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Abstract— This article introduces a new radio frequency iden-
tification (RFID) gate for access control merging the benefits
of near-field focusing and deep learning (DL). The gate uses
a near-field (NF) focused antenna with a slight tilted beam to
create an asymmetrical reading volume, which is essential to
determine the direction of tag transit with a single antenna.
The power and phase of the signal backscattered from the tag
are used as features for classifying tag status: crossing, static,
or moving around the gate yet not crossing it. The antenna
is made up of a 3 × 3 array of circularly polarized resonant
patches, operating at the ETSI RFID band (865–868 MHz).
After validating the coverage volume of the antenna, tag data
were used to train a multiclass support vector machine (SVM)
and a long-short term memory neural network (LSTM-NN). The
appropriately sized LSTM-NN yields 98% classification accuracy
in a scenario emulating a realistic shop entrance. The solution
offers improved robustness to multipath effects and reduced
false positives compared with conventional RFID gates using
phased array antennas, two closely spaced portals, or bulky
electromagnetic screens or absorbers, at lower cost and with
a simpler infrastructure.

Index Terms— Artificial intelligence (AI), deep learning (DL),
long short-term memory neural network (LSTM-NN), machine
learning (ML), near-field (NF) focusing, NF focused (NFF) array,
radio frequency identification (RFID), RFID gate, RFID portal,
support vector machine (SVM), ultrahigh-frequency (UHF)-
RFID.

I. INTRODUCTION

IN RECENT years, a broadening interest in Internet of
Things (IoT) and radio frequency identification (RFID)

technology is being witnessed in many sectors of industry and
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commerce, such as manufacturing, logistics, supply chain, and
retail [1], [2]. Passive RFID technology at ultrahigh-frequency
(UHF) band has proven to be a very successful and appealing
option to realize intelligent systems for warehouse manage-
ment, antishoplifting, anticounterfeiting, and other applications
[3]. Automated real-time tracking of goods in a large plant,
warehouse, or store can be accomplished through continuous
monitoring of shelves combined with product localization [4],
as well as through the installation of appropriate checkpoints,
namely RFID gates [5].

An RFID gate typically consists of one or more UHF-RFID
readers, one or more antennas, potential shielding structures,
and other devices such as photocells or cameras. The goal of
an RFID gate is to successfully read the totality of crossing
tags while filtering out undesirable tags that are nearby, also
indicating the direction of gate transit. In this way, it is
conceivable to keep track of the status of a warehouse or store,
or to implement antitheft alarm systems.

Multiple types of RFID gates have been developed. Some
involve tunnel gates, which isolate the tags to be read from
their surroundings by means of metal shieldings [6], [7]. This
solution is expensive and cumbersome and may require heavy
alterations in the architecture and esthetics of the building.
Multiantenna solutions can be effective to detect the gate
crossing direction but they are costly solutions [8], [9], [10].

Slender and single-antenna RFID gates have been designed
in [5] and [11]. To work, they exploit the signal phase [12] in
addition to tag readings and the power of the received signal.
By exploiting particular antenna configurations installed to
have an asymmetrical reading volume, the phase appears to be
a very useful feature above all for discriminating the direction
of transit, as well as filtering out tags of no interest (false
positives) [13].

However, there are still some issues to be solved with
this type of gate. First, the absence of shielding structures
sometimes makes it difficult to filter out undesirable moving
tags around the gate. Multipath fading can also create channel
blind spots where tag reading is hindered (false negatives). In
addition, propagation channel variations induced by the transit
of a person/vehicle under the gate can create propagation
conditions such that some tags normally outside the read-
ing volume become momentarily detectable (false positives).
Moreover, gate crossing at relatively high speed represents
a further issue as phase-based solutions often rely on phase
analysis after unwrapping.

There are two solutions to solve some of the above-
mentioned problems. Surely, it is possible to act at the
hardware level, for example, by realizing suitable antennas
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focused in the antenna near-field (NF) region [14], [15], [16],
[17]. In this case, the electric field can be maximized in
the region of interest around the gate center, so realizing a
spatial filter for all the undesirable tags in the gate vicinity,
without resorting to bulky shieldings. Furthermore, multipath
generated by the ground, walls, or other obstacles is mitigated
by the low far-field (FF) radiation of focused antennas. It is
worth mentioning that focusing effects require physically large
antennas at the UHF-RFID band (860–960 MHz).

Further solutions exploit machine learning (ML) algorithms
as support vector machines (SVMs) or neural networks (NNs)
[18], [19], [20], [21], yet they do not allow to push the per-
formance up to the levels required for a completely automatic
warehouse management, where very high tracking accuracy is
required.

In this article, the advantages of a NF focused (NFF) array
are combined with artificial intelligence (AI), and in particular
ML and deep learning (DL) techniques to create a low-cost
single-antenna smart RFID gate able to track all the tags
crossing the gate (also determining their transit direction) and
filter out tagged items of no interest, i.e., static tags, or moving
tags around the gate yet not crossing it. To the best of the
authors’ knowledge, such a solution does not currently exist in
literature or in the market and represents an innovative advance
in its application field. A NFF 3 × 3 patch array in European
Telecommunications Standards Institute (ETSI) RFID band
is combined with a long-short term memory (LSTM)-type
convolutional NN (CNN) which processes the data sequences
collected by the RFID reader concerning power and phase
samples of the received signal at the reader side. The system
is validated in the laboratory by reproducing a realistic setup
mimicking a clothing store. For comparison reasons, data are
also gathered through a physically tilted conventional FF array
built with the same 3 × 3 patch structure. Such a combined
approach allows to obtain a 98% accuracy on the classification
of the events that occur at the gate, showing an improvement
compared with the same system equipped with the FF array.

The combination of a hardware solution, specifically the
NFF antenna, and a software solution involving ML offers
additional benefits. This integrated approach enhances the
robustness of the classification system, enabling it to overcome
challenges present in the environment, such as multipath
interference. Moreover, it empowers the system to accurately
recognize various actions performed by individuals carrying
tagged objects, which inherently exhibit variability in terms
of nonconstant speeds, rotations, changes in direction, and
more. By leveraging both hardware and software components,
the system becomes more resilient and capable of handling
complex scenarios with greater accuracy.

This article is organized as follows. Section II describes the
application scenario, the objectives, the signal model, and the
classification algorithms. Section III introduces the focused
antenna, the measurement setup, and the data acquisition
procedure. Section IV presents the experimental results. In
Section V, the system here proposed is compared versus the
current state of the art by highlighting its advantages. Finally,
Section VI sets out some conclusions.

II. SYSTEM AND ALGORITHM DESIGN

A. Scenario and Goals

We consider a store or warehouse where we intend to trace
the items flowing through a given key point, whether these
are carried by a worker, a customer, or a forklift, as shown
in Fig. 1. Given the relatively large reading range of RFID
systems at the UHF band (of several meters), various equivocal
situations can arise (false positives). For instance, the antenna
may consistently detect a static tag over time, or it may detect
a tag that is normally not visible but becomes detectable
when nearby objects or people move by changing the wave
propagation channel. Finally, some tags may be moving around
the gate without crossing it. Proper antenna placement and
design can mitigate the occurrence of these spurious events
to a limited extent. Each event results in a different sequence
of tag replies in terms of received power and phase samples
which are exploitable to implement an accurate tag association
to one of the following classes:

1) crossing tag from right to left (R2L);
2) crossing tag from left to right (L2R);
3) static tag (S);
4) moving yet noncrossing tag (NC).

It is worth mentioning that to use a single antenna and make
the system less expensive, we must necessarily implement an
asymmetry in the antenna arrangement or beam steering [5].
In this article, we will use the terms “crossing” and “transit”
as being synonymous. The tests are conducted using either
an FF array or an NFF array, to evaluate and compare the
performance of the two systems.

B. Signal Model

UHF-RFID commercial readers usually provide as output
data the received signal strength indicator (RSSI) value, which
accounts for the power level at the reader side of the signal
backscattered by the tag. Up-to-date readers also provide the
tag phase response through the analysis of the IQ-signal of an
RFID data packet [12]. The RSSI is related to the tag–antenna
distance and radiation pattern of reader and tag antennas.
When conventional FF focused antennas are used, the received
power PR X can be expressed as [12]

PR X = PT X G2
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where PT X is the reader transmitted power, and G R and GT are
the reader and tag antenna gains, respectively. θ

(T )
el and φ(T )

az are
the tag elevation and azimuth angles with respect to the reader
antenna, whereas θ

(R)
el and φ(R)

az are the reader elevation and
azimuth angles with respect to the tag antenna. χ is the polar-
ization mismatching coefficient. M is the tag “modulation loss
factor” accounting for the amount of electromagnetic incident
power that is actually transformed into useful backscattered
modulated power by the tag chip impedance modulation. λ is
the carrier signal wavelength, d is the distance between reader
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Fig. 1. Schematic of the reference scenario. A UHF-RFID gate with a single antenna is installed at a shop entrance with either an FF array or an NFF array.

and tag antennas, and H is a complex factor accounting for
multipath effects.

The phase of the signal measured by the reader can be
resumed as [12]
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where ϕof f (θ
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az ) is the phase offset caused
by reader and tag antennas’ radiation patterns and by the tag
circuitry, which is quasi-constant within the main lobe of the
radiation pattern, and ϕm is the phase variation caused by
multipath phenomena.

Propagation channel effects impact both received power
and signal phase. Moreover, given the very narrow band
of UHF-RFID communications it is difficult to estimate the
contribution of multipath. Resorting to NFF arrays provides
a reduction in multipath effect because their inherent low FF
gain significantly reduces the radiation to reflecting surfaces
relatively far from the antenna.

When the reader antenna is an NFF array, link budget
equation in (1) and phase model (2) are not valid anymore
and a more complex analytical model is required, which
depends on the antenna size, array layout, and assigned focal
distance [14]. As an alternative, the use of DL to process
measured RSSI and phase data sequences is here considered.
The DL approach collects and models power and phase trends
associated with various tags status near the gate by including
unpredictable environmental parameters such as the impact of
nearby walls, scatterers, moving obstacles, and people, which
can be difficult to estimate.

For a correct data classification, we will unwrap the mea-
sured phase sequence getting ϕu . The phase at each timestep
n is denoted ϕu

n . To correctly execute the phase unwrapping,
consecutive phase samples must not differ more than π ,
meaning that the distance variation from two consecutive
samples shall be lower than λ/4. The values of ϕu are
then normalized by the first sample acquired at n = 0 to
release from any unpredictable phase offsets. We then obtain

the normalized unwrapped phase sequence ϕ p (where each
sample is ϕ

p
n ).

While the use of RSSI and phase values to discriminate
between moving tags and static tags is relatively straightfor-
ward with a single antenna, the use of a single antenna to
discern R2L-crossings from L2R-crossings requires a setting
modification. In particular, it is necessary to generate an
asymmetry in the antenna radiation pattern [5], [16]. To make
this clearer, a top view of a scenario in which the gate antenna
is positioned laterally to the entrance is shown in Fig. 2. We
denote with the x-axis the longitudinal direction as the tags
pass through, and with the y-axis the transverse direction. As a
consequence, the z-axis represents the vertical direction. If the
reading volume of the antenna is symmetrical [see Fig. 2(a)],
a symmetrical unwrapped phase ϕ

p
n will be recorded for both

R2L- and L2R-crossings [see Fig. 2(c)]. On the other hand,
if the reading volume is tilted with respect to the y-axis [see
Fig. 2(b)], spatial filtering will be performed and the crossing
tag will be detected only during approaches (departures) in the
case of R2L-crossings (L2R-crossings). Thus, the unwrapped
phase ϕ

p
n will allow to better distinguish between the two

events, as shown in Fig. 2(d) [5].

C. Classification Algorithms

When a tag is detected by the reader, RSSI and unwrapped
normalized phase sequence, RSSIn and ϕ

p
n , are collected. Each

sequence has a length of NS samples and a duration of T
seconds.

Each data sequence can be collected and then aggregated
to build a feature suitable for a classification algorithm. At
first attempt, we used a multiclass SVM for its simplicity
and real-time suitability [22]. The SVM searches for the
hyperplane in a high- or infinite-dimensional space to separate
two data groups. Multiclass SVM problem is approached
through multiple binary classification problems. To classify the
four classes of interest (R2L, L2R, S, and NC), we used the
following features: RSSI mean value µRSSI , RSSI variance
σ 2

RSSI , phase variance σ 2
ϕ , and unwrapped phase slope s =

(ϕ
p
NS

−ϕ
p
0 )/T computed by analyzing ϕ

p
n sequence and transit
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Fig. 2. Top view of a scenario in which the gate antenna is positioned laterally to the entrance. (a) Symmetrical reading volume. (b) Asymmetrical reading
volume (α = 30◦). (c) Example of unwrapped phase ϕ

p
n for R2L- and L2R-crossings with symmetrical reading volume (the two data sequences are perfectly

overlapping). (d) Unwrapped normalized phase ϕ
p
n for R2L- and L2R-crossings with asymmetrical reading volume.

duration T . Obviously, in this way, all time information related
to the acquired data is lost.

To exploit the time information, the data sequences can be
processed by a “sequence to label” classification algorithm,
as, for example, the LSTM-NN [23]. LSTM-NN are fed with
RSSIn and ϕ

p
n sequences, meaning that an Input Size of 2 is

set to the network.
Both the algorithms require a training stage, namely,

an offline calibration stage in which the algorithm learns
the parameters needed for classification from available data.
Specifically, with regard to the LSTM-NN, three types of
datasets are defined, named as training set, cross-validation
set, and test set. The training set includes all the data that
are used for NN training. The cross-validation set is used
to identify the best network architecture for the proposed
problem. The test set is for final validation. For each of
these sets, we define the network performance indicators,
namely, “training accuracy,” “cross-validation accuracy,” and
“test accuracy,” i.e., the ratio of correctly classified sequences
of the corresponding set to the set totals. Care should be
taken that each class is represented with a proper number of
elements in each set. In LSTM-NN, training consists of an
iterative procedure in which at each step, named as “epoch,” all
available data are processed and network parameters updated.
The network architecture allows the number of hidden units
and layers to be decided as the most important parameters.
Typically, in the field of NNs, an attempt is made to set these
parameters to avoid the occurrence of the “underfitting” and
“overfitting” phenomena. In practice, underfitting represents

the condition in which the network architecture does not have
sufficient complexity in terms of number of parameters to
represent the physical phenomenon. Overfitting, on the other
hand, is a widespread problem and consists of the opposite
situation: the network model includes too many parameters
and fits the data contained in the training set extremely well,
but performance degrades when new data are presented to the
network. A tradeoff between these two phenomena must be
pursued to optimize network performance [24].

III. ANTENNA DESIGN AND SETUP DESCRIPTION

A. Antenna Design

We designed an ad hoc antenna array to build the RFID
gate, which is depicted in Fig. 3. It is a custom 3 × 3 array of
left-hand circularly polarized (LHCP) patch antennas printed
on a 3.2-mm-thick FR4 substrate [εr = 4.3 and tan(δ) =

0.025], designed to operate at the UHF-RFID ETSI band
(865–868 MHz). The array element is a corner-truncated patch
antenna, with a side of 78 mm. The array size is 50 × 50 cm.
Sizes of array and elements are depicted in Fig. 4(a). The
patch exhibits a half-power beamwidth (HPBW) of about 120◦,
in both the principal planes. A single-port feed has been
implemented through a 50-� microstrip feeding network. The
spacing between the elements is λ/2. The array beam is fixed
and cannot be steered.

For a fair comparison between FF and NFF arrays, the
antenna layout is identical except for the feeding network. In
the FF array case [see Fig. 4(b)], the Z0 = 50-� microstrip
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Fig. 3. 3 × 3 array of LHCP patch antennas used for the measurements. By
changing the feeding network, the antenna can radiate either an FF broadside
pattern or an NFF spot.

paths connecting the antenna port and individual patches have
all the same electrical length, although the central column
is λ shorter. They are based on 1-to-3 power dividers with
λ/4 transformers of Z ′

0 = 86.6 � to get a parallel of three
input impedances of 150 � and get Z in = 50 �. All the
ports are fed in phase, and therefore, the array exhibits a
broadside pattern and a mechanical tilt is required to generate
the asymmetry in the antenna radiation pattern.

In the NFF array, the feeding network is modified to achieve
a desired quasi-quadratic phase profile [14] and get a tilted
focal spot at around 80 cm from the array surface [see
Fig. 4(c)] at an angle α = 30◦. Therefore, the reading volume
is asymmetrical as shown in Fig. 2(b). Such configuration
yields low FF propagation, but allows an NF focusing effect
[14].

The FF array exhibits a modulus of the reflection coefficient
|S11| < −10 dB in the 840–882-MHz frequency range, and an
antenna gain 9.7 dB at 868 MHz. HPBW is 34.5◦ and SLL
is −16 dB. Antenna |S11| curves are shown in Fig. 5 for both
FF (blue markers) and NFF arrays (red markers), together with
the single central patch element |S11| curve (green markers).
The S11 parameters for FF array and NFF arrays are measured
at feeding port.

The modulus of the electric field |E | radiated by FF
[see Fig. 6(a)] and NFF [see Fig. 6(b)] arrays was simu-
lated through CST Studio and is here shown for the xy
plane in the region with x ∈ [−1.5, 1.5] m and y ∈

[0, 3] m. Fig. 6(c) shows plots of the phase of the vertical
z-component arg{Ez} for the FF [see Fig. 6(c)] and NFF
[see Fig. 6(d)] arrays in the same plane and region. Both
the antennas present nonperfectly circular equiphase surfaces
[see Fig. 6(c) and (d)]. This demonstrates that the system is
operating in the NF region when tags are in the target region
at y ∈ [1, 3] m, where tag motion tests will be deployed.
Moreover, the modulus of the electric field decreases faster
when the NFF is used [see Fig. 6(a) and (b)], meaning that
a slight NF focusing effect is present. The impact of NF
focusing is not particularly noticeable due to the limited size of
the 3 × 3 array, which is approximately λ × λ. To enhance
its effectiveness, the size should be increased, although this
would result in larger objects and higher costs. However,
the suggested solution proves to be compatible with standard

store space requirements and, as we will observe from the
achieved outcomes, it offers an improvement compared with
the utilization of the FF array. In both the cases, it is clearly
evident that the maximum radiation direction is α = 30◦. For
a clearer depiction of the transition through the FF region,
refer to the provided Fig. 7. It illustrates the magnitude of
the electric field radiated by the FF array toward the direction
of maximum radiation (α = 30◦), displayed as a blue solid
line, and the magnitude of the electric field emitted by the
NFF array at the same direction, depicted as a red dashed
line. In addition, a thin black line represents a straight line at
−20 dB/decade. Electric field is normalized according to its
value at a distance of 10 m. As observed, the −20 dB/decade
path loss is approached at a distance greater than 5 m for both
the FF and NFF arrays.

B. Setup Description

To assess the performance of the system with both the FF
and NFF arrays, an experimental setup was built at the facili-
ties of the University of Pisa as depicted in Fig. 8. An Impinj
R420 RFID reader was connected first to the FF array and then
to the NFF array, and set with a transmitting power of 20 dBm
at f0 = 865.7 MHz. For convenience, the FF and NFF arrays
have been placed on a table pointing the volume in which
crossings are expected. It should be noted that a commercial
solution for such a system should integrate the antenna into a
thin planar radome which is not easily accessible or otherwise
hidden, especially for antitheft applications. Avery-Dennison
passive UHF-RFID AD23 tags with NXP U8 chip have been
used. The surrounding environment is a large meeting room,
where multipath propagation is expected.

C. RSSI Map

Initially, the coverage volume of the two arrays was tested.
Coverage volume refers to the portion of space in which an
RFID tag interrogated by the antenna can reply. To test it,
we connected both the antennas to the reader and placed them
at 1.5 m from the floor. We moved an RFID tag in the room,
following a regular grid with a 40-cm pitch. The tag was
placed with vertical orientation on a wooden stand at a height
1.5 m. We consider the direction of tag crossings to be the
x-axis and the orthogonal direction to be the y-axis. The grid
goes from x = −2.40 m to x = 2.40 m and from y = 0.40 m
to y = 2.40 m. A heatmap of the recorded RSSI values on
the xy plane is depicted in Fig. 9(a) and (b) for the FF and
NFF arrays, respectively. It can be noticed that both the tilted
FF array and NFF array with lateral focal spot are suitable
solutions to get an asymmetrical coverage volume. For the
assigned 20-dBm radiated power, the NFF array gathers on
average higher RSSI levels with respect to FF array in the
region of interest, as expected.

D. Data Acquisition

During the antenna motion, RSSI and phase data are
recorded by the reader for offline signal processing. The
RFID tags that carried out the R2L- and L2R-crossings were
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Fig. 4. Antenna and feeding networks design. (a) Antenna array. (b) FF array feeding network. (c) NFF array feeding network.

Fig. 5. Measured antenna |S11| [dB] for the single central patch (green
markers), FF array (blue markers) and NFF array (red markers). For FF array
and NFF array, |S11| is measured at the input port of the array.

either placed on some cardboard stands and moved manually
by an operator, or attached to the labels of some clothes
hanging on clothes racks with wheels moved back and forth.
Used substrates are characterized with low electromagnetic
conductivity. These materials closely resemble objects that
are typically found in stores, thereby offering a realistic
simulation. The metallic parts of the racks are far enough from
the tags, so that standard inlay tags can be used. Indeed, the
presence of metal parts contributes to the implementation of
a realistic store environment. The distance of the tags from
the antenna changes over three possible values, 1, 1.5, and
2 m, with some cases in which some tags were at 3 m, while
the height is varied between 1 and 1.5 m. To make the data
acquisition as realistic as possible, crossings were made at
different speeds by identifying two different datasets: “slow”
speed transits, i.e., with a speed lower than 0.5 m/s, and “fast”
speed transits, i.e., with a speed higher than 0.5 m/s. Static tags
were placed on the clothes hanging on the clothes’ racks kept
motionless, at a distance from 2.5 to 4 m from the reader
antenna. Moving tags that do not cross the gateway are placed
on cardboard holders and perform movements of moving away
and approaching, or other more or less random movements.
By referring to NFF array, a total of 1087 R2L, 1087 L2R,
1073 S, and 105 NC sequences were acquired. Out of these,
544 R2L, 544 L2R, 537 static, and 53 NC were “slow” speed
transits, whereas the remaining 543 R2L, 543 L2R, 536 S, and
52 NC were “fast” speed transits. A dataset of similar size was
acquired through the FF array.

As an example, some RSSI and phase sequences are dis-
played in Fig. 10. Fig. 10(a) and (b) represents an RSSI

and a phase sequence, respectively, collected with the FF
array, whereas Fig. 10(c) and (d) shows an RSSI and a
phase sequence, respectively, gathered with the NFF array.
Tag motion was similar in the two transits in terms of distance
(around y = 2 m) and speed (v ≃ 35 cm/s). It can be noted
that RSSI data for R2L-crossings (circular blue markers) and
L2R-crossings (squared red markers) movements are similar,
meaning that it would not be easy to distinguish between the
two classes from RSSI data only. However, thanks to the setup
asymmetry, unwrapped phase curves of the two events are
more distinguishable. This comment applies to both the FF
and NFF arrays.

As for static tags (represented by triangular green markers),
the RSSI and phase values are almost constant and serve as a
reliable signature for this class. In this case, the NFF is capable
of detecting the static tags but with lower RSSI values with
respect to the FF array. NC tags (represented by diamond black
markers) are the most challenging to recognize. NFF array is,
however, more effective in classifying these tags. Indeed, when
these tags are relatively far from the antenna, NF focusing may
help filtering them out because too far to be powered up. On
the other hand, when they are close, they still present a lower
number of readings and consequently shorter data sequences,
and therefore a stronger difference in the classification features
is achieved to help classification.

One of the advantages of the NFF array versus the cor-
responding FF array is that for an assigned radiated field
amplitude in the NF region, the NFF array radiates a lower
field in the FF region, so reducing the interference level [14].
This expected behavior is confirmed by the RSSI. This fact
offers several advantages: 1) the NFF array may not even
read far tags, effectively performing a spatial filtering and
2) if far tags are detected by the reader, they generally exhibit
significantly lower power values (RSSI) and a reduced reading
rate (readings per second), when compared with crossing
tags, so helping to differentiate between crossing tags and
static tags. Overall, NF focusing may be exploited for getting
improved performance in classifying different tag categories.

IV. EXPERIMENTAL RESULTS

A. Multiclass Support Vector Machine

First, multiclass SVM is considered. About 60% of available
data are used for training, whereas the remaining 40% are
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Fig. 6. Modulus of the electric field |E | radiated by (a) FF and (b) NFF arrays, and phase of the vertical z-component of the electric field arg {Ez} radiated
by (c) FF and (d) NFF arrays on the xy plane and in the region with x ∈ [−1.5, 1.5] m and y ∈ [0, 3] m. (a) and (b) Modulus of the electric field decays
faster when the NFF array is used. (c) and (d) Both the antennas present nonperfectly circular equiphase surfaces, by demonstrating the system is operating
in the NF region.

Fig. 7. Magnitude of the electric field radiated by the FF array (blue solid
line) toward the direction of maximum radiation (α = 30◦) and NFF array (red
dashed line). The thin black line represents the straight line at −20 dB/decade.
As observed, the −20-dB/decade path loss is approached at a distance greater
than 5 m for both the FF and NFF arrays. Electric field is normalized according
to its value at a distance of 10 m.

devoted for testing [25]. The number of classes is 4 (i.e., R2L,
L2R, S, and NC). The number of features is 5, so a set
of hyperplanes in a 5-D domain will be estimated for best
classification. After the training stage, a test accuracy of only
65% was achieved. Upon closer analysis of the available
data, it becomes apparent how difficult it is to separate these
four clusters of elements with a set of hyperplanes. Fig. 11
represents a scatter plot of three of the five available features,
when data are gathered with the NFF array: number of samples
NS , RSSI variance σ 2

RSSI , and phase slope s [rad/s]. The
four classes are represented by different colors. The plot
highlights a remarkable overlapping between the spots of the
four clusters. No substantial differences in performance were
found for the FF array. These results led us to pursue the path
of time analysis with LSTM-NN, which, although requiring
higher computational effort, may provide better performance.

B. LSTM Neural Network Architecture

As a first objective, the network architecture that would
allow the best classification capability was estimated for data
acquired with either the FF array or the NFF array. Initially,
data from the entire dataset, including both “slow” and “fast”
crossings, were used. Around 60% of the available data are
devoted to the training set, 20% to the cross-validation set, and
the remaining 20% to the test set, as recommended in [25].
We changed the number of layers from one to five, and hidden
units assume the values [10, 20, 50, 100, 200]. We trained

Fig. 8. Experimental setup.

the network and evaluated the cross-validation accuracy.
Fig. 12(a) and (b) shows the heatmaps of the cross-validation
accuracy for the FF and NFF arrays, respectively. It can be
noted that in both the cases, the best accuracy is reached
with three layers and 50 hidden units. Data from the FF
array reached a 98% cross-validation accuracy, whereas data
from the NFF array reached 99% cross-validation accuracy.
Although small differences in accuracy may seem insignif-
icant, from a logistics point of view a difference of only
1% point may become critical for high volumes of handled
goods. The phenomena of underfitting and overfitting can be
identified by looking at the two graphs. At the bottom left,
where the number of layers and hidden units is low, we incur
the phenomenon of underfitting, where the complexity of the
network is not sufficient to model the physical phenomenon. In
the upper right, but also in the lower right, where the number
of layers and/or hidden units is high, we incur overfitting.

Adding layers beyond the first one significantly increases
the training time. While an average training time of 9 min was
required for a single layer, it takes about an hour to achieve the
desired result when three layers are considered with a 12th Gen
Intel1 Core i7-12700H 2.30 GHz and 16-GB RAM. However,
such training time is compatible with the installation time of
the system in an industrial/commercial environment. On the
other hand, once the network has been trained, few ms are
required for running the classification algorithm, so that the

1Registered trademark.
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Fig. 9. Heatmap of the recorded RSSI values on the xy plane when a vertical-oriented tag moves from x = −2.40 m to x = 2.40 m and from y = 0.40 m
to y = 2.40 m with a 40-cm pitch. (a) FF array and (b) NFF array are at the [0, 0] m point. Lighter colors represent higher values of RSSI.

Fig. 10. Sample RSSI and unwrapped phase sequences from the dataset. (a) RSSI sequences gathered with FF array. (b) Phase sequences gathered with
FF array. (c) RSSI sequences gathered with NFF array. (d) Phase sequences gathered with NFF array. R2L-crossings are depicted with circular blue markers,
L2R-crossings with squared red markers, static tags with triangular green markers, and moving yet noncrossing tags with diamond black markers.

system finds to be suitable in real-time systems for monitoring
access or antishoplifting.

Once the best network configuration has been obtained,
performance analysis is performed on the test set. For the FF
array, a 97% accuracy was obtained on the test set, whereas
98% was reached by processing data gathered through the
NFF array. The progress of the training process is depicted in
Fig. 13 for the three layers, 50 hidden units, and NFF array.
Training accuracy (blue circular markers) and test accuracy
(red squared markers) reach a floor after around 10 epochs
(around 1 h).

C. Effect of Input Parameters on LSTM-NN Performance

We performed an analysis to show the effects of the phase
information on the classification performance when compared
with a procedure which uses the RSSI parameter alone.
We reperformed the network training on the total datasets
including both “slow” and “fast” transits, for both the arrays,
using as input only the RSSI parameter (Input Size = 1),
and then only phase (Input Size = 1). The results are then

compared with those achieved by the network previously
trained using both RSSI and phase samples (Input Size = 2).
The histogram in Fig. 14 shows the obtained values of test
accuracy in the three cases. It can be seen that using the NFF
array improves performance. In addition, it can be seen that
the RSSI parameter alone does not allow obtaining accuracy
higher than 80% in any case. As for using the phase alone,
using the NFF array yields 95%, compared with 90% for the
FF array. This difference is due to the fact that R2L- and
L2R-crossing tags can be better discriminated from NC tags
when the phase information is exploited. For both the arrays,
the best performance is obtained by combining the data from
both RSSI and phase sequences.

D. Effect of Crossing Speed

The speed at which tags cross the gate and move around it
greatly affects the classification performance. A lower speed
results in a larger number of acquired samples, which does
not necessarily improve the RSSI acquisition but helps avoid
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Fig. 11. Scatter plot of three of the five available features for the SVM, i.e., number of samples NS , RSSI variance σ 2
RSSI , and phase slope s [rad/s], when

data are gathered with the NFF array. R2L-crossings are depicted with circular blue markers, L2R-crossings with squared red markers, Static tags (S) with
triangular green markers, and moving yet noncrossing tags (NC) with diamond black markers.

Fig. 12. 2-D heatmap plot of cross-validation accuracy with respect to the changes in the number of layers and hidden units of the LSTM-NN. (a) FF array.
(b) NFF array.

issues related to phase unwrapping, thanks to denser spatial
sampling. To compare the results, we retrained the LSTM-NN
using only data from “slow” and “fast” crossings separately,
and compared it with the network using all the data together.
The histogram in Fig. 15 shows the obtained values of test
accuracy in the three cases. As expected, using data from
“slow” crossings improves accuracy, even reaching 100% in
the case of NFF arrays. “Fast” crossings alone, on the other
hand, worsens performance in comparison to the total dataset.
It is also clear from this graph that the amount of data collected
is in general sufficient to perform network training. In fact,
despite using only around half of the available data to train
the network in the “slow” and “fast” cases, we still manage

to complete the training and achieve good performance on the
test set.

V. DISCUSSION AND COMPARISON WITH
STATE-OF-THE-ART

When comparing RFID gate solutions, many factors must
be considered. It is important to keep in mind that a proper
figure-of-merit should be defined within the context of the
application of interest. For example, in tunnel gates, stray reads
(false positives) are prevented with proper shielding, and RFID
gate performance can be measured in terms of percentage of
detected tags. In other gates, accuracy may be evaluated on
crossing direction recognition, but not on recognition of S
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TABLE I
COMPARISON OF THE PROPOSED SOLUTION WITH RESPECT TO THE STATE-OF-THE-ART OF RFID GATES

Fig. 13. Training (blue circular markers) and test accuracy (red squared
markers) progress during a training process for the LSTM-NN with three
layers and 50 hidden units processing the data gathered from the NFF array.

Fig. 14. Histogram of obtained values of test accuracy with the LSTM-NN
with three layers and 50 hidden units trained with RSSI data sequences, phase
data sequences, and RSSI + phase data sequences.

or NC tags, that are out of the gate scope. In addition, each
solution is usually tested in different environments, making it
difficult to compare gates under the same conditions. However,
gates can be evaluated based on their purpose, cost, and
complexity. The cost of a gate mainly depends on the reader,
the number of antennas, and the hardware needed for data
processing and decision-making. Complexity is closely related
to cost, as higher costs often result from a larger number
of objects to integrate. However, complexity also includes
time-consuming calibration steps during installation, which are
crucial for implementing AI-based gates. A summary of some
of the most significant solutions proposed in the literature is
provided in Table I.

Fig. 15. Histogram of obtained values of test accuracy with the LSTM-NN
with three layers and 50 hidden units trained with RSSI + phase data
sequences derived from the entire dataset, from only “slow” transits, and
from only “fast” transits.

Shielded tunnel RFID gates are popular in industry. In [26],
a gate with absorbing panels to limit the reading volume
is presented. The goal is to detect a total of 134 crossing
tags simultaneously. A maximum accuracy of 97.8% (131 on
134 tags detected) was achieved with a commercial Times-7
A5010 antenna with 8.5-dB gain and a transmitted power of
24.5 dBm. Among multiantenna solutions, Keller et al. [27]
exploited RSSI, timestamp, and reading antenna ID to classify
tags crossings when tagged items are carried by a forklift
truck. A configuration comprising two readers and eight
antennas allowed to reach an overall accuracy of around 99%,
meaning that the portal is able to filter out false positives.

Two antennas can be used to estimate the crossing direc-
tion of the RFID tags. In [28], a dual-antenna scheme was
proposed to control children access to school. The antennas
are placed upon the school entrance, one facing inward and
the other outward. Accuracy was lower than 97% due to the
large amount of children crossing the gate simultaneously.
Phase-based solutions [12] may be beneficial insofar as the
phase of the backscattered signal significantly changes as
the tagged items are moving and can be fruitfully exploited
to accommodate the use of a single antenna, thus lowering
the infrastructure cost. In [11], a phase-based access control
system using a single tilted antenna was presented. Here,
an attempt was made to discern via unwrapped phase curve
analysis the tags that were passing through the gate (R2L
and L2R) from NC tags. The accuracy obtained is 97%.
A similar gate can be used for forklift transit monitoring as
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proposed in [5], by reaching 92% of crossing classification
accuracy.

AI might be relevant in RFID field to mitigate the false
positive issues [29]. In [18], ML is introduced in the context of
RFID gates for pallet tracking in a plant. An antenna facing the
floor is installed at one of the plant doorways. A regular grid
of reference 24 tags is lying on the floor. As the pallet crosses
the gate, the reference tags are shadowed by the metallic
pallet truck structure. The sequence of shadowed tags can
be used as input for an LSTM-NN. A classification accuracy
among crossing tags (R2L and L2R) and S and NC tags of
100% is reached. Unfortunately, tags’ positioning on the floor
is not always feasible in industrial environments. Usage of
LSTM-NN to process RSSI sequences is faced in [20]. In this
case, an FF array is used to recognize crossing or static tags,
without implementing a crossing direction estimation. A 100%
accuracy is achieved.

VI. CONCLUSION AND FUTURE WORK

A UHF-RFID smart gate has been described, which is
able to efficiently detect crossing tags, determine their transit
direction, and discriminate crossing tags from both the static
tags and moving tags yet noncrossing the gate. To reduce false
negative and false positive events, the proposed solution jointly
exploits the principle of NF focusing and DL methods. Both
the received power (RSSI) and phase data are used to train an
LSTM-NN. A measurement campaign has been implemented
to validate the performance of the proposed system, showing
that it can reach an accuracy of 98%, which is attractive for
application in real scenarios. When compared with other exist-
ing RFID smart gates, the proposed solution may guarantee
similar performance in terms of correct classification, yet with
a reduced infrastructure complexity as a single NFF antenna
with a slightly tilted focal spot is needed. The performance
improvement over a similar smart gate using a conventional FF
focused antenna has also been measured. The beneficial effect
of using the phase sequence as an additional classification
feature over the RSSI sequence has been shown too. Work
is in progress to increase the system accuracy using larger
NFF arrays and advanced DL methods.
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