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H I G H L I G H T S  

• The energy performance of residential buildings (EPB) is analysed in detail. 
• The developed MARS model has predicted satisfactorily the HL and CL. 
• The MARS model was compared with SVM, MLP and M5 tree techniques. 
• The correlation coefficient of the MARS-relied model is about 0.99. 
• The physico-chemical input variables are studied in depth.  

A R T I C L E  I N F O   

Keywords: 
Multivariate adaptive regression splines 
(MARS) 
Support vector machines (SVMs) 
Artificial neural networks (ANNs) 
M5 model tree 
Energy performance at residential dwellings 
Regression analysis 

A B S T R A C T   

Several previous studies indicate that the energy consumption of buildings has increased steadily during the last 
decades all over the world. Residential dwellings in European countries are lawfully required to meet the suitable 
minimum needs concerning energy efficiency according to the European Directives. Specifically heating, 
ventilation and air conditioning (HVAC) devices represent most of the energy use in dwellings as they have a 
principal purpose in controlling the inner climate. Hence, one manner to relieve the constantly growing request 
for supplementary energy supply is to carry more efficient dwelling designs from the energy point of view, which 
is to say, with superior energy conservation properties. In this sense, an accurate estimation of the heating load 
(HL) and cooling load (CL) is needed to calculate the detailed descriptions of the heating and cooling device 
needed to support comfortable indoor air conditions. The goal of this investigation was to acquire some foretold 
models to achieve a tangible calculation of the HL and CL (output variables) as a function of 8 specific input 
variables (concretely, relative compactness, surface area, wall area, roof area, overall height, orientation, glazing 
area and glazing area distribution) at residential dwellings. These eight input factors have been often employed 
in the literature about the energy performance of dwellings (EPB) to analyse energy-related themes in dwellings. 
Moreover, a support vector machines (SVM) approach with distinct kernels, an artificial neural network (ANN) of 
multilayer perceptron network (MLP) kind and M5 model tree were adjusted to the observed data for evaluation 
of differences. The outcomes of the current investigation are two-fold. First, the importance (or strength) of each 
input variable on the HL and CL (output variables) is presented through the MARS model. Secondly, the MARS- 
relied approximation was the most excellent predictor of the EPB. Indeed, a MARS regression was conducted and 
coefficients of determination equal to 0.9961 for the HL estimation and 0.9651 for the CL estimation were gotten 
when this approach was employed to 768 diverse residential buildings, respectively. The concordance between 
the observed data and those predicted with the MARS approximation verified the satisfactory performance of the 
latter. Finally, the conclusions of this original investigation are summarised.   
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1. Introduction 

Research studies so far propose that the energy consumption of 
buildings has increased continuously in recent decades around the world 
[1,2]. Dwellings in the European Union (EU) are lawfully required to 
comply with the appropriate minimum energy performance re-
quirements since the European Directive 2002/91/EC [3], which was 
modified by Directives 2010/31 and 2018/844 of the EU [4,5]. 
Furthermore, the price of electricity and gas is prohibitive for most 
families currently. Therefore, energy saving and suitable use of energy 
sources for more efficient buildings are driving forces in the energy 
transition period [6,7]. In addition, heating, ventilation and air condi-
tioning (HVAC) systems play an important function in controlling the 
inside climate since they represent most energy employed in dwellings 
[8,9]. 

Hence, one form to relieve the going up request for energy is to 
obtain designs in buildings with better properties of energy saving. To 
determine an energy-efficient dwelling pattern, the calculation of the 
Heating load (HL) and the Cooling load (CL) is needed throughout the 
year to obtain the requirements and performance conditions of the 
HVAV equipment necessary to support convenient inside air states [10]. 
Clearly, the external side climate gives place to an effect on the tem-
peratures that it is experienced inside. Thus, the HVAC systems must 
work strongly in the greatest extreme climates for the purpose of 
keeping an adequate inside environment. The HL and CL describe the 
amount of heating or cooling demanded, respectively, from an advisable 
internal home temperature [11,12]. 

Currently, simulation tools in buildings for the calculation of energy 
evaluation are employed to a large extent to analyse or foretell energy 
usage rates and obtain the best performance and energy management. 
Moreover, although there are building simulation programs based on 
energy balance, the precision of the estimated outcomes can change 
between distinct classical software packages. In this sense, Atam [13] 
shows that advanced modelling for energy-efficient dwellings is essen-
tial for the best possible energy savings, which fervently relies on the 
existence of suitable simulation tools based on real data. For all these 
reasons, it is used in this investigation machine learning techniques (MLT) 
to analyse the effect of diverse kinds of construction factors (e.g., rela-
tive compactness) on the two output factors of interest (e.g., HL and CL) 
due to the fact that this is most rapid and simpler if it has available a 
database of the physical factors involved [14,15]. Indeed, the use of 
statistical machine learning techniques in the energy performance of 
buildings (EPB) has provoked a large quantity of concern lately [16,17]. 

The relevance of this procedure that employs the multivariate 
adaptive regression splines (MARS) approximation [18–22] to identify 
HL and CL factors in residential dwellings, to the knowledge of the au-
thors, has not been intended for coming before research at this time. 
Furthermore, SVM–relied models with different kernels [23], an artifi-
cial neural network (ANN) of multilayer perceptron (MLP) type [24] and 
M5 model tree [25] were also adjusted to the observed dataset for the 
purpose of estimating HL and CL output variables for the evaluation of 
differences purposes. MARS is a nonparametric approximation to solve 
regression problems and can be seen as a generalization of the linear 
model with ability to tackle nonlinearities and the presence of factor 
interactions [17–22]. 

Preceding investigations make visible that MARS is an acting in-
strument in a large number of areas, such as bioinformatics, biomedi-
cine, geochemistry, bioenergy and engineering areas of expertise 
[21,22,26,27]. Certainly, some reasons behind the utility of the sug-
gested MARS approximation are as follows [18–22]: (1) MARS ap-
proximations are more tractable than linear regression techniques; (2) 
The MARS approximation originates always the same ensemble of basis 
functions when it is applied to the identical initial dataset; (3) MARS 
approximations are relatively easy to comprehend and understand; (4) 
MARS can deal with both categorical and continuous data; and (5) 
MARS approximations supply an explicit mathematical expression of the 

output dependent factor as a function of the input factors through a 
summation of basis functions (either hinge functions or products of two 
or more hinge functions). This most recent characteristic is an essential 
disagreement in comparison with other choices because the majority 
acts properly like a black box. The main disadvantage of MARS models is 
that the resulting fitted function is not smooth (not differentiable along 
hinges), although this is not an obstacle so that they can make more 
precise and faster predictions than other methods based on statistical 
learning. 

The principal objective of the current investigation is to evaluate the 
application of several machine learning techniques (specifically, an 
optimised MARS–based model as well as SVM–based models with 
different kernels, MLP-type approximation and M5 model tree) to 
foretell the Heating load (HL) and Cooling load (CL) from the physical 
input parameters of the residential buildings in the context of EPB. To 
this end, it has been investigated the action of eight input factors 
(concretely relative compactness, surface area, wall area, roof area, 
overall height, orientation, glazing area and glazing area distribution 
(GAD)) to evaluate the HL and CL dependent variables in residential 
dwelling with success (see Fig. 1). 

2. Materials and methods 

2.1. Observed dataset 

The observed dataset is based on previous measurements from Tsa-
nas and Xifara [15]. It has taken an elementary cube 
(
3.5 × 3.5 × 3.5 m3), generating 12 dwelling shapes where each 

dwelling shape is defined by 18 elementary cubes. All the dwellings have 
identical volume (771.75 m3), but distinct surface areas and dimensions. 
The materials employed for all 12 dwelling shapes are identical [28]. 
The selection was based on the common and newest materials employed 
in the dwelling industry jointly with the lowest U-value (specifically, the 
associated U-values taken here are: walls (1.78), roofs (0.5) and win-
dows (2.26)). 

The modelling supposes that the residential dwellings are in the 
Mediterranean climate region [15,28]. It is used for 7 persons with little 
activity (~70 W). The inner design states were established in the 
following manner:  

• level of light: 300 lx;  
• speed of air: 0.30 m/s; and  
• relative humidity: 60 %. 

With respect to the thermal properties, it was employed the 
following combined manner: 95 % efficiency and thermostat tempera-
tures ranging from 19 to 24 ◦C. The number of operation hours was 
ranging from 15 to 20 h on weekdays and from 10 to 20 h on weekends. 

2.2. Variables involved in the problem 

The principal goal of this investigation was to obtain the HL and CL 
factors (output variables) relied on the eight physical input variables 
(see Table 1). It is commonly accepted that the method of EPB entails a 
large number of variables. The data knowledge employed for the distinct 
models (i.e., MARS–relied approximation, SVM–relied method with 
distinct kernels, MLP–relied method and M5 model tree) relies on these 
physical factors for modelling. Next, we are going to define the eight 
physical input variables employed in this investigation:  

• Relative compactness (RC) (%): it is a numeric input variable. The 
relative compactness of the shape is obtained by comparing its ratio 
between volume and area with that of the most compact shape with 
the same volume [28]. RC relies exclusively on the shape, unlike the 
traditional compactness indications as the characteristic length. This 
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last length relies on the form size calculated as the volume absolute 
value. Since its principal morphological sample entails forms of 
identical volume, it prefers here to use RC, because it describes better 
the individual perception of form compactness for the design 
professionals.  

• Surface area (m2): it is a numeric variable. The surface area of the 
solid object is a measure of the entire area that the surface of the 
building fills. Therefore, the surface area is a 2D-object, which is the 
base area of the building envelope.  

• Wall area (m2): it is a numeric parameter. It is the surface area of the 
inner walls in a rectangular space based on the length, width and 
height of the room in the considered building.  

• Roof area (m2): it is a numerical value. It is the approximate flat area 
of the built ceiling in a building.  

• Overall height (m): it is a numeric variable. Generally, the overall 
height of a structure is measured to the peak of the building (i.e., the 
highest roof point). The higher the roof pitch, the taller the peak 
reaches.  

• Orientation: it is a categorical datum. This input variable shows the 
direction of the building structure referred to the cardinal points.  

• Glazing area (m2): it is a numerical variable. The word glazing alludes 
to the glass part of a dwelling façade or inner surfaces. All glazed 
areas of a building include windows, sliding glass doors, glass doors, 
and skylights, among others.  

• Glazing area distribution: This input variable refers to the five 
distinct scenarios of distribution for each glazing area considered in 
this research. 

Hence, it has been employed three kinds of glazing areas (GAs) stated 
in form of percentages of the floor area. In this investigation, we have 
used 10 %, 25 %, and 40 %, respectively. Moreover, five distinct possible 
situations of distribution in each glazing area were simulated termed as:  

(1) Uniform: each face has a 25 % glazing area;  
(2) North: it indicates 55 % glazing area on the north face and 15 % 

on each of the other faces;  
(3) East: it indicates 55 % glazing area on the east face and 15 % on 

each of the other faces;  
(4) South: it indicates 55 % glazing area on the south face and 15 % 

on each of the other faces; and  
(5) West: it indicates 55 % glazing area on the west face and 15 % on 

each of the other faces. 

As well, samples without glazing areas are considered here. 
Conclusively, all forms were turned to look towards the four cardinal 
points. 

Hence, taking into account 12 dwelling shapes and 3 variants of 
glazing area with 5 glazing area distributions each, for the four cardinal 
points (4 additional orientations), it obtains 12 × 3 × 5 × 4 = 720 
dwelling samples. Moreover, it is considered 12 dwelling forms for the 4 
cardinal points without glazing. To summarize, it has been studied in 
total 720+12 × 4 = 768 shapes of buildings (see Appendix A). Finally, 
for each of the 768 dwellings, it records HL and CL factors (see Table 1). 

2.3. Computational procedures 

2.3.1. Multivariate adaptive regression spline (MARS) 
Multivariate adaptive regression splines (MARS) [18–20] is a flexible 

nonparametric methodology that permits to tackle of regression prob-
lems. This method is a generalization of both CART decision trees [16] 
and SL (stepwise linear) regression and, but able to overcome its limita-
tions. Its principal main is the foretelling of the values of a continuous 
output (dependent) variable,y(n × 1), from an ensemble of independent 

Fig. 1. Picture of a residential dwelling and the factors analysed in it as an energy system.  

Table 1 
The physical input and output factors used in this investigation of buildings and 
their means and standard deviations.  

Input variables Name of the 
variable 

Number of 
possible values 

Mean Standard 
deviation 

Relative 
compactness 
(%) 

RC 12  0.7642  0.1058 

Surface area (m2) SA 12  671.7083  88.0861 
Wall area (m2) WA 7  318.5  43.6265 
Roof area (m2) RA 4  176.6042  45.166 
Overall height 

(m) 
OH 2  5.25  1.7511 

Orientation O 4  –  – 
Glazing area (m2) GA 4  0.2344  0.1332 
Glazing area 

distribution 
GAD 6  2.8125  1.551 

Output variables     
Heating load 

(kWh/m2) 
HL 768  22.3072  10.0902 

Cooling load 
(kWh/m2) 

CL 768  24.5878  9.5133  
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input variables,X(n × p). The MARS technique is given by the following 
expression: 

y = f (X)+ e (1) 

Here:  

• f: it is a weighted sum of basis functions that depend on X and;  
• e: it is the error vector whose dimension is (n × 1). 

MARS methodology does not demand a priori suppositions about the 
preexisting functional relationship among the dependent variable and 
independent variables. In this way, its mathematical expression is 
defined by means of a collection of piecewise polynomials of degree q 
(basis functions) with its coefficients derived completely from the entire 
regression dataset (X, y). The MARS approach is created by means of the 
fitting of basis functions to distinct intervals of the independent vari-
ables. Certainly, MARS employs as splines basis functions two-sided 
truncated power functions, whose equations are as follows [18–20]: 

[ − (x − t) ]q+=
{
(t − x)q if x < t

0 otherwise (2)  

[ + (x − t) ]q+=
{
(t − x)q if x⩾t

0 otherwise (3) 

so that q (⩾0) is the power that defines the type of splines (linear, 
quadratic or cubic) and therefore the flatness degree of the consequen-
tial function estimate. On this matter, the case q = 1 corresponds to 
simple linear splines (the case of this investigation), q = 2 to quadratic 
splines, q = 3 cubic splines and so on. For instance, Fig. 2 shows a couple 
of splines for q = 1 at the knot t = 3.5. 

As a result, the MARS approximation is a set of piecewise linear 
multivariate splines of a dependent variable y using M basis functions 
that respond to the following expression [21,29–32]: 

ŷ = f̂ M(x) = c0 +
∑M

m=1
cmBm(x) (4) 

In Eq. (4), we have that:  

• ŷ: is the output-dependent variable prognosticated by using the 
MARS approximation;  

• c0: is a coefficient that remains constant termed intercept;  
• Bm(x): it is the m-th basis function; and  
• cm: it is the corresponding coefficient of this Bm(x) basis function. 

Moreover, MARS employs the generalised cross-validation (GCV) 

[29–32] to determine the basis functions that constitute the entire 
approximation. Certainly, the GCV is defined as the quotient between 
the mean squared residual error and a penalization element. This last 
factor is related to the model complexity. The mathematical expression 
of the GCV is as follows [18–21,29–32]: 

GCV(M) =
1
n

∑n
i=1(yi − f̂ M(xi) )

2

(1 − C(M)/n )2 (5) 

so that:  

• C(M) is a complexity penalization term that increases when the 
number of basis functions of the MARS model grows. This factor has 
the form [19,20,29]: 

C(M) = (M + 1)+ d M (6) 

In such a way that:  

• M is the number of basis functions in Eq. (5); and  
• d is a penalization factor for each basis function defined by the 

model. 

Likewise, it is obligatory the employ of the GCV factor described 
above as well as the factors N-subsets (this criterion is related to the 
number of subsets of the model in which each variable is integrated) and 
the residual sum of squares RSS [21,29–32] for the purpose of deter-
mining reliable outcomes. 

2.3.2. Support vector regression (SVR) method 
In this subsection, it will study the use of support vector machines 

(SVMs) to find a solution for regression problems. In these cases, they 
are usually called Support Vector Regression (SVR) [16,23,33,34]. Take 
into account a collection of training examples S =

{
(x1, y1), ...,

(
xn, yn

) }
, 

where xi ∈ R
d and yi ∈ R, assuming that the yi values of all examples of 

S can be fitted (or quasi-adjusted) by a hyperplane, the goal is to 
encounter the parameters w = (w1, ...,wd) that permit to describe 
mathematically the regression hyperplane f(x) =

(w1x1 + w2x2 + ...+ wdxd) + b = 〈w, x〉 + b. 
We define the random noise or disturbance ε ∼ N(0, σ) as the mea-

surement error of the value y, that is,y = f(x) + ε. To allow for some 
noise in the training examples, it can relax the error condition between 
the value foretold by this function and the observed value. For this, the 
ε − insensitive loss function is used,Lε, given by [16,23]: 

Lε(x) =
{

0 if|y − f (x) |⩽ε
|y − f (x) | − ε otherwise

}

(7) 

It is a linear function with an insensitive zone of width 2ε, in which 
the loss function takes a null value. By choosing this function, it allows 
some flexibility in the solution function, so that all the examples that are 
confined to the tubular region will not be considered support vectors, 
since the cost associated with the loss function is 0. In practice, it is very 
difficult to achieve a linear regression model with zero prediction error, 
so it will resort to the concept of soft margin. 

We define the slack variables as the distance to the sample measured 
from the tubular zone of the regression hyperplane. The slack variables 
ξ+i and ξ−i will allow us to quantify the prediction error that it is willing 
to admit for each training example and, with the sum of all of them, the 
cost associated with the examples with a non-zero prediction error. It 
will take ξ+i > 0 when the prediction of the example f(xi) is greater than 
its actual value,yi, in an amount greater than ε or equivalently 
f(xi) − yi > ε. Similarly ξ−i > 0 when the actual value of the example is 
greater than its prediction by an amount greater than ε, that 
is,yi − f(xi) > ε. In any other case, the slack variables take a value of zero. 
Note that both variables cannot simultaneously take a value other than 
zero, since it happens whenever ξ+i ⋅ξ−i = 0(see Fig. 3). 

Fig. 2. Picture of a couple of linear hinge functions (spline basis functions). 
Dashed line represents the left spline (x < t, − (x − t)) while the solid line in-
dicates the right spline (x > t, + (x − t)). 
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With all this, it can now pose the problem to be optimised. The goal is 
to minimise the sum of the associated loss functions, each one to an 
example of the training set 

∑n
i=1Lε

(
yi, f(xi)

)
=

∑
i∈non - tubular zone

⃒
⃒yi − f(xi)

⃒
⃒ − ε. This is equivalent to maximizing the 

tubular zone defined by the loss function, in which it takes a null value. 
Therefore maximizing ε is equivalent to minimizing ‖w‖. All this 
together with the penalty imposed by the slack variables define the 
following optimization problem with soft margin, so that C is called the 
regularisation constant [16,23]: 

min
w,b,ξ+ ,ξ−

1
2
‖w‖2

+ C
∑n

i=1

(
ξ+i + ξ−i

)

subject to
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(〈w, xi〉 + b ) − yi − ε − ξ+i ⩽0 i = 1,…, n

yi − (〈w, xi〉 + b ) − ε − ξ−i ⩽0 i = 1,…, n

ξ+i , ξ−i ⩾0 i = 1,…, n

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(8) 

After, the transformation to the dual problem with four families of 
Lagrange multipliers (α+

i ,α−
i ,β

+
i ,β

−
i ) is conducted [33,34]: 

max
α+ ,α−

∑n

i=1

(
α−

i − α+
i

)
yi − ε

∑n

i=1

(
α−

i + α+
i

)
−

1
2
∑n

i,j=1

(
α−

i − α+
i

)(
α−

j − α+
j

)〈
xi, xj

〉

subject to
⎧
⎨

⎩

∑n

i=1

(
α+

i − α−
i

)
= 0, with

0⩽α+
i , α−

i ⩽C i = 1,…, n

⎫
⎪⎬

⎪⎭

(9) 

The obtained regressor is [16,23,33,34]: 

f (x) =
∑n

i=1

(
α−

i − α+
i

)
〈x, xi〉+ b* (10) 

The optimal value b* is obtained from the restrictions resulting from 
the application of the second Karush-Kuhn-Tucker (KKT) condition and 
the restrictions on the dual problem, so that [16,23]: 
{

b* = yi − 〈w*, xi〉 + ε if 0 < α+
i < C

b* = yi − 〈w*, xi〉 − ε if 0 < α−
i < C

}

(11) 

Note that to define the regression hyperplane it considers the ex-
amples with a non-zero loss function, that is, those that are outside the 
tubular region. Viewed in terms of the parameters introduced above, for 
the support vectors it gathers from the Karush-Kuhn-Tucker (KKT) 
conditions that α+

i ⋅α−
i = 0, so [16,23]:  

• for the examples that are outside the tubular zone it will be fulfilled 
ξ+i ⋅ξ−i = 0, if ξ−i = 0 and ξ+i > 0, then α+

i = C and α−
i = 0; and if ξ−i >

0 and ξ+i = 0, then α−
i = C and α+

i = 0;  
• the support vectors that are just into the border of the sensitivity zone 

verify that if 0 < α+
i < C, then α−

i = 0. In that case, it must be ξ+i = 0 
and ξ−i = 0. Similarly for the other case. 

The examples which α+
i = α−

i = 0(are not considered support vec-
tors) are found within the tubular region. 

When the examples cannot be fitted by a linear function (nonlinear 
problems), it resorts to using kernel functions. Through a suitable kernel, 
a Hilbert space is induced, also called a feature space, in this it is possible 
to adjust the transformed examples using a linear regressor, which has 
the following expression [33,34]: 

f (x) =
∑n

i=1

(
α−

i − α+
i

)
K(x, xi) (12) 

Now the coefficients are obtained solving the dual problem that re-
sults from Eq. (9) with dot products substituted for kernel functions 
given by [16,23]: 

max
α+ ,α−

∑n

i=1

(
α−

i − α+
i

)
yi − ε

∑n

i=1

(
α−

i +α+
i

)
−

1
2
∑n

i,j=1

(
α−

i − α+
i

)(
α−

j − α+
j

)
K
(
xi,xj

)

subject to
⎧
⎨

⎩

∑n

i=1

(
α+

i − α−
i

)
= 0, with

0⩽α+
i ,α−

i ⩽C i= 1,…,n

⎫
⎪⎬

⎪⎭

(13) 

To solve regression problems using SVRs, it must choose a suitable 
kernel and a C parameter as well as the selection of a suitable ε. The 
value of the parameter C expresses the balance between the flatness of 
the objective function and the decrease of the model complexity 
[16,23]. In the case of noisy regression problems, the parameter ε should 
be selected to express the variance of the noise in the data, since in most 
practical cases it is possible to obtain an approximate measure of the 
noise variance from the training data. The methodology employed to 
choose the optimal values of C and the rest of the kernel parameters is 
normally based on cross-validation techniques. 

Several frequent functions used as kernels in the research publica-
tions are given by [16,23,33,34]:  

• Polynomial kernel: 

K
(
xi, xj

)
=

(
σxi⋅xj + a

)b (14)    

• RBF (radial basis function) kernel: 

K
(
xi, xj

)
= e− σ‖xi − xj‖

2

(15) 

where a, b and σ are the kernel hyperparameters. 
Hence, to find the solution of a complicated regression problem like 

this, it has used the SVM technique here with data that is not linearly 
separable. To this end, it is mandatory to choice a kernel type along with 
its optimal parameters so that these data become linearly separable in a 
space of higher dimension known as feature space. 

2.3.3. Neural network: Multilayer perceptron 
Minsky and Papert showed in 1969 [24] that the simple perceptron 

and ADALINE (adaptative linear element) cannot solve nonlinear 
problems (for example, XOR). The combination of several simple per-
ceptrons could solve certain nonlinear problems, but there was no 
automatic mechanism to adapt the weights of the hidden layer. 
Rumelhart and other authors presented in 1986 [35] the Generalised 

Fig. 3. An illustration of the ε − insensitive tube in the event of regression.  

P.J. García Nieto et al.                                                                                                                                                                                                                        



Applied Energy 341 (2023) 121074

6

Delta Rule (GDL) to adapt the weights by propagating the errors back-
wards, that is, propagating the errors towards the lower hidden layers. 
In this way, it is possible to work with multiple layers and with nonlinear 
activation functions. It can be shown that this multilayer perceptron 
(MLP) is a universal approximator [35,36]. A multilayer perceptron can 
approximate nonlinear relationships present between input and output 
data. This ANN has become one of the most common architectures. 

The MLP is kind of artificial neural network (ANN) composed of 
multiple layers, in such a way that it can encounter solutions to non-
linearly separable problems [35]. This matter is the foremost limitation 
of the simple perceptron. However, MLP can be fully or locally con-
nected. To be fully connected all the neurons of a layer must be attached 
with all the neurons of the next layer while this condition is not present 
in a locally connected MPL. 

The layers of an MLP can be classified into three types (see Fig. 4) 
[35,36]:  

• Input layer: the information of the independent variables enters 
through this layer and there is no process here.  

• Output layer: the connection with the dependent variables is made 
here.  

• Hidden layers: are layers located between the input and output layers 
that pass and process the information from the input to the output 
layers. 

Backpropagation (also known as error backpropagation or general-
ised delta rule) is the mathematical rule to train this type of neural net-
works [36]. In this sense, MLP is also termed as a backpropagation 
artificial neural network (BP-ANN). Additionally, the main quality of 
this kind of networks is that the transfer functions of the processing el-
ements (neurons) must be derivable. 

This kind of learning happens in the multilayer perceptron (MLP) by 
altering the weights of the connections considering the disagreement 
between the expected and the obtained output values. This change is 
performed using backpropagation which is a generalization of the 
lowest mean square (LMS) used on the linear perceptron. For data point 
n the error at node j is ej(n) = dj(n) − yj(n), being d the observed value 
and y the value predicted by the multilayer perceptron. The total error to 
correct is [35,36]: 

ε(n) = 1
2
∑

j
e2

j (n) (17) 

Employing the gradient descent method, we find that the change of the 
weights is given by [35,36]: 

Δwji(n) = − η ∂ε(n)
∂vj(n)

yi(n) (18) 

where: 

• η is the learning rate. It must be chosen carefully: a small value pro-
duces a slow convergence while a big value can hamper the 
convergence of the optimization. Adequate values range from 0.1 to 
0.8; and  

• yi is the output obtained from the neuron in the previous layer.  
• vj is the local induced field. It can be proved that for a given output 

node: 

−
∂ε(n)
∂vj(n)

= ej(n)⋅ϕ
′ (

vj(n)
)

(19) 

being ϕ′ the derivative of the activation function. The variation of the 
weights for the nodes of the hidden layer is given by: 

−
∂ε(n)
∂vj(n)

= ϕ
′ (

vj(n)
)∑

k
−

∂ε(n)
∂vk(n)

wkj(n) (20) 

k is the subscript of the nodes from the output layer and these nodes 
affect the change of the weights of the hidden layer. We start changing 
the weights of the output layer taking into account the derivative of the 
activation function and then this process backpropagates modifying the 
weights of the previous layers. 

2.3.4. M5 Model tree 
This approximation is also relied on the machine learning and it 

employed the following an inspired thought [25,37,38]: the parameter 
space can be divided into subspaces and after a linear regression 
approach is constructed in each of them. The consequential approxi-
mation would be considered a modular method, so that the linear fits 
specialise in the specific subsets of the input space. 

The mathematical technique termed algorithm M5 is employed to 
force a model tree [37–40]. Indeed, a group of T training data is 
considered here. Each instance is depicted by the values of a not variable 
collection of input attributes as well as a related goal output value. The 
principal goal is to build a method that connects an objective value of 
the training data with their input attribute values. The model excellence 
will usually be assessed if it foretells the objective values of the unknown 
cases accurately. 

The method used to build tree-based machine learning models is 
divide-and-conquer [41–43]. The set T is connected to a leaf or several 
tests are selected to divide T into subsets. This splitting algorithm is 
applied recursively. The division criterion used by the M5 model tree 
technique makes use of the standard deviation of the class values 
arriving at a node for the purpose of measuring the error at that node 
and then the calculation of the anticipated reduction of this error to 
check every attribute in that node. Certainly, the lowering of the stan-
dard deviation (SDR) can be determined by using the following 
expression [25,37–43]: 

SDR = sd(T) −
∑ |Ti|

|T|
sd(Ti) (21) 

where T indicates the number of examples arriving at the node, Ti 

signifies the subset of cases that have on the ith outcome of the potential 
collection, and sd is the standard deviation [25,37–43]. 

Next a thorough examination of all possible divisions, the M5 model 
tree choices the element that fully improves the anticipated error 
lowering [40–43]. This M5 model tree splitting mechanism ends when 
the class values of all instances arriving at a node disagree by only a very 
small tolerance (stopping criterion), or else when only a few instances 
remain. This persistent splitting process often gives place to much 
elaborated frameworks that must be pruned, i.e. replacing a subtree by a 
leaf. With time, it is necessary to carry out a smoothing process to 

Fig. 4. Picture of an MLP-type artificial neural network (ANN) (in this case, 
picture shows m neurons in the hidden layer, n neurons in the input layer and a 
single neuron in the output layer). 
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counterbalance for the abrupt discontinuities that will predictably 
happen among contiguous linear models at the leaves of the pruned tree, 
in particular for several models built from a lower number of training 
data. During this procedure, the contiguous linear equations are 
upgraded so that the foretold outputs for the contiguous input vectors 
related to the distinct equations are transformed very close in their 
expressions. 

2.4. The goodness–of–fit of this approach 

The main goodness–of–fit statistics for the regression problem posed 
in this paper is the coefficient of determination R2 [44,45]. If the 
observed and predicted values are ti and yi, respectively, it considers the 
following expressions [44,45]:  

• SSreg =
∑n

i=1
(
yi − t

)2: is the explained sum of squares.  
• SStot =

∑n
i=1(ti − t)2: this addition is directly related to the variance 

of the sample.  
• SSerr =

∑n
i=1

(
ti − yi

)2: is the residual sum of squares. 

so that t is the average value of the experimental data given by: 

t =
1
n
∑n

i=1
ti (22) 

The coefficient of determination is then defined by the expression 
[44,45]: 

R2 ≡ 1 −
SSerr

SStot
(23) 

The closer the R2 statistic is to the value 1.0, the smaller the 
disagreement between the experimental and foretold data. Similarly, the 
mathematical expressions for the other two statistics used in this study 
(RMSE and MAE) are as follows [44,45]: 

RMSE ≡

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(ti − yi)

2

√

(29)  

MAE =
1
n
∑n

i=1
|ti − yi| (30) 

Higher values of R2 are preferred, i.e. closer to 1 means better model 
performance and regression line fits the data well. Conversely, the lower 
the RMSE and MAE values are, the better the model performs. 

As well, the MARS approximation relies fervently on the following 
hyperparameters [18–22]:  

• Maximum number of basis functions (Maxfuncs): it corresponds to 
the maximum number of terms when the forward phase finishes.  

• Penalty parameter (d): it corresponds to the penalization associated 
to the complexity of the MARS approximation in Eq. (5) of the 
Generalised Cross Validation (GCV) penalty per knot. Observe that if 
d = 0 penalizes terms, but not knots. Certainly, if d = − 1, there is no 
penalisation;  

• Interactions: it corresponds to the greatest degree of interaction 
among factors. 

Right now, it has been built distinct approximations (concretely in 
this investigation, the MARS–relied approximation, SVM–relied 
approach with distinct kernels, MLP-type ANN approximation and M5 
model tree) taking as dependent factors the HL and CL from the 8 
remaining factors (input variables) in residential buildings [15], ana-
lysing their efficacy for the purpose of optimizing its estimation 
employing of the coefficient of determination R2 successfully. 

Moreover, as earlier referred to the MARS approximation, is 
dependent very much on the MARS hyperparameters: greatest number 

of hinge functions (Maxfuncs); penalization parameter (d); and in the 
end the interaction degree among variables. The customary manner of 
enacting hyperparameter optimization is known as grid search, or 
parameter sweeping, which is plainly a thorough seeking by hand through 
a stated subset of the parameter space employing that statistical ma-
chine learning algorithm. In this investigation, it has employed the grid 
search method [46,47] with success. 

Indeed, the dataset is divided into two sets: 80 % is used in the 
training set and the rest of the data, 20 %, is for the testing set. In this 
sense, it employs the training collection to construct the MARS model. 
For this purpose, it calibrates the parameters of the MARS model 
employing the grid search algorithm using a 10-fold cross-validation 
method. When the optimum parameters have been found, it built the 
model with the whole training dataset. Then, it proceeds to get pre-
dictions with this model for the elements of the testing set. These pre-
dictions are compared with the actual values and the goodness-of-fit of 
the model evaluated. At this point, Fig. 5 displays the process diagram of 
this MARS–relied approximation implemented in this investigation. 

Furthermore, cross-validation is also the common method utilised 
here for encountering the authentic coefficient of determination (R2) 
[44,45,48]. Certainly, for the purpose of assessing the predictive ca-
pacity of the MARS–relied approximation, a total 10-fold cross- 
validation method was implemented in this investigation [48]. To do 
this, the regression modelling has been enacted with MARS approxi-
mation, employing the ARESlab package [49,50]. The variation in-
tervals of the solution space employed in this investigation are displayed 
in Table 2. 

For the purpose of optimizing the MARS parameters, the grid search 
technique was employed. In this way, the grid search seeks the most 
excellent Maxfuncs, Penalty, and Interactions parameters by means of 
the evaluation of differences of the cross-validation mistake in every 
iteration. The variation space is three-dimensional (one dimension per 
each parameter). Thus, the goal function or principal fitness factor is the 
coefficient of determination (R2) in this investigation. 

3. Results and discussion 

Tables 3 and 4 point out the best possible hyperparameters of the 
most excellent adjusted MARS–relied approximation encountered with 
the grid search technique for the HL and CL, respectively. 

Tables 5 and 6 indicate a list of principal basis functions for the fitted 
two MARS–relied approximations with their coefficients ci for the HL 
and CL, respectively. Observe that a hinge function is described by the 
expression: 

h(x) =
{

x if x > 0
0 if x⩽0

}

(24) 

All in all, the MARS approximation is a kind of nonparametric 
regression approach and can be taken as a generalization of linear 
methods that models in an automatic way the presence of nonlinearities 
as well as interactions between input variables employing a weighted 
summation of hinge functions defined above [18–22,29–32]. 

As well and by comparison, a SVR–relied approach with distinct 
kernels together with an artificial neural network of MLP-type and M5 
model tree have been adjusted to the observed dataset related to the HL 
and CL output factors too. 

Tables 7 and 8 display the determination and correlation coefficients 
as well as the root mean square error (RMSE) and mean absolute error 
(MAE) for the most excellent MARS–relied approximation, SVM–relied 
models for different types of kernel, MLP-type ANN and M5 model tree 
for the HL and CL output factors for the testing data, respectively. 

As stated in these last statistical estimates, the MARS approximation 
is the most excellent model for estimating both dependent variables (HL 
and CL factors) in EPB, because the adjusted MARS approximations have 
coefficients of determination R2 equal to 0.9961 and 0.9651, and cor-
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relation coefficients equal to 0.9981 and 0.9824 for the HL and CL 
factors, respectively. Hence these outcomes display a reliable goodness 
of fit, that is to say, an adequate concordance is acquired between MARS 
approximations and the experimental data. Additionally, a computer 
with a CPU Intel Core i7-4770 @ 3.40 GHz with eight cores and 15.5 GB 
RAM memory was used, taking 540 s (approximately 9 min) to obtain 

the Heating load (HL) factor and 600 s (approximately 10 min) for the 
Cooling load (CL) factor. 

As a supplementary outcome of these estimations, the importance 
order for the eight input factors foretelling the HL and CL (output 
dependent factors) in this complex investigation is displayed in Tables 9 
and 10, and Figs. 6 and 7, respectively. Therefore, according to MARS 
models, the most significant variable in the foretelling of HL and CL 
output variables is the input variable Roof area (RA), followed by sur-
face area (SA), glazing area (GA) and glazing area distribution (GAD) for 
the HL; and wall area (WA), glazing area (GA) and glazing area distri-
bution (GAD) for CL, respectively. 

Therefore, the most important independent variable in the predic-
tion of HL (see Fig. 6) in the adjusted MARS–relied approximation is roof 

Fig. 5. Process diagram of the MARS–relied approximation.  

Table 2 
Variation ranges of the three hyperparameters of the MARS–relied approxima-
tion adjusted in this research.  

MARS hyperparameters Lower limit Upper limit 

Maximum number of basis functions (MaxFuncs) 3 200 
Penalty parameter (d) − 1 4 
Interactions 1 6  

Table 3 
Best possible hyperparameters of the most excellent fitted 
MARS approximation for the Heating load (HL).  

Hyperparameters Optimal values 

MaxFuncs 17 
Penalty (d) 1 
Interactions 2  

Table 4 
Best possible hyperparameters of the most excellent fitted 
MARS approximation for the Cooling load (CHL).  

Hyperparameters Optimal values 

MaxFuncs 19 
Penalty (d) 1 
Interactions 2  

Table 5 
List of hinge functions of the most excellent fitted MARS–relied approximation 
for the Heating load (HL) and their coefficients ci.  

Bi Definition ci 

B1 1  52.9469 
B2 h(RA − 122.5) − 0.9162 
B3 h(122.5 − RA) 0.9415 
B4 h(GA − 0.1) 20.3601 
B5 h(0.1 − GA) − 82.6879 
B6 h(SA − 637) − 0.8231 
B7 h(637 − SA) − 0.3278 
B8 h(RA − 122.5)× h(SA − 612.5) 0.0101 
B9 h(RA − 122.5)× h(612.5 − SA) 0.0169 
B10 h(RA − 122.5)× h(WA − 343) − 0.0047 
B11 h(RA − 122.5)× h(343 − WA) 0.0016 
B12 h(RA − 122.5)× h(GA − 0.1) − 0.0853 
B13 h(RA − 122.5)× h(0.1 − GA) 0.4013 
B14 h(SA − 637)× h(0.66 − RC) 1.2203 
B15 h(GA − 0.1)× h(147 − RA) 0.1899 
B16 h(GA − 0.1)× h(GAD − 2) − 0.7392 
B17 h(GA − 0.1)× h(2 − GAD) 0.7392  
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area, followed by surface area, glazing area and glazing area distribu-
tion. In this sense, several works have studied the mechanisms of heat 
transfer in buildings, Babiarz and Szymański [51] show that in changing 
performance conditions, energy phenomena occurring in buildings are 
influenced by different aspects, such as: building shapes or environ-
mental conditions. In this sense, the heat balance in buildings results 
from the analysis of heat losses and gains through the building structure. 
Additionally, Moss [52] analysed that heat transfer is particularly 
important for convection mechanisms in the dwelling structure. Natural 
convection is consequential from pressure differences among distinct 
sections of the dwelling structure because of the difference of tempera-
tures due to air environment conditions both outside and within the 
household. Essentially, when a fluid is near to a heat source and it is 

hotter than ambient temperature, fluid pressure is lower, which pro-
duces air movement. The main reason of this phenomenon, referred to a 
building structure, is the location of the heat source for heating and 
cooling performance in the building throughout the year related to the 
outside environment. It is inside for heating action and outside for 
cooling process for a cold and hot weather, respectively, in the outside 
environment. 

In this sense, the HL produces an internal air movement by convec-
tion with the main influence in the roof area for the airlift, an additional 
influence is the surface area and glazing area based on the convection 
movement. Moreover, the heat transfer by conduction in the glazing 
area is an enabler for heat exchange, glazing area causes heat gains and 
losses in cooling and heating condition, respectively, by associated U- 
value [53]. 

On the other hand, the most important independent variable in the 
prediction of CL (see Fig. 7) in the fitted MARS–based model is roof area, 
followed by wall area, glazing area and glazing area distribution. In a 
similar way, the effect of the air movement over the external surface in 
CL, based on the sun as heat source of the weather, and the heat transfer 
in glazing area are drive forces. These circumstances justify the influ-
ence of the defined input variables based on thermal energy balance and 
heat transfer process in buildings. Additionally, the environmental pa-
rameters condition the thermal energy production and potential 
implementation of renewable energies in energy systems based on 
thermal energy balance [54]. 

In short, this research permits to estimate the HL and CL output 
factors in concordance with the real observed values employing the 
MARS–relied approximation with excellent precision successfully. 
Certainly, Fig. 8 displays the evaluation of differences among the HL 
values experimental and foretold employing the M5 model tree (see 
Fig. 8(a)), MLP approach (see Fig. 8(b)), SVM approach with linear 
kernel (see Fig. 8(c)), SVM approach with quadratic kernel (see Fig. 8 
(d)), SVM approach with cubic kernel (see Fig. 8(e)), SVM approach 
with RBF kernel (see Fig. 8(f)) and MARS–relied approximation (see 
Fig. 8(g)). Similarly, Fig. 9 indicates the comparison among the HL 
values experimental and foretold employing the M5 model tree (see 
Fig. 9(a)), MLP approach (see Fig. 9(b)), SVM approach with linear 
kernel (see Fig. 9(c)), SVM approach with quadratic kernel (see Fig. 9 
(d)), SVM approach with cubic kernel (see Fig. 9(e)), SVM approach 
with RBF kernel (see Fig. 9(f)) and MARS–relied approximation (see 
Fig. 9(g)). Hence, it is mandatory the employ of a MARS approximation 
for the purpose of achieving the most excellent approach for this 
regression problem. Clearly, these outcomes concur again with the 

Table 6 
List of hinge functions of the most excellent fitted MARS–relied approximation 
for the Cooling load (CL) and their coefficients ci.  

Bi Definition ci 

B1 1  34.9228 
B2 h(RA − 122.5) − 0.2427 
B3 h(122.5 − RA) − 0.4235 
B4 h(GA − 0.1) 19.6777 
B5 h(0.1 − GA) − 41.0694 
B6 h(WA − 343) − 0.3735 
B7 h(343 − WA) − 0.1625 
B8 h(318.5 − WA) 0.1842 
B9 h(WA − 318.5)× h(RC − 0.64) 2.2239 
B10 h(WA − 318.5)× h(0.64 − RC) 3.4734 
B11 h(RA − 122.5)× h(RC − 0.82) 2.3886 
B12 h(RA − 122.5)× h(0.82 − RC) 0.3528 
B13 h(RA − 122.5)× h(GA − 0.25) − 0.0807 
B14 h(RA − 122.5)× h(0.25 − GA) 0.1275 
B15 h(O − 4) 2.0515 
B16 h(4 − O) 0.3419 
B17 h(O − 4)× h(RC − 0.9) − 21.4757 
B18 h(O − 4)× h(0.9 − RC) − 7.8057 
B19 h(O − 4)× h(GAD − 3) − 0.3443  

Table 7 
Coefficients of determination (R2), correlation coefficients (r), root mean square 
error (RMSE) and mean absolute error (MAE) for the MARS–relied model, 
SVM–relied approaches with linear, quadratic, cubic and RBF kernels, MLP and 
M5 model tree adjusted in this investtigation for the Heating load (HL) factor 
and for testing data.  

Model R2 R RMSE MAE 

MARS  0.9961  0.9981  0.6899  0.5709 
SVM–linear kernel  0.9380  0.9685  2.7327  2.0413 
SVM-quadratic kernel  0.9490  0.9742  2.5774  1.9418 
SVM-cubic kernel  0.9680  0.9839  1.9942  1.3948 
SVM–RBF  0.9361  0.9675  2.7324  1.8485 
MLP  0.9893  0.9946  1.5663  1.3396 
M5 model tree  0.9348  0.9668  0.7639  0.5573  

Table 8 
Coefficients of determination (R2), correlation coefficients (r), root mean square 
error (RMSE) and mean absolute error (MAE) for the MARS–relied model, 
SVM–relied approaches with linear, quadratic, cubic and RBF kernels, MLP and 
M5 model tree adjusted in this investigation for the Cooling load (CL) factor and 
for testing data.  

Model R2 R RMSE MAE 

MARS  0.9651  0.9824  1.8111  1.2884 
SVM–linear kernel  0.8968  0.9470  3.2106  2.2672 
SVM-quadratic kernel  0.9155  0.9568  2.8798  1.9877 
SVM-cubic kernel  0.9388  0.9689  2.3667  1.5505 
SVM–RBF  0.9011  0.9493  3.0718  2.1803 
MLP  0.9374  0.9682  1.8553  1.3774 
M5 model tree  0.9599  0.9797  1.8230  1.3370  

Table 9 
Importance order for the variables entailed in the most excellent adjusted 
MARS–relied approximation for the Heating load (HL) as stated criteria Nsub-
sets, GCV and RSS.  

Input variable Nsubsets GCV RSS 

Roof area 15 100 100 
Surface area 14 52.80 22.92 
Glazing area 13 49.9 16.0 
Glazing area distribution 1 0.32 0.012  

Table 10 
Importance order for the variables entailed in the most excellent adjusted 
MARS–relied approximation for the Cooling load (CL) as stated criteria Nsub-
sets, GCV and RSS.  

Input variable Nsubsets GCV RSS 

Roof area 17 100 100 
Wall area 9 55.90 2.50 
Glazing area 15 28.13 16.0 
Glazing area distribution 3 0.56 0.02  
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important statistical criterion of ‘goodness of fit’ (R2) in such a way the 
MARS–relied approximation has been the most excellent fitting. 

4. Conclusions 

Comparing the numerical and experimental outcomes, the principal 
discoveries of this investigation can be synthesised as follows:  

• Firstly, the determination of the HL and CL factors requires 
addressing the solution of a very complex heat transfer problem, 
taking into account the three forms of transmission: conduction, 
convection and radiation. The consequential complete model implies 
the solution of partial differential equations (EDPs). In practice, the 
solution of this EDP requires numerical methods (for example, the 
finite element method, finite differences method, etc.) and some 
additional heuristic approximations cause that the solutions to differ 
considerably; consequently, the obtaining of additional analisys 
methods relied on MLT is extremely noteworthy. In a specific way, 
the MARS–relied approximation employed in this investigation is an 

adequate choice to assess HL and CL variables in residential 
dwellings.  

• Secondly, the hypothesis that Heating and Cooling loads can be 
precisely calculated employing a MARS–relied approximation in the 
construction industry was verified.  

• Thirdly, coefficients of determination with values of 0.9961 and 
0.9651 are gotten when the MARS–relied approximation is applied 
to testing data (20 % experimental data not used for training) in the 
calculation of the dependent variables Heating load (HL) and Cool-
ing load (CL), respectively. 

• Fourthly, since MARS approximations generate an explicit mathe-
matical expression of the output variables (HL and CL in this case) 
from the input variables as a summation of basis functions (known as 
hinge functions and its products of two or more functions of this 
type), the MARS approximation may therefore be set up on a cheap- 
price microcontroller-relied system to accomplish the operation of 
the EPB foretelling (home automation applications). 

• Fifthly, it is feasible to create a significance order of the input vari-
ables entailed in the foretelling of the Heating and Cooling loads. 

Fig. 6. Comparative importance of the input operation variables to foretell the Heating load (HL) in the adjusted MARS–relied approximation.  

Fig. 7. Comparative importance of the input operation variables to foretell the Cooling load (CL) in the adjusted MARS–relied approximation.  
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Fig. 8. Evaluation of differences between the Heating Load values experimental and foretold employing the following models: (a) M5 tree model (R2 = 0.9348); (b) 
MLP network (R2 = 0.9893); (c) SVM model with linear kernel (R2 = 0.9380); (d) SVM model with quadratic kernel (R2 = 0.9490); (e) SVM model with cubic kernel 
(R2 = 0.9680); (f) SVM model with RBF kernel (R2 = 0.9361); and (g) MARS model (R2 = 0.9961). 
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They are validated by the performance of heat transfer in buildings 
and the thermal energy systems for cooling and heating condition. 
This is one of the principal discoveries of this investigation. Exactly, 
the independent variable Roof area (RA) could be considered the 
most important factor in the foretelling of HL and CL output vari-
ables, followed by SA, GA and GAD for the HL; and WA, GA and GAD 
for CL, respectively.  

• Sixthly, the principles described here are extremely widespread and 
could, theoretically, be spread out to cover supplementary inde-
pendent variables (for instance, some of the factors that are supposed 
to be constant in this investigation, as occupancy or climate, could be 
considered as new input variables) in future research.  

• Finally, the outcomes of this investigation vigorously warn against 
the blind use of obtainable mathematical methods to large extent 
that are in many cases relied on the normal behavior of the data. 
Afterward, an efficient MARS–relied approximation is a functional 
answer to the question of the EP in residential dwellings corre-
sponding to the construction industry. 

To conclude, this MARS approach could be employed in other types 
of residential buildings with like or distinct geometries and materials 
successfully, but it is required to consider the peculiarities of each 
construction every time. 
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