising on the Hopf fiber isometry ∂r is the following

dŝ2 = e2A

4 ds2(AdS2) + e−2Adr2 + ds2(M7), e−Φ̂ = e−Φ+A,

Ĥ = −s2rvol(AdS2) +H, F̂ = t

(
f± ∧ dr ∓

1
4e

3Avol(AdS2) ∧ ?7λf±

)
, (D.10)

where again s2 = t2 = 1. Here the dual RR flux is generated via eΦ̂F̂ = eΦFΓr where we
have split the µ index as µ = (µ2, r) where µ2 = 0, 1 and runs over the AdS2 directions.

A main result of [43] is the derivation of the precise form of the dual Killing spinors in
terms of the original one, when U(1) T-duality is performed. The map is

ε1 → ε̂1 = ε1, ε2 → ε̂2 = t̃Γrε2, t̃2 = 1, (D.11)

where we shall fix t̃ momentarily. For this to hold we must be in a canonical frame in which
the vielbein decomposes as a U(1) fibration over a 9-d base, ie we take the d = 10 vielbein
in the original solution to be

e
µ

10 = eAe
µ

3 , e
a
10 = ea (D.12)

where eµ3 is defined in (B.12) and ea is a vielbein on M7. The dual frame on the other
hand is

ê
µ2
10 = eA

2 e
µ2
2 , ê

r
10 = e−Adr, ê

a
10 = ea (D.13)

where eµ2 is a vielbein on unit radius AdS2 (ie one can take e
µ2
2 = (cosh xdt, dx)µ2).

Our task is once more to derive the reduced d = 7 conditions that follow from
considering (A.5a)–(A.5d) on the dual solution — note that T-duality maps a solution

– 37 –



J
H
E
P
0
7
(
2
0
2
3
)
0
4
1

in IIA to one in IIB so one needs to be careful with the signs. We find that the d = 10
covariant derivative now decomposes as

∇(10)
µ2 = ∇AdS2

µ2 + 1
2Γµ2dA, ∇(10)

r = ∂r −
1
2ΓrdA, ∇(10)

a = ∇a. (D.14)

The dual d = 10 spinors decompose as

ε̂1 = ζ ⊗ θ+ ⊗ χ1, ε̂2 = Γrε2 = γrζ ⊗ θ± ⊗ χ2, (D.15)

if we then consider (A.5c) we find it decomposes as

2e−Aγµ2∇AdS2
µ2 ζ ⊗ θ−⊗χ1− ζ ⊗ θ−⊗

[
s

2e
−A + i

(
∇+ 3

2dA−
1
4H − dΦ

)]
χ1 = 0, (D.16)

which reproduces (D.8e) if
∇AdS2
µ2 ζ = s

2γµ2ζ, (D.17)

but this is precisely what the SL(2)R singlet spinor on AdS3 does obey. If we now con-
sider (A.5a) along the internal directions we find it reduces to(

∇a −
1
4Ha

)
ε1 − tt̃

eΦ

16FΓaε2 = 0 (D.18)

which reproduces (D.8c) if we fix
tt̃ = −1. (D.19)

Given this one finds that inserting the dual solution into the rest of (A.5a)–(A.5d) reproduces
all of (D.8a)–(D.8f). The key point however is that only one of the 2 types of Killing spinors
that AdS3 supports is preserved by the duality, what we referred to as ζR in appendix B —
the other is always projected out, ie what we earlier called ζL does not obey (D.17).

D.3 SL(2) T-duality on AdS3

In this appendix we show that SL(2) T-duality performed on the SL(2)R isometry of AdS3
preserves supersymmetry.

By analogy with the previous appendix and the results of [44] for SU(2) T-duality, we
make the following ansatz for how SL(2) T-duality acts on the spinors of an AdS3 solution

ε̂1 = ε1, ε̂2 = t̃Ωε2, (D.20)

where Ω is defined in (C.12). Like with U(1) T-duality, SL(2)R T-duality has a canonical
frame, namely the vielbein of the original solution should take the form

e
µ

10 = eAe
µ

3,SL(2), e
a
10 = ea, (D.21)

where eµ3,SL(2) is defined in (B.18). Importantly this differs from the frame of U(1) T-duality
in the previous appendix by a Lorentz transformation as described in appendix B. This
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means that if we take our original Killing spinors to be (D.1) and identify ζ = ζR in the
U(1) T-duality frame, they are now given by

ε1 = Sζ ⊗ θ+ ⊗ χ1, ε2 = Sζ ⊗ θ∓ ⊗ χ2 (D.22)

in the frame (D.21). Likewise, as explained towards the end of appendix C, in the canonical
frame of SL(2) T-duality the isometries of AdS2 are not manifest, to reach such a frame
one needs to do another Lorentz tranformation that will also act on (D.20). A dual frame
that respects the isometries of AdS2 has the d = 10 vielbein

ê
µ2
10 = eA

2
√

∆
e
µ2
2 , ê

r
10 = e−Adr, ê

a
10 = ea, (D.23)

where we remind the reader of the following functions

∆ = 1− e4A

4r2 , ∆± = 1± e2As

2r (D.24)

The combined actions of the Lorentz transformations required to reach this frame mean
that our dual spinors now take the form

ε̂1 = (N+ +N−γr)ζ ⊗ θ+ ⊗ χ1, ε̂2 = t̃Γr(N+ −N−γr)ζ ⊗ θ∓ ⊗ χ2,

N± = 1
2∆ 1

4

(√
∆+ ±

√
∆−

)
, (D.25)

where the action of (C.20) is what maps the spinor between the frame of (D.21) and (D.23),
the respective S and S−1 terms canceling in the process. The terms appearing in the d = 10
supersymmetry conditions can also be written in terms of ∆,∆±, after applying the Clifford
map these become

Ĥ = H − 2se−AΓ01r + 2
∆+ −∆−

d log(∆)Γ01,

dΦ̂ = dΦ− dA− 1
2d log(∆)− s(∆+ −∆−)e−AΓr,

eΦ̂F̂ = t
eΦ
√

∆
(1 + Γ)

(
f±Γr − 1

2(∆+ −∆−)f±Γ01r
)
.

eΦ̂λ(F̂ ) = t
eΦ
√

∆
(1± Γ)

(
Γr + 1

2(∆+ −∆−)Γ01r
)
λ(f±). (D.26)

In this case the spin covariant derivative decomposes as

∇(10)
µ2 = ∇AdS2

µ2 + 1
2Γµ2dA−

1
4Γµ2d(log(∆)), ∇(10)

r = ∂r−
1
2ΓrdA, ∇(10)

a = ∇a. (D.27)

We also have the following useful identities

d(N+ ±N−γr) = ∓ 1
2(∆+ −∆−)d log(∆)γr(N+ ±N−γr),

2N2
± = 1√

∆
± 1, N+N− = ∆+ −∆−

4
√

∆
. (D.28)
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We can now proceed with reducing the d = 10 Killing spinor equations as before. We
first consider (A.5c) and find that the terms involving log(∆) and ∂r mutually cancel leaving(

Γµ2∇AdS2
µ2 + 3

2dA+∇χ1 − 1
4H + s

2e
−AΓ01r − dΦ + s(∆+ −∆−)e−AΓr

)
ε̂1 = 0, (D.29)

where ∇χ1 indicates that ∇ only acts on χ1 in this expression, not N±. Through (D.28) it
is possible to establish that(

(N+ −N−γr)2
√

∆se−A + s(∆+ −∆−)γr(N+ +N−γr)
)

= 2se−A(N+ +N−γr), (D.30)

so that (D.29) decomposes as

2
√

∆e−A(N+ −N−γr)(γµ2∇AdS2
µ2 − s)ζ ⊗ θ− ⊗ χ1

+ (N+ +N−γr)ζ ⊗ θ− ⊗
(3

2se
−A − i

(3
2dA+∇− 1

4H − dΦ
))

χ1 = 0, (D.31)

where the first line vanishes if ζ = ζR and the second reproduces (D.8e). Assuming from
now that indeed ζ = ζR, so that (D.17) holds, with an analogous computation we find
that (A.5d) reduces to

γr(N+ − γrN−)ζ ⊗ θ∓ ⊗
(3

2se
−A ± i

(3
2dA+∇+ 1

4H − dΦ
))

χ2 = 0, (D.32)

which likewise reproduces (D.8f).
Turning our attention now to the part of (A.5a) along the internal directions we find,

after extensive use of the identities in (D.28), that it reduces to

(
N+ +N−γr

)
ζ ⊗ θ+

((
∇a −

1
4Ha

)
χ1 − tt̃

eΦ

8 iβ∗±f±γaχ2

)
= 0, (D.33)

which like the U(1) case reproduces (D.8c) if we fix

tt̃ = −1. (D.34)

Given this the remaining components of (A.5a), along respectively r and µ2 can be massaged
to

Γr
(
N+ +N−γr

)
ζ ⊗ θ+ ⊗

((
e−As− idA

)
χ1 + eΦ

4 β±f±χ2

)
= 0, (D.35)

Γµ2

(
N+

(
2−
√

∆
)
− γrN−

(
2 +
√

∆
))
ζ ⊗ θ− ⊗

((
e−As− idA

)
χ1 + 1

4e
Φβ±f±χ2

)
= 0,

which both reproduce (D.8a). Note that simplifying the second of these is more challenging
and the following identity is useful

d log(∆) = ∆− 1
∆

(
4dA− 2se−A(∆+ −∆−)Γr

)
. (D.36)
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Finally we consider (A.5b). Through similar means to before it is possible to reduce this
along each of a, r, µ2 to the form

(N+ − γrN−)ζ ⊗ θ± ⊗
((
∇a + 1

4Ha

)
χ2 −

eΦ

8 iβ∗±λ(f±)γaχ1

)
= 0,

Γr(N+ − γrN−)ζ ⊗ θ± ⊗
(

(se−A ± idA)χ2 + 1
4e

Φβ∗±λ(f±)χ1

)
= 0,

Γµ2(N+ − γrN−)ζ ⊗ θ± ⊗
(

(se−A ± idA)χ2 + 1
4e

Φβ∗±λ(f±)χ1

)
= 0, (D.37)

which reproduce (D.8b) and (D.8d).
We have thus established that performing an SL(2)R T-duality on a supersymmetric

AdS3 solution that supports spinors invariant under SL(2)R preserves supersymmetry. Just
as with the U(1) case any spinors charged under SL(2)R will be projected out.

E Details of the quiver construction

In this appendix we present some details of the construction of the 1d quivers discussed in
section 4.

As discussed in the main text, our Hanany-Witten brane set-up consists on D-branes
stretched between D(p+2)-branes, with orthogonal NS5-branes lying between them, instead
of the more conventional scenario in which the Dp-branes are stretched between NS5-branes,
with orthogonal D(p+2)-branes between them, which allows to directly read the quiver
field theory. In this situation in order to obtain the quiver field theory we need to perform
Hanany-Witten moves that produce D-branes stretched between NS5-branes with D(p+2)-
branes orthogonal to them. We do this using that the D5-D7-NS5 and D1-D3-NS5 brane
subsystems in our brane set-up are related by T-duality to the D3-D5-NS5 brane intersection
studied in [47], and also to the D2-D4-NS5 two dimensional brane intersection underlying
the AdS3 × S3 ×T3 × I solutions to Type IIA constructed in [20], from which our solutions
are derived through SL(2) T-duality. We will then follow closely [20] where the results
in [47] were used to describe the 2d quiver field theory living in this brane intersection. In
this appendix we basically rewrite the analysis therein particularised to the D5-D7-NS5
and D1-D3-NS5 subsystems of the brane set-up depicted in table 1.

We start discussing the D5-D7-NS5 brane subsystem. Following [20] we use the following
definitions for the linking numbers

li = ni + LNS5
i , for the D7-branes

l̂j = −n̂j +RD7
j , for the NS5-branes,

where ni is the number of D5-branes ending on the ith D7-brane from the right minus
the number of D5-branes ending on it from the left, n̂j is the same quantity for the jth
NS5-brane, LNS5

i is the number of NS5-branes lying on the left of the ith D7-brane, and
RD7
j is the number of D7-branes lying on the right of the jth NS5-brane.
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𝛽0 𝑁𝑆5

𝛽2 𝑁𝑆5𝛽1 𝑁𝑆5 𝛽𝑃− 1 𝑁𝑆5

𝛽𝑃  𝑁𝑆5

𝐷7 𝐷7 𝐷7 𝐷7 𝐷7

𝜌

𝛼1 𝐷5 𝛼𝑃− 1 𝐷5𝛼2 𝐷5 𝛼𝑃  𝐷5

Figure 12. Brane set-up for the D5-D7-NS5 branes along the ρ direction, for r constant, in units
of q.

We proceed by computing the number of D5-branes that end on the left of a collection
of D7-branes and on the right of a collection of NS5-branes, given by N = ∑p

i=1 li = ∑p̂
j=1 l̂j ,

with p and p̂ the numbers of D7 and NS5 branes. Here the partition N = ∑p̂
j=1 l̂j has to be

such that l̂1 ≥ l̂2 ≥ . . . l̂p̂. To read the quiver we consider this partition plus the partition
N = ∑r

s=1Msqs, constructed from a list of positive integers satisfying q1 ≥ q2 ≥ . . . qr,
chosen such that the number of terms in the decomposition that are equal or bigger than a
given integer j, that we denote as mj , satisfy that

i∑
j=1

mj ≥
i∑

j=1
l̂j , for i = 1, . . . , p̂. (E.1)

Ms is then the number of times each integer qs appears in the partition. From these two
partitions the ranks of the gauge groups of the quiver are computed as

Ni =
i∑

j=1
(mj − l̂j). (E.2)

In turn, Ms give the ranks of the fundamental matter groups that couple to each of the
gauge groups. A very detailed account of this construction can be found in [48].

We now apply this procedure to the brane set-up associated to our solutions, that
we terminate with βP anti NS5-branes at the end of the space, at ρ = P + 1. For the
D5-D7-NS5 subsystem the resulting brane set-up is the one depicted in figure 12. From
this configuration the linking numbers are read exactly as in [20], substituting the D2 for
D5-branes and the D4 for D7-branes. Doing this, we find for the D7-branes

li =
i−2∑
r=0

βr + 2βi−1, i = 1, . . . , P (E.3)
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and for the NS5-branes

l̂1 = l̂2 = · · · = l̂β0 = P,

l̂β0+1 = l̂β0+2 = · · · = l̂β0+β1 = P − 1,
...

l̂β0+β1+···+βP−3+1 = l̂β0+β1+···+βP−3+2 = · · · = l̂β0+β1+···+βP−2 = 2,
l̂β0+β1+···+βP−2+1 = · · · = l̂β0+β1+···+βP−1 = 1,
l̂β0+β1+···+βP−1+1 = · · · = l̂β0+β1+···+βP−1+βP

= 1. (E.4)

From the linking numbers we construct the total number of D5-branes ending on D7-branes
on the left and NS5-branes on the right. This is given by

N =
P∑
i=1

li =
β0+···+βP∑

j=1
l̂j =

P−1∑
k=0

(P − k + 1)βk. (E.5)

Now, from N we define the two partitions that will allow us to read the quiver CFT. The
NS5-branes in our brane set-up are ordered such that l̂1 ≥ l̂2 ≥ · · · ≥ l̂ ˆβ0+···+βP

. These
linking numbers define then one of the two partitions, N = ∑β0+···+βP

j=1 l̂j . In turn, for the
D7-branes we take

N = β0︸︷︷︸+β0 + β1︸ ︷︷ ︸+β0 + β1 + β2︸ ︷︷ ︸+ · · ·+ β0 + β1 + · · ·+ βP−2︸ ︷︷ ︸+2 (β0 + β1 + · · ·+ βP−1)︸ ︷︷ ︸
(E.6)

from which we find

m1 = m2 = · · · = mβ0 = P + 1,
mβ0+1 = · · · = mβ0+β1 = P,

...
mβ0+β1+···+βP−3+1 = · · · = mβ0+β1+···+βP−2 = 3,
mβ0+β1+···+βP−2+1 = · · · = mβ0+β1+···+βP−1 = 2. (E.7)

These numbers satisfy the condition (E.1) ∀i = 1, . . . , (β0 + · · ·+ βP ). We then find for the
ranks of the gauge groups

N1 = m1 − l̂1 = P + 1− P = 1, N2 = N1 +m2 − l̂2 = 2, . . . Nβ0 = β0,

Nβ0+1 = β0 + 1, . . . Nβ0+β1+···+βP−1 = β0 + β1 + · · ·+ βP−1, (E.8)

to then start decreasing

Nβ0+β1+...βP−1+1 = β0 + β1 + · · ·+ βP−1 − 1, . . . , Nβ0+β1+...βP−1+βP−1 = 1. (E.9)

That is, the ranks of the gauge groups increase in units of 1 till the value β0 +β1 + · · ·+βP−1
is reached, to then start decreasing, again in units of one, till the gauge group of rank 1 is
reached, corresponding to the D5-branes stretched between the last pair of NS5-branes.
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2 2 1 1 𝛼1 𝛼1 +  1 

1 

 𝛼1 −  1 𝛼2 𝛼𝑃 𝛼𝑃− 1 

1 1 

𝜌 

𝛼𝑃 −  1 𝛼𝑃 −  1 

Figure 13. Quiver associated to the D5-D7-NS5 brane subsystem for r constant, written in terms
of 2d (4,4) multiplets. Circles denote (4,4) vector multiplets and black lines (4,4) bifundamental
hypermultiplets. The gauge groups with ranks αk, with k = 1, . . . , P − 1 to the left of the gauge
group with rank αP have U(1) flavour symmetries. The gauge group with rank αP has U(2) flavour
symmetry. The rest of gauge groups do not have attached any flavours. We have taken units of q.

Finally, from the partition (E.6) we have that

Mβ0 = Mβ0+β1 = · · · = Mβ0+β1+···+βP−2 = 1, Mβ0+β1+···+βP−1 = 2. (E.10)

This implies that the gauge groups with ranks β0 = α1, β0 + β1 = α2, till β0 + · · ·+ βP−2 =
αP−1 have U(1) flavour groups, while the gauge group with rank β0 +β1 · · ·+βP−1 = αP has
flavour group U(2). The rest of gauge groups have no flavour groups attached. The resulting
quiver is depicted in figure 13. In this quiver we have decomposed the 5d N = 1 vector
multiplets and hypermultiplets in terms of 1d (4,4) multiplets, which are the appropriate
ones to describe the D1-D3-NS5 subsystem and therefore the final quantum mechanics
that arises in our brane intersection. Indeed, it is clear that the quiver associated to the
D1-D3-NS5 brane subsystem of the brane set-up is obtained from the one describing the
D5-D7-NS5 subsystem scaling it by p = n+ 1

2 , given the D1 and D3 brane quantised charges
found in (4.31) and (4.29). This quiver is depicted in figure 8 in subsection 4.3. Therefore,
our notation for both quivers is that circles denote (4,4) vector multiplets (coming from the
reduction of 5d N = 1 vector multiplets for the D5-D7-NS5 subsystem) and black lines (4,4)
bifundamental hypermultiplets (coming from the reduction of 5d N = 1 bifundamentals for
the D5-D7-NS5 subsystem). These massless modes arise from the quantisation of the open
strings stretched between the D1-branes (or wrapped D5-branes) and between the D1 and
the D3 branes (or wrapped D5 and D7 branes), as follows:

• D1-D1 strings: There are two cases to consider. Open strings with both ends on the
same stack of D1-branes between NS5-branes give rise to a (4,4) vector multiplet,
composed of a (0,4) vector multiplet plus a (0,4) adjoint twisted hypermultiplet coming
from the motion of the D1-branes along the (x6, x7, x8, x9) directions. Since these
scalars are charged under the R-symmetry they combine into a twisted hypermultiplet.
In turn, the strings with end points on adjacent stacks of D1-branes separated by an
NS5-brane contribute with a (4,4) bifundamental hypermultiplet, since the intersection
with the NS5-branes fixes the degrees of freedom along the (x6, x7, x8, x9) directions,
leaving behind the scalars associated to the directions along the torus plus the scalar
arising from the KK reduction of the 2d gauge field along the field theory direction,
all of them uncharged under the R-symmetry.
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• D1-D3 strings: Strings with one end on D1-branes and the other on D3-branes in the
same interval between NS5-branes contribute with fundamental (4,4) hypermultiplets,
associated to the motion of the string along the torus plus the component of the 2d
gauge field along the field theory direction. This is related to the set-up in [47] by
T-duality, with the (4,4) hypermultiplet arising as the reduction to 1d of the 3d N = 4
hypermultiplet.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] Y. Lozano, C. Núñez, A. Ramirez and S. Speziali, New AdS2 backgrounds and N = 4
conformal quantum mechanics, JHEP 03 (2021) 277 [arXiv:2011.00005] [INSPIRE].

[2] Y. Lozano, C. Núñez, A. Ramirez and S. Speziali, AdS2 duals to ADHM quivers with Wilson
lines, JHEP 03 (2021) 145 [arXiv:2011.13932] [INSPIRE].

[3] Y. Lozano, C. Núñez and A. Ramirez, AdS2 × S2 × CY2 solutions in Type IIB with 8
supersymmetries, JHEP 04 (2021) 110 [arXiv:2101.04682] [INSPIRE].

[4] A. Ramirez, AdS2 geometries and non-Abelian T-duality in non-compact spaces, JHEP 10
(2021) 020 [arXiv:2106.09735] [INSPIRE].

[5] Y. Lozano and A. Ramirez, New Advancements in AdS/CFT in Lower Dimensions, Universe 7
(2021) 250 [arXiv:2106.12195] [INSPIRE].

[6] Y. Lozano, N. Petri and C. Risco, New AdS2 supergravity duals of 4d SCFTs with defects,
JHEP 10 (2021) 217 [arXiv:2107.12277] [INSPIRE].

[7] Y. Lozano, N. Petri and C. Risco, Line defects as brane boxes in Gaiotto-Maldacena
geometries, JHEP 02 (2023) 193 [arXiv:2212.10398] [INSPIRE].

[8] Y. Lozano, N. Petri and C. Risco, AdS2 near-horizons, defects, and string dualities, Phys. Rev.
D 107 (2023) 106012 [arXiv:2212.11095] [INSPIRE].

[9] G. Dibitetto, Y. Lozano, N. Petri and A. Ramirez, Holographic description of M-branes via
AdS2, JHEP 04 (2020) 037 [arXiv:1912.09932] [INSPIRE].

[10] P. Aniceto, G. Lopes Cardoso and S. Nampuri, R2 corrected AdS2 holography, JHEP 03 (2021)
255 [arXiv:2010.08761] [INSPIRE].

[11] A. Strominger, AdS(2) quantum gravity and string theory, JHEP 01 (1999) 007
[hep-th/9809027] [INSPIRE].

[12] V. Balasubramanian, A. Naqvi and J. Simon, A Multiboundary AdS orbifold and DLCQ
holography: A universal holographic description of extremal black hole horizons, JHEP 08
(2004) 023 [hep-th/0311237] [INSPIRE].

[13] T. Hartman and A. Strominger, Central Charge for AdS2 Quantum Gravity, JHEP 04 (2009)
026 [arXiv:0803.3621] [INSPIRE].

[14] M. Alishahiha and F. Ardalan, Central Charge for 2D Gravity on AdS2 and AdS2/CFT1
Correspondence, JHEP 08 (2008) 079 [arXiv:0805.1861] [INSPIRE].

– 45 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP03(2021)277
https://arxiv.org/abs/2011.00005
https://inspirehep.net/literature/1827499
https://doi.org/10.1007/JHEP03(2021)145
https://arxiv.org/abs/2011.13932
https://inspirehep.net/literature/1834012
https://doi.org/10.1007/JHEP04(2021)110
https://arxiv.org/abs/2101.04682
https://inspirehep.net/literature/1840536
https://doi.org/10.1007/JHEP10(2021)020
https://doi.org/10.1007/JHEP10(2021)020
https://arxiv.org/abs/2106.09735
https://inspirehep.net/literature/1869263
https://doi.org/10.3390/universe7070250
https://doi.org/10.3390/universe7070250
https://arxiv.org/abs/2106.12195
https://inspirehep.net/literature/1869953
https://doi.org/10.1007/JHEP10(2021)217
https://arxiv.org/abs/2107.12277
https://inspirehep.net/literature/1892574
https://doi.org/10.1007/JHEP02(2023)193
https://arxiv.org/abs/2212.10398
https://inspirehep.net/literature/2616401
https://doi.org/10.1103/PhysRevD.107.106012
https://doi.org/10.1103/PhysRevD.107.106012
https://arxiv.org/abs/2212.11095
https://inspirehep.net/literature/2617054
https://doi.org/10.1007/JHEP04(2020)037
https://arxiv.org/abs/1912.09932
https://inspirehep.net/literature/1772123
https://doi.org/10.1007/JHEP03(2021)255
https://doi.org/10.1007/JHEP03(2021)255
https://arxiv.org/abs/2010.08761
https://inspirehep.net/literature/1823762
https://doi.org/10.1088/1126-6708/1999/01/007
https://arxiv.org/abs/hep-th/9809027
https://inspirehep.net/literature/475792
https://doi.org/10.1088/1126-6708/2004/08/023
https://doi.org/10.1088/1126-6708/2004/08/023
https://arxiv.org/abs/hep-th/0311237
https://inspirehep.net/literature/634002
https://doi.org/10.1088/1126-6708/2009/04/026
https://doi.org/10.1088/1126-6708/2009/04/026
https://arxiv.org/abs/0803.3621
https://inspirehep.net/literature/782023
https://doi.org/10.1088/1126-6708/2008/08/079
https://arxiv.org/abs/0805.1861
https://inspirehep.net/literature/785631


J
H
E
P
0
7
(
2
0
2
3
)
0
4
1

[15] V. Balasubramanian, J. de Boer, M.M. Sheikh-Jabbari and J. Simon, What is a chiral 2d
CFT? And what does it have to do with extremal black holes?, JHEP 02 (2010) 017
[arXiv:0906.3272] [INSPIRE].

[16] G. Dibitetto and N. Petri, AdS2 solutions and their massive IIA origin, JHEP 05 (2019) 107
[arXiv:1811.11572] [INSPIRE].

[17] M. Gutperle and M. Vicino, Conformal defect solutions in N = 2, D = 4 gauged supergravity,
Nucl. Phys. B 942 (2019) 149 [arXiv:1811.04166] [INSPIRE].

[18] K. Chen and M. Gutperle, Holographic line defects in F(4) gauged supergravity, Phys. Rev. D
100 (2019) 126015 [arXiv:1909.11127] [INSPIRE].

[19] K. Chen, M. Gutperle and M. Vicino, Holographic Line Defects in D = 4, N = 2 Gauged
Supergravity, Phys. Rev. D 102 (2020) 026025 [arXiv:2005.03046] [INSPIRE].

[20] Y. Lozano, N.T. Macpherson, N. Petri and C. Risco, New AdS3/CFT2 pairs in massive IIA
with (0, 4) and (4, 4) supersymmetries, JHEP 09 (2022) 130 [arXiv:2206.13541] [INSPIRE].

[21] N.T. Macpherson and A. Ramirez, AdS3 × S2 in IIB with small N = (4, 0) supersymmetry,
JHEP 04 (2022) 143 [arXiv:2202.00352] [INSPIRE].

[22] T.D. Brennan, A. Dey and G.W. Moore, On ’t Hooft defects, monopole bubbling and
supersymmetric quantum mechanics, JHEP 09 (2018) 014 [arXiv:1801.01986] [INSPIRE].

[23] T.D. Brennan, Monopole Bubbling via String Theory, JHEP 11 (2018) 126
[arXiv:1806.00024] [INSPIRE].

[24] T.D. Brennan, A. Dey and G.W. Moore, ’t Hooft defects and wall crossing in SQM, JHEP 10
(2019) 173 [arXiv:1810.07191] [INSPIRE].

[25] B. Assel and A. Sciarappa, On monopole bubbling contributions to ’t Hooft loops, JHEP 05
(2019) 180 [arXiv:1903.00376] [INSPIRE].

[26] A.S. Haupt, S. Lautz and G. Papadopoulos, A non-existence theorem for N > 16
supersymmetric AdS3 backgrounds, JHEP 07 (2018) 178 [arXiv:1803.08428] [INSPIRE].

[27] Y. Lozano, N.T. Macpherson, J. Montero and C. Núñez, Three-dimensional N = 4 linear
quivers and non-Abelian T-duals, JHEP 11 (2016) 133 [arXiv:1609.09061] [INSPIRE].

[28] Y. Lozano and C. Núñez, Field theory aspects of non-Abelian T-duality and N = 2 linear
quivers, JHEP 05 (2016) 107 [arXiv:1603.04440] [INSPIRE].

[29] Y. Lozano, C. Núñez and S. Zacarias, BMN Vacua, Superstars and Non-Abelian T-duality,
JHEP 09 (2017) 008 [arXiv:1703.00417] [INSPIRE].

[30] G. Itsios, Y. Lozano, J. Montero and C. Núñez, The AdS5 non-Abelian T-dual of
Klebanov-Witten as a N = 1 linear quiver from M5-branes, JHEP 09 (2017) 038
[arXiv:1705.09661] [INSPIRE].

[31] Y. Lozano, N.T. Macpherson and J. Montero, AdS6 T-duals and type IIB AdS6 × S2

geometries with 7-branes, JHEP 01 (2019) 116 [arXiv:1810.08093] [INSPIRE].

[32] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS3 solutions in massive IIA, defect
CFTs and T-duality, JHEP 12 (2019) 013 [arXiv:1909.11669] [INSPIRE].

[33] Y. Lozano, N.T. Macpherson, C. Núñez and A. Ramirez, AdS3 solutions in Massive IIA with
small N = (4, 0) supersymmetry, JHEP 01 (2020) 129 [arXiv:1908.09851] [INSPIRE].

– 46 –

https://doi.org/10.1007/JHEP02(2010)017
https://arxiv.org/abs/0906.3272
https://inspirehep.net/literature/823427
https://doi.org/10.1007/JHEP05(2019)107
https://arxiv.org/abs/1811.11572
https://inspirehep.net/literature/1705701
https://doi.org/10.1016/j.nuclphysb.2019.03.012
https://arxiv.org/abs/1811.04166
https://inspirehep.net/literature/1703167
https://doi.org/10.1103/PhysRevD.100.126015
https://doi.org/10.1103/PhysRevD.100.126015
https://arxiv.org/abs/1909.11127
https://inspirehep.net/literature/1755881
https://doi.org/10.1103/PhysRevD.102.026025
https://arxiv.org/abs/2005.03046
https://inspirehep.net/literature/1794809
https://doi.org/10.1007/JHEP09(2022)130
https://arxiv.org/abs/2206.13541
https://inspirehep.net/literature/2102681
https://doi.org/10.1007/JHEP04(2022)143
https://arxiv.org/abs/2202.00352
https://inspirehep.net/literature/2023722
https://doi.org/10.1007/JHEP09(2018)014
https://arxiv.org/abs/1801.01986
https://inspirehep.net/literature/1646712
https://doi.org/10.1007/JHEP11(2018)126
https://arxiv.org/abs/1806.00024
https://inspirehep.net/literature/1676087
https://doi.org/10.1007/JHEP10(2019)173
https://doi.org/10.1007/JHEP10(2019)173
https://arxiv.org/abs/1810.07191
https://inspirehep.net/literature/1699010
https://doi.org/10.1007/JHEP05(2019)180
https://doi.org/10.1007/JHEP05(2019)180
https://arxiv.org/abs/1903.00376
https://inspirehep.net/literature/1722879
https://doi.org/10.1007/JHEP07(2018)178
https://arxiv.org/abs/1803.08428
https://inspirehep.net/literature/1663575
https://doi.org/10.1007/JHEP11(2016)133
https://arxiv.org/abs/1609.09061
https://inspirehep.net/literature/1488407
https://doi.org/10.1007/JHEP05(2016)107
https://arxiv.org/abs/1603.04440
https://inspirehep.net/literature/1427755
https://doi.org/10.1007/JHEP09(2017)008
https://arxiv.org/abs/1703.00417
https://inspirehep.net/literature/1515536
https://doi.org/10.1007/JHEP09(2017)038
https://arxiv.org/abs/1705.09661
https://inspirehep.net/literature/1601537
https://doi.org/10.1007/JHEP01(2019)116
https://arxiv.org/abs/1810.08093
https://inspirehep.net/literature/1699229
https://doi.org/10.1007/JHEP12(2019)013
https://arxiv.org/abs/1909.11669
https://inspirehep.net/literature/1756279
https://doi.org/10.1007/JHEP01(2020)129
https://arxiv.org/abs/1908.09851
https://inspirehep.net/literature/1751321


J
H
E
P
0
7
(
2
0
2
3
)
0
4
1

[34] R. Terrisse, D. Tsimpis and C.A. Whiting, D-branes and non-Abelian T-duality, Nucl. Phys. B
947 (2019) 114733 [arXiv:1811.05800] [INSPIRE].

[35] G. Dibitetto and N. Petri, AdS3 from M-branes at conical singularities, JHEP 01 (2021) 129
[arXiv:2010.12323] [INSPIRE].

[36] S. Yamaguchi, Wilson loops of anti-symmetric representation and D5-branes, JHEP 05 (2006)
037 [hep-th/0603208] [INSPIRE].

[37] J. Gomis and F. Passerini, Holographic Wilson Loops, JHEP 08 (2006) 074 [hep-th/0604007]
[INSPIRE].

[38] D.-E. Diaconescu, D-branes, monopoles and Nahm equations, Nucl. Phys. B 503 (1997) 220
[hep-th/9608163] [INSPIRE].

[39] A. Kapustin and E. Witten, Electric-Magnetic Duality And The Geometric Langlands
Program, Commun. Num. Theor. Phys. 1 (2007) 1 [hep-th/0604151] [INSPIRE].

[40] S.A. Cherkis and A. Kapustin, Singular monopoles and supersymmetric gauge theories in
three-dimensions, Nucl. Phys. B 525 (1998) 215 [hep-th/9711145] [INSPIRE].

[41] B. Assel and A. Sciarappa, Wilson loops in 5d N = 1 theories and S-duality, JHEP 10 (2018)
082 [arXiv:1806.09636] [INSPIRE].

[42] A. Tomasiello, Geometry of String Theory Compactifications, Cambridge University Press
(2022) [DOI:10.1017/9781108635745] [INSPIRE].

[43] S.F. Hassan, T duality, space-time spinors and RR fields in curved backgrounds, Nucl. Phys. B
568 (2000) 145 [hep-th/9907152] [INSPIRE].

[44] Ö. Kelekci, Y. Lozano, N.T. Macpherson and E.Ó. Colgáin, Supersymmetry and non-Abelian
T-duality in type II supergravity, Class. Quant. Grav. 32 (2015) 035014 [arXiv:1409.7406]
[INSPIRE].

[45] K. Sfetsos and D.C. Thompson, On non-abelian T-dual geometries with Ramond fluxes, Nucl.
Phys. B 846 (2011) 21 [arXiv:1012.1320] [INSPIRE].

[46] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the AdS/CFT
correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1 [arXiv:1301.6755]
[INSPIRE].

[47] A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional
gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

[48] B. Assel, C. Bachas, J. Estes and J. Gomis, Holographic Duals of D = 3 N = 4
Superconformal Field Theories, JHEP 08 (2011) 087 [arXiv:1106.4253] [INSPIRE].

– 47 –

https://doi.org/10.1016/j.nuclphysb.2019.114733
https://doi.org/10.1016/j.nuclphysb.2019.114733
https://arxiv.org/abs/1811.05800
https://inspirehep.net/literature/1703639
https://doi.org/10.1007/JHEP01(2021)129
https://arxiv.org/abs/2010.12323
https://inspirehep.net/literature/1825971
https://doi.org/10.1088/1126-6708/2006/05/037
https://doi.org/10.1088/1126-6708/2006/05/037
https://arxiv.org/abs/hep-th/0603208
https://inspirehep.net/literature/713295
https://doi.org/10.1088/1126-6708/2006/08/074
https://arxiv.org/abs/hep-th/0604007
https://inspirehep.net/literature/713710
https://doi.org/10.1016/S0550-3213(97)00438-0
https://arxiv.org/abs/hep-th/9608163
https://inspirehep.net/literature/422506
https://doi.org/10.4310/CNTP.2007.v1.n1.a1
https://arxiv.org/abs/hep-th/0604151
https://inspirehep.net/literature/715112
https://doi.org/10.1016/S0550-3213(98)00341-1
https://arxiv.org/abs/hep-th/9711145
https://inspirehep.net/literature/451295
https://doi.org/10.1007/JHEP10(2018)082
https://doi.org/10.1007/JHEP10(2018)082
https://arxiv.org/abs/1806.09636
https://inspirehep.net/literature/1679779
https://doi.org/10.1017/9781108635745
https://inspirehep.net/literature/2017797
https://doi.org/10.1016/S0550-3213(99)00684-7
https://doi.org/10.1016/S0550-3213(99)00684-7
https://arxiv.org/abs/hep-th/9907152
https://inspirehep.net/literature/504061
https://doi.org/10.1088/0264-9381/32/3/035014
https://arxiv.org/abs/1409.7406
https://inspirehep.net/literature/1319196
https://doi.org/10.1016/j.nuclphysb.2010.12.013
https://doi.org/10.1016/j.nuclphysb.2010.12.013
https://arxiv.org/abs/1012.1320
https://inspirehep.net/literature/879767
https://doi.org/10.1016/j.nuclphysb.2013.04.004
https://arxiv.org/abs/1301.6755
https://inspirehep.net/literature/1216700
https://doi.org/10.1016/S0550-3213(97)00157-0
https://arxiv.org/abs/hep-th/9611230
https://inspirehep.net/literature/426551
https://doi.org/10.1007/JHEP08(2011)087
https://arxiv.org/abs/1106.4253
https://inspirehep.net/literature/914375

	Introduction
	Generating AdS(2) solutions from U(1) and SL(2) T-duality on AdS(3)
	New classes of small N = 4 AdS(2) solutions in Type IIB
	A small N = (0,4) AdS(3) class in IIA and its SL(2) T-duality
	Two solutions on AdS(2) x S**(3) x T**(3) x Sigma(2)
	AdS(2) case with h g propto 1
	AdS(2) case with h = constant

	Embedding into a general class of AdS(2) x S**(3) x T**(3) x Sigma(2) solutions
	Recovering the h g propto 1 case
	Recovering the h = constant case


	Field theory analysis
	Hanany-Witten brane set-up and quantised charges
	Baryon vertex interpretation
	Quiver quantum mechanics
	Computation of the central charge

	't Hooft defect interpretation

	Conclusions
	Conventions
	AdS(3), its isometries and Killing spinors
	Deriving the SL(2) T-duality dual fields
	Proving SL(2) T-duality preserves supersymmetry
	Supersymmetry constraints for AdS(3) solutions
	U(1) T-duality on the Hopf fiber of AdS(3)
	SL(2) T-duality on AdS(3)

	Details of the quiver construction

