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A B S T R A C T   

The combination of a low-density geochemical survey, multispectral data obtained with Unmanned Aerial 
Vehicle-Remote Sensing (UAV-RS), and a machine learning technique was tested in the search for a statistically 
robust prediction of contaminant distribution in soil and vegetation, for zones with a highly variable pollutant 
load. To this end, a novel methodology was devised by means of a limited geochemical study of topsoil and 
vegetation combined with multispectral data obtained by UAV-RS. The methodology was verified in an area 
affected by Hg and As contamination that typifies abandoned mining-metallurgy sites in recent decades. A broad 
selection of spectral indices were calculated to evaluate soil-plant system response, and four machine learning 
techniques (Multiple Linear Regression, Random Forest, Generalized Boosted Models, and Multivariate Adaptive 
Regression Spline) were tested to obtain robust statistical models. Random Forest (RF) provided the best non- 
biased models for As and Hg concentration in soil and vegetation, with R2 and rRMSE (%) ranging from 
0.501 to 0.630 and from 180.72 to 46.31, respectively, and with acceptable values for RPD and RPIQ statistics. 
The prediction and mapping of contaminant content and distribution in the study area were well enough 
adjusted to the geochemical data and revealed superior accuracy for As than Hg, and for vegetation than topsoil. 
The results were more precise than those obtained in comparable studies that applied satellite or spectrometry 
data. In conclusion, the methodology presented emerges as a powerful tool for studies addressing soil and 
vegetation pollution and an alternative approach to classical geochemical studies, which are time-consuming and 
expensive.   

1. Introduction 

Soil degradation, in particular pollution, affects the supply of 
ecosystem services such as carbon sequestration, nutrient and water 
cycles, erosion control, climate regulation, and habitats for plants and 
animals, as well as opportunities for human development . Industrial 
and mining areas are often sources of pollutants, causing severe dete-
rioration of environmental compartments, particularly soil . Potentially 
Toxic Elements (PTEs), such as heavy metals and As, are among the most 
common soil pollutants, and the evaluation of their abundance, distri-
bution, and mobility is complex (Boente et al., 2022; Forján et al., 2018) 
and may condition risk assessment and the selection of the most suitable 

remediation technologies. Wherever potentially polluted soils are used 
for farming and/or agricultural activities, it is crucial to determine PTE 
concentrations in order to evaluate health risks (Ballabio et al., 2021; 
Gil-Díaz et al., 2019). PTEs enter the food chain through crops, pastures 
and meadows used to rear livestock (Allevato et al., 2019; Manea et al., 
2020), and therefore, PTE monitoring not only in soil but also in vege-
tation is needed (Antonious & Kochhar, 2009; Guerra et al., 2012). 
Traditional soil and vegetation sampling is carried out on a grid pattern, 
followed by chemical analysis and subsequent interpretation. However, 
this approach can be costly, slow, and not well-suited for heterogeneous 
soils. Indeed, in these cases, multi-element pollution, different sources of 
pollutants, and external variables (geomorphological, meteorological, 
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etc.) should be taken into account (Boente et al., 2022). 
To evaluate the health of soil and vegetation, optical remote sensing 

(ORS) observations provide a reliable alternative approach with a much 
higher spatial resolution than a sampling grid (Chuvieco & Huete, 
2009). However, classical ORS, such as airborne and spaceborne sen-
sors, have spatial and temporal resolution limitations and high opera-
tional costs, although images are usually free for users. These limitations 
can be solved with the use of Unmanned Aerial Vehicle & Remote 
Sensing (UAV-RS) technologies (Matese et al., 2015; Riveros-Burgos 
et al., 2021), which are widely used in forestry (Giannetti et al., 2020; 
Guerra-Hernández et al., 2019), agronomy (Jurado et al., 2020; Rallo 
et al., 2020; Viera-Torres et al., 2020), climate change research (van 
Tiggelen et al., 2021), natural risk management (Filkov et al., 2021; 
Weber et al., 2020), and soil science (Garg et al., 2020; Hout et al., 
2020). UAV-RS has been used in soil pollution studies (Choe et al., 2008; 
Jia et al., 2021a) and, when compared with conventional methodolo-
gies, it is faster, less expensive, and non-invasive (Chabrillat et al., 
2019). In this context, when present at high concentrations, PTEs 
interact with natural aggregates in soil (Chakraborty et al., 2017) and 
alter vegetation growth (Zinnert et al., 2013). Thus, plants are bio-
indicators of soil health (Gholizadeh & Kopačková, 2019). Moreover, 
anomalies can be detected with UAV-RS via the following: (i) directly 
from reflectance information; (ii) from the derivate information pro-
vided by spectral indices based on the reflectance properties of coverage; 
and (iii) from the combination of these data sources (Kureel et al., 2021). 

The spectral reflectance measured in remote sensing studies in-
dicates the physical-optical response of plant tissues, thus providing 
information about plant physiology (Cho et al., 2012; Gholizadeh & 
Kopačková, 2019) but also the biophysical properties of the canopy, the 
reflectance of the soil on which the vegetation is growing, the obser-
vation geometry, and the characteristics of the light source (Asner, 
1998). The presence of high PTE concentrations regulates the amount of 
energy absorbed/emitted by a surface, thereby making it easier to 
interpret the influence of these elements on the electromagnetic spec-
trum (Chakraborty et al., 2014; Jia et al., 2021b). These geochemical 
alterations can be detected through the chlorophyll dynamics and cell 
structure of vegetation as there is a correlation between PTE concen-
trations, vegetation alterations (e.g., stress), and the reflectance in 
VIS-NIR spectral range (Dunagan et al., 2007; Shi et al., 2016b; Wang 
et al., 2022). 

Irrespective of the methodology used for data acquisition, the map-
ping of PTE distribution in soil and vegetation is challenging. A series of 
single-component contamination indices or indicators are commonly 
mapped (Boente et al., 2022) typically using Geostatistical Interpolation 
Methods (GIMs), such as kriging, which were developed to calculate the 
spatial distribution of variables with a relatively homogeneous distri-
bution (Jia et al., 2021a; Leung et al., 2018). However, GIMs are not 
suitable to study point source pollution. Also, in order to be used 
properly, these methods may depend on highly correlated predictors or, 
at least, on the existence of autocorrelation together with a dense sam-
pling to build a valuable spatial model (Demšar, 2006; Zhang et al., 
2018). As an alternative, machine learning (ML) techniques have 
emerged as the most popular approaches to address the limitations of 
GIMs (Chakraborty et al., 2015; Emadi et al., 2020). Within ML tech-
niques, algorithms that simplify the function to a known form are called 
parametric ML algorithms. In contrast, non-parametric methods do not 
make strong assumptions about the form of the mapping function and 
thus they are free to learn any functional form from the training data. As 
regards remote sensing, considerable attention has been given to 
non-parametric techniques (Gao et al., 2022; García-Gutiérrez et al., 
2015; Novo-Fernández et al., 2019). 

The use of remote sensing technologies can accelerate soil pollution 
mapping at high resolution and at a lower cost and in less time than soil 
survey approaches. In this regard, recent studies have addressed the 
electromagnetic spectrum for modelling the concentrations of chemical 
elements in soil, both with proximal (e.g., Gholizadeh et al., 2020) and 

remote (e.g., Boente et al., 2020) sensors. On occasions, ML techniques 
have been applied to improve the interpretation (e.g., Jia et al., 2021b), 
although the models obtained are usually complex and the role of the 
variables selected may be difficult to interpret (Jia et al., 2021a). In fact, 
these studies reported several shortcomings. In this regard, for instance, 
Gholizadeh et al. (2020) obtained results that were difficult to extrap-
olate to continuous spatial information because the spectral data 
collected were punctual. Jia et al. (2021b), in turn, identified As point 
sources using spectral information combined with distances to potential 
sources and to receptors, thus achieving continuous spatial information 
but not based solely on spectral data. On the whole, challenges remain 
and further research into combining remote sensing and ML for soil 
pollution mapping is required. 

Given the preceding considerations, here we propose a novel meth-
odology based on the combination of a low-density sampling with the 
potential of multispectral data obtained by UAV-RS, both followed by 
the selection of the most appropriate ML technique to interpret the re-
sults. We hypothesized that this approach addresses the following spe-
cific objectives:  

- Effectiveness to cover the above-mentioned research gaps and the 
issues of mapping point-source pollution.  

- Capability to focus simultaneously on soil and vegetation (soil-plant 
system).  

- A site heavily affected by PTE pollution was selected to exemplify the 
capacity of the approach proposed to attain continuous spatial in-
formation about As and Hg concentrations in soil and vegetation. 

2. Materials and methods 

Given the complexity and variety of the methodologies used in this 
study, a flow chart is presented in Fig. 1. 

2.1. Study area 

The study area is located in the surroundings of La Soterraña mine in 
Asturias (NW Spain) (Fig. 2), which was one of the largest Hg-producing 
regions in the world during the 20th century (Fernández et al., 2020). 
Hg exploitations are usually associated with environmental risk due to 
the abundance of PTEs such as Hg and As (Gallego et al., 2015; Higueras 
et al., 2006), which are highly toxic to most organisms (D’Aniello et al., 
2018; Dadová et al., 2016). 

In the past, the study site also hosted extensive metallurgical activ-
ities, which produced high volumes of waste. Mining and metallurgical 
waste were disposed of in two spoil heaps and several stockpiles, which 
show high concentrations of PTEs (Fernández et al., 2020). These heaps 
are affected by wind erosion and surface runoff and thus have greatly 
disturbed the surrounding soils (Boente et al., 2022). In parallel to 
mine-exploitation dynamics, the land coverage of the study area is 
associated with small-scale agriculture and livestock farming, thus grass 
and crops cover intermingle with forestry (Fig. 2). 

2.2. Geochemical approach 

2.2.1. Sampling design 
Given the topography of the area and the results of previous surveys 

(see Boente et al., 2020, 2022 and references therein), 46 soil sampling 
stations were established in grasslands, meadows, and ditches in the 
surroundings of the former mining-metallurgy site (Fig. 2). These sta-
tions were georeferenced with a Spectra SP60 GNSS receiver (Trimble, 
California, USA) in Real-Time Kinematic Position (RTK), with a preci-
sion of 8 mm ± 1 ppm horizontal, and 15 mm ± 1 ppm vertical. Each 
station covered a 50-cm side square in which soil and herbaceous 
vegetation were sampled. 

For soils, at each sampling station, a 1-kg composite sample 
comprising four increments of the first 5 cm of soil was collected using a 
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Dutch Edelman probe. In turn, vegetation sampling was focused on the 
aerial parts of all herbaceous plants present in the squares. Both soil and 
vegetation samples were conserved in sterilized plastic bags and stored 
at 4 ◦C until analyses. 

2.2.2. Chemical analyses of soil and vegetation 
Soil samples were air-dried at room temperature (<25 ◦C), thus 

avoiding Hg loss by volatilization. They were then sieved through 2-mm 
mesh to remove large particles, and material below 2 mm was quartered 
in a Jones riffle to obtain representative subsamples. Finally, an aliquot 
of 1 g soil was ground in an agate mortar to achieve a particle size of 
<100 μm. These samples were sent to an ISO 9002 and ISO-17025 
accredited laboratory (Acmelabs, Vancouver) for chemical analysis. 
The concentrations of As and Hg were determined by ICP-MS (Induc-
tively Coupled Plasma-Mass Spectrometry) after aqua regia extraction, 
with detection limits of 2 mg kg− 1 for As and 0.5 mg kg− 1 for Hg. 

Vegetation samples were dried in an oven at 30 ◦C, ensuring no Hg 
volatilization. They were then ground using an Ultra Centrifugal Mill ZM 
200 (Retsch, Verder Scientific GmbH & Co. KG, Haan, Germany), 
obtaining a homogeneous subsample with a grain size below 40 μm. 
Acid digestion using a mixture of H2O2 and HNO3 (1:6 v/v) in a mi-
crowave oven (Milestone ETHOS 1) was carried out, and Hg and As were 
then determined with ICP-OES (Optima 4300 DV; PerkinElmer) using 
detection limits of 0.036 mg kg− 1 and 0.04 mg kg− 1, respectively. 

To address the capacity of vegetation to accumulate As or Hg, the 
transfer coefficient (TrC) (Busuioc et al., 2011; Forján et al., 2018) was 
calculated as follows: 

TrC =
CV

CT 

Expression 1. Transfer coefficient of PTE concentrations between 
vegetation and topsoil. In this case, CV stands for As or Hg concentration 
in vegetation and CT for As or Hg concentration in topsoil. 

2. 3Multispectral data approach 

2.3.1. Data acquisition 
Multispectral data were obtained from a UAV-RS flight. The flight 

coverage is shown in Fig. 1 and consisted of a surface area of 69 ha 
downstream of the spoil heaps. A P4 Multispectral UAV-RS from SZ DJI 
Technology Co. Ltd ® (Nanshan, Shenzhen, China), designed for preci-
sion agriculture, was used. This device integrates a multispectral camera 
composed of six individual CMOS sensors, one RGB, and five narrow-
band sensors: blue (B), green (G), red (R), red edge (RE), and near- 
infrared (NIR) (Table 1). 

This UAV-RS system also integrates a sunlight sensor (which pro-
vides absolute reflectance measurements without calibration), a GNSS 
high-precision RTK positioning module, and the TimeSync system, 
which gives precise and real-time positioning data for each image, thus 
optimizing photogrammetric results and providing centimeter-level ac-
curacy without Ground Control Points (GCPs). 

Due to the complex orography, the photogrammetric survey was 
carried out with a transversal and longitudinal overlap of 70% and at an 
average height of 100 m. The flight was conducted during the early 
summer of 2020 to obtain radiometric information on the herbaceous 

Fig. 1. Process workflow.  
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vegetation, which was fully grown and absorbed the soil components at 
this time. In addition, in this period of the year, the soil was not affected 
by extreme weather conditions such as heavy rains, or alterations caused 
by agro-livestock activities such as mowing, which started in the weeks 
after the flight. 

Data processing was carried out with the photogrammetry and drone 
mapping software PIX4D Mapper (Pix4D S.A., Prilly, Switzerland), 
which is useful to obtain optimal results with multispectral data from 

UAV-RS (Boente et al., 2020; Handique et al., 2020). The steps followed 
included point cloud generation, 3D model construction, feature 
extraction, and multispectral band generation. 

2.3.2. Analysis and interpretation 

2.3.2.1. a grassland areas. Grassland areas were identified using a non- 
supervised classification carried out with the minimum distance algo-
rithm included in the SCP package from QGIS 3.4.8 (Zürich, 
Switzerland) and post-processed manually. The classification distin-
guished between two coverages: (i) low vegetation, which included 
grassland, pasture, and crops; and (ii) coverage associated with forestry 
and unproductive areas, which included bare ground, roads, and pop-
ulation settlements. 

2.3.2.2. b Spectral bands used. Fig. 3 shows the spectral location of each 
band for the P4 Multispectral UAV-RS used in this work. The G band is 

Fig. 2. Location and general view of the study area.  

Table 1 
Relation between bands and the electromagnetic spectrum.  

Band Central wavelength (nm) Wavelength width (nm) 

B 450 16 
G 560 16 
R 650 16 
RE 760 16 
NIR 840 26  
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located in the highest reflectance of the VIS spectral range for vigorous 
vegetation, while the B and R bands are in the low part. The RE band 
used is located in the higher slope area of reflectance and the NIR band 
close to one of the peaks. In this context, healthy plant spectra are 
characterized by strong absorption in the visible spectrum (450–680 
nm) due to chlorophyll, and strong reflectance in the NIR range 
(700–1200 nm) as a result of the internal scattering of light at cell wall- 
air interfaces (Dunagan et al., 2007). Also, the RE range (680–740 nm) 
presents the highest increase of reflectance, being sensitive to variations 
in leaf chlorophyll absorption (Gitelson & Merzlyak, 1996). 

2.3.2.3. c Spectral indices. A spectral index is the combination of mul-
tiple single bands through algebraic operations (Boente et al., 2020; 
Stroppiana et al., 2012). In this regard, for this study, the following 
classification of four types of spectral indices was established:  

(i) Spectral vegetation indices: Due to the interaction of Hg and As 
with normal vegetation development (Shi et al., 2016a), spectral 
vegetation indices can provide information about soil degrada-
tion as they can detect vegetation stress and vitality by measuring 
chlorophyll and cellular alterations. Examples of such indices 
include SIPI (Blackburn, 1998; Penuelas et al., 1995), OSAVI 
(Rondeaux et al., 1996), GNDVI (Gitelson et al., 1996; Gitelson & 
Merzlyak, 1994), NDVI (Rouse et al., 1974) and SAVI (Huete, 
1988). For more details see Table S1.  

(ii) Spectral polluted soil indices: Regarding PTEs, several indices 
efficiently estimate pollution stages, including DVI (Kooistra 
et al., 2010), MSAVI (Kooistra et al., 2004), CSVI (Zhang et al., 
2017), ADVI (Zhang et al., 2019), HMSSI (Zagajewski et al., 
2017), and REP (Clevers et al., 2010). For more details see 
Table S2.  

(iii) Spectral colour indices: Unusual concentrations of PTEs, 
including As and Hg, impair the function of photosynthetic pig-
ments (Siddiqui et al., 2020; Zhang et al., 2021) and can even 
cause oxidative stress (Sahu et al., 2011), which directly alters the 
normal coloration of vegetation (Mei et al., 2021). When studying 
these alterations, spectral indices are commonly used, for 
example CI (Escadafal, 1989) and CI2 (Escadafal et al., 1994) as 
colour indices, BI as a brightness index (Escadafal, 1989), HI as a 
shape index (Escadafal et al., 1994), RI and SI as redness and 
saturation indices (Mandal, 2016), and Y and HUE as intensity 
indices (Escadafal et al., 1994; Liu & Paulsen, 2000). For more 
details see Table S3.  

(iv) Spectral texture indices: These were achieved with the “r.texture” 
tool from Geographic Resources Analysis Support System 

(GRASS) version 7.6.1., implemented in the software Quantum 
GIS (QGIS) version 3.4.8. (Zürich, Switzerland). This tool creates 
spectral texture indices based on other indices and, in our case, 
NDVI was chosen. Note that to define the texture of the coverage, 
several variables can be considered, including variations in grey 
levels, the presence of regular patterns, tone or grey level in-
tensities, and spatial relationships (Haralick et al., 1973). For 
more details see Table S4. 

2.4. Data analysis 

2.4.1. ML techniques 
The selection of an appropriate ML technique to handle the dataset 

obtained was one of the main tasks in this study. In fact, ML success is 
determined by the correct dimensional reduction of independent vari-
ables from the original set. Four techniques (one parametric and three 
non-parametric) were considered. These techniques were selected on the 
basis of their ease of implementation with our database after several 
attempts (data not shown) using a similar approach to that described by 
Biney et al. (2023). The rationale for the selection of the four specific ML 
approaches is described below. R software (Ihaka & Gentleman, 1996) 
was used to carry out calculations. 

(a) One of the most commonly used parametric techniques is Mul-
tiple Linear Regression (MLR) as the models obtained are easier 
to interpret than other advanced multivariate algorithms (Chung 
et al., 2020; Ghazali et al., 2010). In remote sensing studies, MLR 
is a very common approach (Golchoubian et al., 2012; Roces-Díaz 
et al., 2014; Novo-Fernández et al., 2019). Nevertheless, MLR is 
based on the fundamental least squares assumption of indepen-
dence and equal distribution of errors with zero mean and con-
stant variance, which can be breached by non-normality, 
multicollinearity of variables, and heteroscedasticity of error 
variance. These limitations can be avoided using non-parametric 
techniques.  

(b) The Random Forest (RF) technique, first proposed by Breiman 
(2001), is a widely used non-parametric classification and 
regression approach consisting of a large number of decision 
trees. Each ensemble tree is developed with distinct independent 
variables, which are randomly selected from the original dataset. 
RF algorithms owe their greater stability and better accuracy to 
the use of randomized sampling with a large number of trees, 
which allows them to outperform models based on individual 
trees (Immitzer et al., 2016). The final regression estimate for 
each sample is obtained as a weighted mean value of the esti-
mates of a large number of individual trees. As the number of 
trees increases to the maximum number defined by the user, the 
variance of trees is high while the bias is low (Breiman, 2001). RF 
techniques have been increasingly used in remote sensing for 
environmental applications. They have achieved better results 
and speed of processing than other predictive techniques (Belgiu 
& Drăgu, 2016; Gao et al., 2022; Novo-Fernández et al., 2019) 
while presenting results that are relatively insensitive to the 
number of input number and their multicollinearity (Gislason 
et al., 2006).  

(c) Generalized Boosted Models (GBMs) were developed in the early 
2000s (Friedman, 2002) . This algorithm is a flexible 
non-parametric ML technique for classification. GBMs are a 
combination of two techniques, decision tree algorithms, with the 
creation of successive weak tree ensembles, and boosting 
methods, where each tree learns from the previous ones. GBMs 
repeatedly fit multiple decision trees to improve accuracy. These 
models show the effect of each predictor after evaluating the 
influence of others. In addition, they are characterized by 
robustness when there are missing values and outliers. The use of 

Fig. 3. Typical spectral response specification of wet topsoil and healthy green 
vegetation (Hoffer, 1978) and distribution of P4 multispectral bands used in 
this study (vertical lines). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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this algorithm is growing in remote sensing research (Henrique 
Brant Dias et al., 2021; Tavera Busso et al., 2021).  

(d) Multivariate Adaptive Regression Splines (MARS) were proposed 
by Friedman (1991) as a method for flexible regression modelling 
of high-dimensional data. MARS is a non-parametric regression 
or classification, based on the fitting of linear regression models 
in different space intervals of independent variables. The process 
is also executed between dependent variables and the model can 
reduce additive effects and interaction between dependent vari-
ables. One of the strengths of this method is the processing of 
missing values and the prevention of overshooting by a self-test. 
MARS has recently been used in remote sensing for environ-
mental applications (Jafari et al., 2022; Quang et al., 2022). 

2.4.2. Feature selection 
As mentioned above, an optimal set of variables is crucial to identify 

and eliminate irrelevant data and thus improve computational perfor-
mance, which in turn brings about savings in cost and time. In this re-
gard, feature selection is focused on the reduction of the degree of 
overfitting in the training dataset, thus addressing a major drawback of 
ML techniques (Novo-Fernández et al., 2019; Xu & Wang, 2010). 

In our case, Wrapper methods were used to select the subsample of 
predictor variables (features) that provided the best results (Zhiwei & 
Xinghua, 2010). To this end, we used the CVParameterSelection method 
implemented in WEKA software (Hall et al., 2009; Hornik et al., 2009) 
from Waitako University (New Zealand). 

2.4.3. Performance evaluation 
Supervised learning algorithms, including train models and test data, 

were checked with the k-fold cross-validation method. In this widely 
used approach, the data set is divided into k subsets, in this case 10. Each 
subset is used as test data and the other nine sets are used as training sets 
each time the algorithm is executed. Each model runs 100 times, which 
implies a 10-fold cross-validation of each subset repeated 10 times per 
training dataset. 

To evaluate the quality of model fit, the following statistics were 
calculated: (i) the pseudo-coefficient of determination (R2); (ii) relative 
root mean squared error of cross-validation (rRMSE, %); (iii) the resid-
ual prediction deviation (RPD), i.e., the ratio between the standard de-
viation to the RMSE (Vaudour et al., 2022); and (iv) the ratio of 
performance to interquartile distance (RPIQ) (Bellon-Maurel et al., 
2010). Specifically, RPD and RPIQ were included in the study as robust 
statistics that are not biased by the high variability of the data (see below 
Table 2). The relation between the four ML methods considered was 
evaluated using the paired t-test (corrected) (α = 0.05), which is based 
on Student’s t-criterion. 

3. Results 

3.1. Geochemical study 

Regarding pollution levels, Table 2 and Figs. S1 and S2 show the total 
concentrations of Hg and As in soil and vegetation at the 46 sampling 
points. 

The total Hg content in soil ranged from 1.90 to 616.00 mg kg− 1. The 
higher values were located in sampling stations near the spoil heaps 
(Fig. S1), where herbaceous cover for livestock was observed. The total 

As content in soil ranged from 86.00 to 3170.00 mg kg− 1, again with the 
higher values in the vicinity of the spoil heaps (Fig. S1). The differences 
between the mean and median, and the high percentages of coefficient 
of variation (CV) (Table 2) revealed a notably heterogeneous distribu-
tion of As and Hg. 

In vegetation, Hg concentration ranged between 0.07 and 0.75 mg 
kg− 1, and again the higher levels corresponded to samples taken close to 
the spoil heaps. However, a higher dispersion of Hg in vegetation than in 
soil was observed (Fig. S2) as some relevant values were found in 
samples far from the spoil heaps. The total As concentration in vegeta-
tion ranged from 0.30 to 7.70 mg kg− 1, with the highest values being 
found in a heterogeneous geographical distribution. Like PTE concen-
trations in the topsoil, the differences between the mean and median, 
and the high percentages of the CV (Table 2) also revealed an irregular 
distribution, especially for As. 

Soil samples were characterized as neutral acid, with pH values of 
between 7.62 and 4.71 and a mean of 6.28. The organic matter content 
(%) in the topsoil ranged from 10 to 46%, the lowest values being found 
near the mining area. In the soil/plant system, TrC showed slightly 
higher values for Hg than As in most of the sampling points (Table S5). 

As a result of supervised classification and post-processing, the study 
area selected was finally reduced to 16 ha, which included all low 
vegetation (herbaceous plants) present in the flight area. These plants 
were classified into two groups: (i) meadow vegetation; and (ii) gutter, 
road and heap grass. Meadows comprised species associated with 
Arrhenatherion elatioris or mountain hay meadows, and the major fam-
ilies found were Peaceae, Primulaceae, Apiaceae, Araceae, Asteraceae, 
Caprifoliaceae, Caryophyllaceae, Convolvulaceae, Dennstaedtiaceae, Faba-
ceae, Lamiaceae, Linaceae, Plantaginaceae, Polygalaceae, Polygonaceae, 
Ranunculaceae, Rosaceae, and Rubiaceae. Gutter, road, and heap grass 
included species associated with the Equisetaceae, Rosaceae, Hyper-
icaceae, Lamiaceae, Caprifoliaceae, Poaceae, Plantaginaceae, and Rubia-
ceae families. A detailed list of the species observed in each type of grass 
vegetation is described in Table S6. 

3.2. Geostatistical analysis and adjustment of predictive models 

3.2.1. Feature selection process 
Four response (dependent) variables were considered: Hg and As in 

topsoil, and Hg and As in vegetation (henceforth Hgs, Ass, and, Hgv, Asv 
respectively), whereas 57 predictor variables or features were initially 
considered (i.e., 5 bands, 23 spectral vegetation indices, 8 spectral 
polluted soil indices, 8 spectral colour indices, and 13 spectral texture 
indices). Once feature selection with Weka software (Wrapper meth-
odology) had been completed, 6, 9, 6, and 7 significant features were 
chosen for Hgs, Hgv, Ass, and Asv, respectively from the 57 initially 
available (see section 3.2.3 for details on the different features selected 
for each response variable). 

3.2.2. Adjustment of predictive models 
Predictive models for Hgs, Hgv, Ass, and Asv were obtained with R 

software once the specific features selected had been considered. The 
goodness-of-fit statistics given by the regression methods used to model 
the response variables are shown in Table 3. 

As indicated in the preceding table, RF showed the best R2 values in 
all cases, and therefore it could be initially the regression technique of 
choice in this study. Higher values of rRMSE were obtained in all cases 

Table 2 
Descriptive statistics of PTE concentrations (mg kg− 1) in topsoil and vegetation.   

Concentration (mg kg− 1) in topsoil Concentration (mg kg− 1) in vegetation 

mean median min max Std. CV mean median min max Std. CV 

Hg 48.41 9.00 1.90 616.00 115.34 238.24 0.27 0.23 0.07 0.75 0.17 62.32 
As 514.04 247.00 86.00 3170.00 645.34 125.54 2.14 1.34 0.30 7.70 1.92 89.67  
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for the topsoil (Hgs and Ass) as a consequence of the high variability of 
the input data (Table 2), whereas the lower values observed for vege-
tation (Hgv and Asv) are coherent with lower variability of the input data 
and a better R2 (Table 3). When comparing the rRMSE values between 
the different methods, the best results were obtained again with RF in all 
cases (Table 3). In addition, RPD and RPIQ, both unbiased statistics, 
presented also the best results for RF. Concretely, RPD showed values 
close to 1.40 for the four variables whereas RPIQ revealed higher vari-
ability, with the minimum value below 1 (Hgs), and the values associ-
ated with vegetation for both elements above 2 (Table 3). It must be also 
pointed out that, as regards PTE concentrations, and irrespective of the 
ML technique used, the goodness-of-fit statistics of the models were 
better for Hg and As concentrations in vegetation than in topsoil 
(Table 3). 

Predicted (estimated with RF) vs. observed (geochemical data) 
values for Hgs, Hgv, Ass, and Asv were compared in a graphical analysis 
(Fig. 4). A linear model fitted to the scatter plot did not reveal any 
important problems related to heteroscedasticity or lack of normality. 

In general terms, the results were more accurate in vegetation than in 
topsoil, while for chemical elements they were more precise for As than 
for Hg. The best R2 found was for As in vegetation, with a value of 0.630. 
In brief, the following conclusions were drawn:  

(i) The analysis of vegetation models (Fig. 4C and 4D) showed the 
best fit with the 1:1 line among tested models, i.e., the models 
were capable of capturing the relationship between variables and 
thus generating reliable prediction. The Hgv model tended 
slightly to underestimate high concentrations and to over-
estimate low concentrations whereas the Asv model revealed a 
very slight overestimation at the highest concentrations and 
almost negligible underestimation at low concentrations.  

(ii) Ass model (Fig. 4B) was acceptable for low concentrations but got 
worser as concentrations were higher (specially above of 1000 
mg kg− 1).  

(iii) Hgs model (Fig. 4A) was biased in most of the ranges with, both 
notable, overestimation at high concentrations and underesti-
mation at low concentrations. 

3.2.3. Variable importance 
As mentioned above, the feature selection process defined a small 

number of predictor variables from the initial set of 57; thus, once the RF 
algorithm had been applied, the model obtained in R software revealed 
the different importance of these predictor variables in the four study 
cases (Hgs, Hgv Ass, and Asv). The percentages of importance of the 
different features (predictor variables) were graphed (Fig. 5). 

For Hgs, the most important feature group was the spectral polluted 
soil indices as, remarkably, the ADVI spectral index accounted for 
approximately 50% of the normalized score in the model (Fig. 5). There 
were other relevant groups of indices, such as the spectral colour indices 
(close to 30% of normalized score for CI2), and spectral vegetation 
indices and the green band (less than 10% in both cases). In the case of 
Ass, within the nine significant features found, the most important group 
was the spectral vegetation indices (49%), which included the MTCI 
index with >40% of the normalized score. Spectral colour indices, 
spectral texture indices, and spectral polluted soils indices accounted for 
32%, 11%, and 7% respectively. As regards Hgv, the group of spectral 
vegetation indices was the most important (above 60%) and the variable 
MTCI spectral index presented the highest normalized score (well above 
30%), whereas the spectral colour indices achieved 33% and spectral 
polluted soils indices only 3%. Finally, as a result of the feature selection 
process for Asv, spectral vegetation indices (39%) and spectral colour 
indices (38%) accounted for 38% with SI slightly above 20% of the 
normalized score, very similar to the. Of note, as it is directly captured 
by the red channel of the UAV-RS, the red band achieved more than 20% 
of the normalized score. 

3.3. Mapping 

As explained above and having considered the goodness-of-fit sta-
tistics and the graphical analysis of predictive model adjustment, RF 
emerged as the ML technique with the best accuracy. The spatial dis-
tributions of Hg and As in the study area resulting from the application 
of RF, both for topsoil and vegetation data, are shown in Fig. 6. 

The high spatial resolution of the maps revealed how Hgs, Hgv, Ass, 
and Asv vary depending on the distance to the main pollution source 
(spoil heaps). Hg and As in topsoil (Fig. 6) presented the highest con-
centrations near the spoil heaps, but Hg showed a much lower dispersion 
throughout the study area than As. Concentrations of these two PTEs in 
vegetation were distributed similarly, revealing the highest concentra-
tions of Hg mostly close to the spoil heap and greater dispersion of high 
contents for As. 

4. Discussion 

Given the capacity of UAV-RS to detect geochemical anomalies 
remotely, these technologies are being increasingly used in mining 
exploration (Booysen et al., 2020; Tejado-Ramos et al., 2021). With 
similar premises, remote sensing studies on soil pollution are being 
established using satellite technologies, alone or combined with spec-
trometry techniques (Gholizadeh et al., 2018; Khosravi et al., 2022), and 
also by UAV-RS systems (Jia et al., 2021a). 

In this context, soil alterations caused by the presence of metal (loid) 
s have been related to spectral changes in the visible region (Khosravi 
et al., 2018; Kooistra et al., 2001) as evidenced in the Hg topsoil model 
(Hgs), where the green band was one of the features selected in accor-
dance with Tucker (1979) and ADVI (Zhang et al., 2019) was shown as 
the most important index. Thus, the triggers of vegetation spectral 
response are in this study clearly linked to the high damage in vegetation 
caused by Hg (Baragaño et al., 2022); in addition, the most influent 
spectral range to Hgv predictive model was red-red edge, an spectral 

Table 3 
Goodness-of-fit statistics given by ML for Hgs, Hgv, Ass, and Asv (mg kg− 1). 
Methods used were Multiple Linear Regression (MLR), Random Forest (RF), 
Generalized Boosted Models (GBMs), and Multivariate Adaptive Regression 
Splines (MARS). All values represent the mean of 100 model runs (i.e., 10 rep-
licates, each with 10-fold cross-validation). The performance of the regression 
methods was compared by using different statistics based on the model errors 
(mean field values were considered as true values): pseudo-coefficient of 
determination (R2), relative root mean square error (rRMSE, as a %), the Ratio of 
Performance to Deviation (RPD) and the Ratio of Performance to Interquartile 
Distance (RPIQ). The best results are indicated in bold.  

Regression methods Statistics Hgs Ass Hgv Asv 

MLR R2 0.41 0.31 0.48 0.47 
rRMSE 290.42 149.65 96.83 84.05 
RPD 0.82 0.84 0.64 1.07 
RPIQ 0.17 0.67 0.98 1.67 

RF(1) R2 0.50 0.53 0.57 0.63 
rRMSE 180.72 91.61 46.31 66.67 
RPD 1.32 1.37 1.35 1.35 
RPIQ 0.27 1.09 2.06 2.10 

GBMs(2) R2 0.40 0.41 0.49 0.48 
rRMSE 183.09 104.35 52.74 73.26 
RPD 1.30 1.20 1.18 1.22 
RPIQ 0.26 0.96 1.81 1.91 

MARS(3) R2 0.422 0.38 0.51 0.42 
rRMSE 210.37 148.14 615.63 89.89 
RPD 1.13 0.85 1.01 1.00 
RPIQ 0.23 0.67 1.55 1.56  

(1) 1500 trees, 1–15 splits. 
(2) 1500 trees, shrinkage parameter 0.1. 
(3) 3◦, nprune = 2,4,6,8,10. 
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area strongly linked to alterations in chlorophyll and vegetation cell 
structure (Hunt et al., 2012; Mandal, 2016), In turn, soil alterations 
caused by As have been linked to spectral changes in the Red-NIR region 
(Wei et al., 2019). This effect was evidenced in the As topsoil model (Ass) 
as the MTCI (Dash & Curran, 2004) and SI (Mandal, 2016) indices were 
relevant, whereas the most influent spectral area for Asv predictive 
model was red, which is also strongly linked to alterations in chlorophyll 
as mentioned above, a typical symptom produced by As in vegetation 
(Fernández et al., 2020). On the whole, regarding the spectral index 
classification performed herein, the spectral vegetation index category 
was the most important in all cases, including topsoil models, and this 
corroborated the notable and direct relation between PTEs in topsoil and 
vegetation observed in the geochemical data (Forján et al., 2017). The 
meaning of these indices is related to the inhibition of enzyme produc-
tion and the subsequent destruction of chlorophyll in foliage, and to the 
damage of the cell structure of the plants (Dash & Curran, 2004; Hunt 
et al., 2012; Mandal, 2016). Furthermore, these symptoms have been 
locally identified in the vegetation present in the study area (Baragaño 
et al., 2022). 

Consistent with these results, Metternicht (2010) and Verdebout 
et al. (1994) associated contaminant-induced changes in soil with 
vegetation health, especially alterations in foliar pigments, chlorophyll 

activity, and carotenoids, pointing to spectral alterations between 450 
and 550 nm (Blue-Green region), as demonstrated in this case by the 
shifts in GNIR (Bausch & Duke, 1996), MCARI (Daughtry et al., 2000) 
and SI (Mandal, 2016) in the Hgv and Asv models. In addition, the ef-
ficacy of Red-NIR and Red Edge spectral regions was previously reported 
(Dunagan et al., 2007; Horler et al., 1983; Sims & Gamon, 2002; Tucker, 
1979) in vegetation studies. In this regard, it was observed a relevant 
role of MTCI (Dash & Curran, 2004) for the Hgv and the red band and the 
CI red edge index for Asv models (Hunt et al., 2012). 

The estimation of As and Hg spatial distribution in topsoil and 
vegetation was done by ML techniques, using one parametric method 
(MLR) and three non-parametric (RF, GBM and MARS) ones, the latter 
yielding more robust models, thus consistent with previous studies on 
remote sensing data (Mouazen et al., 2021; Novo-Fernández et al., 2018; 
Tan et al., 2019). Of note, the RF technique outperformed the other 
methods tested and therefore emerges as a promising strategy to study 
the spatial distribution of geochemical elements, both in topsoil and 
vegetation. In this regard, and consistent with a recent study by Wang 
et al. (2022), the RF models provided a reliable estimation for dis-
tinguishing high and low values, 0.50 < R2 < 0.65, with a low-cost and 
non-invasive methodology. Indeed, the models were unbiased enough, 
with the exception of Hgs, and the spectral data had a high spatial 

Fig. 4. Graphic representation of predicted vs. observed values (RF model) for Hgs (A), Ass (B), Hgv (C), and Asv (D). Values on the X-axis correspond to predicted 
concentrations (mg kg− 1) and those on the Y-axis to observed concentrations (mg kg− 1). 
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resolution, which is crucial for the mapping of polluted soil (Khosravi 
et al., 2021). Therefore, our results could be categorized primarily as 
representative, also given the adjustment between predicted and 
observed values (Fig. 4); nevertheless an additional evaluation (see 
below) based on performance figures-of-merit is required for evaluating 
the quality of model fit. 

R2 values were better for As than Hg, and Hg presented lower error 
values for vegetation than for soil in terms of rRMSE (Table 3), although 
these statistics are notably affected by the high variabilitiy of As and, 
specially, Hg concentrations shown in Table 2. Also, these results may be 
conditioned by the different transfer ratios of As and Hg from the soil to 
the plant given that the TrC was higher for Hg than As (Table S5), which 
implies a higher transfer of Hg to vegetation (Forján et al., 2018). 
Therefore, we hypothesize that, when As and Hg are translocated to the 
aerial part, plants are killed earlier in the case of As (McLaughlin et al., 
1999). In addition, it should be noted that As and Hg have distinct 
translocation and accumulation strategies depending on the amount 
taken up (Zhao et al., 2022). As regards RPD, and according to Casa et al. 

(2013), values close or above to 1.4 imply prediction ability, as occurs in 
this study for the four variables studied without any notable diference. 
However, the values of RPIQ obtained were notably better for vegetation 
models and in particular, the value of 0.267 for Hg is too low and reveals 
that, in spite of the acceptable levels found for R2 and RPD, the Hgs 
model may not supply reliable predictions. Note also that the calculation 
RPIQ for Hgs was done on a skewed data distribution as also reflected in 
Fig. 4. 

Gholizadeh et al. (2018) and Jia et al. (2021a) highlighted that im-
ages with high spatial resolution are frequently insufficient in delivering 
timely and frequent data with adequate spatial resolution. Nonetheless, 
this challenge can be effectively tackled by utilizing UAV-RS as a useful 
tool for monitoring and mapping soil pollution because of its spatial 
and/or temporal resolutions. In this context, this study revealed equal or 
superior statistics to other recent remote sensing studies examined 
although, in our case, cross validation could be a drawback. For 
instance, Alvyar et al. (2022) carried out a regional study with LANDSAT 
8 data and obtained only R2 = 0.25 with RF modelling for As a much 

Fig. 5. Type of predictor variable and percentage of importance in the RF models obtained for Hgs (top left), Hgv (bottom left), Ass (top right), and Asv (bottom right).  
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lower value than that obtained here, they used an independent valida-
tion (only 17 samples as reference) and achieved a limited robustness. 
Also, in a study in Tai Lake (China), Zhao et al. (2021) obtained R2 

values in soil between 0.218 and 0.283 for As and between 0.02 and 0.03 
for Hg using Sentinel-2 with the Back Propagation Neural Network 
regression technique with an independent validation; it must be pointed 
out that the concentrations of Hg and As exhibited much lower vari-
ability than in the present study. Only Peng et al. (2016) reported similar 
values to those of this study for As concentration in soil (R2 = 0.60, RPD 
= 1.53, and RPIQ = 1.48) through RF regression and LANDSAT 8 
spectral data after, using 300 sampling points and independent valida-
tion. Focusing on vegetation, Dunagan et al. (2007) described a R2 =

0.670 for Hg with Multiple Stepwise Linear Regression (parametric ML 
method) using a spectroradiometer, a similar R2 result to that we ob-
tained through a multispectral UAV but focused only on Brassica rapa P. 
(mustard spinach). In turn, Lv & Liu (2011) did a hyperspectral study in 
paddy fields and achieved RF values of R2 = 0.840 and RMSE = 3.970 
and established a relation between As concentrations in rice plants and 
visible/near data obtained with a spectrometer. 

Finally, from the perspective of the environmental significance of 
this research for the specific site addressed, the spatial distributions 
revealed greater geochemical mobility of As than Hg. This behaviour is 
linked to the geochemical characteristics of these two PTEs (Gallego 
et al., 2015), with a notable nugget effect of Hg distribution (Boente 

Fig. 6. Spatial distribution of Hg in topsoil (top left), As in topsoil (top right), Hg in vegetation (bottom left), and As in vegetation (bottom right) as obtained after 
application of the RF algorithm. 
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et al., 2022), and with a more continuous distribution of As throughout 
the study area (Matanzas et al., 2021). Regarding the absolute values 
estimated in the model, the entire study area presents a potential risk for 
human health given that all the estimated soil concentrations were 
above 1 mg kg− 1 of Hg and 40 mg kg− 1 of As, thus exceeding the Soil 
Screening Levels in force for soils used for agricultural or livestock ac-
tivities (Boente et al., 2022). In the case of the spatial distribution of Hg 
and As in vegetation, according to Markert (1992), the limit for toxi-
cological risks is 0.10 mg kg− 1, which was also exceeded for both PTEs 
throughout the study area. In this regard, the precision obtained in this 
study strongly suggests that the selected approach (limited geochemical 
survey, multispectral acquisition, and RF) could be applied to similar 
cases where contamination by As, Hg, or both is very high. In other cases 
(different PTEs or more moderate levels of contamination), an adddi-
tional prospection of ML methods would probably be required. 

5. Conclusions 

The use of UAV-RS technologies to address soil pollution issues has 
increased in recent years. These technologies are complementary, reli-
able, and rapid alternatives to classical geochemical methods, and their 
combination with ML approaches may facilitate the modelling of 
contaminant distribution and concentrations in both diffuse and point 
source contamination scenarios. In this context, a novel approach based 
on the combination of a geochemical study with a limited number of 
topsoil and vegetation samples, and multispectral data obtained by 
UAV-RS was presented, and the most appropriate ML technique for 
interpreting results was identified. 

A paradigmatic site affected by Hg and As pollution was selected to 
exemplify the proposed methodology, and a comprehensive selection of 
spectral indices that are useful to evaluate soil-plant system health was 
accomplished. Moreover, four ML techniques (one parametric and three 
non-parametric) were checked in order to obtain robust statistical 
models. The performance of the regression methods was compared by 
using four different statistics that revealed that the RF model achieved 
the most accurate results. This method enabled the prediction and 
mapping of contaminant contents in the entire study area, with 
acceptable adjustment to the geochemical data initially obtained. In 
general terms, results were slightly more precise for As than Hg, and for 
vegetation than topsoil. Also, a better accuracy than that obtained in 
similar studies using satellite or even spectrometry data was achieved. 

In conclusion, here it was demonstrated that Hg and As concentra-
tions in soil-plant system can be modelled using a low-density 
geochemical survey and high-resolution spectral data from UAV-RS, 
thus obtaining continuous spatial information with statistical robust-
ness. This study also highlights the need for a correct choice of model 
evaluation statistics in order to minimize the influence of the hetero-
geneity of the dependent variables. The approach described herein is a 
powerful tool to study PTEs pollution and arises as an alternative to 
classical geochemical surveys, which are laborious and expensive. 
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Henrique Brant Dias, S., Filgueiras, R.I., Iná cio Fernandes Filho, E., Santos ArcanjoID, G., 
Henrique da Silva, G., Chartuni Mantovani, E., Franç da CunhaID, F., 2021. 
Reference evapotranspiration of Brazil modeled with machine learning techniques 
and remote sensing. PLoS One 16 (2), e0245834. 

Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernández, J.C., Molina, J.A., Esbrí, J.M., 
Lorenzo, S., 2006. The Almadén district (Spain): anatomy of one of the world’s 
largest Hg-contaminated sites. Sci. Total Environ. 356 (1–3), 112–124. 

Hoffer, R.M., 1978. Biological and physical considerations in applying computer-aided 
analysis techniques to remote sensor data. In: Remote Sensing: The Quantitative 
Approach, pp. 227–289. 

Horler, D.N.H., Dockray, M., Barber, J., 1983. The red edge of plant leaf reflectance. Int. 
J. Rem. Sens. 4 (2), 273–288. 

Hornik, K., Buchta, C., Zeileis, A., 2009. Open-source machine learning: R meets Weka. 
Comput. Stat. 24, 225–232. 

Hout, R., Maleval, V., Mahe, G., Rouvellac, E., Crouzevialle, R., Cerbelaud, F., 2020. UAV 
and LiDAR data in the service of bank gully erosion measurement in rambla de 
Algeciras lakeshore. Water 12 (10), 2748. 

Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (3), 
295–309. 

Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M., 
Akhmedov, B., 2012. A visible band index for remote sensing leaf chlorophyll 
content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf. 21 (1), 103–112. 

Ihaka, R., Gentleman, R., 1996. R: a language for data analysis and graphics. J. Comput. 
Graph Stat. 5 (3), 299. 

Immitzer, M., Vuolo, F., Atzberger, C., 2016. First experience with sentinel-2 data for 
crop and tree species classifications in central europe. Rem. Sens. 8 (3), 166. 

Jafari, R., Amiri, M., Asgari, F., Tarkesh, M., 2022. Dust source susceptibility mapping 
based on remote sensing and machine learning techniques. Ecol. Inf. 72. 

Jia, X., Cao, Y., O’Connor, D., Zhu, J., Tsang, D.C.W., Zou, B., Hou, D., 2021a. Mapping 
soil pollution by using drone image recognition and machine learning at an arsenic- 
contaminated agricultural field. Environ. Pollut. 270, 116281. 

Jia, X., O’Connor, D., Shi, Z., Hou, D., 2021b. VIRS based detection in combination with 
machine learning for mapping soil pollution. Environ. Pollut. 268, 115845. 
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Sánchez, C.A., 2019. Integration of national forest inventory and nationwide 
airborne laser scanning data to improve forest yield predictions in north-western 
Spain. Rem. Sens. 11 (14), 1693. 

Peng, Y., Kheir, R.B., Adhikari, K., Malinowski, R., Greve, M.B., Knadel, M., Greve, M.H., 
2016. Digital mapping of toxic metals in Qatari soils using remote sensing and 
ancillary data. Rem. Sens. 8 (12), 1003, 2016, Vol. 8, Page 1003.  

Penuelas, J., Frederic, B., Filella, I., 1995. Semi-empirical indices to assess carotenoids/ 
Chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31 (2), 221–230. 

Quang, N.H., Quinn, C.H., Carrie, R., Stringer, L.C., Hue, L. T. Van, Hackney, C.R., 
Tan, D. Van, 2022. Comparisons of regression and machine learning methods for 
estimating mangrove above-ground biomass using multiple remote sensing data in 
the red River Estuaries of Vietnam. Remote Sens. Appl.: Soc. Environ. 26. 
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