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Abstract: Antoine’s Equation is commonly used to explain the relationship between vapour pressure
and temperature for substances of industrial interest. This paper sets out a combined strategy to
obtain optimal designs for the Antoine Equation for D- and I-optimisation criteria and different
variance structures for the response. Optimal designs strongly depend not only on the criterion but
also on the response’s variance, and their efficiency can be strongly affected by a lack of foresight in
this selection. Our approach determines compound and multi-objective designs for both criteria and
variance structures using a genetic algorithm. This strategy provides a backup for the experimenter
providing high efficiencies under both assumptions and for both criteria. One of the conclusions
of this work is that the differences produced by using the compound design strategy versus the
multi-objective one are very small.

Keywords: D-optimal design; I-optimal design; compound designs; multi-objective designs; genetic
algorithm
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1. Introduction

Antoine’s Equation is a class of semi-empirical equations that represent the non-linear
thermodynamic relationship between equilibrium vapour pressure, P, and temperature,

T [1]. The equation is P(T) = 10a− b
c+T + ε, and it was developed and introduced in 1888

by Louis Charles Antoine. The unknown parameters of the model (a, b, c) are numerical
constants related to the enthalpy and entropy of vaporisation. Usually, Antoine’s Equa-
tion cannot be used to describe the entire saturated vapour pressure curve because it is
not flexible enough. Therefore, multiple parameter sets are commonly used for a single
substance. A low-pressure parameter set is used to describe the vapour pressure curve up
to the normal boiling point, and the second set of parameters is used for the range from the
normal boiling point to the critical point.

Vapour pressure has a wide range of industrial applications [2], such as the handling
of liquids and gases [3], distillation processes to separate chemical substances, such as
bio-diesel production [4], operation of aerosols and atmospheric modelling [5], safety and
performance specifications of fuels [6], engineering production like solar cells [7], etc.

Let us define θt = (a, b, c) as the unknown parameter vector. Since the Antoine
Equation is non-linear for the parameters, local optimisation will be considered, for which
a set of nominal values or best guesses of the unknown parameters, θ(0) will be needed [8].
The design will not depend on a since 10a is a linear factor of the model [9].
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It is common in statistical modelling, and particularly in optimal experimental design,
to assume the variance of the response to be normal homoscedastic. A normal homoscedas-
tic response corresponds with a constant absolute error. However, in [10], it is suggested that
the response is indeed normal, but the relative error is, in fact, constant. This is equivalent to
considering a particular normal heteroscedastic variance of the response. Single objective
designs for each of these are calculated and compared in [11]. In the heteroscedastic model,
the dependence of the variance on the explanatory variable is expressed by the so-called
weight function, λ(T) [12]. Its value comes from Var(P(T)) = λ−1(T)σ2, with λ(T) = 1
for the homoscedastic case and λ(T) = 1/η(T)2 for the heteroscedastic case. The models
for the homoscedastic case are

Po(T) = ηo(T) + ε = 10a− b
c+T + ε, ε ∼ N (0, σ2

o ), (1)

and for the heteroscedastic case

Pe(T) = ηe(T) + ε = 10a− b
c+T + ε, ε ∼ N (0, σ2

e ηe(T)2). (2)

where σo is the standard deviation of the response for the homoscedastic case, and σe is the
squared value of the relative error when this is constant, the heteroscedastic case.

Given the ambivalence with respect to the variance structure, special considerations
are required when working statistically with this model or any other with uncertainty in
the probability distribution. Throughout this paper, the implications will be highlighted,
and different methodologies will be proposed to deal with this question from an optimal
experimental design perspective.

Contributions, Objectives and Organisation

Optimal experimental design is an interesting field for the application of optimisation
algorithms. In this work, we provide an implementation of the genetic algorithm adapted
to approximate designs in the context of optimal experimental design, in particular, the
insufficiently explored use of a multiobjective metaheuristic. With this tool, the issue of the
probability distribution for Antoine’s Equation is tackled for different optimality criteria.
Along with the solution provided, an initial comparison of the typical methods of optimal
experimental design, compound criteria, with the metaheuristic multiobjective algorithm
is given. The genetic algorithm is more flexible in adapting to other models, criteria or
a number of objective functions and scalable to a larger parameter size and a number of
independent variables.

The aims of the study are three. First, to provide the practitioner with optimal designs
that take into account the probability distribution of the response variable, as it drastically
affects the efficiency of optimal designs for the problem, providing efficient solutions for
either of these alternatives for different optimality criteria. Second, to explore the differ-
ences, or lack thereof, of the solutions provided by the stochastic results of a multiobjective
metaheuristic versus several iterations of a compound algorithm. Finally, to highlight the
potential value and flexibility of this family of algorithms in the design of experiments field.

The article is structured as follows: Section 2 provides context and theory about
optimal experimental design theory and its application to Antoine’s Equation; Section 3
summarises the methodologies applied to address the issues raised in this article by the
different interests of the experimenter; in Section 4 the proposed algorithm is described in
detail; Section 5 includes the performance and main results of the implemented algorithms,
and Section 6 summarises the main points and implications of this paper.

2. Background

This Section gives an overview of the optimal experimental design theory covered
by this article as applied to Antoine’s Equation. A summary of the optimal designs and
their efficiencies when different optimality criteria or variance structures are considered is
also provided.
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2.1. Optimal Experimental Design Theory

Optimal experimental design (OED) aims to find the best points at which to perform
an experiment. In the theory of optimal designs, the baseline is a model or set of regression
models, which can be denoted by

y = η(T, θ) + ε (3)

where η(T, θ) is a function of θ, the vector of unknown parameters of the model, y is the
response variable, T ∈ X is the independent variable, with X being the design space and ε
the random error, following a probability distribution, usually a normal distribution with
mean zero and variance σ2(T).

An experimental design consists of a plan of n points or, in the application described
in this paper, vapour pressure observations on a given space of feasible temperatures,
T ∈ X . There may be several of the n observations taken at the same point, meaning that
some of them are replicated at the same temperature, T. The number of points, n, is fixed
beforehand by the experimenter and is usually a result of physical or budget constraints. A
design can be seen, then, as the set of different points in X , associated with the proportion,
usually called weight, of the n experiments to be carried out at those temperatures. This
leads to the idea of a design, ξ, seen as a measure on X , where ξ(T) is the proportion of
the observations to be taken at point T ∈ X . A design seen as a measure over X is called
an approximate design. This approach was first proposed by Kiefer [13], and it has many
advantages, as documented in most design monographs, such as [14–16]. In this study, we
will consider an approximate design with finite support.

The information given by a design is reflected in the Fisher Information Matrix (FIM),
defined in Equation (4) [15]:

M(ξ, θ) =
n

∑
i=1

σ−2ξ(Ti) f (Ti, θ) f (Ti, θ)t, (4)

where f (T, θ) = ∂η(T, θ)/δθ is the gradient vector of η(T, θ), and Ti ∈ X . This, for non-
linear models on the parameters, corresponds to the first-order Taylor approximation,
widely used in OED literature. It should be noted that for non-linear models, M(ξ, θ)
depends on a best guess or nominal values for the unknown parameters, θ(0).

The FIM describes the amount of information that the data provides about an unknown
parameter. The inverse of this matrix, M−1(ξ, θ), is proportional to the variance-covariance
matrix of the estimators of θ.

Optimal designs aim to maximise a function of the information matrix, φ, or minimise
a function of the inverse. These functions are known as optimality criteria.

2.1.1. Optimal Experimental Design for Antoine’s Equation

With the first-order Taylor expansion, commonly used when working with non-linear
models in optimal experimental design, the one-point Information Matrix for the ho-
moscedastic Antoine Equation model is

Mo(T, θ) = 102a− 2b
c+T ln(10)2


1 − 1

c+T
b

(c+T)2

− 1
c+T

1
(c+T)2 − b

(c+T)3

b
(c+T)2 − b

(c+T)3
b2

(c+T)4

, (5)

and for the heteroscedastic case

Me(T, θ) =
2σ2

e + 1
σ2

e
Mo(ξ, θ)/(102a− 2b

c+T ln(10)2), (6)

both Equations (5) and (6) given by de la Calle-Arroyo et al. [11].
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As previously mentioned, the optimal design must be so with respect to a certain
criterion, a function of the design. There is a wide range of optimality criteria available
to the user, depending on their interest. See, for instance, (Atkinson et al. [15], ch. 10) or
(Fedorov and Leonov [16], ch. 2). In this study, the focus will be on D- and I-optimality,
which are two of the most used and studied.

In order to estimate all parameters of the model simultaneously, the D-optimality
criterion is appropriate. This criterion has a simple and intuitive geometrical interpretation
regarding the approximate confidence ellipsoid of the parameters: D-optimal designs min-
imise the volume of this region. Due to the natural interpretation of the criterion, and the
fact that the expression is easy to work with, this criterion, proposed in [17], has been exten-
sively used for non-linear models. The definition of D-optimality is φD[ξ] = |M(ξ, θ)|−1/m,
where m is the number of unknown parameters of the model. This is equivalent to min-
imising the approximate confidence ellipsoid of the estimators of the parameters.

The I-optimality criterion minimises the variance of the prediction over a certain region
of interest, or temperature interval, R. As previously mentioned, the Antoine Equation
cannot be used to describe the entire saturated vapour pressure curve from the triple point
to the critical point because it is not flexible enough. When using multiple parameter sets,
special attention should be given to the edges of each set or even to the overlapping regions.
I-optimality can be a suitable criterion to minimise the variance of the prediction in these
regions, and it has recently attracted attention in the literature [18,19]. For these reasons,
this criterion was considered due to its special importance for this particular model. The
expression for I-optimality is given in Equation (7) [15]

φI [ξ] =
∫
R

f (T)t M−1(ξ, θ) f (T)µ(T)dT = Tr[B ·M−1(ξ, θ)] (7)

where B =
∫
R f (T)t f (T)µ(T)dT. This matrix, B, represents the weight, µ(T), given to the

points of the region of interestR .
The expression leaves two choices for the experimenter. First, the region of interestR

and second, the probability distribution of the observations over the region of interest µ(T).
There is usually not enough information to safely infer the distribution of the observation,
or the assumption itself could even be meaningless. In the literature, a uniform distribution
is usually chosen (see, for example, [20,21]), as it is the safest choice, and as such, it is the
choice considered in this study.

In general, an optimal design for the criterion φ, ξ?φ, is the design that minimises the
function of the criterion φ.

To verify, and even provide tools for finding optimal designs, there is a strong the-
oretical tool, the General Equivalence Theorem [22], which allows the optimality of a
certain design to be checked and is used as a keystone in most of the numerical algorithms
developed to obtain optimal designs.

The Equivalence Theorem for D-optimality, states that a design ξ?D is D-optimal if and
only if it satisfies the following inequality

f t(T)M−1(ξ?D, θ) f (T) ≤ m, T ∈ X , (8)

achieving equality only at the support points of the design Sξ?D
.

The I-optimality Equivalence Theorem is given by

f t(T)M−1(ξ, θ) · B ·M−1(ξ, θ) f (T) ≤ Tr[B ·M−1(ξ, θ)], T ∈ X ,

where B =
∫
R

f (T) f t(T)µ(T)dT.
(9)

The General Equivalence Theorem, as stated in Equation (8), was first given by Kiefer
and Wolfowitz [23] and later extended to other differentiable criteria, as in Equation (9).
Regarding the form, the number of different support points of an optimal design, there is a
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result derived from the Caratheodory’s Theorem, which states that there is a design with at
most m · (m + 1)/2 + 1 points in its support which is optimal [12].

Having decided on an optimality criterion, the two designs can be compared via their
efficiency. The efficiency for a criterion φ is usually expressed with respect to the optimal
design, ξ?φ, and can be calculated from the following expression:

effφ(ξ) =
φ[ξ?φ]

φ[ξ]
, (10)

with ξ?φ the φ-optimal design. Efficiency is usually expressed in terms of a percentage.

2.2. Dealing with Variance Structures and Optimisation Criteria

The dependence of the design on the model and the criterion is one of the main
criticisms of the optimal experimental design theory [24]. This is clearly showcased in
this application since just by changing the variance structure, without even changing the
model, the performance of the designs for the alternative response has important losses in
efficiency.

A suitable example is presented here in the cross efficiencies for the optimal de-
signs for the Antoine Equation for water in the temperature range X = [1, 100]◦C. Best
guesses for the unknown parameters θ0 were obtained from [8], i.e., θ(0) = (a, b, c) =
(8.07131, 1730.63, 233.426). D− and I−optimal designs for the homoscedastic, ξ?Do and ξ?Io,
and heteroscedastic, ξ?De and ξ?Ie, models can be computed with the R package optedr [25].

Tables 1 and 2 show the cross efficiencies. For instance, in Table 1, the I-efficiency of
the D-optimal design for the homoscedastic model, ξ?Do, is 89.7%, to predict with minimal
variance in the region [80− 120]◦C, considering µ(T) as a uniform distribution, effIo(ξ

?
Do).

Similarly, in Table 2, the wrong assumption of the model from using the D-optimal design
for the homoscedastic model, ξ?Do produces an efficiency of 18.7% when the variance
structure is heteroscedastic, effDe(ξ

?
Do).

Table 1. Cross efficiencies, in percentage, of the D- and I-optimal designs using φI and φD for the
homoscedastic and heteroscedastic models.

ξ?Do ξ?Io ξ?De ξ?Ie

effDo 100 93.1 effDe 100 58.7
effIo 89.7 100 effIe 58.1 100

Table 2. Cross efficiencies, expressed as percentages of the optimal designs for the homoscedastic and
heteroscedastic models when the true variance structure changes. The first table presents efficiencies
for φD while the second does for φI .

ξ?Do ξ?De ξ?Io ξ?Ie

effDo 100 25.5 effIo 100 0.7
effDe 18.7 100 effIe 29.7 100

When D- and I-optimal designs are compared in the homoscedastic model, they
have reasonably good efficiency for the other criterion; however, the efficiency loss in
the heteroscedastic case is higher. Moreover, when the variance structure is wrong, the
efficiency drops drastically, going as low as 0.7%. This highlights the need for careful
consideration of the probability distribution of the response, as well as the need to look
for compromise solutions between different models and/or criteria when the issue cannot
be resolved.
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3. Methods

The large efficiency losses—shown by the example of attempting to evaluate the
efficiency of an optimal design for another criterion or to acknowledge possible errors in
the response variance structure—motivate a combined or multiple compromise approach.

Two ideas have been considered in this study. First, when choosing the objective
function φ, the best estimation of the model parameters φD and the best possible prediction
in a given region φI produce different optimal designs, and a compromise solution for
both criteria is desired. Second, as the variance structure of the response is an open
question [10], the large differences between the efficiencies of optimal designs under one of
the assumptions if the response variance structure is misguided makes the use of combined
or multiple approaches to address this uncertainty interesting.

These situations, with a range of different interests, lead us to compare two different
approaches. On the one hand is the traditional approach in OED, which is to configure a
new criterion as a linear combination of two criteria producing a Compound Criterion [26],
and on the other hand, obtaining optimal designs using a multi-objective approach in
which the two criteria are evaluated simultaneously, looking for non-dominated solutions.

3.1. Compound Designs

There are two other approaches to combining different criteria, producing the design
with consideration for a number of optimisation criteria. One can either combine two
criteria, minimising the function value of one of them subject to a restriction of a minimum
efficiency value for the second, or blend both criteria, considering a linear combination of
their criteria functions (which is, in turn, also a criterion function). Cook and Wong [26]
prove the equivalence of these two options, the constrained optimisation and the linear
combination of several criteria.

If the experiment must comply with two different objectives given by two convex
criteria functions, φ1 and φ2, representing main and secondary objectives, respectively,
defined over all the possible designs for a given model, ξ ∈ Ξ, we can combine the
two criteria by selecting a criterion that minimises the value of the secondary criterion,
constrained to a pre-established minimum efficiency for the first one:

min φ2(ξ) subject to φ1(ξ) ≤ c. (11)

The restriction of one criterion to another is proved to be equivalent to considering a
single compound criterion from the primary and secondary criteria, considering a criterion
function based on a linear combination of the criterion functions φ1 and φ2,

φ(ξ | λ) = λφ1(ξ) + (1− λ)φ2(ξ), (12)

with 0 ≤ λ ≤ 1 a chosen constant [15]. The value of this constant, λ, represents the weight
or relative importance assigned to each criterion. If λ is close to one, the preference leans
toward the criterion φ1, while choosing a value close to zero shifts the efficiency towards
the second criterion, φ2.

3.2. Multi-Objective Approach

A multi-objective optimisation problem with q objectives can be defined as follows:

minimise{ f1(x), f2(x), . . . , fq(x)} subject to x ∈ X, (13)

where fi, i = 1, . . . , q (q ≥ 2) are the possibly conflicting objective functions that must be
minimised simultaneously, and X is the set of all feasible solutions. In our particular study,
q = 2, we consider two objective functions.

The dominance-based solution methods are very interesting ways of tackling multi-
objective problems, OED-related or not. In particular, when two objective functions f1 and
f2 are to be minimised, a solution S is Pareto dominated, or simply dominated by a solution
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S′ (denoted by S′ ≺ S), if and only if f1(S′) ≤ f1(S) and f2(S′) < f2(S), or f1(S′) < f1(S)
and f2(S′) ≤ f2(S), i.e., S′ is better in at least one objective function and is never worse in
any objective function.

It usually happens that a unique solution cannot be optimal with respect to both
objectives. In this study, we are looking for the set of all non-dominated solutions or Pareto
optimal solutions. These solutions are not dominated by any solution S′ ∈ X, and so the
improvement of one objective necessarily implies the worsening of the other objective. The
Pareto front PS∗ is defined as the set of all objective function values corresponding to the
solutions in the Pareto optimal set.

The advantage of algorithms that return a set of non-dominated solutions is the
flexibility they allow in the choice of preferred solution and also the possibility to study
how the different criterion functions grow and decay, which can lead to more informed
choices.

In this paper, we will consider a hybrid multi-objective metaheuristic, which is detailed
in the following Section.

4. Memetic Algorithms

Genetic algorithms (GAs) are among the many nature-inspired algorithms devel-
oped in recent decades. They were first presented by John Holland at the University of
Michigan [27].

Metaheuristics, in general, were quickly adopted by the scientific community due to
their ease of adaptation to a wide array of problems, as few to no assumptions about the
objective function are needed. Due to a high success rate in finding optimal or good enough
solutions to complex optimisation problems in engineering and computer science, their
popularity has increased to the point of surpassing traditional optimisation methods [28].

A wide array of metaheuristics have been applied to solve optimal experimental
design problems. Approaches as diverse as simulated annealing [29] or the imperialist
competitive algorithm [30] have been used to find optimal designs. Several studies use the
particle swarm optimisation metaheuristic originally proposed in [31], solving problems
such as standardised maximin D-optimal designs [32] or minimax optimal designs [33].
Genetic algorithms have also been used quite extensively for a number of design issues,
such as generating sequential space-filling designs [34], finding near-optimal Bayesian
designs [35], constructing exact designs for mixture experiments [21], or calculating multi-
objective optimal designs [36]. Some broader comparisons between different metaheuristics
and deterministic algorithms have been explored in García-Ródenas et al. [37].

Although there is no guarantee that metaheuristic algorithms will arrive at the optimal
solution, they have proven to be highly effective when applied to very different problems.
However, a lack of a proven convergence to the optimal solution might be the reason why
the use of metaheuristics lags behind in statistics compared to other sciences.

4.1. Single-Objective Memetic Algorithm

This paper introduces an evolutionary algorithm hybridised with a local search
method in order to mimic “memetic evolution” [38]. This proposal combines several ideas
from the literature, adapted to design a competitive algorithm for this particular problem.

Conventional GAs often produce moderate results, but meaningful improvements can
be obtained through hybridisation with other methods. One such technique is local search,
and in this case, the hybrid GA is usually called a memetic algorithm, as the biological
evolution is changed by a cultural evolution where chromosomes might be modified before
being included in subsequent generations. The hybridisation can be carried out by applying
the local search algorithm to every chromosome immediately after it is generated instead
of simply applying the decoding algorithm, as is the case for a plain genetic algorithm.

Algorithm 1 shows the structure of the memetic algorithm considered herein. In the
first step, an initial population is randomly generated and improved with a local search
(see Section 4.1.7). Then the algorithm iterates over a number of steps or generations until
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a stopping criterion is satisfied, which consists of a number of consecutive generations
without improving the best solution found so far.

In each iteration, a new generation is built from the previous generation by applying
the genetic operators of selection, crossover, and replacement. At the selection phase, all
chromosomes are randomly grouped into pairs (and so every solution is a parent exactly
once), and each of these pairs is mated to obtain two offspring. The mutation operator is
then applied to these offspring with some probability, and finally, local search is used to
improve them (see Section 4.1.7). Then, the replacement strategy is carried out to choose
chromosomes for the next generation. Local search is again applied to the best solution
in the population in order to further increase the intensification aspect of the algorithm.
Additional details of the algorithm are given in the following subsections.

Algorithm 1 The memetic algorithm

Require: A scheduling problem instance P
Ensure: A schedule H for instance P

Generate the initial population of size popSize;
Apply LSiterations iterations of local search to every chromosome;
while No termination criterion is satisfied do

Group chromosomes randomly into pairs;
Apply the crossover operator to each pair with probability crProb;
Apply the mutation operator to each chromosome with probability mutProb;
Apply LSiterations iterations of local search to every generated offspring;
Choose chromosomes for the next generation with the replacement strategy;
Apply LSiterations iterations of local search to the best solution in the population;

end while
return The schedule from the best chromosome;

4.1.1. Solution Representation

We have decided to use variable-length chromosomes to codify a solution. In particular,
each chromosome Cx will be a number of points Cxp with their respective weights Cxw.
Evidently, the sum of all weights of the chromosome must be one.

Moreover, we always maintain the chromosome ordered from the lowest to the highest
point. The advantages are twofold: regarding the implementation, operations on the
chromosome have less complexity, and regarding the performance, the search space is
reduced (note that if not ordered, the same design has as many as n! different chromosomes,
where n is the number of points of the design).

In a solution, the minimum number of points allowed (minPoints) is set by the num-
ber of parameters m (3 in our experiments), as it is not possible to estimate m parameters
with fewer than m points, and in fact, this would result in a singular information ma-
trix, which is not possible for the criteria considered. The maximum number of points
allowed (maxPoints) is calculated by m · (m + 1)/2 + 1 (see Section 2.1.1), which is 7 in our
experiments.

We give two example chromosomes C1 and C2:
C1p = 12.41 31.17 44.40 78.81 100.00
C1w = 0.08 0.18 0.40 0.23 0.11

C2p = 32.17 41.24 74.20 96.35
C2w = 0.53 0.05 0.20 0.22

4.1.2. Generation of the Initial Population

We choose to initialise the population with random solutions. In particular, for each
chromosome, a random number of points between minPoints and maxPoints is created.
Each point is randomly chosen between minX and maxX (i.e., the minimum and maximum
of the design spaceX ) and its weight is also random between 0 and 1 (at the end the weights
are divided so that the sum of all weights is one). Finally, we check whether the number of
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“different points” is higher than minPoints. If it is not, we discard this possible solution and
repeat the process. Two points are considered to be not different if they are “very close,”
and the threshold is set beforehand by a parameter, set at 1.0 in our experiments.

4.1.3. Evaluation of a Chromosome

To evaluate a chromosome that represents a design, some checks are first performed.
First, we eliminate all the points with “very low” weight (minimum weight is controlled by
a parameter and is set to 0.001 in these experiments). Second, if there are two points that
are “very close,” we merge them in a single point halfway between both that has the sum
of both weights (minimum admissible distance is controlled by a parameter and is set to
1.0 in our experiments).

Now, after these adjustments, we check how many points the chromosome finally has.
If the number is lower than minPoints, we assign the worst possible fitness to the solution.
In practice, this eliminates it, preventing it from advancing to the next generation of the
genetic algorithm.

In the other case, the design is finally evaluated, depending on the chosen optimisa-
tion criteria.

4.1.4. Crossover

The crossover operator is usually the most important operator of a genetic algorithm,
as it should generate individuals that inherit good characteristics from their parents and
hopefully create good solutions. For our problem, the idea is to swap some of the points
in the crossover step and then give the mutation and local search the task of modifying
the weights.

An example will clarify how the crossover works. Let the parents C1 and C2 be
the example chromosomes given in Section 4.1.1. First, randomly decide the number of
swaps between the chromosomes between 1 and the minimum number of points of both
chromosomes minus 1, so between 1 and 3 in this example.

That number of random points is then swapped. In our example, suppose that two
swaps are performed, the first swaps the second point of C1 with the third point of C2, and
the second one swaps the first point of C1 with the second point of C2. In this case, the
following two offspring solutions O1 and O2 are obtained:

O1p = 41.24 44.40 74.20 78.81 100.00
O1w = 0.08 0.40 0.18 0.23 0.11

O2p = 12.41 31.17 32.17 96.35
O2w = 0.05 0.20 0.53 0.22

4.1.5. Mutation

Mutation operators are used to preserve and improve the diversity of the population.
This paper extends the BGA mutation operator [39], well-known for its good performance
in real-coded genetic algorithms.

Applying the mutation to a chromosome, first, a random decision is taken as to
whether to modify one random weight or one random point (0.5 probability each).

The BGA mutation operator works as follows: if ci ∈ [ai, bi] is a value to be mutated,
the resulting value c′i is,

c′i = ci ± rangi ×
15

∑
k=0

αk2−k. (14)

where rangi defines the mutation range and is set to 0.1× (bi− ai). The + or – sign is chosen
with a probability of 0.5, and αi ∈ {0, 1} is randomly generated with p(αi = 1) = 1/16.

In case of a point mutation, clearly, the mutated point should not be lower than minX
or higher than maxX . A similar check is carried out if a weight is mutated, and in this last
case, another random weight must also be modified in the opposite direction so that the
total sum of weights remains one.
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4.1.6. Replacement Strategy

The replacement strategy is taken from [40]. It is based on preselection schemes, which
are intended to improve diversity and prevent premature convergence. In particular, for
each pair of parents and their two offspring, the best two chromosomes are selected for the
next generation, such that they have a different value for the fitness function.

4.1.7. Local Search

Local search is a successful metaheuristic that is implemented by defining the neigh-
bourhood of each point in the search space as the set of solutions reachable by a given
transformation rule. It is useful in providing intensification in the search, which perfectly
complements the diversification ensured by a genetic algorithm.

For this study, some classical local search could have been used, with provable conver-
gence (albeit usually very slow) to the optimal solution, such as, for example, that proposed
in [41]. However, in this case, the local search is embedded in the genetic algorithm. Hence
it cannot be computationally expensive as it will be executed many times in each run.

For this reason, a simpler approach is proposed based on the BGA mutation operator
previously described in Section 4.1.5. The idea is to perform a fixed number of iterations
for each chromosome, each iteration consisting of the following steps:

• Apply the mutation operator to the chromosome.
• Check the fitness of the mutated solution.
• If the mutated solution is better, substitute the current chromosome for the mutated

chromosome, and if not, keep the mutated chromosome.

The intensity of the local search can be controlled by modifying the parameter
LSiterations, which sets the number of local search iterations per chromosome.

The intention is to apply this local search to every chromosome in the initial population
and also to each offspring generated. It is also applied to the best chromosome in each
generation. Note that, as this local search is stochastic and not deterministic, it can make
sense to apply it several times to the same chromosome.

4.2. About Compound Criteria Optimisation

To perform a compound criteria optimisation, the only modification to be made to
the described algorithm is the evaluation function. In particular, both objectives and a
combination of both are calculated (depending on the value of the parameter λ). Therefore,
the single-objective memetic algorithm is run as many times as desired with different values
of the parameter, depending on the number of designs sought.

4.3. Multi-Objective Dominance-Based Memetic Algorithm

A dominance-based hybrid metaheuristic is proposed, combining a genetic algorithm
based on the NSGA-II framework [42] with a multi-objective local search method. NSGA-II
is a well-known method used to solve many real applications; see, for example, [43].

The main difference between an NSGA-II-based multi-objective genetic algorithm and
a standard single-objective genetic algorithm is the replacement strategy. The strategy pro-
posed in [42] is adopted, which consists of selecting solutions from lower non-domination
levels and using the crowding distance to break ties when not all solutions from a given
level can advance to the next generation. In order to see full details of the procedure, we
refer the interested reader to [42].

In order to improve the diversity of the new population, we remove duplicated-fitness
individuals from the pool of solutions before applying the replacement strategy. This
procedure is used in several papers, for example, [44].

Besides the replacement step, the selection operator is also modified: instead of
grouping the population in random pairs, a tournament selection is performed with size
2 (for selecting each parent, two chromosomes are taken at random from the population
and the best-chosen for mating). It is empirically checked that, in the NSGA-II case, this
selection operator performs better.
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Multi-Objective Local Search

Designing multi-objective local searchers is difficult, as the dominance relation ≺ only
defines a partial order, and so selecting the “best” neighbour is not trivial. This study takes
the multi-objective hill-climbing local search method proposed in [44,45], which is fast
and efficient and is specifically designed to be combined with a multi-objective genetic
algorithm.

The selection of the best neighbour is based on the dominance relation, but it also
considers the current set of non-dominated solutions of the population of the genetic
algorithm. Hence, when choosing whether to keep the mutated solution S′ or the original
solution S (see Section 4.1.7), we choose to keep S′ if it satisfies at least one of the following
requirements:

1. S′ ≺ S.
2. @S1 ∈ P such that S ≺ S1 and ∃S2 ∈ P such that S′ ≺ S2, where P is the set of

non-dominated solutions of the current population of the genetic algorithm.

The second requirement allows the local search to select a neighbour even if it does
not strictly dominate the current solution. It allows the selection of neighbours able to
improve the current set of non-dominated solutions of the genetic algorithm, should the
current solution be unable to improve that set.

In a similar way to the single-objective case, a local search is applied to every initial
solution and to each generated offspring. However, in the multi-objective case, an extra
local search is not applied to the best solution of the population, as there is no single best
solution, and applying it to every non-dominated solution would unacceptably increase the
intensification aspect of the algorithm and the percentage of time devoted to local search.

4.4. Computational Complexity

As pointed out in [46], there are several reasons to conclude that it is difficult to
measure the time complexity of multi-objective evolutionary algorithms; however it is
important to examine it. According to [42], one generation of NSGA-II has complexity
O(M× N2), which is governed by the non-dominated sorting part of the algorithm. M is
the number of objectives (2 in our particular problem), and N is the population size. On
the other hand, one generation of the single-objective genetic algorithm is on the order of
O(N). Additionally, the computational complexity of the proposed hill climbing single-
objective local search is O(LSiterations× N) for each generation of the memetic algorithm,
where LSiterations is the number of iterations of local search per chromosome, whereas the
complexity of the proposed multi-objective local search is O(LSiterations×M× N2) for
each generation. Notice that in this case, N is squared because when deciding to accept
a neighbour, we may have to check, in the worst case, all the non-dominated solutions
of the population of the genetic algorithm, which might be the entire population. With
the above, we can conclude that the overall complexity of our multi-objective memetic
algorithm is on the order of O(ngen× LSiterations×M×N2) where ngen is the total number
of generations performed. On the other hand, the complexity of the compound designs
is O(nruns × ngen × LSiterations × N), where nruns is the number of runs of the genetic
algorithm (i.e., how many designs we want). If we take nruns = N in order to obtain a
similar number of solutions as the multi-objective memetic algorithm, then we see that the
complexities of both methods are on the same order.

5. Results

The memetic algorithm described in Section 4 is used to solve the problems described
in the introduction of this paper: low efficiencies when considering two different optimality
criteria or lack of certainty about variance structure. The latter case is of particular interest,
as the efficiency loss is larger.

The algorithms are implemented in C++ using a single thread, and the experiments
were carried out on an Intel Core i5-2450M CPU at 2.5 GHz with 4 GB of RAM (Santa
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Clara, CA, USA), running on Windows 10 Pro (Redmond, WA, USA). The source code of
all implemented methods is openly available online, and further details can be found in
Supplementary Materials so that the research community is able to reproduce the results.

5.1. Parameter Analysis of the Memetic Algorithm

In a preliminary parametric analysis, some values for the parameters of the evolu-
tionary metaheuristic were tested in order to find a satisfactory configuration. Table 3
summarises the tested values, indicating in bold the configuration that achieved the best
average results for the single-objective version of the algorithm.

Table 3. Results of the parametric analysis for the evolutionary metaheuristic, showing the values
tested and, in bold, the best configuration found.

Parameter Values Tested

popSize 50, 100 , 200
LSiterations 5, 10, 30

crProb 0.6, 0.8, 1.0
mutProb 0, 0.1, 0.2, 0.3

A maximum of 100 consecutive generations without improving the best solution is
taken as a stopping criterion. These values result in reasonable convergence patterns.

Moreover, with these parameters, the running time of the proposal is less than 1 s per
run, and so, is quite reduced.

5.2. Performance of the Algorithm: Efficiencies

On the one hand, for each of the situations described in Tables 1 and 2, the single-
objective memetic algorithm was used to calculate 100 compound designs, taking values of
λ from 0 to 1 in uniform steps. On the other, a single run of the multi-objective memetic
algorithm was performed with a population size of 100 solutions. In order for the compari-
son to be fair, the stopping criterion of the multi-objective algorithm is adjusted so that its
running time is similar to that of the combined running time of the 100 runs of the single
objective algorithm.

Figure 1 shows the results for D-optimality (in green) and I-optimality (in red) in
the homoscedastic model. The left-hand figure shows the Pareto front provided by the
multi-objective algorithm, sorted by efficiency, while the right shows the combined results
of the compound criterion for the different λ.

(a) (b)

Figure 1. Efficiencies for D-optimality (in green) and I-optimality (in red) in the homoscedastic model.
(a) Multi-objective algorithm. (b) Compound criterion.

Figure 2 shows the results of the algorithms for I-optimality when there is uncertainty
about the variance structure, homoscedastic (in dark red) and heteroscedastic (in light red).
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(a) (b)

Figure 2. I-efficiencies for the homoscedastic model (in dark red) and heteroscedastic model (in light
red). (a) Multi-objective algorithm. (b) Compound criterion.

The compromise efficiencies for the results of all cases considered are shown in
Tables 4 and 5. These represent the solution of the multi-objective algorithm (first col-
umn) and that of the compound design (second column) that produce more balanced
efficiencies, i.e., a smaller difference between them. In the multi-objective case, we choose
the solution whose representation in Figures 1 and 2 would appear to be closer to where the
efficiencies cross. For the compound designs, the λ that favours this choice has been chosen.

Table 4 (left) reports the efficiencies of compromise designs when the homoscedastic
model is considered for the D- and I-optimality, whereas Table 4 (right) shows the anal-
ogous efficiencies for the heteroscedastic model. Table 5 (left) shows the D-efficiencies
considering both the homoscedastic and heteroscedastic model, whereas Table 5 (right)
reflects the results in terms of I-optimality.

Table 4. Efficiencies of the most balanced solutions of the multi-objective algorithm ξ?M, and com-
pound criterion ξ?C, for D- and I-optimality criteria in each variance structure .

ξ?M ξ?C ξ?M ξ?C

effDo 97.24 97.33 effDe 88.66 88.64
effIo 97.29 97.23 effIe 88.16 88.56

Table 5. Efficiencies of the most balanced solutions of the multi-objective algorithm ξ?M, and com-
pound criterion ξ?C, for each structure of variance, for each of D- and I-optimality.

ξ?M ξ?C ξ?M ξ?C

effDo 80.35 84.73 effIo 85.22 83.77
effDe 87.22 84.92 effIe 81.23 83.76

Comparing multiobjective algorithms is not trivial, and in fact, there is a large number
of papers about the best way to compare them. In this work, we can consider solutions
as points in a 2-dimension space where we represent a different efficiency in each axis.
We propose to use the hypervolume indicator [47] (to be maximised), which is the most
used in the literature [48]. It can be defined as the area of the set of points relative to a
reference point, which in this work, we take point (0,0) as it corresponds to the worst
possible efficiencies. Table 6 shows the hypervolume values of the Pareto fronts of both
algorithms in each of the four considered cases. The compound criterion achieves slightly
better results in all cases, although in half of them, the difference is negligible.
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Table 6. Hypervolumes of the Pareto fronts returned by the multi-objective algorithm ξ?M, and
compound criterion ξ?C, for each of the four considered cases.

ξ?M ξ?C

Do− De 0.908411 0.926677
Do− Io 0.997920 0.997985
De− Ie 0.965272 0.966263
Io− Ie 0.889778 0.901478

6. Conclusions

It has been seen that both the compound criteria and the multi-objective approach
produce an increase in efficiencies that solve the two mentioned issues. First, the choice
of optimisation criteria allows precise estimation of the model parameters through the
D-optimisation and an accurate prediction through the I-optimisation. Second, a design
that obtains high efficiencies for both variance structures in the homoscedastic and in the
heteroscedastic scenario.

This paper showcases the usefulness of metaheuristic algorithms for obtaining optimal
designs in the traditional approach of optimal design of experiments, regardless of the
selected criterion or the variance structure of the response.

Both approaches (compound designs and multi-objective algorithm) provide quite
similar results in terms of design efficiencies for the considered criteria and variance
structures. The advantage of the multi-objective approach is that a single execution of the
algorithm provides a unified Pareto front that, although less smooth, would have better
scalability in more complex cases, for example, if we increased the number of objectives to
be combined.

We believe that the main reasons for the good performance of our algorithm are the
proper balance of the diversification provided by the genetic algorithm and the intensifica-
tion provided by the local search.

One possible avenue for future work is to improve the metaheuristic approach, for
example, by devising a more advanced local search that takes into account the sensitivity
function in order to better guide it to promising regions of the search space, even if its
computational complexity would be much higher. It could also be interesting to design a
decomposition-based multi-objective metaheuristic, for example, MOEA/D [49], which
might be more appropriate for the problem at hand. Studying the use of metaheuristics to
obtain minimax or maximin designs is also relevant.

Supplementary Materials: The source code of all implemented methods is openly available online,
and further details can be found at http://di002.edv.uniovi.es/iscop/index.php/repository accessed
on 20 January 2023, in the section “Detailed Results from Papers”.
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