
Applied Soft Computing 144 (2023) 110456

m

h
1
n

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

New coding scheme to compile circuits for QuantumApproximate
Optimization Algorithm by genetic evolution
Lis Arufe a, Riccardo Rasconi b, Angelo Oddi b, Ramiro Varela a,∗, Miguel A. González a

a Department of Computing, University of Oviedo, Campus of Gijón, 33204, Gijón, Spain
b Istituto di Scienze e Tecnologie della Congnizione, Consiglio Nazionale delle Ricerche, Via S. Martino della Battaglia, 44, Rome, Italy

g r a p h i c a l a b s t r a c t

a r t i c l e i n f o

Article history:
Received 12 February 2023
Received in revised form 29 April 2023

a b s t r a c t

Compiling quantum circuits on target quantum hardware architectures is one of the key issues in
the development of quantum algorithms, and the related problem is known as the Quantum Circuit
Compilation Problem (QCCP). This paper presents a genetic algorithm for solving QCCP instances
for Quantum Approximate Optimization Algorithms (QAOA). In particular, such instances represent

∗ Corresponding author.
E-mail addresses: arufelis@uniovi.es (L. Arufe), riccardo.rasconi@istc.cnr.it (R. Rasconi), angelo.oddi@istc.cnr.it (A. Oddi), ramiro@uniovi.es (R. Varela),

ig@uniovi.es (M.A. González).
ttps://doi.org/10.1016/j.asoc.2023.110456
568-4946/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.asoc.2023.110456
https://www.elsevier.com/locate/asoc
http://www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2023.110456&domain=pdf
mailto:arufelis@uniovi.es
mailto:riccardo.rasconi@istc.cnr.it
mailto:angelo.oddi@istc.cnr.it
mailto:ramiro@uniovi.es
mailto:mig@uniovi.es
https://doi.org/10.1016/j.asoc.2023.110456
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

A
A

l
t
t
n
c
t
c
d
e
e
r

t
e
a
p
g
t
(
q
q
t

d
c
t
a
t
n

a
q
g
i
t
p
q
o
b
n
b
q
o
c

t
a

ccepted 19 May 2023
vailable online 25 May 2023

Keywords:
Quantum circuit compilation
Scheduling
Makespan
Optimization
Genetic algorithm

quantum circuits for the resolution of both MaxCut and Graph-Coloring combinatorial problems. The
presented algorithm represents a significant improvement over an already existing genetic algorithm
called Decomposition Based Genetic Algorithm (DBGA), and is characterized by a completely new
coding scheme that allows to reduce the number of SWAP gates introduced in the decoding step,
consequently reducing the circuit depth. After providing a description of the problem, this paper
presents the newly produced genetic algorithm (termed DBGA-X) in detail, especially focusing on
the new coding/decoding scheme. Subsequently, a set of results will be presented that demonstrate
the superior performance of the new method compared with the results obtained from recent
literature against the same benchmark. In addition, new benchmarks characterized by larger quantum
architectures and by a higher number of compilation passes are proposed in this paper, to the aim of
testing the scalability of the proposed method in more realistic scenarios.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Quantum computing is a promising technology based on the
aws of quantum mechanics, which allows to tackle problems
hat are extremely hard for classical computers. Together with
he development of this technology, the researchers are devising
ew quantum algorithms that try to outperform their classical
ounterparts. For example, in [1] a quantum algorithm to solve
he problem of logical equivalence is proposed, and the authors
laim that it may take exponentially less time than the classical
eterministic computation. Just as classical computing entails the
xecution of classical algorithms, quantum computing entails the
xecution of quantum algorithms (i.e., quantum circuits) for the
esolution of the problems.

This work focuses on gate-based quantum circuits, i.e., quan-
um algorithms that are composed of elementary quantum op-
rations (called quantum gates or qgates) that can be considered
s the quantum counterpart of the logical gates in classical com-
uting. As the classical logical gates operate on bits, the quantum
ates operate on quantum bits (qubits). At every instant during
he computation, each qubit finds itself in a given quantum state
qstate), which may be basically seen as the qubit’s value. A
uantum circuit is in fact a series of qgates that are applied on
ubits over time, whose qstates are consequently modified during
he circuit’s execution.

In particular, the paper revolves around the Noisy Interme-
iate Scale Quantum (NISQ) processors [2], which represent the
urrent state of the art in quantum hardware technology; from
he topological perspective, NISQ architectures can be described
s undirected weighted graphs whose nodes represent the quan-
um processor’s qubits and the edges represent its physical con-
ectivity.
Fig. 1 shows six quantum chip designs, each characterized by
different number of qubits (N = 4, 8, 21, 40, 72, 127)1. Each
ubit is located in a node and identified by an integer. In order to
uarantee reliable computation, each quantum circuit must sat-
sfy a number of constraints, imposed by both the hardware and
he algorithm. For the purpose of this work, one of the most im-
ortant constraints to be satisfied is the following: every 2-qubit
gate (binary quantum gate) may be executed in a pair of qubits
nly if they are adjacent, i.e. they are connected by an edge. Since
inary qgates need to be applied to adjacent qubits (i.e., nearest
eighbors), every time the circuit requires the application of a
inary qgate to non-adjacent qubits it is necessary to move those
states so as to satisfy the nearest neighborhood condition. This
bjective is achieved by planning for, and introducing in the
ircuit, a proper number of swap gates, i.e., particular quantum

1 The four smaller topologies are inspired by Rigetti Computing Inc., whereas
he largest two are the Google Bristlecone (72 qubits) and IBM Eagle (127 qubits)
rchitectures.
2

binary operations whose purpose is to swap the qstates of two
adjacent qubits. In other words, the swap gates are used to move
the qstates around the quantum chip, thus eventually satisfying
the nearest neighborhood condition every time it is necessary
for binary gate execution. The problem of ‘‘distributing’’ the qs-
tates over a specific architecture to satisfy the aforementioned
constraints is known as Quantum Circuit Compilation Problem
(QCCP).

The goal of this work is to solve the QCCP by planning and
scheduling in the quantum circuit a number of swap gates by
means of a genetic algorithm characterized by a novel and very
efficient coding/decoding scheme. The produced solutions (i.e., the
compiled circuits) will distribute the qstates along the physical
qubits during the execution, thus ensuring the adjacency of any
pair of qubits for all binary quantum gates, before gate applica-
tion. Unary gates can be applied to any given qubit at any given
time, unlike binary gates.

Specifically, this work builds upon the genetic algorithm pro-
posed in [3] and presents the following novel contributions:

1. introduces a completely new coding/decoding scheme that
significantly improves the results with respect to the state
of the art;

2. conducts a comprehensive experimental study, extending
previous results in the literature, by:

• integrating a set of experiments based on two recent
large architectures, the Google Bristlecone (72 qubits)
and the IBM Eagle (127 qubits);
• analyzing quantum circuits composed of up to 5 com-

pilation passes whereas previous literature consid-
ered at most 2 passes, thus testing the scalability
properties of the method.

Relatively to the last contribution listed above, it is known
that in QAOA algorithms the accuracy of the obtained results is
directly proportional to the number of compilation passes. Unfor-
tunately though, in the realm of NISQ processors, increasing the
number of passes (i.e., increasing the circuit’s depth) eventually
makes the computation unreliable because of decoherence, thus
forcing the developer to find the correct balance between the
circuit’s depth and the required accuracy. In general however, the
capability to efficiently compile circuits characterized by many
passes remains of high value, in view of less noisy and more
reliable future NISQ processors. Also, in [4] it is suggested that
the number of compilation passes p should grow with the system
size N (e.g., p ≥ logN) in order to outperform the best classical
algorithms.

The remainder of this paper is structured as follows. In the
next Section, an overview of the related literature on the tackled
problem is presented. Next, the basics of the QAOA, as well as
the description of how it is applied to the MaxCut problem is
presented in Section 3. Section 4 is then dedicated to the formal

http://creativecommons.org/licenses/by-nc-nd/4.0/

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

d
q
T
o
s
d

2

i
h
s
p
a
p

Fig. 1. Six quantum chip designs with different number of qubits.
efinition of the QCCP for the MaxCut problem, and the subse-
uent Section 5 is dedicated to the proposed genetic algorithm.
he empirical analysis is described in Section 6, in which the
btained results are compared with those related to the previous
tate of the art. Finally, in Section 7 the main conclusions are
rawn, and some ideas for future research work are advanced.

. Background literature

Even though quantum circuit compilation has been considered
n the literature over more than one decade, the QCCP considered
ere was initially formulated in [5] and more thoroughly de-
cribed in [6], where the authors explored the utilization of tem-
oral planners for its resolution, and published the first results
gainst a benchmark set of MaxCut problem instances created on
urpose — here referred to as reference benchmark. The model

described in [5,6] applies the Quantum Approximate Optimiza-
tion Algorithm (QAOA) to the MaxCut problem [7] on quantum
architectures inspired by Rigetti Computing Inc. [8].

Those results were outperformed in [9] by leveraging a
heuristic-based greedy randomized search procedure. The same
heuristic was subsequently embedded in a genetic algorithm
in [10], producing further improvements. In [11], the authors
proposed an iterative procedure that utilizes a priority rule-
based rollout heuristic, obtaining results that further improved
the previous state of the art. Afterwards, the results reported
in [11] were further improved in [3], where the authors present a
genetic algorithm based on a decomposition of the problem into
a number of rounds. The best results on the reference benchmark
are currently reported in [12], where the authors develop an ant
colony optimization algorithm, introducing a novel pheromone
model and leveraging a heuristic-based priority rule to control
the iterative selection of the quantum gates to be inserted in the
solution.
3

Moving away from the works that revolve around the refer-
ence benchmark, the application of QAOA to the MaxCut prob-
lem is also tackled in [13], where the authors study how dif-
ferent graph characteristics correlate with QAOA performance,
or in [14], where local classical MaxCut algorithms are com-
pared with QAOA. In [15] the authors prove that for three-
regular random graphs, QAOA performance shows improvement
by up to two orders of magnitude compared to previous es-
timates, strongly reducing the performance gap with classical
alternatives. Different approaches, such as lookahead heuristics
combined with simulated annealing [16], or temporal planning
combined with constraint programming [17,18], have also been
applied to the QCCP with success.

In this study, the QCCP is tackled using Genetic Algorithms
(GA). GAs are a computational technique inspired by the process
of natural selection observed in biology, which mimics the bio-
logical process of evolution, including selection, crossover, and
mutation. GAs are widely used in various fields such as engineer-
ing, finance, computer science, and biology, to name a few, as
they have proven to be highly effective in solving problems such
as resource allocation [19,20], scheduling [21,22], and optimiza-
tion [23,24]. The empirical evaluation carried out in this paper
will prove that, if efficiently encoded, the depth-optimization
version of the QCCP can be solved very effectively using GAs,
compared to the results in the current literature.

3. QAOA and MaxCut

The Quantum Approximate Optimization Algorithm (QAOA)
combines both quantum and classical computation to solve com-
binatorial optimization problems of the form

optimize:
m∑

Cα(z) (1)

α=1

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

w
C
o

t
o
0

f

i
q
S
e
T
a

3

n
M
t
i

m

Z
H

e

w
a
m

s

e

m

4

T
P
t ,
w
t
a
o
p
f
i
t
m
t

T
s
w

T
t

p

here z = (z1, . . . , zn) is a vector of binary decision variables and
α(z) its clauses. The goal of the problem is finding an assignment
f zi ∈ {+1,−1}, 1 ≤ i ≤ n, optimizing the number of satisfied

clauses.
By promoting each variable zi to a qubit, clauses Cα(z) are

ranslated into equivalent quantum Hamiltonians Cα . A number
f rounds p and two vectors of p angles γ⃗ , β⃗ , 0 ≤ βi ≤ π ,
≤ γi ≤ 2π , 0 ≤ i ≤ p are then selected. Given qstate

|+⟩ =
1
√
2
|0⟩ + 1

√
2
|1⟩, the following state is considered starting

rom its n qubits:

|ψp(γ⃗ , β⃗)⟩ =
p∏

r=1

e−iβrHBe−iγrHC |+⟩
⊗n (2)

where HC =
∑m

α=1 Cα is the problem Hamiltonian and HB is a
mix Hamiltonian of the form HB =

∑n
j=1 Xj, where Xj is the

X Pauli matrix applied to qubit j. An approximate solution to
the problem given in Eq. (1) is obtained by measuring the state
defined in Eq. (2), whose expected value is

⟨ψp(γ⃗ , β⃗)|HC |ψp(γ⃗ , β⃗)⟩ (3)

The state of the qubits after the transformation will represent
a good solution to the problem with high probability in case
that the values of β⃗ , γ⃗ and p are appropriately selected. An
ncrease in the number of rounds produces an increase in the
uality of the solution (with the caveat expressed at the end of
ection 1). Classic optimization is used to select β⃗ and γ⃗ , for
xample applying simplex or gradient based optimization [25].
hen, for each candidate (γ⃗ , β⃗), the quantum computer calculates
nd measures the state of Eq. (2).

.1. MaxCut problem

Starting from an undirected graph G = (V , E) with a set of
odes V = {1, . . . , n} and a set of arcs E, the objective of the
axCut problem is to partition V into subsets V+1 and V−1 so

hat the number of arcs in E connecting nodes of the two subsets
s maximized:

inimize:
∑
(i,j)∈E

1
2
(zizj), zk =

{
−1 if k ∈ V−1
1 if k ∈ V+1

(4)

Therefore, for each arc (i, j) there is a Hamiltonian Cα , and the arc
only depends on these two variables. It is defined as

Ci,j =
1
2
(Zi ⊗ Zj) (5)

where Zi is the Pauli matrix Z applied to qubit i (analogously for
j). Hence, each of the m components of the problem Hamiltonian
C corresponds to operator:

−iγrCi,j =

⎛⎜⎝e−iγr /2 0 0 0
0 eiγr /2 0 0
0 0 eiγr /2 0
0 0 0 e−iγr /2

⎞⎟⎠ (6)

hich is the RZZ (γ) gate. Every two of these operators sharing
qubit commute and so they may operate in any order, which
akes it hard to obtain the overall best schedule.
Given the mix Hamiltonian HB, each of its components corre-

pond to the unitary operator

−iβrXj =

(
cos(βr) −i sin(βr)
−i sin(βr) cos(βr)

)
(7)

Operators (6) and (7) will be denoted by p− s(qi, qj) and
ix(q) in the following.
j

4

. The quantum circuit compilation problem

The QCCP is defined by a tuple P = ⟨C0, L0,QM⟩, where:

• C0 is the input quantum circuit;
• L0 is the initial allocation of the qstates on the qubits;
• QM is the quantum hardware topology, represented as a

graph.

he input quantum circuit (C0). The quantum circuit C0 = ⟨Q ,
− S,MIX, {gstart , gend}, TC0⟩ contains all the necessary informa-

ion to solve the MaxCut problem by means of the QAOA paradigm
here: (i) Q = {q1, . . . , qN} is the set of qstates, which represent
he resources necessary for each gate’s execution; (ii) P-S andMIX
re, respectively, the set of p-s (phase-separation) and mix gate
perations, whose mathematical formulation was provided in the
revious section; (iii) gstart and gend are respectively the initial and
inal fictitious gates that do not operate on any qstate, and (iv) TC0
s the set containing the initial precedence constraints acting on
he p− s, mix, gstart and gend gates. It should be noted that p-s and
ix gates act on two and one qstates respectively, and therefore
he notation p− s(qi, qj) and mix(qi) is used to represent them.

he quantum hardware (QM). The quantum hardware is repre-
ented by an undirected graph QM = ⟨VN , Ec, Ed, τp−s, τmix, τswap⟩,
here:

• VN = {n1 . . . nN} is the set of qubits belonging to the
quantum device;
• E = Ec∪Ed is a set of undirected edges. Each edge establishes

a pair of adjacent qubits, thus defining the set of binary gates
(p-s or a swap gates) executable on the quantum machine.
The sets Ec (continuous) and Ed (dashed) determine two
different durations of the p-s gates executed on those edges;
• τp−s is the duration of each p-s gate, and in this study it is

equal to 3 when the gate is executed on a continuous edge
and equal to 4 when it is executed on a dashed edge;
• τmix is the duration of a mix gate, and in this study it is

always equal to 1;
• τswap is the duration of a swap gate, and in this study it is

always equal to 2;

he QCCP constraints. Importantly, the QCCP is characterized by
he following rules/constraints:

1. each qstate qi can be processed by at most one gate at any
given time;

2. every quantum gate requires the uninterrupted use of all
the involved qstates for the gate’s whole duration;

3. all gates in P-S and MIX must follow gstart and precede gend;
4. the P-S and MIX sets must be organized in a number of

steps that must obey the following ordering: P − S1, MIX1,
. . . , P − Sp, MIXp, where p is the number of rounds (or
compilation passes) that are to be executed in the QAOA
algorithm;

5. for every round r = 1, 2, . . . , p, all the p-s gates belonging
to the P − Sr set that require a specific qstate qi must be
processed before all the mix gates belonging to the MIXr set
that require the same qstate qi;

6. all p-s gates ∈ P − Sr may be executed in any order, as they
are commutative;

7. for every round r = 1, 2, . . . , p − 1 all the mix gates
belonging to the MIXr set that require a specific qstate qi
must be processed before all the p-s gates belonging to the
P − Sr+1 set that require the same qstate qi.

Fig. 2 (left) depicts an example graph corresponding to the
roblem instance no. 1 taken from the ⟨N = 8, u = 90%,

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

c

p
c
c
g

⟨

i

S

p

u
{

o
t
p
F
o
o

m

Q
d
a
g
a
m
o
g

c
a
t

t
t

Fig. 2. A graph with 7 nodes representing an example MaxCut problem instance. Each particular qstate qi is associated with a node. If p = 2 compilation passes are
onsidered, the p-s and mix quantum gates that have to be executed are listed in the right side of the figure.
i

= 2⟩ subset of the reference benchmark (see Section 6.1). As
learly shown in the picture, the presented instance entails two
ompilation passes, each characterized by a list of p− s(qi, qj)
ates and a list of mix(qi) gates.
A solution to the problem is represented by a tuple S =

SWAP, TC⟩ that extends the initial circuit C0, where:

• SWAP is a set of swap gates that must be added to ensure the
adjacency constraints necessary for executing the p-s gates;
• TC contains a number of additional precedence constraints

for each qstate qi such that a total order is imposed among
the set of gates requiring qi. These precedence constraints
must enforce that qstates (qi, qj) of all p-s and swap gates in
the circuit are allocated on adjacent qubits.

A swap gate swaps the qstates of two adjacent qubits by
mplementing the following operator:

WAP =

⎛⎜⎝1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎠ (8)

The makespan of a solution is defined as the maximum com-
letion time of all gates in S.
Alternatively, a solution to the problem can be represented

sing an activity-on-the-node graph GS = (VS, ES), where VS =

gstart , gend} ∪ P − S ∪ SWAP ∪MIX and ES determines the partial
rder of the operations in VS according to TC0 ∪ TC . In this case,
he makespan of the solution is equal to the length of the critical
ath, i.e. the longest path from the gstart node to the gend node.
ig. 5(a) depicts an example of a solution graph, where the cost
f the arcs corresponds to the duration of the operation the arc
riginates from.
The objective of the QCCP is finding a feasible schedule with

inimum makespan, which is an NP-hard problem [26].

CCP example. The following example illustrates the previous
efinitions. Consider the quantum chip with N = 4 (see Fig. 1(a))
nd the graph of Fig. 3(a). To solve this problem the following
ates have to be executed: p− s(q1, q2), p− s(q1, q3), p− s(q2, q3)
nd p− s(q3, q4). Note that, for the problem to be properly
apped on a quantum device, the device must contain a number
f qubits greater than or equal to the number of nodes of the
raph to be cut.
Fig. 3(b) depicts a compiled quantum circuit (i.e., a solution)

onsidering only one compilation pass, i.e. p = 1. Note that all
djacency constraints are satisfied by adding only one swap gate
o the solution.

The corresponding solution graph is shown in Fig. 5(a), charac-
erized by a critical path equal to 16. In order to better understand
he solution graph, note that every p− s(q , q) and swap(q , q)
i j i j l

5

Fig. 3. Example of a MaxCut instance (a) and a possible solution for it
considering p = 1, represented by a quantum circuit (b). It is assumed that each
qstate qi is initialized on qubit ni . The p-s gates are represented with rectangles,
mix gates with squares and swap gates with single lines. Operations on each
qubit over time are represented with the horizontal lines. Depicted on the left
is the considered quantum device.

Fig. 4. A chromosome encoding the solution in Fig. 3(b).

gate has two successor nodes and two predecessor nodes, which
correspond to the previous or to the subsequent gates executed
on the qstates qi and qj, respectively. In case a gate utilizes the
same two qstates as its successor or predecessor, a double arc
is depicted. Since the mix gates only operate on one qstate, they
always have only one successor and one predecessor. Lastly, the
first gate executed on a qstate has the node gstart as predecessor,
whereas the last gate executed on a qstate has the node gend as
successor.

Fig. 5(b) depicts the Gantt chart of the solution with the start
and end times of all the circuit gates, and showing a makespan
equal to 16, which corresponds to the highest end time of all
gates. Fig. 4, representing a chromosome example of the genetic
algorithm, will be described in Sections 5.1 and 5.2.

5. The decomposition-based genetic algorithm

This paper borrows the Decomposition-Based Genetic Algo-
rithm (DBGA) proposed in [3], which follows an incremental
procedure such that in each iteration r ∈ {1, . . . , p} it solves
the subproblem defined by rounds 1, . . . , r . In particular, in each
teration r it starts from solutions to the subproblem defined by
rounds 1, . . . , r−1 and adds the p−s andmix gates corresponding
to round r , adding swap gates whenever necessary.

The main drawback of the proposal of [3] is that, as the prob-
em complexity is so high, the search space is too large and so it

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

u
S

5

t
A

w

w
T
i
t
t
a
t
m
p

M
i
a
(

Fig. 5. Representation of the solution in Fig. 3(b), the related solution graph (a)
and its Gantt chart (b).

is remarkably difficult to find efficient solutions. It can be argued
that the drawback comes from the chosen coding scheme, which
allows a p-s gate to be scheduled in any part of the quantum
chip. In this paper each p-s gate is restricted to be scheduled in a
shortest path between the two corresponding qstates. Therefore
there is less flexibility as a lower number of solutions are allowed,
in fact the method may even lose the possibility of finding the
optimal solution. On the other hand solutions are in average more
efficient, and that allows the final performance of the algorithm
to highly improve.

Another advantage with respect to the DBGA of [3] is that the
heuristic initialization of the chromosomes proposed in that pa-
per is not needed anymore. The search space reduction produced
by the new coding and decoding scheme results in every chro-
mosome having similar quality as those heuristically initialized,
thus overall simplifying the genetic algorithm.

The following subsections detail the components of the pro-
posed method, termed DBGA-X.

5.1. The coding scheme

A chromosome for round r is a triplet (sgr−1, ch1, ch2), where
sgr−1 is a solution graph to subproblem 1, . . . , r − 1, ch1 is a
permutation of the set of p-s gates of round r , and ch2 contains
the swap insertion strategy for each p-s gate of ch1. The main
difference with respect to the algorithm proposed in [3] lies in
ch2, in which now each position can be either a float number in
the interval [0.0, 1.0) (when using strategy MP), or a −1 (when
sing strategy EST). Both strategies will be detailed in Section 5.2.
ome example chromosomes can be seen in Fig. 8 or in Fig. 4.

.2. The decoding algorithm

In order to build the schedule represented by a chromosome,
he decoding algorithm iterates over the chromosome genes (see
lgorithm 1).
For a gate p− s(qi, qj) in the position k in ch1 (ch1(k)), whose

qstates are in the qubits {n(qi), n(qj)}, the call to SelectSwaps
calculates the swap gates determined by the value contained in
ch2(k) to move the qstates towards the pair of adjacent qubits
{d(qi), d(qj)}, where the gate will be scheduled. Details of the
SelectSwaps procedure are described in the following.
6

Require: A chromosome (sgr−1, ch1, ch2)
Ensure: Solution graph sgr for subproblem defined by rounds 1, . . . , r
sgr ← sgr−1;
for k = 1 to |ch1| do

// ch1(k) = p-s(qi, qj),
// ch2(k) = X-value (swap insertion strategy)
// qi and qj are in the qubits n(qi) and n(qj))
Swaps← SelectSwaps(sgr , ch1(k), ch2(k));
for each sw ∈ Swaps do

Insert swap gate sw in sgr ;
end for
// qi and qj are in adjacent qubits d(qi) and d(qj))
Insert gate p-s(qi, qj) on qubits (d(qi), d(qj)) in sgr ;

end for
Insert one mix gate on all qubits that hold a qstate;
return Solution graph sgr ;

Algorithm 1: Decoding algorithm.

Given the inputs p− s(qi, qj) = ch1(k) and X = ch2(k), a set of
swap gates are introduced to move concurrently qj towards qi and
qi towards qj though one of the shortest paths on QM between
n(qi) and n(qj). Two swap insertion strategies are proposed in this
ork:

1. If X ∈ [0.0, 1.0) strategy MP (Meeting Point) is consid-
ered. Let distij be the distance between n(qi) and n(qj)
through a shortest path; clearly, there exist exactly distij
possible ways the qstates qi and qj can become adjacent
along such path, each corresponding to a different swap
insertion strategy. Fig. 7 shows the swap insertions that
would be produced by X-values in different subintervals for
an example with distij = 9. In the figure, the available swap
insertion strategies are numbered from 1 to distij. Hence,
as X ∈ [0.0, 1.0), the related swap insertion strategy is
z = floor(X ·distij)+1, which corresponds to making distij−z
moves from n(qi) towards n(qj), and z−1 moves from n(qj)
towards n(qi).

2. On the other hand, if X = −1 strategy EST (Earliest Starting
Time) is used, in which the swap insertion consists in
moves through a shortest path depending on the earliest
insertion time of the swap gate. This means that, each time
a swap is inserted, in order to decide between the two
possible moves (i.e. to move n(qi) towards n(qj) or move
n(qj) towards n(qi)) it is chosen the swap gate that can start
in an earlier time in the current partial schedule. Notice
that, since the destination qubits d(qi) and d(qj) are in a
shortest path between the original qubits n(qi) and n(qj),
the swap gates may be inserted independently from n(qi)
and n(qj).

Both swap-insertion strategies MP and EST have to select
hich shortest path to use, in case there are more than one.
he following procedure is applied: every time a swap gate is
nserted, if there are several possible shortest paths for reaching
he destination, it is chosen the swap with the earliest ending
ime of all the possibilities at that point in time (i.e. only looking
t the current swap insertion). Another possibility would be to
ake into account the complete path, but that would be much
ore computationally expensive, particularly if there are many
ossible shortest paths.
Looking at the quantum hardware in Fig. 3(b) (left) and the

axCut problem instance in Fig. 3(a), one feasible chromosome
s the one shown in Fig. 4. From this chromosome, the decoding
lgorithm will produce the solution represented in Figs. 3(b)
right), 5(a) and 5(b). In this example, the X− values in the first

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

t
p

5

t
i
q
t
T
r
o
o
r

s
1
b
a
c
r
i
p
M
r

t
I
p
e
m
c
p
p

b
p
n

s
b
c

u
f
s
t
o

a

6

d
n
p
a
p
p

6

I
o

hree positions in ch2 are irrelevant as the qubits of the first three
-s gates in ch1 are already in adjacent positions.
In the following it is described the procedure depending on

the value of the last component of ch2:

• If the X-value is in the range [0.0, 0.5) (as is in the depicted
example, which is X = 0.43), then strategy MP is applied
and the decoding algorithm inserts a swap gate in order
to move n2 towards n3. There are two possible shortest
paths: through n1 or through n4. In order to select one, the
resulting end time after each insertion is checked; in this
case there is a tie (both would end at time 12) so any of
them can be chosen. Ties are broken by selecting the higher
number (n4 in the example). Therefore, the swap gate is
inserted between n2 and n4, obtaining the depicted solution
of Fig. 5(b) with makespan 16.
• If the X-value is in the range [0.5, 1.0) strategy MP is also

applied, but in this case the decoding algorithm would move
n3 towards n2. There are, again, two possible shortest paths.
However in this case the swap gate between n3 and n1
would end at time 12, but the swap gate between n3 and n4
would end at time 8, so this last one is chosen and inserted
obtaining a solution with makespan 15, i.e. better than the
one of Fig. 5(b) (notice that in this case the p− s(q2, q3) gate
would have a duration of 4, unlike that of Fig. 5(b)). The
resulting solution is represented in Fig. 6.
• If the X-value is−1, then strategy EST is applied. All the pos-

sible swap gates on a shortest path between n3 and n2 are
checked, and that with the lowest starting time is selected.
Hence, the swap gate between n3 and n4 is inserted, as it
can start at time 6, whereas the other possibilities start at
time 10, obtaining again a solution with makespan 15 (see
Fig. 6).

.3. General structure of DBGA-X

The proposed Decomposition-Based Genetic Algorithm,
ermed DBGA-X, uses a similar structure than that presented
n [3]. Its flow chart is depicted in Fig. 9. It is assumed that qstate
i starts in qubit ni for i = 1, . . . ,N . Initial solution graphs SG0 of
he solutions of fictitious round 0 are trivial graphs ginit → gend.
hen the method iterates on the number of compilation passes
= 1, . . . , p, calling a genetic algorithm in each iteration r in
rder to extend to round r the solutions of round r−1. The output
f DBGA-X is the best solution returned by the genetic algorithm
un in round p.

The genetic algorithm called in each iteration r of DBGA-X
tarts from a set of popSize solution graphs SGr−1 for subproblem
, . . . , r − 1. Firstly popSize chromosomes (sgr−1, ch1, ch2) are
uilt, one for each sgr−1 in SGr−1. In those chromosomes ch1 is
random permutation of the p− s gates of round r , whereas

h2 is created in the following way: for each particular gene it is
andomly decided between strategy MP (i.e. a random float value
n [0.0, 1.0)) or strategy EST (−1), depending on a parameter
robStrategyMP that controls the probability of selecting strategy
P . In Section 6.2 the influence of this parameter in the overall
esults is analyzed.

The initial population of chromosomes is evaluated, and then
he genetic algorithm iterates until a stop condition is met.
n each generation, all chromosomes are shuffled in random
airs, which are then applied the crossover and mutation op-
rators with probabilities Pc and Pm respectively. The proposed
ethod for recombination is the extension of the partial mapping
rossover (PMX) introduced in [3] and illustrated in Fig. 8. The
rocedure used in the mutation operator is as follows: each

osition of the ch2 part of each offspring chromosome is modified V

7

y choosing between strategy MP or EST depending on parameter
robStrategyMP, and then if strategy MP is selected a random
umber in the range [0.0, 1.0) is generated.
Then the new solutions are evaluated, and popSize chromo-

omes are selected for the following generation by taking the
est two chromosomes from each pair of parents with their
orresponding two offspring.
The termination condition is a maximum number of consec-

tive generations without improving the best solution found so
ar. When it is met, the genetic algorithm returns a set of popSize
olution graphs SGr . These solution graphs represent a solution to
he full problem if r = p, or will be the input for the next iteration
f DBGA-X if r < p.
In [3] the interested reader can find further details on the

lgorithm.

. Experimental study

The experimental study is organized as follows. Section 6.1
escribes the benchmark set. Then Section 6.2 gives the run-
ing parameters of DBGA-X, analyzes the influence of parameter
robStrategyMP and confirms the efficiency of the decomposition
pproach considering different instance sizes and number of com-
ilation passes. A comparison with state-of-the-art methods is
erformed in Section 6.3.

.1. Benchmark set

The reference benchmark [5] is publicly available in the web2.
t has instances that consider quantum chips of different number
f qubits (N = {4, 8, 21, 40}), utilization levels (u = {90%, 100%})

and number of compilation passes (p = {1, 2}). The utilization
level refers to the maximum percentage of qstates of the quan-
tum chip that are used in the instance. For each combination of
{N, p, u} the reference benchmark has 50 instances, each repre-
senting a graph to be partitioned by the MaxCut process. This
work focuses on instances with u = 100% and p = 2, for being
the most difficult from the reference benchmark.

Recently, larger hardware architectures have been developed,
and so this work proposes new instances of size N = 72 and
N = 127 (see Fig. 1) using the same methodology as that
introduced in [5]. Also, the instances of the reference benchmark
were extended to perform up to p = 5 compilation passes.

6.2. Analysis of DBGA

DBGA-X is implemented in C++ and run in a Intel Core i5-7400
CPU at 3.00 GHz with 16 GB RAM. The algorithm runs 10 times in
each experiment in order to obtain statistically significant results.

A preliminary parameter analysis was performed, finding that
a reasonable configuration for DBGA-X is the following: popula-
tion size of 1000 chromosomes, crossover rate Pc = 100% and
mutation rate Pm = 0.05% for each position of the chromosome.
Stop condition for each compilation pass is set to 200 consecutive
generations with no improvement of the best solution. In this way
similar or lower computation times than previous methods of the
literature are obtained (see Section 6.3).

Some experiments are performed in order to test the pro-
posed swap insertion strategies on instances of several sizes,
considering both 2 and 5 compilation passes. In particular five
values for the parameter probStrategyMP are tested: 0%, 25%, 50%,
75% and 100%, in order to assess the best combination of both
strategies, or if one strategy is strictly better than the other.

2 https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/
entCirComp17_data.zip

https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip
https://ti.arc.nasa.gov/m/groups/asr/planning-and-scheduling/VentCirComp17_data.zip

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

s

7
b
s

Fig. 6. Another solution for the MaxCut instance shown in Fig. 3(a), represented by a quantum circuit (a), the related solution graph (b) and its Gantt chart (c). This
olution would be obtained if the fourth position of ch2 of the chromosome of Fig. 4 is either −1 or in the range [0.5, 1.0).
g
i
g
i
r

=

Fig. 7. Illustration of the strategy MP for inserting swaps. In this example the
distance distij between the qstates is equal to 9. The picture enumerates all the
possible distij swap insertion strategies through which the two qstates can be
made adjacent along that shortest path.

The results show that probStrategyMP = 100% obtains the worst
performance. Then, probStrategyMP = 0% and probStrategyMP =
5% are both significantly better than probStrategyMP = 100%,
ut the differences between 0% and 75% are not statistically
ignificant. Finally, the best configurations are probStrategyMP
8

Fig. 8. Crossover operator: in the first offspring, a random selection of p− s
ates with their associated X-values is chosen from the first parent and placed
n the same positions. Remaining positions are filled with the rest of p− s
ates, preserving the relative order they have in the second parent, and using
ts X-values. In order to create the second offspring the role of the parents is
eversed.

25% and probStrategyMP = 50%, which are both statistically
better than all others, but the differences between 25% and 50%
themselves are not statistically significant. In summary, prob-
StrategyMP = 50% is selected as the best option, as it is slightly
better than 25% (although the differences are not statistically
significant) and significantly better than 0%, 75% and 100%. For

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

r

Fig. 9. Flow chart of DBGA-X.

eference, the p-values of a Wilcoxon signed rank test are the
following: 0.0008646 vs. 0%, 0.4164 vs. 25%, 0.005459 vs. 75% and
0.00000001852 vs. 100%.

The efficiency of the decomposition approach was proven
in [3], but this work extends that study to include larger instances
and additional compilation rounds, in order to see its scalability.
To this end, two variants of DBGA-X are run on a subset of the
instances, in particular the first 10 instances of each subset with
u = 100%, considering p = {2, 5} and N = {8, 21, 40, 72, 127}.
The first variant does not decompose the problem in p rounds,
but solves it all at once, while in the second variant the problem
decomposition is used. The results of the comparison are reported
in Table 1, showing the average makespan in 10 runs, the stan-
dard deviation, and the average computational time taken in a
single run.

At a first glance it can be seen that the decomposition scheme
obtains better makespan (values in bold indicate the lowest aver-
age in each instance), with usually lower standard deviation and
lower computation times. In fact, it performs better and better
as the problem difficulty increases, either by considering larger
chip sizes or by increasing the number of compilation passes. For
N = 8 the differences are very small, in fact in many cases the
version without decomposition produces slightly better results.
But when the problem difficulty increases there are makespan
reductions: 3.3% average makespan reduction when considering
N = 21 instances with p = 2 passes, and as much as 43.6%
9

average reduction in the most difficult instances, i.e. those with
N = 127 and p = 5 passes. Not only the decomposition scheme
produces better results, but it also takes smaller computational
time. This is because when solving all the problem at once it takes
much longer to decode a chromosome, as all gates from all rounds
have to be scheduled each time. Therefore it can be concluded
that the large complexity of the problem makes it very difficult
to solve and so its decomposition into smaller pieces, as already
suggested in [3], is well motivated.

Interestingly, the makespan does not increase proportionally
to the number of compilation passes, as it can be seen that
makespans considering p = 5 are less than 250% higher than
those with p = 2, as intuitively should be. It seems that the
reduction is larger and larger as the instance size increases: in
N = 8 instances the makespan increases by only 238% when
performing p = 5 (with respect to p = 2), whereas in N = 127
instances the makespan increases by 183%. It can be concluded
that DBGA-X is able to concurrently execute gates from different
compilation passes in different parts of the quantum chip, and
this leads to solutions with lower makespan, particularly in the
largest quantum chips.

Fig. 10 shows two executions of DBGA-X with and without
decomposing the problem in rounds, and two executions of the
original DBGA proposed in [3] with and without decomposing
the problem in rounds. The experiments were performed using
the same computational time, for the instance no. 1 of the subset
characterized by N = 72, u = 100% and p = 5. In Figs. 10(a) and
10(c) four large jumps in the average and best makespan can be
noticed, which are caused by the algorithms switching from one
round to the next. On the other hand, in Figs. 10(b) and 10(d)
the full problem is solved at once and it can be observed that
the algorithms are able to perform a lower number of genera-
tions in the same time, and also that the resulting makespan is
considerably worse. Although the convergence patterns obtained
by DBGA are comparable to those of DBGA-X, it can be seen that
much worse makespan values are reached, even if the number
of generations is higher. The more chaotic average values in the
original DBGA are due to the diversification step performed in
that method, which is not present in the new DBGA-X.

The new instances of size N = 72 and N = 127 and the
full results and best schedules found by DBGA-X for all instances
considered are publicly available on the web, in order to promote
future research and comparisons with this proposal3.

6.3. Comparison to the state of the art

The previous best state-of-the-art method is the ant colony
optimization algorithm (QCC-ACO) presented in [12]. The authors
reported generally better results (particularly in the larger N =
40 instances) than those of the decomposition-based genetic al-
gorithm (DBGA) described in [3], which in turn obtained generally
better results than those of the rollout heuristic (RH) presented
in [11], which are mostly better than those obtained by the
genetic algorithm (GA) described in [10].

QCC-ACO [12] was implemented in Java and run on an Intel
Xeon E312 machine with 16 GB RAM. Its running time was
limited to 60 s for N = 8 instances and to 300 s for the N = 21
and N = 40 instances. DBGA [3] was implemented in C++ and
run in a Intel Core i5-7400 CPU at 3.00 GHz with 16 GB RAM and
its average running time is about 5 s in N = 8 instances, 40 s
in N = 21 instances and 150 s in N = 40 instances. RH [11] was
implemented in Matlab and run on Intel i7 processor, 16 GB RAM
and Windows 7 operating system. For N = 8 the execution time
was limited to a maximum of 60 s, whereas for larger instances
the maximum was set to 300 s. GA [10] was implemented in Java
and given 60, 300 and 600 s for instances of size 8, 21 and 40
respectively.

3 Repository section in http://www.di.uniovi.es/iscop/

http://www.di.uniovi.es/iscop/

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

c

t
o
t
m

Table 1
Results of DBGA-X compared with a version without problem decomposition, considering different instance sizes N = {8, 21, 40, 72, 127} and different number of
ompilation passes p = {2, 5}.
Instance p = 2 p = 2 p = 5 p = 5

DBGA-X (no decomposition) DBGA-X DBGA-X (no decomposition) DBGA-X

Average Std.dev. Time Average Std.dev. Time Average Std.dev. Time Average Std.dev. Time

N = 8 Instances
1 34.0 0.0 2.5 35.0 0.0 1.1 81.3 1.25 7.7 82.7 0.48 3.3
2 33.0 0.0 2.7 35.0 0.0 1.1 78.7 0.48 7.9 86.0 0.0 3.4
3 31.0 0.0 2.7 31.0 0.0 1.1 73.7 0.95 8.7 73.9 0.32 3.4
4 32.0 0.0 2.6 32.0 0.0 1.1 77.1 0.32 8.3 78.7 2.06 3.5
5 27.0 0.0 2.6 27.3 0.48 1.1 62.6 0.52 7.8 62.9 0.32 3.4
6 33.1 0.32 2.6 33.9 0.32 1.1 80.2 1.23 8.0 80.4 1.71 3.3
7 30.0 0.0 2.6 30.0 0.0 1.1 69.3 0.67 7.9 69.0 0.0 3.3
8 31.7 0.48 2.8 32.0 0.0 1.1 74.5 0.71 6.9 77.0 0.0 3.3
9 35.0 0.0 2.7 35.0 0.0 1.1 84.4 1.17 9.3 83.0 0.0 3.5
10 35.3 0.82 2.9 34.0 0.0 1.2 85.0 1.05 10.0 82.0 0.0 3.7

#best 9 5 7 3

N = 21 Instances
1 46.9 1.29 13.1 45.4 0.52 5.7 107.3 3.06 75.3 103.4 2.22 17.3
2 48.8 1.32 13.5 48.1 0.32 5.4 120.8 3.71 83.5 112.7 1.83 17.2
3 43.1 2.28 12.6 41.5 1.18 6.0 94.0 3.4 66.6 88.0 3.46 18.6
4 44.2 0.92 13.3 43.7 0.82 6.2 103.3 2.91 53.8 95.9 2.23 17.3
5 51.5 2.8 15.3 47.5 1.65 6.1 117.4 4.43 98.5 110.8 4.54 19.1
6 49.0 0.67 12.8 48.4 0.7 5.5 113.9 5.53 88.0 108.0 1.76 17.0
7 52.2 1.32 13.4 54.3 0.67 5.1 119.9 3.31 85.2 118.7 3.59 16.5
8 48.1 1.79 12.9 45.7 0.67 6.2 103.3 3.02 70.2 100.5 2.84 18.0
9 52.8 1.14 13.6 48.5 1.84 6.0 119.1 5.17 95.9 111.1 3.78 18.6
10 53.5 1.96 15.1 50.6 0.7 6.6 124.1 3.41 72.2 118.2 2.39 17.3

#best 1 9 0 10

N = 40 Instances
1 62.6 4.43 43.8 56.0 1.41 23.6 131.2 5.03 463.3 124.3 3.71 74.2
2 71.7 5.48 46.8 62.4 1.43 26.4 146.5 6.87 532.9 132.6 4.14 80.9
3 67.5 4.67 54.4 59.7 1.64 26.7 144.4 7.95 528.9 127.0 3.77 75.5
4 76.0 5.23 46.1 64.2 2.7 30.9 146.8 10.05 368.2 130.8 4.16 82.0
5 70.2 3.01 49.8 65.2 3.33 29.2 145.9 8.16 558.5 133.3 5.14 76.2
6 78.4 4.14 48.4 64.9 2.13 30.5 157.9 8.77 492.2 136.5 3.75 86.0
7 78.7 6.58 48.0 63.9 2.77 26.7 158.5 5.87 567.9 132.7 3.74 82.7
8 67.6 3.1 48.7 59.0 1.05 28.2 143.8 9.74 442.6 126.3 3.95 72.4
9 68.7 4.37 47.9 58.3 2.06 26.8 143.8 8.13 391.2 124.8 2.15 75.7
10 79.4 3.81 47.3 67.4 3.72 27.7 170.8 30.81 510.7 139.2 5.29 81.2

#best 0 10 0 10

N = 72 Instances
1 92.8 5.59 168.6 72.8 3.01 112.6 203.4 37.13 1487.3 137.2 3.61 336.1
2 96.4 5.62 195.6 76.0 7.72 119.1 257.5 26.37 1264.2 143.3 4.83 336.1
3 96.2 7.94 160.5 73.4 2.12 111.1 241.5 42.1 1255.3 141.6 4.45 341.5
4 88.9 7.82 171.1 74.1 6.12 115.6 176.8 25.73 1775.5 134.4 5.64 348.8
5 103.5 4.74 204.5 81.3 5.1 119.1 271.1 31.76 1355.5 158.7 11.35 349.0
6 97.3 7.94 188.2 72.5 5.84 114.2 265.6 36.72 1039.8 150.7 4.35 351.7
7 96.1 5.11 187.4 75.4 3.72 120.2 219.8 55.07 1787.0 140.3 3.95 361.8
8 97.4 7.32 177.1 76.1 5.63 114.4 208.7 34.25 1656.0 142.8 4.73 338.2
9 90.3 5.25 178.3 70.8 3.12 119.8 225.7 24.66 1276.0 134.4 3.2 333.9
10 87.3 6.6 161.9 69.6 3.75 97.9 200.4 31.86 1558.8 137.6 3.98 288.3

#best 0 10 0 10

N = 127 Instances
1 175.4 12.26 868.8 141.9 5.72 445.2 463.6 22.71 4709.9 259.1 19.33 1478.5
2 181.9 14.83 897.6 141.1 5.47 505.9 422.5 34.78 5175.1 262.6 8.13 1688.3
3 191.0 12.71 844.5 159.8 6.97 439.3 527.5 74.28 4188.0 280.2 11.05 1541.1
4 183.5 12.03 849.7 148.2 7.44 471.7 451.6 33.2 4762.7 269.7 8.67 1549.7
5 189.5 14.17 861.0 149.0 6.72 471.2 502.6 69.84 4861.1 280.5 11.09 1657.0
6 175.1 7.02 860.8 146.4 11.03 422.8 490.7 64.58 4737.1 270.8 14.02 1580.6
7 186.2 10.75 865.1 147.9 4.93 474.2 465.3 40.69 4766.1 265.4 12.83 1539.1
8 171.1 9.84 893.9 142.0 5.68 451.9 481.9 89.27 5134.0 256.0 7.47 1603.5
9 186.7 10.03 875.2 147.7 7.26 451.9 492.8 43.12 4876.6 279.8 10.61 1548.1
10 193.3 13.53 861.5 145.8 3.22 480.3 479.2 31.3 4816.1 265.0 10.12 1597.0

#best 0 10 0 10

Values in bold indicate the lowest average result in each instance.
D
p

As it can be seen in Table 1 (p = 2 columns), computation
imes of DBGA-X are lower than those used by previous meth-
ds of the literature, although they are not directly comparable
o those of QCC-ACO, RH and GA due to differences in target
achine and programming language.
 r

10
Fig. 11 graphically shows a comparison of the newly proposed
BGA-X and these previous methods. In particular it is shown the
ercentage reduction in makespan of the average results (in 10
uns) of each method with respect to the GA proposed in [10],

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

t

8
i

Fig. 10. Two example convergence graphs of the proposed DBGA-X (in the lower half) with and without decomposition, compared to two convergence graphs of
he original DBGA proposed in [3] (in the upper half). Experiments were performed in instance no. 1 of the subset characterized by N = 72, u = 100% and p = 5.
x-axis represent generations and y-axis represent fitness values. Avg represents the evolution of the average fitness of the population, and Best represents the best
fitness of the population.
which is arguably the worst of the five methods (DBGA-X, QCC-
ACO, DBGA, RH, GA). The comparison in N = 8, N = 21 and
N = 40 instances is presented in Figs. 11(a), 11(b) and 11(c)
respectively.

DBGA-X seems superior to other methods in N = 21, where it
obtains a better average result in 41 of the 50 instances, with an
average makespan reduction of 14.95% with respect to GA. The
differences are even larger when considering N = 40 instances,
where it obtains a better average result in 49 of the 50 instances,
with an average makespan reduction of 30.95% with respect
to GA. In N = 8 instances the differences between methods
are smaller, but results of DGBA-X are still better, obtaining an
average makespan reduction of 5.17% with respect to GA (versus
2.71% of QCC-ACO, 1.68% of DBGA and 2.21% of RH). Regarding
best results, DBGA-X established new best solutions for 12 out
of 50 of the N = 8 instances, for 34 out of 50 of the N = 21
instances, and for 47 out of 50 of the N = 40 instances.

Non-parametric statistical tests are performed in order to
validate the comparison. A Shapiro–Wilk test confirms the non-
normality of the data, and then paired Wilcoxon signed rank
tests are used to compare DBGA-X with the other methods, us-
ing 95% confidence level. The p- values obtained with respect
to GA are 0.00000003662 in N = 8 instances, 3.864e−10 in
N = 21 instances and 3.883e−10 in N = 40 instances. The p-
values obtained with respect to RH are 0.000004752 in N = 8
instances, 4.13e−10 in N = 21 instances and 3.889e−10 in
N = 40 instances. The p- values obtained with respect to DBGA
are 0.000000594 in N = 8 instances, 3.887e−10 in N = 21
instances and 3.887e−10 in N = 40 instances. Finally, with
respect to QCC-ACO the p- values obtained are 0.00005814 in N =
instances, 0.00000007129 in N = 21 instances and 5.936e−10
n N = 40 instances. Hence, for all instance sizes, the differences

11
in the average result between DBGA-X and the previous methods
of the state of the art are statistically significant, although the
differences are smaller in the easier N = 8 instances.

As an example, Fig. 12 shows the Gantt chart of the best
schedules obtained by DBGA-X to the instance no. 22 of the subset
characterized by N = 8, u = 100% and p = 2, considering
different number of compilation passes, p = 1, p = 2 and
p = 5. In particular, the schedule with p = 2 has a makespan
of 37, which is lower than the makespan reported by all previous
methods in the literature for the same instance. It can also be
observed how an increasing number of compilation passes creates
some efficiencies that can improve the overall result, and so the
makespan with p = 5 is less than 5 times that of p = 1, and it
is also less than 2.5 times that of p = 2. In general, this is due to
the fact that the previous compilation passes do perform a sort
of re-adjustment of the state that favors the depth optimization
for the subsequent passes. This does not occur on the first pass,
as in the QCCP problem version the initial state is fixed.

7. Conclusions and future work

An effective genetic algorithm for the Quantum Circuit Compi-
lation Problem (QCCP) was designed based on the Decomposition-
Based Genetic Algorithm (DBGA) proposed in [3]. In particular,
a new coding/decoding mechanism was devised that reduces
the search space by restricting the insertion of swap gates to
a shortest path between the incumbent qubits. Two strategies
for inserting swap gates are described, and the proper balance
between both was figured out.

In the experimental study the efficiency of the proposal,
termed DBGA-X, is proven by showing how the decomposition
approach gives increasing benefits as the chip size and number

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

t

o
f
o
c
w

Fig. 11. Comparison of DBGA-X with previous state of the art methods RH [11], DBGA [3] and QCC-ACO [12]: percentage improvement in makespan with respect
o GA [10] in all 50 instances of each of the (a) N = 8, (b) N = 21 and (c) N = 40 benchmarks.
f compilation passes increase. The proposal improves the per-
ormance of previous state-of-the-art methods in most instances
f the reference benchmark introduced in [5], which is the most
ommonly used in the literature. Larger benchmark instances
ith N = 72 and N = 127 qubits and p = 5 compilation passes

are also studied, which are not considered in previous studies but
they are certainly more interesting in real environments.

The remarkable performance of DBGA-X compared with previ-
ous methods can be attributed to the extreme complexity of the
QCCP problem, which motivates reducing the search space to a
set of efficient solutions, even if the method may lose the ability
to reach the optimal one.

There are many possible avenues for future research. The
application of QAOA to other problems, as for example the Graph
Coloring Problem [17] or the Minimum Vertex Cover Problem
[27], is a subject of further study.

The MaxCut problem can also be tackled more thoroughly
and consider the extensions described in [10,18,28,29]. One is
the QCCP-I (variable initialization of qstates) which considers the
12
initial location of qstates in the quantum hardware as additional
decision variables. Another extension is the QCCP-X (crosstalk
constraints), that prohibits executing at the same time two gates
on neighboring qubits, in order to avoid possible interferences
between qubits.

Multiobjective optimization is an interesting topic, because
there are other measures that are interesting to minimize, besides
the makespan. As an example, in [30] the authors minimize both
the number of gates and the compilation time. In fact, in [31] it
is suggested that the minimization of the number of swap gates
and the circuit’s depth might be mutually conflicting objectives,
therefore motivating a multiobjective approach. Another example
can be found in [32], where the authors consider the gate error
rates in order to maximize the circuit’s fidelity, while minimizing
the number of gates.

Finally, new hardware architectures and other emerging tech-
nologies are being developed, as for example the recent IBM
Osprey with 433 qubits, and so adapting the solving methods to
exploit them is an important line of future work.

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

o
f

C

n
&
e
W
t

D

r

Fig. 12. Gantt representation of the best solutions to the instance no. 22 of the subset characterized by N = 8, u = 100% and p = 2, considering different number
f compilation passes: (a) p = 1, (b) p = 2, (c) p = 5. In the case with p = 5 in order to improve visibility the Gantt is divided in two parts: from time 0 to 46, and
rom time 46 to 89.
RediT authorship contribution statement

Lis Arufe: Sotfware, Data curation, Validation, Writing – origi-
al draft. Riccardo Rasconi: Conceptualization, Writing – review
editing. Angelo Oddi: Conceptualization, Writing – review &

diting. Ramiro Varela: Funding adquisition, Formal analysis,
riting – review & editing. Miguel A. González: Conceptualiza-

ion, Supervision, Methodology, Writing – review & editing.

eclaration of competing interest

The authors declare the following financial interests/personal
elationships which may be considered as potential competing
13
interests: Ramiro Varela reports financial support was provided
by Spanish State Agency of Research. Angelo Oddi, Riccardo Ras-
coni reports financial support was provided by European Space
Agency. Miguel Angel Gonzalez, Lis Arufe reports financial sup-
port was provided by Spanish State Agency of Research. The
corresponding author is member of the editorial board of Applied
Soft Computing

Data availability

The data is available through links showed in the manuscript.

L. Arufe, R. Rasconi, A. Oddi et al. Applied Soft Computing 144 (2023) 110456

A

A
R
F
E

R

cknowledgments

This research has been supported by the Spanish Government,
EI under research project PID2019-106263RB-I00. A. Oddi and
. Rasconi were supported by the PNRR MUR project PE0000013-
AIR and ESA, France Contract No. 4000112300/14/D/MRP ‘‘Mars
xpress Data Planning Tool MEXAR2 Maintenance’’.

eferences

[1] M. Zidan, S.F. Hegazy, M. Abdel-Aty, S.S. Obayya, Rapid solution of logical
equivalence problems by quantum computation algorithm, Appl. Soft
Comput. 132 (2023) 109844.

[2] D. Venturelli, M. Do, B. O’Gorman, J. Frank, E. Rieffel, K.E. Booth, T.
Nguyen, P. Narayan, S. Nanda, Quantum circuit compilation: An emerging
application for automated reasoning, in: S. Bernardini, K. Talamadupula, N.
Yorke-Smith (Eds.), Proceedings of the 12th International Scheduling and
Planning Applications Workshop, SPARK 2019, 2019, pp. 95–103.

[3] L. Arufe, M.A. González, A. Oddi, R. Rasconi, R. Varela, Quantum circuit
compilation by genetic algorithm for quantum approximate optimization
algorithm applied to maxcut problem, Swarm Evol. Comput. 69 (2022)
101030.

[4] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, M.D. Lukin, Quantum approximate
optimization algorithm: Performance, mechanism, and implementation on
near-term devices, Phys. Rev. X 10 (2).

[5] D. Venturelli, M. Do, E.G. Rieffel, J. Frank, Temporal planning for compila-
tion of quantum approximate optimization circuits, in: Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI
2017, 2017, pp. 4440–4446.

[6] D. Venturelli, M. Do, E. Rieffel, J. Frank, Compiling quantum circuits to
realistic hardware architectures using temporal planners, Quantum Sci.
Technol. 3 (2) (2018) 025004.

[7] E. Farhi, J. Goldstone, S. Gutmann, A quantum approximate optimization
algorithm applied to a bounded occurrence constraint problem, 2014,
arXiv:1412.6062.

[8] E.A. Sete, W.J. Zeng, C.T. Rigetti, A functional architecture for scalable
quantum computing, in: 2016 IEEE International Conference on Rebooting
Computing, ICRC, IEEE, 2016, pp. 1–6.

[9] A. Oddi, R. Rasconi, Greedy randomized search for scalable compilation of
quantum circuits, in: W.-J. van Hoeve (Ed.), CPAIOR 2018: Integration of
Constraint Programming, Artificial Intelligence, and Operations Research,
Springer International Publishing, Cham, 2018, pp. 446–461.

[10] R. Rasconi, A. Oddi, An innovative genetic algorithm for the quantum
circuit compilation problem, in: Proceedings of the Thirty-Third AAAI
Conference on Artificial Intelligence, Vol. 33, 2019, pp. 7707–7714.

[11] S. Chand, H.K. Singh, T. Ray, M. Ryan, Rollout based heuristics for the quan-
tum circuit compilation problem, in: 2019 IEEE Congress on Evolutionary
Computation, CEC, 2019, pp. 974–981.

[12] M. Baioletti, R. Rasconi, A. Oddi, A novel ant colony optimization strategy
for the quantum circuit compilation problem, in: C. Zarges, S. Verel (Eds.),
Evolutionary Computation in Combinatorial Optimization, EvoCOP 2021,
in: Lecture Notes in Computer Science, vol. 12692, Springer International
Publishing, Cham, 2021, pp. 1–16.

[13] R. Herrman, L. Treffert, J. Ostrowski, P.C. Lotshaw, T.S. Humble, G. Siopsis,
Impact of graph structures for qaoa on maxcut, Quantum Inf. Process. 20
(2021) 289.

[14] K. Marwaha, Local classical max-cut algorithm outperforms p = 2 qaoa on
high-girth regular graphs, Quantum 5 (2021) 437.
14
[15] J. Larkin, M. Jonsson, D. Justice, G.G. Guerreschi, Evaluation of qaoa based
on the approximation ratio of individual samples, Quantum Sci. Technol.
7 (4) (2022) 045014.

[16] X. Zhou, S. Li, Y. Feng, Quantum circuit transformation based on simulated
annealing and heuristic search, 2019, arXiv:1908.08853.

[17] M. Do, Z. Wang, B. O’Gorman, D. Venturelli, E. Rieffel, J. Frank, Planning
for compilation of a quantum algorithm for graph coloring, 2020, arXiv:
2002.10917.

[18] K.E. Booth, M. Do, J.C. Beck, E. Rieffel, D. Venturelli, J. Frank, Compar-
ing and integrating constraint programming and temporal planning for
quantum circuit compilation, in: Twenty-Eighth International Conference
on Automated Planning and Scheduling, ICAPS 2018, 2018, pp. 366–374.

[19] B. Samuel, J. Mathew, Resource allocation in a repetitive project scheduling
using genetic algorithm, IOP Conf. Ser.: Mater. Sci. Eng. 330 (2018) 012098.

[20] S. Kaiafa, A.P. Chassiakos, A genetic algorithm for optimal resource-driven
project scheduling, Procedia Eng. (ISSN: 1877-7058) 123 (2015) 260–267.

[21] G.S. Budhi, K. Gunadi, D.A. Wibowo. (, Genetic algorithm for scheduling
courses, in: R. Intan, C.H. Chi, H. Palit, L. Santoso (Eds.), Intelligence in
the Era of Big Data, ICSIIT 2015, in: Communications in Computer and
Information Science, vol. 516, Springer, Berlin, Heidelberg, 2015.

[22] X. Luo, Q. Qian, Y.F. Fu, Improved genetic algorithm for solving flexible job
shop scheduling problem, Procedia Comput. Sci. 166 (2020) 480–485.

[23] A.A.M. Zahir, S.S.A. Alhady, W.A.F.W. Othman, A.A.A. Wahab, M.F. Ah-
mad, Objective functions modification of GA optimized PID controller for
brushed DC motor, Int. J. Electr. Comput. Eng. 10 (2020) 2426–2433.

[24] M.F. Ahmad, N.A.M. Isa, W.H. Lim, K.M. Ang, Differential evolution with
modified initialization scheme using chaotic oppositional based learning
strategy, Alex. Eng. J. 61 (2022) 11835–11858.

[25] M. Fernández-Pendás, E.F. Combarro, S. Vallecorsa, J. Ranilla, I.F. Rúa,
A study of the performance of classical minimizers in the quantum
approximate optimization algorithm, J. Comput. Appl. Math. 404 (2022)
113388.

[26] A. Botea, A. Kishimoto, R. Marinescu, On the complexity of quantum circuit
compilation, in: Eleventh Annual Symposium on Combinatorial Search,
SOCS, 2018, pp. 138–142.

[27] Y. Zhang, X. Mu, X. Liu, X. Wang, X. Zhang, K. Li, T. Wu, D. Zhao, C.
Dong, Applying the quantum approximate optimization algorithm to the
minimum vertex cover problem, Appl. Soft Comput. 118 (2022) 108554.

[28] M. Alam, A. Ash-Saki, S. Ghosh, Circuit compilation methodologies for
quantum approximate optimization algorithm, in: 2020 53rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO, 2020,
pp. 215–228.

[29] L. Arufe, R. Rasconi, A. Oddi, R. Varela, M.Á. González, Compiling single
round qccp-x quantum circuits by genetic algorithm, in: J.M. Ferrández
Vicente, J.R. Álvarez-Sánchez, F. de la Paz López, H. Adeli (Eds.), Bio-
Inspired Systems and Applications: From Robotics to Ambient Intelligence,
Springer International Publishing, Cham, 2022, pp. 88–97.

[30] M.Y. Siraichi, V.F. d. Santos, S. Collange, F.M.Q. Pereira, Qubit. allocation,
Qubit allocation, in: Proceedings of the 2018 International Symposium on
Code Generation and Optimization, CGO 2018, Association for Computing
Machinery, New York, NY, USA, 2018, pp. 113–125.

[31] G. Li, Y. Ding, Y. Xie, Tackling the qubit mapping problem for nisq-
era quantum devices, in: Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, Association for Computing Machinery, New
York, NY, USA, 2019, pp. 1001–1014.

[32] S. Niu, A. Suau, G. Staffelbach, A. Todri-Sanial, A hardware-aware heuristic
for the qubit mapping problem in the nisq era, IEEE Trans. Quantum Eng.
1 (2020) 1–14.

http://refhub.elsevier.com/S1568-4946(23)00474-X/sb1
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb1
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb1
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb1
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb1
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb2
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb3
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb4
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb4
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb4
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb4
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb4
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb5
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb6
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb6
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb6
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb6
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb6
http://arxiv.org/abs/1412.6062
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb8
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb8
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb8
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb8
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb8
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb9
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb10
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb10
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb10
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb10
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb10
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb11
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb11
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb11
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb11
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb11
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb12
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb13
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb13
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb13
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb13
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb13
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb14
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb14
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb14
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb15
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb15
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb15
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb15
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb15
http://arxiv.org/abs/1908.08853
http://arxiv.org/abs/2002.10917
http://arxiv.org/abs/2002.10917
http://arxiv.org/abs/2002.10917
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb18
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb19
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb19
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb19
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb20
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb20
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb20
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb21
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb22
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb22
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb22
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb23
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb23
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb23
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb23
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb23
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb24
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb24
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb24
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb24
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb24
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb25
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb26
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb26
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb26
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb26
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb26
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb27
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb27
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb27
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb27
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb27
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb28
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb29
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb30
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb31
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb32
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb32
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb32
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb32
http://refhub.elsevier.com/S1568-4946(23)00474-X/sb32

	New coding scheme to compile circuits for Quantum Approximate Optimization Algorithm by genetic evolution
	Introduction
	Background Literature
	QAOA and MaxCut
	MaxCut problem

	The Quantum Circuit Compilation Problem
	The Decomposition-Based Genetic Algorithm
	The coding scheme
	The decoding algorithm
	General structure of DBGA-X

	Experimental study
	Benchmark set
	Analysis of DBGA
	Comparison to the state of the art

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

