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ABSTRACT Predictive maintenance in machines aims to anticipate failures. In rotating machines, the
component that suffers the most wear and tear is the bearings. Currently, based on the Industry 4.0 paradigm,
advances have been made in obtaining data, specifically, vibration signals that can be used to predict
deterioration using various techniques. In this study, we have applied vibration analysis to obtain features
that can be used in an optimal Machine Learning model using a public dataset from CWRU, widely used
in research, which contains data on bearing failures. The main objective of this research is to detect bearing
failures using a minimum set of observations and selecting the minimum number of features. To achieve this,
frequency domain vibration analysis, combined with envelope analysis, is utilized as an effective method
for detecting bearing failures. The results were further improved by incorporating an optimal bandwidth
determined using the kurtogram. When the results of the envelope analysis are applied to various machine
learning models, using the calculated amplitudes as predictors, the Kernel Naive Bayes model achieved an
accuracy of 94.4%. Meanwhile, the Decision Tree (Fine Tree) and KNN (Fine KNN) models demonstrate
exceptional accuracy, achieving a perfect accuracy rate of 100%.

INDEX TERMS Bearing fault, deep learning, industry 4.0, machine learning, predictive maintenance.

I. INTRODUCTION
Prognostics and Health Management (PHM) [1] in Indus-
try 4.0 enables predictive maintenance, condition monitor-
ing, data-driven decision making [2], integration with digital
twins, and optimization of Overall Equipment Effectiveness
(OEE). By leveraging advanced technologies and data ana-
lytics, PHM empowers organizations to achieve higher levels
of asset reliability, efficiency, and productivity in the context
of the fourth industrial revolution.

PHM is an important step towards improving asset man-
agement and maintenance practices, it is indeed incomplete
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without the capabilities of remaining useful life (RUL) pre-
diction and fault diagnosis [3].

RUL prediction techniques enable us to estimate the
remaining operational lifespan of a component or system.
By analyzing historical data, sensor readings, and other rele-
vant information, RUL prediction models can forecast when
a particular component or system is likely to fail or require
maintenance. Fault diagnosis involves the identification and
localization of faults or anomalies within a system. By ana-
lyzing sensor data, performance metrics, and other available
information, fault diagnosis techniques can detect, classify,
and diagnose faults, helping maintenance personnel under-
stand the root causes of failures. Accurate fault diagnosis
enables timely and appropriate actions to be taken, such as
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repairs, part replacements, or adjustments, improving system
reliability, safety, and performance.

To enhance RUL prediction, researchers have investigated
an approach called the Dual-Thread Gated Recurrent Unit
(DTGRU) [4].

One of the promises of the Industry 4.0 paradigm is the
reduction of unplanned downtime and unexpected break-
downs [5]. This is when the importance of predictive mainte-
nance (PdM), also referred to as e-maintenance, emerges [6].
PHM enables predictive maintenance strategies by leverag-
ing advanced analytics, machine learning, and real-time data
monitoring. Predictive maintenance is based on the problem
that machines often go through a measurable degradation
process before they fail, which will allow us to predict when
preventive maintenance should be carried out. Advances in
the connectivity of industrial networks and the obtaining of
data from processes and systems will allow us to meet the
challenge of predictive maintenance [7]. In industry, rotating
machines are of great importance. Therefore, the diagno-
sis of faults in these types of machines is a critical point
for the maintenance of an industrial system. Most rotating
machines have bearings among their mechanical elements.
Bearings consist of balls or other rolling elements that rotate
on raceways within rings. Faults in bearings occur due to
the deterioration of the outer track, the inner track, the ball,
or the cage [8]. The analysis of vibrations and specifically
the frequency spectrum is the most widely used methodology
for detecting defects in bearings. This technique has a well-
defined model, which depends on the speed of the motor, the
geometry of the bearings, and the location of the defect in the
bearing [9] and has been widely researched in recent decades.

Bearings in general consist of several elements: outer ring,
rolling elements (balls, needles, rollers, etc.), cage and inner
ring [8]. Wear in each of these parts will produce character-
istic defect frequencies in the frequency spectra, which will
allow us to identify the failure. That is, when a bearing com-
ponent is damaged, the characteristic frequency of the failure
appears in the frequency spectrum along with harmonics.

The associated frequencies are:

« BPFO (Ball Pass Frequency Outer) is the characteristic
frequency for a defect in the outer track.

« BPFI (Ball Pass Frequency inner) is the characteristic
frequency for a defect in the inner track.

« BSF (Ball Spin Frequency) is the characteristic fre-
quency for defects in balls or rollers.

o FTF (Fundamental Train Frequency) is the characteristic
frequency for a defect in the cage.

“Defective bearings produce vibrations equal to the rota-
tion speed of each of the bearing frequencies. They are
strongly related to the rotation of the balls, the cage, and the
passage of the balls through the inner and outer tracks.” [10].

This model describes certain types of errors based on
frequencies, but typically failures occur at the same time
as noises or other vibrations from other elements that make
diagnosis difficult. Due to this variability it is very difficult
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to directly recognize failure patterns through simple observa-
tion.

The defect signals obtained directly from rotating
machines are in the time domain and contain complex infor-
mation from other machine elements. To solve this, the
amplitude of the signal in the frequency domain is analyzed,
and the resulting graph is called a spectrum. The most
common way to perform this transformation is to use the
Fast Fourier Transform (FFT) or also the Wavelet Packet
Transform (WPT) [11] and Short-time Fourier Transform
(STFT) [12]. With these tools, a signal in the time domain
with a lot of information is transformed into a series of signals
in the frequency domain, focusing on the values of amplitude
and frequency.

The characteristics obtained by applying these transfor-
mations create a dataset of a large dimension that con-
tains irrelevant information and makes Machine Learn-
ing (ML) methods ineffective. Therefore, a good selec-
tion of features is necessary to improve the effectiveness
of algorithms both computationally and in terms of model
accuracy.

Machine Learning (ML) is the creation of systems or mod-
els that “learn” automatically. Automatic, because they are
problems that are to complicated to be solved manually and
also have a large dimensionality or are large volumes of data.
The goal of ML is to create models (programs) capable of
generalizing behaviors from the information provided in the
form of examples.

Among the problems that ML solves is classification, i.e.
predicting the category of a new observation or, in other
words, predicting whether an element belongs or does not
belong to a predefined category.

The goal of this research is to classify bearings that are
in good condition versus those that are faulty and also to
determine whether the fault is located in a specific area.
This will be achieved by using classification algorithms from
machine learning (ML).

Among the most widely used supervised classical algo-
rithms in the literature on bearing fault diagnosis [13] are K-
Nearest Neighbors, Support Vector Machines (SVM), Deci-
sion Trees, and Naive Bayes [14]. In the studies [15], [16],
the researchers achieved a perfect accuracy rate of 100%
by performing a more efficient classification than with the
SVM model. Another approach that takes advantage of
the particularity of artificial neural networks (ANN) [17]
is Deep Learning (DL) [18] algorithms, which have the
ability to automatically extract features; among the most
widely mentioned in articles are Convolutional Neural
Network (CNN) [19], [20], [21], [22], [23], Auto-Encoders
[24], [25], Deep Belief Network (DBN) [23], and Recurrent
Neural Network (RNN) processes [26].

In Kaya etal.[27], the authors suggested continuous
wavelet transform CWT and convolutional neural net-
works to predict the bearing fault size diagnosis based on
deep transfer learning algorithms (DTL) and time-frequency
images.
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Transfer learning (TL), originally derived from the field
of computer vision, in particular, developed for image clas-
sification tasks, has proven to be applicable and effective
in various domains, including the fault diagnosis of rotating
machines. By leveraging pre-training models and adapting
them to the specific fault diagnosis task, transfer learning can
improve diagnostic accuracy, even with limited labelled data,
and capture important fault-related features from raw sensor
data or vibration signals.

DL-based diagnosis methods have emerged as a prominent
area of research. These have gained significant attention due
to their ability to mitigate the influence of human experience,
distinguishing them from traditional machine learning diag-
nosis methods [28].

Traditional deep transfer learning models facilitate the
extraction of domain-invariant representations and the align-
ment of different domains, ultimately improving the per-
formance and generalizability of the model across diverse
domains using a convolutional auto encoder [29].

Joint Distribution Adaptation (JDA) improves the perfor-
mance of machine learning models on the target domain by
reducing the discrepancy between source and target distri-
butions. By aligning the joint distributions, JDA facilitates
effective knowledge transfer and adaptation, enabling models
to generalize well in real-world scenarios where labelled data
may be scarce or unavailable in the target domain. A fault
bearing diagnosis method was introduced in [30], which com-
bines Joint Distribution Adaptation (JDA) with Deep Belief
Network (DBN) techniques.

This research aims to reduce the number of features and
samples and to improve the accuracy and processing of clas-
sical ML algorithms for classifying bearing failures.

The rest of the article consists of the following sections:
Section II briefly describes the set of fault data to be used
in the research. Section III presents the method of extracting
features and the vibration analysis technique to be developed.
Section IV details the selection of the features to be used
in Section V, which describes the experiment carried out.
Section VI presents the conclusions and future work.

Il. DATA SET REVIEW

Data is the basic unit for all machine learning (ML) or deep
learning (DL) architectures. The literature shows that many
authors have opted to use existing public data sets to test the
validity and effectiveness of the techniques and algorithms
developed. The most widely used data set is the CRWU
dataset [31] which is taken as a standard to validate many
ML and DL algorithms.

This data set was generated by the Case Western Reserve
University (CRWU) Bearing Data Center. Experiments were
conducted in which data was collected on the accelerations
produced by an electric motor in different situations, varying
the type of failure, its severity, or the rotational speed of the
shaft.

The experimental set for collecting data consists of a
2.03 HP electric induction motor at one end, a torque trans-
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ducer in the middle, and a dynamometer at the other end that
simulates the load. In addition, it includes control electronics
[31].

The sensors, specifically accelerometers, were placed on
the bearings at the end of the motor shaft and on the fan
within the motor housing and collected 12,000 and 48,000
samples per second of the defects. For the fault-free sam-
ples, 48,000 per second were obtained. Speed and power
were obtained through the torque transducer and recorded
manually. The samples were recorded in MATLAB format
files.

Defects were added to SKF bearings using electric dis-
charges that caused failures in the inner crown, balls, and
outer track with different diameters from 0.007 inches to
0.04 inches. In addition, these tests were performed by vary-
ing the rotational speed and load.

The data set consists of 161 records divided into four
groups named: 48k normal-baseline (fault-free data), 48k
drive-end fault, 12k drive-end fault, and 12k fan-end fault.
They contain information based on the resulting loads and
speeds of the motor.

As for the file names, the first letter represents the position
of the defect, the next three numbers are the diameter of the
failure, and the last number indicates the load. For example,
the file IRO07_0 has the data of the inner crown failure, with
a 0.007-inch diameter of failure for a motor load of O HP.
In the same way, the file OR007 @6_0 contains the data of
the outer crown failures with a diameter of 0.007 inches in
the centered load zone (at position 6 on the clock) and the
motor load operating at 0 HP.

It should be noted that each data file in the CWRU data set
consists of data of different lengths and is not a multiple of 2,
in addition, it is a large, varied, and complex set.

In addition to CWRU, other data sets have been used
in the literature for detecting defects in bearings such as
MFPT (Machinery Failure Prevention Technology) [32] or
the Paderborn bearing dataset from Paderborn University
[33]. Among the data sets used to predict the useful life of
bearings are FEMTO_ST [34], IMS (Intelligent Maintenance
System) from the University of Cincinnati [35], and Xi’an
Jiaotong University (XJTU-SY) [36] in all of which the test
method to generate the defect has been to accelerate the
device’s life. Currently, the most widely used data set is
CWRU. The defects in this data set are caused, by evident
characteristics and relatively easy diagnosis, so it can be used
as a basic data set for model validation.

IIl. FEATURE EXTRACTION
Features are essential in ML, in this study they are extracted
from the vibration signals of the bearings when there is a
defect in the inner track, outer track, ball, or normal state.
Initially, it is difficult to extract features from the original
signal that can distinguish the different defect states from the
normal state of the bearing. To solve this problem, vibration
analysis techniques are applied.
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A. VIBRATION ANALYSIS

There are multiple techniques for analyzing the vibrations
produced by electric motors [37]. They can be grouped
into the time domain, frequency domain, and time-frequency
domain analysis techniques.

1) TIME DOMAIN ANALYSIS

In this type of analysis, the shape of the vibration signal
is analyzed with respect to time. To analyze the obtained
signal, indicators such as the mean, peak-to-peak amplitude,
root-mean-square (RMS), crest factor, or kurtosis are used.
These indicators will be used as features for ML. It should
be noted that this signal is the one obtained directly from the
accelerometers.

2) FREQUENCY DOMAIN ANALYSIS

This technique consists of transforming the signal into a
series of discrete frequency components so that the character-
istic frequency components of the failure can be easily ana-
lyzed. The transformed signal is called the signal spectrum.

To perform this transformation, the Fast Fourier Trans-
form (FFT) [38] is typically used because it requires less
computational time. Other transformations include the Power
Spectrum or Envelope Analysis.

FFT is an algorithm that efficiently calculates the discrete
Fourier transform (DFT) [39] by transforming the discrete
signal obtained from sensors in the time domain to the fre-
quency domain. The result is the spectrum of the signal.

The DFT of the signal x, is defined as:

N-1

X = Z sy~ 2mi/N kn )
n=0

where xy, is the discrete signal obtained in the time domain, k
is an integer ranging from 0 to N — 1 and x is a set of complex
numbers that will be the resulting spectrum. The number of
samples N must be a power of two.

When there is a localized defect in a bearing, the surface
of the bearing elements interacts with the defect, produc-
ing an impact that repeats with each rotation of the shaft.
These impacts excite high-frequency resonances. However,
the diagnostic information revealing the type of defect is in
the repetition frequency, not the resonance frequency [40].

In addition, due to the load variations caused by the passage
of the defect through the load zone, an amplitude modu-
lation of the repetition frequency in the signal is produced
[41]. Therefore, it is necessary to perform demodulation that
allows the defect signal to be extracted in order to analyze it
in the frequency domain. The demodulation is what is called
the envelope spectrum.

Envelope Analysis allows this demodulation to be carried
out, even if random fluctuations occur, and extract the masked
signal in the carrier signal that also contains noise and signals
from other components.

To carry out an optimal extraction, the signal must be ana-
lyzed in the appropriate band, where the signal-to-noise ratio
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(SNR) is higher. To this end, techniques such as Ordender
Tracking (OR), Adaptive Noise Cancellation (ANC), self-
adaptive Noise Cancellation (SANC), or Discrete/Random
Separation (DRS) have been developed, which aim to elim-
inate the background noise that hinders diagnosis. Another
alternative is the use of the Kurtogram to extract the optimal
frequency band, especially when there is no prior knowledge
of the behavior of the monitored machine [42].

This technique is based on Spectral Kurtosis (SK) [43].
SK has high values in those bands where the signal caused by
the defect is dominant and values close to zero when the band
is dominated by stationary components [38]. In other words,
it has a high sensitivity to detect in which frequency band the
impulsivity of the signal generated by defects is greater.

The Kurtogram consists of performing the spectral kurtosis
of all frequencies and bandwidths to extract in which band
the Kurtosis is greater, which is directly proportional to the
amount of signal impulse and related to the possible defects
that this article seeks.

It should be noted that computationally speaking, this pro-
cess is very costly, there is a less costly version, The Fast
Kurtogram [44]. However, a lower computational cost may
mean a lower signal-to-noise ratio, which can be a problem
when analyzing the signal.

Using the previously described techniques, it is possible to
detect anomalies in the different parts of a bearing accord-
ing to the characteristic frequencies present in the spectrum.
However, the difficulty in detecting failures in bearings is
different depending on the element of the bearing where
it occurs. When there is a defect in the inner track or the
outer track, the possibility of the Envelope Analysis detecting
a harmonic at the characteristic fault frequencies is much
greater than if the failure is present in the bearing balls.

From the set of vibration data of an electric motor for
normal operation and for operation with failures in the inner
track, outer track and the balls, the envelope spectrum is
obtained, and the PCA technique is applied to reduce dimen-
sionality [45].

3) TIME-FREQUENCY DOMAIN ANALYSIS

In these types of techniques, a simultaneous approach of the
time domain and the frequency domain is provided. The algo-
rithms available for performing these types of transforma-
tions are the Short-time Fourier Transform (STFT) [12], the
Wagner-Ville distribution (WVD) and the Wavelet Analysis
(WA) [11].

4) VIBRATION ANALYSIS ON CWRU

Next, the vibration analysis methods will be applied to the
CWRU data set. A comparison has been made with the
signals of the bearings in good condition with the defective
ones; the data obtained are those of the motor rotating at a
speed of 1797 rpm and without load O hp, the data without
defects (Normal_0), with a sampling rate of 12000 samples
per second, a diameter of 0.007 inches has been chosen as
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Time domain signal: Normal
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FIGURE 1. The signal in the time domain without defects.

Time domain signal: Ball failure
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FIGURE 2. The signal in the time domain with a defect in the ball.

Time domain signal: Inner track failure
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FIGURE 3. The signal in the time domain with a defect in the inner track.

the failure diameter in the inner track (IR0O07_0), the outer
track in the centered position (OR007@6_0) and on the ball
(B007_0).

The signals obtained in the time domain for the different
situations, that is, as captured by the accelerometer, are shown
in Fig. 1, 2, 3 and 4.
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Time domain signal: Outer track failure
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FIGURE 4. The signal in the time domain with a defect in the outer track.

As can be observed by comparing the signals of defects in
the inner track Fig. 3 and outer track Fig. 4, it is difficult to
distinguish the failure with the signals (in the time domain).
However, if it is compared with the signal without defects,
it is clear that the amplitude of the failure is greater than in
the healthy bearing. In the case of a failure in the ball Fig. 2,
it can be highlighted that the impulsiveness of the signal is
lower than in the other failures and is similar to the signal
without defects Fig. 1, which makes it difficult to discover
the anomaly.

IV. FEATURE SELECTION

The goal of feature selection is to remove redundant and
irrelevant features as much as possible and to retain rel-
evant features. This selection is an important part of ML
because it reduces the dimensionality of the feature vector
and transforms the data into information that is usable by ML
algorithms in a more efficient manner.

One way to improve anomaly detection is to apply analysis
in the frequency domain, specifically Envelope Analysis.
This method detects resonant vibrations caused by defects in
bearings. The frequency at which these pulses repeat is what
allows us to diagnose which component of the bearing has
caused the defect.

Envelope Analysis demodulates the signal and extracts the
envelope signal, which will contain harmonics at the fault
frequencies (BPFI, BPFO, BSF, and FTF). This process is
performed using the Hilbert transform [46].

In Fig. 5, the fault signal on the inner track corresponds
to BPFI harmonics, which means there is a defect on the
inner track of the bearing. Next, in Fig. 6, the signal with
the fault on the outer track is shown, where the same scenario
as previously discussed for the inner track can be verified.

Next, in Fig. 7, the signal from the bearing in good condi-
tion is shown, where there are no high amplitudes in any of
the characteristic failure harmonics BPFI, BPFO, or BSF, and
the peak amplitudes are lower in comparison to the failures
on the inner track.
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FIGURE 7. Spectrum of the good condition envelope signal and BPFI,
BPFO, and BSF harmonics of the inner track.

Finally, in Fig. 8, the signal from the ball bearing failure
is visualized, where the characteristic frequency harmonics
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Envelope spectrum: Ball failure
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FIGURE 9. Kurtogram of the signal with a defect on the inner track.

(BSF) do not coincide with the highest peaks. Therefore,
envelope analysis cannot detect this type of failure.

One way to improve envelope analysis is to apply a
band-pass filter to the original signal to extract the band with
the most diagnostic information. To extract this band, the Fast
Kurtogram technique has been used [44].

Thanks to the Fast Kurtogram, the frequency band in which
the signal/noise ratio is highest can be obtained and therefore
contains the most diagnostic information. The more precision
we can achieve in detecting the frequency band that the
Envelope Analysis is going to demodulate, the easier it will
be to detect the bearing defect.

In summary, applying this technique extracts a portion
of the signal containing diagnostic information (analytical
signal). To increase the signal/noise ratio and make the detec-
tion of fault frequencies more effective, a band-pass filter is
applied where the defect causes greater impulsivity. This band
is detected using the Fast Kurtogram. Finally, the spectrum of
the analytical signal is obtained to see if there are harmonics
at the fault frequencies of the bearings.
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a2 Filtered envelope spectrum: Inner track failure

T
— Spectrum
— — BPH ]

['RE:)

018

014

0a2

Amplitude (g)
o

o
=
=

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
006 |
|
|
|

|
. L.|..| I‘.\ J‘.‘L‘ﬂ ‘I‘||||LI m J||| III\L. AL L.. ‘u | |.4‘||.
200 o0

o 100 h 400 500 800 700 800 apo 1000
Frequency (Hz)
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FIGURE 11. Spectrum of the filtered ball envelope signal and BSF
harmonics.

Before obtaining the spectrum of the envelope signal, it is
necessary to calculate a band where the diagnostic signal has
more presence, this is obtained through the Fast Kurtogram,
the filter removes all frequencies that are not within the band
3 kHz £ 6 kHz as shown in Fig. 9.

The amplitude of the harmonic that coincides with the char-
acteristic frequency BPFI has increased from approximately
0.14 to 0.18, as shown in Fig. 10. Therefore, using the band-
width indicated in the Kurtogram has improved impulsivity.

In the case of the ball defect, the kurtogram has been
carried out with the maximum window width allowed by
MATLAB, which is 2048 and corresponds to level 10.

However, even if the bandwidth suggested by the kur-
togram is used to filter, it has not been effective as the har-
monics still do not coincide with the characteristic frequency
BSF as shown in Fig. 11, which implies the inability to detect
the failure with this method.

Based on the analysis of vibrations in the frequency domain
developed it is observed that the difference in the amplitude
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TABLE 1. Models accuracy.

Model Accuracy
Kernel Naive Bayes 94.4%
Fine Tree 100%
Coarse Gaussian SVM 77.78%
Fine KNN 100%
Coarse KNN 44.4%

TABLE 2. Comparison of the computation time.

Model Train(s) Predict (s) Total (s)
Kernel Naive Bayes 34.20 0.24 34.44
Fine Tree 21.04 0.14 21.18
Coarse Gaussian SVM 36.23 0.26 36.49
Fine KNN 12.14 0.12 12.26
Coarse KNN 22.01 0.24 22.25

shown by the BPFI signal spectrum is more significant than
that of the BPFO signal spectrum for a bearing with a defect
on the outer track. In the case of a defect-free bearing, there
is no appreciable difference, and the amplitudes are reduced.

Therefore, as a first approximation, the amplitude is
selected as a candidate and thus obtains the necessary features
to include in the various ML algorithms; for this purpose,
the CWRU data set is processed and the amplitudes of the
envelope signal spectrum in BPFI and BPFO are calculated
for each of the data sets available in CWRU.

V. EXPERIMENT

The experiment mainly consisted of applying vibration anal-
ysis in the frequency domain, specifically Envelope Analysis,
Hilbert Transform, and Fast Kurtogram. Based on the results
obtained, the amplitudes for the characteristic frequencies
of defects (BPFI, BPFO) on the inner and outer track are
calculated. These amplitudes will be the features to be applied
in the ML algorithms.

The resulting data will have three features: Ampli-
tudeBPFO, AmplitudeBPFI and DataSet.

AmplitudeBPFO and AmplitudeBPFI will be the predic-
tors, and DataSet indicates which CWRU data set the infor-
mation was obtained from to perform the amplitude cal-
culations. The defect will be the classification target, each
observation can be labelled with one of three classes: Normal
(defect-free bearing), Outer Track (defect on the outer track),
or Inner Track (defect on the inner track).

Once the data set has been processed to classify the defects
of the bearings on the inner and outer track, the number
of observations is reduced to 81, of which 63 have been
used for training and 37 for validation. Cross-validation with
5 partitions has been used to avoid overfitting. The per-
formance evaluation of the model, that is, the classifica-
tion, is performed through confusion matrices [47]. The tool
used in the experiment was MATLAB R2021B Update 3
(9.11.0.1873467) and the ML and DL Classification Learner
app. Next, the results obtained with the different models and
the achieved precisions are shown in Table 1.
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TABLE 3. Comparison of the accuracy and performance with previous studies.

Reference Model/Algorithm Dataset Accuracy  Performance
[48] RestNet50 Case Western Reserve University (CWRU) bearing 99.97% *
[22] CNN Case Western Reserve University (CWRU) bearing 99.74% ok
[16] 1D _LBP+GRA Created by the author 100% HoHHK
[49] GoolLeNet Case Western Reserve University (CWRU) bearing 97.60% *
To this article Fine KNN Case Western Reserve University (CWRU) bearing 100% HoAAK
Kemnel Naive Bayes Model 4 (Coarse KNN)
Inner Track ! “
E Normal 1 2 E Normal
Outer Track Outer Track
Inner Track Normal Outer Track Normal Outer Track

Predicted Class

FIGURE 12. Confusion matrix of kernel naive bayes.

Coarse Gaussian SVM

inner Track

Normal 3

True Class

Outer Track 1

Inner Track Normal
Predicted Class

FIGURE 13. Confusion matrix of coarse gaussian SVM.

Table 2 displays the computational times for training and
prediction across different models. The observation reveals
that Fine KNN exhibits the best performance when utilizing
the amplitude of the envelope as the predictor. This choice
is particularly significant as it aligns with the characteristic
frequency of the fault.

In addition, Fig. 12, 13 and 14 show the different confusion
matrices of the models that have not achieved 100% preci-
sion.

A. MOTIVATION

This work aims to detect faults in bearings by selecting the
minimum number of features with a minimal set of obser-
vations. It starts with the hypothesis of using simple models

VOLUME 11, 2023

Predicted Class

FIGURE 14. Confusion matrix of coarse KNN.

and architectures of Artificial Intelligence, so classic machine
learning algorithms that align with this initial idea are chosen.
The goal is to minimize computation time and maximize fault
classification accuracy.

B. COMPARISON OF Al ALGORITHM PERFORMANCE AND
ACCURACY

Table 3 presents a systematic comparison of the classifica-
tion accuracy and performance of various ML algorithms
using the Case Western Reserve University (CWRU) bear-
ing dataset. It is evident that the DL-based models exhibit
slightly lower performance, despite having comparable accu-
racy. It should be noted that DL-based models have the need
for large volumes of data [13].

VI. CONCLUSION

Based on the initial hypothesis of minimizing the number of
observations and characteristics and utilizing vibration analy-
sis with classical ML methods featuring a simple architecture,
the following conclusions have been reached.

On the one hand, vibration analysis in the frequency
domain, specifically using envelope analysis, has proven to
be an optimal technique for detecting bearing faults. Further-
more, incorporating the optimal bandwidth obtained from the
curtogram enhances the accuracy of the results. However, it is
important to note that ball defects pose an exception as they
cannot be effectively characterized using this method.

On the other hand, when the outcomes of envelope anal-
ysis are applied to different ML models with calculated
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amplitudes as predictors, the Decision Tree (Fine Tree) and
KNN (Fine KNN) models achieve a remarkable accuracy of
100% with high performance.

Future work will involve applying these models to a
dataset obtained through an Internet of Things (IoT) pro-
totype and simulating failures on good bearing data for
real-time prediction. Additionally, efforts will be directed
towards exploring more efficient methods for detecting ball
defects.
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