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Abstract: Escherichia coli (E. coli) O157:H7 is a pathogenic bacterium that causes serious toxic effects
in the human gastrointestinal tract. In this paper, a method for its effective analytical control in a
milk sample was developed. To perform rapid (1 h) and accurate analysis, monodisperse Fe3O4@Au
magnetic nanoparticles were synthesized and used in an electrochemical sandwich-type magnetic
immunoassay. Screen-printed carbon electrodes (SPCE) were used as transducers, and electrochemical
detection was performed by chronoamperometry using a secondary horseradish peroxidase-labeled
antibody and 3,3′,5,5′-tetramethylbenzidine. This magnetic assay was used to determine the E. coli
O157:H7 strain in the linear range from 20 to 2× 106 CFU/mL, with a limit of detection of 20 CFU/mL.
The selectivity of the assay was tested using Listeria monocytogenes p60 protein, and the applicability
of the assay was assessed by analyzing a commercial milk sample, demonstrating the usefulness of
the synthesized nanoparticles in the developed magnetic immunoassay.

Keywords: pathogenic bacteria; immunomagnetic assay; amperometric biosensor; SPCE; magnetic
core–shell nanoparticles

1. Introduction

E. coli O157:H7 is a pathogenic bacteria strain that causes severe illness in humans
through contaminated food or water. This bacterium is a Shiga-like toxin producer and
causes severe foodborne diseases, especially in young children, the elderly, and patients
with sensitive immune systems [1,2]. The World Health Organization (WHO) states that
intoxication by E. coli O157:H7 could lead to serious conditions such as hemorrhagic
diarrhea and acute kidney failure. The transmission of this strain mainly occurs through
the consumption of undercooked or contaminated foods and liquids. For this reason,
several countries have implemented guidelines concerning the identification of E. coli
O157:H7 in food products to ensure public safety [3,4]. Therefore, monitoring E. coli
O157:H7 is a challenge in the food safety field.

The rapid detection of E. coli O157:H7 at low concentrations is also a big concern in
other fields, such as in environmental applications, medicine, and pharmacy [5,6]. Various
conventional microbiological strategies are commonly applied for the analysis and detection
of pathogenic bacteria, including Tissue Culture Plate (TCP), Plate Count Enumeration
Method, Quartz Crystal Micro-balance resonators (QCM), and Polymerase Chain Reaction
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(PCR). Nevertheless, these traditional methods are significantly time-consuming, labor-
intensive, and require specialized staff [7,8].

Electrochemical biosensors and bioassays are analytical tools with several intrinsic
attractive features, namely selectivity, sensitivity, speed in response, low production cost,
simplicity of construction, facile operation, and ease of miniaturization; moreover, they
can potentially reach low limits of detection (LOD) [9,10]. Electrochemical immunosensors
have been used for their high selectivity, accuracy, precision, and capability to identify
bacteria [11]. Among the different immunosensing configurations, sandwich assays have
been widely employed [12]. This assay type allows the detection of an antigen through
its interaction with antibodies on a transducer, such as a screen-printed carbon electrode
(SPCE), to convert the biochemical reaction into a measurable electrical signal [13,14].
SPCEs have been proven to be convenient platforms for on-site and rapid analysis [14].
Chronoamperometry is a sensitive electrochemical detection technique that involves the
application of a fixed potential to an electrochemical cell and the recording of the current
intensity during a pre-established period [15,16]. Compared to other detection methods,
chronoamperometry is preferred because of its simplicity and superior signal-to-noise ratio,
allowing the detection of the analyte at low concentrations [15].

In recent years, several nanomaterials have been used in the construction of electro-
chemical biosensors and bioassays because of their electrocatalytic activity and high surface
area, improving the sensitivity of the analysis, and in many cases, the selectivity, reducing
electrochemical interferences [17]. Among the different classes of nanomaterials, super-
paramagnetic iron oxide nanoparticles (SPIONs) have received significant attention for
the immobilization of many biomolecules due to their easy manipulation with an external
magnetic field, biocompatibility, and high surface area-to-volume ratio [18]. SPIONs allow
the sample concentration and elimination of interferents with efficient washing steps due
to their magnetic properties, thus improving the biosensors’ performance [14,19]. These
nanoparticles, with a typical diameter lower than 20 nm, rapidly respond to an external
magnetic field and can be easily redispersed after the magnet is removed due to their super-
paramagnetic properties at room temperature [19,20]. This property can also increase the
probability of detecting the target analyte in a small volume of sample through electrochem-
ical biosensors [11]. However, these uncoated nanoparticles are prone to oxidation and
tend to aggregate over time in a liquid medium. To overcome these drawbacks, iron oxide
nanoparticles are often coated with organic or inorganic layers [21]. By coating SPIONs
with inorganic layers such as gold, functional thiol groups can easily be introduced on their
surface for covalent reaction with active biomolecules, such as antibodies, aptamers, or
nucleic acids. The gold coating also increases the stability of the nanoparticles [22].

In this work, an electrochemical magnetic nanoparticle-based sandwich-type im-
munoassay for the analysis of E. coli O157:H7 was developed. An SPCE was used as the
transducer, and core–shell Fe3O4@Au magnetic nanoparticles (MNPs) were synthesized
and used for the first time for this purpose. A sandwich immunocomplex was formed
on the MNPs that were attracted to the surface of the SPCE by a small magnet. After the
addition of the enzymatic substrate, chronoamperometry was used to record the analytical
signal at a very low potential (0 V), reducing possible interferences from the sample matrix.
The immunoassay’s selectivity and applicability were evaluated by analyzing Listeria mono-
cytogenes p60 protein and a food (milk) product, respectively. The results demonstrated
the adequate performance and usefulness of the assay for the fast determination (1 h) of
E. coli O157:H7 in a 40-µL sample, which are significant advantages when compared with
the traditional methods.

2. Materials and Methods
2.1. Equipment, Reagents, and Solutions

Mouse monoclonal antibodies to E. coli O157:H7 were purchased from MyBioSource
(San Diego, CA, USA). A secondary polyclonal antibody conjugated with HRP was pur-
chased from Dako (Carpinteria, CA, USA). Recombinant Listeria monocytogenes p60 protein
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(LM p60 protein), expressed in E. coli, was obtained from Adipogen Life Sciences (Füllins-
dorf, Switzerland).

The E. coli O157:H7 capture antibody, the E. coli O157:H7 detection antibody, and the
secondary HRP-labeled antibody are abbreviated as Ab-C, Ab-D, and HRP-Ab, respectively.

N-Hydroxysuccinimide (NHS), 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hy-
drochloride (EDC), 2-(N-morpholino)ethanesulfonic acid (MES), bovine serum albumin
(BSA), phosphate-buffered saline (PBS), tris(hydroxymethyl)aminomethane (Tris), 3,3′,5,5′-
tetramethylbenzidine liquid substrate (TMB-H2O2 K-Blue reagent), ethanolamine (EA),
potassium dihydrogen phosphate, potassium hydrogen phosphate trihydrate, sodium
chloride, iron(III) acetylacetonate ([Fe(acac)3], 99%), tetrachloroauric(III) acid trihydrate
(HAuCl4·3H2O, ≥99.9%, Au 48.5–50.25%), absolute ethanol (analytical grade), anhydrous
toluene (99.8%), thioctic acid (TOA), 1-methyl-2-pyrrolidinone (NMP, ≥99.0%), Tween® 20,
oleylamine (80%), 1-hexadecanol (96%), oleic acid (90%), and 6-mercapto-1-hexanol (MCH)
were obtained from Sigma-Aldrich (St. Louis, MO, USA).

The following solutions were used in this work: 10 mM MES buffer, pH 6 (B1), for
activation of the carboxylic groups; 10 mM PBS containing 137 mM NaCl, pH 8.3 (B2), for
preparing the blocking solution; and 10 mM PBS containing 137 mM NaCl, pH 7.4 (B3),
to prepare working solutions and the antigen (E. coli O157:H7). For the washing steps,
Tween® 20 (0.01%), a surfactant used to prevent non-specific biomolecule binding and to
reduce background signals, was included in the washing buffers (B1-T, B2-T, B3-T). All the
reagents were prepared using Milli-Q ultrapure water (resistivity 18.2 MΩ·cm, at 25 ◦C)
unless stated otherwise.

All the steps of the sandwich immunomagnetic assay were performed at room tem-
perature, under continuous mixing (950 rpm) using a HulaMixer (Thermo Fisher Scientific,
Oslo, Norway), and protected from light. The washing steps consisted of the addition of
100 µL of the desired buffer containing Tween-20, followed by additional stirring for 2 min.
A DynaMagTM-2 magnetic rack (Life Technologies, Oslo, Norway) was used for the MNPs’
attraction and separation of the supernatant in the various steps of the assay.

The chronoamperometric measurements were performed on SPCEs (DRP-110, Metrohm
DropSens, Oviedo, Spain) that were connected (connector cable, DRP-CAC, Metrohm
DropSens, Oviedo, Spain) to a potentiostat/galvanostat (PGSTAT 101, Metrohm Autolab,
Utrecht, The Netherlands). A specific base containing a 4 mm diameter magnet was used
to support the SPCE for precise magnetic attraction of the MNPs to the working electrode
(WE) of the SPCE. All the measurements were performed in triplicate.

2.2. Preparation of E. coli O157:H7

E. coli O157:H7 was cultured in 50 mL of Tryptic Soy Broth (TSB) medium at 37 ◦C
and an agitation speed of 240 rpm overnight. Next, the culture medium, including bacteria,
was centrifuged at 1000 rpm for 5 min, and then the pellet was resuspended in 5 mL of
PBS. To inactivate the bacteria for safe handling, the cells were heated at 100 ◦C for 15 min.
Samples were frozen until use.

2.3. Fe3O4@Au Synthesis and Functionalization

The Fe3O4@Au MNPs were synthesized and functionalized following our previously
reported method [19]. It consisted of (i) the synthesis of Fe3O4 MNPs by thermal decom-
position, followed by (ii) the coating of the Fe3O4 MNPs with a gold shell by chemical
reduction of Au(III) using oleylamine as reducing and capping agent, and (iii) the func-
tionalization of the resulting Fe3O4@Au core–shell nanoparticles with a mixture of MCH
and TOA (3:1 V/V). Briefly, NMP (35 mL), oleic acid (0.3 M), 1-hexadecanol (0.3 M), and
oleylamine (0.3 M) were mixed and heated to 200 ◦C (under stirring and inert atmosphere).
Then, [Fe(acac)3] (0.15 M, 10 mL) was quickly added to this solution, and stirring was
continued for 1 h. Then, the reaction mixture was cooled and kept under stirring overnight.
The resulting MNPs were precipitated by adding ethanol (50 mL), and the material was



Biosensors 2023, 13, 567 4 of 13

washed several times with ethanol (to remove the excess of oleylamine and oleic acid) and
redispersed in anhydrous toluene (5 mL).

The Fe3O4 MNPs were coated with a gold shell using a Fe3O4:HAuCl4·3H2O molar
ratio of 1:7. Briefly, the Fe3O4 MNP dispersion (1.25 mL) was diluted with anhydrous
toluene (20 mL) and heated to 100 ◦C under an inert atmosphere. Subsequently, a solution
containing HAuCl4.3H2O, oleylamine (7.07 mL), and anhydrous toluene (35 mL) was
added dropwise under vigorous stirring to the pre-heated dispersion. The reaction mixture
was stirred for 1 h. Then, the system was cooled to room temperature, and absolute ethanol
(50 mL) was added. The coated nanoparticles were magnetically separated and washed
several times with ethanol. The final nanomaterial was redispersed in anhydrous toluene
(10 mL), and a dark red-purple dispersion was obtained.

The Fe3O4@Au concentration was determined and expressed in mg/mL. The func-
tionalization of the Fe3O4@Au MNPs (4 mg/mL) was performed using ethanolic solutions
of MCH (0.1 M) and TOA (0.1 M). The ethanolic thiol mixture with a volume ratio of
3:1 was added to the Fe3O4@Au dispersion and kept under stirring overnight. Then, the
supernatant was removed (using a magnet), and the MNPs were dispersed in B1.

2.4. Magnetic Nanoparticles Characterization

The MNPs were characterized by transmission electron microscopy (TEM) on a JEOL-
2000 Ex II TEM (Japan) equipment (JEOL, Tokyo, Japan). The procedure involved dispersing
the samples in toluene under sonication and subsequently immersing a carbon-coated
200-mesh copper grid in the suspension, followed by air-drying. The average particle sizes
and size distributions were calculated from the diameters of at least 100 particles randomly
selected from the TEM micrographs. The dynamic light scattering (DLS) measurements
were performed at 25 ◦C on a Zetasizer Nano ZS (Zetasizer, Malvern, UK).

2.5. Immobilization of Capture Antibody on Fe3O4@Au

The immobilization of the Ab-C on the Fe3O4@Au MNPs consisted of the following
steps: 50 mg of Fe3O4@Au MNPs (0.25 mg/mL) functionalized with MCH-TOA were
washed, followed by the separation of the modified Fe3O4@Au MNPs using the magnetic
rack and disposal of the supernatant after 1 min. Then, the free carboxylic groups of
the modified Fe3O4@Au MNPs were activated by mixing with 100 µL solution of EDC
(200 mM) and NHS (50 mM) prepared in 500 µL of B1 buffer for 15 min under stirring.
The supernatant was removed, and 100 µL of Ab-C (10 µg/mL, in B1) were added for 1 h,
followed by a washing step with B1-T and B2-T. Finally, 100 µL of EA (0.1 M, in B2) were
added and incubated for 10 min to block the unreacted carboxylic groups. Subsequent
washing steps with B2-T and B3-T were carried out, and the Ab-C-modified Fe3O4@Au
MNPs were finally dispersed in B3-T and stored at 4 ◦C until use.

2.6. Immunoassay Procedure

Figure 1 illustrates the different steps of the biofunctionalization, optimized immunoas-
say, and electrochemical detection strategy. In the optimized assay, a 10-µL aliquot of the
Ab-C-modified Fe3O4@Au MNPs dispersion was taken, the supernatant was removed,
and 100 µL of an E. coli O157:H7 standard/sample solution was added and incubated
for 30 min. Then, 100 µL of a solution containing both Ab-D (5.0 µg/mL) and HRP-Ab
(initial concentration: 1 g/L; 2000× dilution in B3) were added and incubated for 30 min. A
final washing step was performed with B3-T, and the suspension was maintained in B3-T.
This suspension (10 µL) was placed on the SPCE, the MNPs were attracted to the working
electrode (WE) with a magnet, and the supernatant was removed. The biorecognition
event was monitored by adding the enzymatic substrate TMB (40 µL, 1 min, and absence
of light) and subsequently recording a chronoamperogram (at 0 V for 1 min). During
the enzymatic reaction, HRP catalyzes the oxidation of TMB, which is then detected by
chronoamperometry [23].
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Figure 1. Schematic representation of the electrochemical magnetic immunoassay. (1) The surface of
the Fe3O4@Au MNPs was (i) activated with EDC/NHS, (ii) modified with Ab-C, and (iii) blocked
with EA. (2) The assay was performed by adding (iv) the antigen (E. coli O157:H7) and (v) an Ab-D+
HRP-Ab mixture. (3) The MNPs were then magnetically attracted to the WE of the SPCE, TMB was
added, and chronoamperograms were recorded.

2.7. Milk Sample Analysis

To evaluate the applicability of the proposed assay, a milk sample was purchased from
a local supermarket (Central Lechera Asturiana, Asturias, Spain) and used without any
pretreatment. The milk sample was spiked with different E. coli O157:H7 concentrations
(2 × 103, 2 × 102, and 2 × 101 CFU/mL), diluted (1:10), and analyzed. Control samples
(non-spiked milk) were also included in the analysis.

3. Results and Discussion
3.1. Fe3O4@Au MNP Synthesis and Characterization

The magnetic Fe3O4 cores were synthesized by the thermal decomposition method [19].
To prevent the oxidation of the Fe3O4 MNPs and to use them as platform for the devel-
opment of the magnetic immunoassay, they were coated with a gold shell. The coating
process involved a gradual deposition of gold onto the surface of the Fe3O4 MNPs by a
controlled temperature-induced reduction of Au(III) to Au(0) using oleylamine. In this
process, oleylamine functions both as a reducing agent and as a stabilizer of the resulting
core–shell MNPs, preventing the agglomeration of the nanoparticles and maintaining their
stability [24]. Figure 2 shows the TEM micrographs of Fe3O4 and Fe3O4@Au MNPs. The
TEM images revealed that the Fe3O4 MNPs were well dispersed, presenting a log-normal
particle size distribution and an average particle size of 5.4 nm (σ = 1.0). The Fe3O4@Au
MNPs had a nearly spherical shape and a particle size of 13.7 ± 1.9 nm, confirming the
coating of the Fe3O4 cores with gold (Table 1). Dynamic light scattering (DLS) measure-
ments were carried out to confirm the coating of the Fe3O4 MNPs with gold and obtain
information on the colloidal stability of the nanomaterials (Figure 3). The Fe3O4 MNPs
dispersed in toluene presented an average solvodynamic diameter of 5.6 nm, while the
Fe3O4@Au MNPs showed an average solvodynamic diameter of 15.7 nm (Table 1). In both
cases, the solvodynamic particle sizes are consistent with the corresponding particle sizes
obtained by TEM, indicating the lack of agglomeration of the particles in the solution.
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Table 1. Average particle size of the Fe3O4 and Fe3O4@Au MNPs determined by TEM and DLS.

Average Particle Size

MNP DTEM (nm) σ(TEM)
c DDLS (nm) d PdI e

Fe3O4 5.4 a 1.0 5.6 0.145
Fe3O4@Au 13.7 b 1.9 nm 15.7 0.076

a Estimated by TEM assuming a log-normal particle size distribution; b Estimated by TEM assuming a Gaussian
particle size distribution; c Standard deviation; d Solvodynamic particle size estimated by DLS (dispersion in
toluene); and e Polydispersity index value.
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3.2. Optimization of Experimental Conditions

For the development of a successful immunoassay, the optimization of the experi-
mental parameters is fundamental [25,26]. Therefore, the variables of interest, such as the
working solution, incubation time, and reagents’ concentrations, were optimized according
to their relevance to the immunoassay. The selected values were chosen according to the
signal-to-blank ratio (S/B) using the current intensity values measured in the absence and
in the presence of 2 × 106 CFU/mL of E. coli O157:H7. The obtained data correspond to the
average and standard deviation of three replicates.

To obtain selective detection of the target bacteria, it is necessary to minimize the back-
ground signal related to the non-specific reaction of biomolecules on the sensor platform.
Therefore, the effect of adding BSA to the working solutions was evaluated. B3-T and B3-T-
BSA 1% (m/V) were tested and compared using the following conditions: Ab-C-modified
Fe3O4@Au MNPs volume: 10 µL; Ab-C concentration: 10 µg/mL; E. coli O157:H7 con-
centration: 2 × 106 CFU/mL; Ab-D concentration: 5 µg/mL, HRP-Ab: 2000× dilution;
and incubation time: 60 min. As can be observed in Figure 4A, the S/B ratio improved
when the immune reactions in different steps were performed in the working solution
containing BSA 1% (m/V). The addition of BSA clearly reduced the blank signal more
than the signal obtained in the presence of bacteria, improving the S/B ratio. Therefore,
B3-T-BSA 1% (m/V) was selected to proceed with the studies.

To improve the total assay time, the ‘step-by-step assay’ approach was tested using
different incubation times (30 or 60 min): incubation of (1) bacteria, 30 min; Ab-D, 30 min;
and HRP-Ab 30 min; (2) bacteria, 60 min; Ab-D, 60 min, and HRP-Ab, 30 min. In Figure 4B,
it is possible to observe that the increase in the incubation time (assay 2) decreased the S/B
ratio. Therefore, an incubation time of 30 min for each biomolecule (bacteria, Ab-D, and
HRP-Ab) was used in the subsequent studies.

The Ab-D concentration (2.5, 5.0, and 15 µg/mL) was optimized under the previously
mentioned conditions. Figure 4C shows that when the Ab-D concentration increased from
2.5 to 5.0 µg/mL, the S/B ratio also increased; however, for the highest concentration
(15 µg/mL), the S/B ratio decreased, which indicates that saturation was attained. There-
fore, 5.0 µg/mL of Ab-D was chosen to proceed with the development of the assay. The
dilution of the HRP-Ab (1000×, 2000×, and 4000×) was optimized under the previously
optimized conditions. The obtained results (Figure 4D) show that higher dilutions led
to an increase in the S/B ratio but with lower bacteria and blank signals. Therefore, the
intermediate dilution of 2000× was considered adequate.

Regarding the optimization of the total assay time, a combined (joined) step protocol,
comprising the preincubation of Ab-D (5.0 µg/mL) and HRP-Ab (2000×) in a single
solution (15 min before use in the assay), was compared with the step-by-step procedure.
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The obtained data (Figure 4E) shows that the joined step strategy led to the highest S/B
ratio. It also decreased the assay time from 1.5 h to 1 h and the number of incubation steps,
so this procedure was adopted for the following studies.
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Figure 4. Optimization of (A) the working solution (B3-T and B3-T with BSA 1%); (B) the incubation
time for the step-by-step assay; (C) the Ab-D concentration (2.5, 5.0, and 15 µg/mL); (D) the HRP-Ab
dilution (1000×, 2000×, and 4000×); and (E) comparison of step-by-step assay and joined step assay.
Experimental conditions: Ab-C-modified Fe3O4@Au MNPs volume: 10 µL; Ab-C concentration:
10 µg/mL; and E. coli O157:H7 concentration: 2 × 106 CFU/mL.

3.3. Analytical Performance of the Immunoassay for E. coli O157:H7 Analysis

To test the performance of the developed immunoassay, different solutions of E. coli
O157:H7 were prepared (2 × 101, 2 × 102, 2 × 103, 2 × 104, 2 × 105, 2 × 106, and
2 × 107 CFU/mL) and analyzed using the optimized conditions. The calibration straight
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was established between 2× 101 and 2× 106 CFU/mL, with the following linear regression
equation: i (µA) = 7.1 × 10−7 [E. coli] (CFU/mL) + 0.21, r2 = 0.998, n = 6 (Figure 5A). The
limit of detection (LOD = 20 CFU/mL) was calculated according to the equation 3.3 × σ/S,
where σ is the standard deviation of the intercept, and S is the slope of the calibration
line. Furthermore, the coefficient of variation of the method (9.9%) demonstrated the
good precision of the method. The analytical characteristics allow us to conclude that the
developed immunoassay could be applied to the analysis of E. coli in food samples.
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Figure 5. (A) Calibration line of the developed immunoassay for the analysis of E. coli O157:H7.
(B) Results of the selectivity studies using LM p60 protein (1000 ng/mL). Experimental conditions:
Ab-C-modified Fe3O4@Au MNPs volume: 10 µL; Ab-C concentration: 10 µg/mL; Ab-D concentration:
5 µg/mL; and HRP-Ab dilution: 2000× dilution.

Furthermore, the selectivity of the immunoassay was tested against a cell surface
protein (p60) of Listeria monocytogenes (1000 ng/mL) that is secreted in large quantities
into growth media. As shown in Figure 5B, the current intensity obtained for E. Coli
O157:H7 was significantly higher than the one obtained for the Listeria monocytogenes
protein, thus demonstrating that good selectivity was achieved. According to the obtained
results, an additional washing step or the adjustment of the Tween-20 amount in the
washing buffer could allow a more effective removal of the non-target protein, reducing
the corresponding signal. However, this would lead to a more laborious procedure.

3.4. Milk Sample Analysis

To assess the accuracy of the assay’s results, liquid milk was selected to evaluate the
application of the proposed assay for rapid detection (1 h assay) of E. coli O157:H7 in
foods. The sample was prepared as explained in Section 2.7, “milk sample analysis”,
and spiked with different concentrations of E. coli O157:H7 (0; 2 × 101, 2 × 102, and
2× 103 CFU/mL). E. coli O157:H7 was only quantifiable in the 2× 102 and 2× 103 CFU/mL
solutions. Acceptable recoveries for these concentrations were obtained (110% and 125%)
with adequate precision (the coefficient of variation of the results (CV) was lower than
3%) (Table 2). Although a LOD of 20 CFU/mL was achieved in buffer solution, bacteria
analysis in food samples (such as milk) is always a challenge because of the complexity of
the sample matrix. Therefore, for lower bacteria concentrations, a lower analytical signal
than the one obtained for the LOD in buffer solution was obtained.
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Table 2. Results of the recovery studies obtained in the analysis of E. coli O157:H7 in spiked milk
samples and respective coefficients of variation.

[E. coli] Added
(CFU/mL)

[E. coli] Found
(CFU/mL) Recovery (%) a CV (%) b

0 <LOD
2 × 101 <LOD
2 × 102 2.5 × 102 125 2.2
2 × 103 2.3 × 103 115 1.7

a Recovery (%) = detected concentration/spiked concentration × 100; b coefficient of variation.

3.5. Comparison with Other Electrochemical Immunoassays for the Determination of E. coli

Table 3 shows a comparison between the magnetic immunoassay developed in this
work and reported electrochemical sensors/assays for E. coli analysis. The Fe3O4@Au
MNPs have several advantages due to their unique combination of SPIONs and a gold
shell. Firstly, the magnetic cores allow the efficient collection of the analyte during the
assay, which enhances the sensitivity of the assay and reduces the signal background signal
because of the elimination of possible interferents during the washing step. Secondly,
the gold shell of the Fe3O4@Au MNPs provides several advantages, such as increased
biocompatibility, chemical stability, and ease of functionalization. The gold shell makes the
system more versatile for functionalization and bioconjugation with different bioreceptors,
such as antibodies or enzymes, allowing for a wide range of applications. The gold shell
also enhances the stability of the MNPs in biological fluids and reduces the potential for
aggregation. Compared to other electrochemical immunoassays reported in the litera-
ture, the developed magnetic immunoassay is cost-effective, portable, and user-friendly,
without requiring expensive equipment. Additionally, the assay developed in this work
demonstrated an acceptable LOD for E. coli O157:H7 within a short assay time, which is
comparable with the works reported earlier. The benefits of this magnetic immunoassay
include the elimination of complex immobilization procedures, ease of use, and analysis in
a cost-effective assay, making it practical for the detection of E. coli O157:H7. Furthermore,
this approach can be adapted for the detection of other pathogens by utilizing different
bacterium-specific bio-elements.

Table 3. Comparison of the main characteristics of the developed magnetic immunoassay with other
electrochemical methods for the detection of E. coli.

Target
Bacteria Transducer Modification/

Platform
Label/Redox

Probe Technique Assay
Time

LOD
(CFU/mL) Ref.

E. coli Glassy carbon electrode - [Fe(CN)6]4− Chronoam-
perometry <5 min 1 × 104 [15]

E. coli
O157:H7 SPCE Magnetic

nanobeads Label-free EIS a <1 h 1 × 104 [27]

E. coli Gold disk electrode - Label-free EIS a <20 min 6 × 103 [28]
E. coli

O157:H7 Graphene paper electrode AuNPs Label-free EIS a - 1.5 × 102 [29]

E. coli
O157:H7

Screen-printed interdigitated
microelectrodes - [Fe(CN)6]3−/4− EIS a <1 h 1 × 102 [30]

E. coli
O157:H7

SAM-modified gold
electrodes AuNPs [Fe(CN)6]3−/4− EIS a - 1 × 102 [31]

E. coli
O157:H7 Nanoporous membrane Magnetic beads Label-free EIS a - 10 [32]

E. coli
O157:H7 ITO c Plg-IONPs b [Fe(CN)6]3−/4− EIS a - 3 [33]

E. coli
O157:H7 SPCE Fe3O4@Au MNPs HRP Chronoamperometry 1 h 20 This

work

a Electrochemical impedance spectroscopy; b poly(lactic-co-glycolic acid) coated iron oxide nanoparticles; and
c indium tin oxide.
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4. Conclusions

In this work, an electrochemical magnetic immunoassay for the rapid analysis of
E. coli O157:H7 bacteria was developed by using core–shell Fe3O4@Au MNPs. The core–
shell MNPs were successfully synthesized by coating magnetic Fe3O4 cores with a gold
shell through the reduction of Au(III) into Au(0) on the surface of the cores promoted
by oleylamine. The resulting Fe3O4@Au MNPs were functionalized with a mixture of
6-mercapto-1-hexanol and thioctic acid in ethanol. These magnetic platforms were used
in a sandwich-type assay and were easily held on the surface of an SPCE with an exter-
nal magnet.

The specific capture antibody was covalently bioconjugated to the carboxylated self-
assembled monolayer on the surface of Fe3O4@Au MNPs, while a detection antibody
and a secondary HRP-labeled antibody were also used in the assay. Chronoamperomet-
ric measurements allowed efficient bacteria analysis in the linear range between 20 and
2 × 106 CFU/mL. Recovery analysis demonstrated that at least 2 × 102 CFU/mL of E. coli
could be efficiently detected in a milk sample. The developed immunoassay offers a cost-
effective, portable, and user-friendly solution, without the need for expensive equipment.
It allows the detection of E. coli O157:H7 in a short time (1 h) with an acceptable LOD,
which is a better performance when compared to other reported electrochemical assays.
The immunoassay eliminates complex immobilization procedures, making it practical for
the food industry to perform fast and reliable analysis. Moreover, it can be adapted for the
detection of other pathogens by utilizing different bacterium-specific bio-elements.
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