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Abstract: The integrated analysis of different omic layers can provide new knowledge not provided
by their individual analysis. This approach is also necessary to validate data and reveal post-
transcriptional and post-translational mechanisms of gene expression regulation. In this work,
we validated the possibility of applying this approach to non-model species such as Quercus ilex.
Transcriptomics, proteomics, and metabolomics from Q. ilex seedlings subjected to drought-like
conditions under the typical summer conditions in southern Spain were integrated using a non-
targeted approach. Two integrative approaches, PCA and DIABLO, were used and compared. Both
approaches seek to reduce dimensionality, preserving the maximum information. DIABLO also
allows one to infer interconnections between the different omic layers. For easy visualization and
analysis, these interconnections were analyzed using functional and statistical networks. We were
able to validate results obtained by analyzing the omic layers separately. We identified the importance
of protein homeostasis with numerous protease and chaperones in the networks. We also discovered
new key processes, such as transcriptional control, and identified the key function of transcription
factors, such as DREB2A, WRKY65, and CONSTANS, in the early response to drought.

Keywords: Quercus ilex; multiomics; integrative approach; drought; proteomics; metabolomics;
transcriptomics; DIABLO; PCA

1. Introduction

Holm oak (Quercus ilex L.) is the dominant tree species in the Mediterranean forest
and the key element of the Spanish agrosilvopastoral “dehesa”, with both ecological and
economic importance [1]. Currently, several anthropogenic and environmental factors, such
as aging trees, overexploitation, and abiotic and biotic stresses (drought, Phytophthora cin-
namomi, etc.), threaten the sustainability and survival of Q. ilex and related ecosystems [2,3].
A combination of these stresses triggers the so-called Holm oak decline syndrome, leading
to an increase in tree mortality and reducing the forested area. Holm oak is quite tolerant
to drought and high temperatures [4]. However, the current climate change scenario,
characterized by a drastic decrease in rainfall and a severe rise in temperatures, means that
many areas where this species is found would no longer be suitable for its survival [5,6]. In
addition, seedlings are less tolerant than adult trees, making water deprivation the main
cause of the failure of reforestation programs [4]. For this reason, identifying and character-
izing phenotypes more resilient to drought is a priority in plant breeding, management,
and conservation programs in the Mediterranean area.

Since holm oak is a non-domesticated species and considering its biological character-
istics (long-lived cycle, allogamy, and pollen dispersal by wind), the only viable alternative
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for its breeding is to exploit the biodiversity to select elite resilient genotypes [7,8]. For
this purpose, it is necessary to characterize its inter- and intrapopulation variability and
study its molecular mechanisms of resisting and tolerating biotic and abiotic stresses [9,10].
Although holm oak is a non-model species, the first draft of the genome has been recently
published [11]. Furthermore, in recent years, great advances have been made through
omic techniques [10,12,13], for example, a reference transcriptome with a fairly complete
collection of holm oak genes [13] and a protein database that allows proteomic analysis
through mass spectrometry technologies [14] have been obtained. In addition, the acorn
and leaf metabolomes have been recently described [8,15].

When studying biological systems, traditionally, the different molecular levels ana-
lyzed by each omic technology have been studied by applying a reductionist and indepen-
dent vision [16,17]. However, although each omic technology offers a lot of information,
individual analysis cannot describe the entire biological complexity resulting from the
relationships between the different molecular layers [18]. In addition, the molecular levels
are influenced by the environment [19]. For this reason, the current trend is to combine
different omic technologies to get a holistic view of the studied system [16,20]. This new
approach provides a better understanding of the biology of the species and allows one to
select stress-related resilience genes or gene products as markers in breeding programs that
can help in the conservation of an endangered species, such as the holm oak.

The development of bioinformatics software has allowed us to carry out a joint anal-
ysis of the large amount of data generated by omic technologies to establish statistically
significant relationships between the different molecular layers [21]. However, interpreting
the results of such analysis remains a challenge even in model species. Some molecular anal-
yses have been performed on holm oak [12] using a non-targeted omic analysis [8,22–24] or
a non-targeted multiomic approach [14,25]. Our group has previously analyzed the effect
of drought on Q. ilex and its response to drought by using morphology, classic biochemistry,
physiology, and omic approaches [7,8,14,22,26–29]. Despite numerous studies, a global
non-targeted multiomic analysis of the drought response of Q. ilex species has not been
performed to date.

In this work, using a systems biology approach, we have evaluated the effect of
drought stress on six-month-old seedlings to characterize the molecular mechanisms trig-
gered under the stress response (Figure 1). With that aim, we performed a non-targeted
integrative multiomic analysis (transcriptomics, proteomics, and metabolomics) of the omic
data generated by our group in previous studies [8,14,22], carrying out complementary
interaction network analysis. In addition, a multivariate principal component analysis
(PCA) was performed for comparison with the non-targeted integrative multiomic analysis
(transcriptome, proteome, and metabolome) and to supplement it. Non-targeted integrative
multiomic analysis allowed us to evaluate and categorize the transcripts, proteins, and
metabolites that define the response to drought in Q. ilex seedlings and to obtain potential
biomarkers of resilience to be validated and employed in selecting elite, resilient genotypes
for breeding and reforestation/conservation programs.
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Figure 1. Systems biology data interpretation approach in holm oak. Integration with three omic lay-
ers for novel insights and the discovery of biomarkers. The red arrows indicate positive correlations,
the blue arrows indicate negative correlations, and the dashed lines indicate interrelations between
omic layers.

2. Results and Discussion
2.1. Comparison of Principal Component Analysis (PCA) and DIABLO Multiomic Data Analysis

To assess the response of holm oak to drought from a systems biology perspective and
to see how a non-targeted multiomic approach can provide new knowledge on the biology
of this species, we carried out different multivariate analyses. The first dimensionality
reduction approach was based on the popular principal component analysis (PCA) using
the entire dataset (47,569 transcripts; 3312 proteins; 342 metabolites) (Figure 2A, Table S1),
and the other PCA was based on only those with differences between treatments with a
p-value lower than 0.05 (4574 transcripts; 562 proteins; 81 metabolites) (Figure 2B, Table S1)
in the three datasets. The number of variables was reduced to less than 6000 using the
significant variables, reducing the noise level. However, the initial proportion of each omic
layer was still retained. In the PCA plots (Figure 2A,B), well-watered seedlings (control)
and seedlings exposed to drought-like conditions for two lengths of time (D1, 17 days and
D2, 24 days) were separated when the original dataset was filtered for differential variables
with p-value < 0.05 (Figure 2B). In both analyses, transcripts were the variables with more
weight in components 1 and 2, whereas proteins and metabolites were represented within
these variables with more weight in component 2 (Supplementary Table S1).

In the second dimensionality reduction approach, we performed a DIABLO (Data Inte-
gration Analysis for Biomarker discovery using Latent variable approaches for Omics studies)
analysis, a method of integration and interrelation of multiple omic layers (Figure 2C and
the partial DIABLO plots of each omic dataset). In DIABLO, the variables with the highest
sample discrimination power are selected and the optimum number of variables within each
omic dataset is chosen, thus reducing the complexity of the thousands of variables in the omic
data. In our data, the optimal number of variables within the three analyzed omic layers for
each component were: 350 transcripts (250 in component 1 (comp1) and 100 in component 2
(comp2)) out of a total of 47,569; 514 proteins (300 in comp1 and 300 in comp2, with 86 in
both components) out of a total of 3312; and 71 metabolites (62 in comp1 and 10 in comp2,
with 1 in both components) out of a total of 342 (Supplementary Table S2). Comparing
the variables selected by DIABLO with the variables with the highest loadings in PCA,
we could observe that the three omic datasets were more equally represented in DIABLO,
which did not show a bias toward the largest dataset, i.e., transcriptomics.
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Figure 2. Multivariate PCA and DIABLO analysis of the proteomic, transcriptomic, and metabolomic
datasets. (A) PCA plot of all variables, (B) PCA plot of significant variables, and (C) DIABLO distance
Y plot and the partial DIABLO plots of each omic dataset of the selected variables (transcripts,
proteins, and metabolites). D1 corresponds to exposure to drought-like conditions for 17 days (early
response, when chlorophyll fluorescence decreases by 20%), and D2 corresponds to exposure to
drought-like conditions for 24 days (later response, when chlorophyll fluorescence decreases by 45%).
C1 and C2 are the controls taken at both times.

DIABLO analysis also succeeded in separating the seedlings exposed to drought-like
conditions for the two lengths of time (D1 and D2); Figure 2C. Comp1 separated D2 from
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the rest, and comp2 separated D1. Controls, on the other hand, were similar, unlike in
PCA. Furthermore, in DIABLO analysis (Figure 2C), we can see how much variance was
explained by each omic layer separately, seeing that the variables selected can do a relatively
good job of separating the samples in the individual omic layers (Figure 2C, partial DIABLO
plots). Metabolites were the major contributors in comp1 (39.41%), whereas transcripts
were the major contributors in comp2 (38.68%). Proteins presented similar percentages
(around 30–35%) in both components. Finally, the integration of the three omic layers
allowed a better grouping between replicates, as seen in the boxes in Figure 2C.

To identify the dominant trends in the variables selected by DIABLO for treatment
separation, a heatmap was created (Figure 3; Supplementary Figure S1). We can observe
that the magnitude of the molecular changes due to the response to drought stress clustered
treatments and replicates. Five clear clusters can be observed (Figure 3, from top to bottom):
(i) early transient overexpression/accumulation in seedlings exposed to drought-like con-
ditions (D1, early response); (ii) overexpression/accumulation in controls (C1 and C2); (iii)
transient overexpression/accumulation at a later time in seedlings exposed to drought-like
conditions (D2, later response); (iv) overexpression/accumulation at time 2 in both control
seedlings and seedlings exposed to drought-like conditions (C2 and D2); and (v) perma-
nent changes with overexpression/accumulation at both times in seedlings exposed to
drought-like conditions (D1 and D2, permanent stress changes). Among these clusters,
drought clusters are the most interesting and form the most abundant groups (D1, D1 and
D2, and D2, from the highest to the lowest). In these main clusters, we can see a high
percentage of transcripts and proteins related to cellular homeostasis, such as proteases
and chaperones, necessary to maintain cellular protein function during drought stress [30].
D1 and D2 (permanent stress changes) is the group with the highest number of variables in-
cluded in cellular homeostasis (small heat shock proteins, ClpBs, heat shock 70/80/90 Kda
proteins, molecular chaperone GroEl, LEA, etc.), followed by the D2 (later response) group
(ClpB2, small heat shock proteins, heat shock 70 Kda proteins, and DNAJ heat shock fam-
ily proteins) and to a lesser extent the D1 (early response) group (heat shock 70/83 Kda
proteins). In addition, redox homeostasis shows a higher percentage of variables in the
D1 and D2 (permanent stress changes) group (thioredoxin H2/H9/F-type or reductase 1,
nucleoredoxins, and several glutathione S-transferases or L-ascorbate peroxidases). Protein
and redox homeostasis are key to the survival of plants under stress [31–33]. Heat shock
proteins (HSPs) and proteases play a fundamental role in protecting plants under stress
since they are responsible for maintaining protein conformation and folding or degrading
damaged proteins [32,34]. In drought, in particular, the importance of these transcripts and
proteins had already been seen in previous studies [14]. Moreover, antioxidant machinery
activation is key to counteracting the overaccumulation of reactive oxygen species during
stress [33,35].

At the metabolomic level, we have observed a slight metabolite accumulation in
the later response (D2) group, where more metabolites were included, showing a higher
abundance of several amino acids and peptides (Figure 3; Supplementary Figure S1), high-
lighting L-proline and L-phenylalanine. L-proline accumulation is a common response
to several abiotic stresses, functioning as an osmotic agent and radical scavenger [36].
L-phenylalanine accumulation is related to drought response, and its accumulation has
already been observed in other species of the genus Quercus, such as Q. suber [37]. This com-
pound is an essential precursor of numerous secondary metabolites (flavonoids, coumarins,
monolignols, etc.) as the initiator of the core phenylpropanoid biosynthesis pathway. This
may be due to the importance of phenolic compounds in the biology of this species, being
the most represented compounds in the Q. ilex metabolome [8].
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Figure 3. Heatmap of the variables selected for DIABLO: 350 transcripts (250 in comp1 and 100 in
comp2), 514 proteins (300 in comp1 and 300 in comp2, with 86 in both components), and 71 metabolites
(62 in comp1 and 10 in comp2, with 1 in both components). The five clear clusters have been framed
in black (i–v). The variables selected in the three omic layers are represented in pink (transcripts),
orange (proteins), and blue (metabolites) in rows. D1 corresponds to 17 days of drought (early
response, when chlorophyll fluorescence decreases by 20%) and D2 corresponds to 24 days of drought
(later response, when chlorophyll fluorescence decreases by 45%). C1 and C2 are the controls taken
at both times. The figure has been compressed. Supplementary Figure S1 corresponds to the same
figure uncompressed with all variable names available.

2.2. DIABLO and STITCH Interaction Networks and Their Biological Interpretation

To visualize the interactions between the different omic layers, two types of inter-
action networks were created: a statistical one, obtained by DIABLO (Figure 4), and
a functional one, using STITCH (chemical–protein interaction network) (Figure 5) [38].
Both networks were built with the variables selected by comp1 and comp2 of DIABLO
(350 transcripts, 514 proteins, and 71 metabolites), finding a high percentage of homologs
in the STRING/STITCH databases (309 transcripts, 501 proteins, and 71 metabolites). The
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networks presented were reduced to the strongest interactions (DIABLO) or the highest
confidence (STITCH), established at 0.9, in both cases. At these thresholds, the variables
selected in the two networks were different, providing two complementary views of the
Q. ilex drought response. The DIABLO network contains mainly early response variables
(Figure 4B), whereas STITCH contains mainly permanent changes during drought (D1 and
D2) (Figure 5B).

Next, we discuss the key gene products and interconnections obtained from the
integrated analysis and potentially of relevance in the response to drought.

As shown in Figures 4B and 5B, in both networks, protein biosynthesis and home-
ostasis are the main processes, forming clear sub-networks made up of a large number of
variables. STITCH shows a clear main ribosomal network, another one including compo-
nents of the proteasome complex, and a third one including chaperones (Figure 5B). In
DIABLO, there is no clear distribution except for the small network on the right, associated
with stress and cellular homeostasis and including chaperones and proteases (Figure 4B).
Stress response and protein homeostasis processes show variables in both networks, with
several candidates in both interaction networks (such as the 17.5 kDa HSP family protein,
several HSP70, and proteasome subunits). This group of proteins accumulated in D1, D1
and D2, and D2 (Figure 4B) has also been described in previous work [14], with a greater
number of proteins of this family identified in this work, giving a more complete vision of
the HSPs implicated in drought stress. In the small DIABLO network on the right, HSPs
along with other stress proteins are interconnected by some metabolites, such as emodin
and amino acids (L-proline and homoarginine). The anthraquinone emodin is a secondary
compound affected by abiotic environmental factors, such as osmotic stresses (drought and
salinity) and light intensity, [39] and its external application triggers a higher expression of
HSPs [40]. L-proline (accumulated in D2; Figures 4B and 5B) acts not only as an osmoticum
(a substance that acts to supplement osmotic pressure in a plant) [36] but also as a molecular
chaperone, preserving protein integrity and speeding up the activity of many enzymes [41],
which could explain the direct relationship shown in the DIABLO network between these
metabolites and HSPs. Furthermore, proline residues at the N-terminus of alpha helices
have been shown to contribute to protein thermostability [42].

With respect to protease activity, we found two casein lytic proteinases, ClpB2 (qilex-
prot_8964), common in the two networks, and ClpB3 (contig-10000000), in the DIABLO
network. An ATP-dependent Clp protease (qilexprot_22489) was also observed in the
DIABLO network. These chaperones were highly represented in response to drought, and
some of them were selected as candidates for drought tolerance in a study by Guerrero-
Sanchez et al. [14]. Furthermore, these chaperones, together with other types of proteins,
such as FTSH6 (qilexprot_61641, present in the small DIABLO network, and the other
candidate proposed by Guerrero-Sanchez et al. [14]), have been described to be involved
in the degradation of the light-harvesting complex of photosystem II (LHC II) during
senescence or high light acclimation [43,44]. Loss of water could result in the plant being
unable to maintain an adequate temperature and resist the high irradiance, because of
which, it is forced to activate defense mechanisms against this type of stress resulting from
drought stress in these environmental conditions.
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Figure 4. DIABLO network of the variables with more weight in the statistical analysis (threshold
± 0.9). (A) DIABLO network indicating the variables included in each omic layer. The three omic
layers are represented in pink (transcripts), orange (proteins), and blue (metabolites). (B) DIABLO
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Regarding the protein biosynthesis process, ribosomal proteins can be found as candi-
dates in both networks (as protein and transcript variables) but are more represented in the
STITCH network (the main circular network in Figure 5). Ribosomal proteins, such as 60S
ribosomal protein L14-2 (qilexprot_78276), are implicated in several regulatory processes,
such as drought [45]. The DIABLO network (Figure 4) showed two transcripts belong-
ing to this group, 40S RIBOSOMAL PROTEIN S13, and 60S RIBOSOMAL PROTEIN L34,
upregulated in D1. Both transcripts shared the same positive interconnections (as with elon-
gation factors related to the biosynthesis process) and a negative one with 3-coumaric acid
(precursor of the phenylpropanoid pathway or the phenylpropanoid–acetate pathway).
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Figure 5. STITCH network of the variables with more weight in the functional analysis (confidence
score > 0.9) using the Arabidopsis thaliana database. (A) STITCH network indicating the variables
included in each omic layer. The three omic layers are represented in pink (transcripts), orange
(proteins), and blue (metabolites). (B) STITCH network indicating the variables included in the
predominant trends. The links between variables presented are the highest confidence (score > 0.9).
The score is computed by combining the probabilities from the different evidence channels and
corrected for the probability of randomly observing an interaction. D1 corresponds to 17 days of
drought (early response, when chlorophyll fluorescence decreases by 20%), and D2 corresponds to
24 days of drought (later response, when chlorophyll fluorescence decreases by 45%). Predominant
processes are rounded off with a dashed line.

In addition to the predominant processes mentioned above, which to a greater or
lesser extent have been seen in the previous analysis of the different omic layers [8,14,22],
we were able to observe important new pathways or processes related to the response to
drought, which will be discussed next.

When a plant faces unfavorable conditions, for example, drought, to survive it must
modulate gene expression to optimize the response to overcome such conditions. This
task is performed by transcription factors (TFs), which trigger the conversion of stress-
induced signals into cellular responses [46]. A novelty in the DIABLO network, we can
see a high number of TFs upregulated in early response (D1, Figure 4B), some related to
stress (DREB2A-interacting protein 2 isoform 1, probable WRKY transcription factor 65,
and heat stress transcription factor A2-b) [47], some related to the circadian clock (CON-
STANS-like zinc finger protein, zinc finger protein ZPR1, and Zf-ZPR1 domain-containing
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protein) [48,49], and some related to growth and development processes (transcription
factor bHLH74 and zinc finger BED domain-containing protein DAYSLEEPER) [50,51].

DREB2A (contig-1429000013) is a transcription factor that interacts with a cis-acting
dehydration-responsive element (DRE) sequence and activates the expression of down-
stream genes involved in drought– and salt–stress response in Arabidopsis thaliana [52].
DREB2A, whose tendency changes after 17 days of drought, shows a relatively rapid plant
response by triggering stress response mechanisms before the fluorescence drops below
50%. Furthermore, Arabidopsis DREB2A has a dual role in combating both water and
heat-shock stress responses [52]. Drought and heat stress are highly interrelated. Both
stresses are often combined under field conditions, and between them, an overlap of heat-
and drought-responsive genes has been observed [53]. Therefore, the presence of heat
stress TFs (such as heat stress transcription factor A2-b) is common in drought. Heat
stress transcription factors are important transcription factors in both heat and drought
stresses [47]. The transcriptional expression level of HSPs is regulated by heat stress TFs, as
well as regulating other TFs, such as DREB2A [54]. However, little is known about heat
stress transcription factor A2-b and its involvement in drought.

Lastly, among stress TFs, WRKY is a large plant family of TFs, which is induced
by numerous abiotic stresses, such as drought and heat stress. In the DIABLO network,
probable WRKY transcription factor 65 showed many connections with other elements in
the upregulated network in the early response (D1, Figure 4B), positioned at the top of the
network. Several WRKYs have been identified that enhance tolerance [55–58]. Recently,
Huo et al. [59] found that ZmWRKY65, a gene in the maize, enhanced drought tolerance in
Arabidopsis, proposed as a multifunctional factor that can integrate different stress signals
in plants.

Candidates related to flowering and the circadian clock appear to be key in the short-
time drought response (D1). Transcript factor CONSTANS (contig-4162000011) (Figure 4)
promotes flowering and has been found to be related to the control of flowering and
the circadian clock [48]. Moreover, in the network, we can see the presence of GIGAN-
TEA (contig-291000017) (Figures 4 and 5) linked with adagio protein 3 (contig-440000008)
(Figure 5). The complex forming by GIGANTEA and adagio protein 3 regulates CONSTANS
expression [60]. Given the age of the plants, the flowering process is not a viable hypothesis,
being more related to the involvement of CONSTANS in regulating other genes, such as
P5CS2 related to proline biosynthesis (over-accumulated in later response D2). Furthermore,
GIGANTEA is a well-known protein with a role in drought tolerance. GIGANTEA is a key
regulator of the photoperiod and the circadian cycle and is also involved in the signaling
pathways for various abiotic stresses, such as the regulation of ABA synthesis [61].

Finally, we can see that an antioxidant response is necessary for the detoxification
of the ROS produced during the whole drought stress (D1 and D2). This increase in
antioxidant enzymes had been seen in previous studies [8,24], but the candidates respon-
sible for this response were not clearly identified. In the DIABLO network, the presence
of relevant enzymes, such as APX2 (qilexprot_28343) and glutathione S-transferase (qil-
exprot_71801), was observed. Ascorbate peroxidase (APX) isoenzymes play a key role
in the ascorbate–glutathione cycle, which is the major hydrogen peroxide detoxifying
system [62]. Rossel et al. [63] showed a constitutively higher expression of cytosolic-APX2-
enhanced tolerance to drought in an Arabidopsis mutant. The other enzyme, glutathione
S-transferase, is a protein involved in the metabolism of oxidative stress caused by the
ROS produced because of water deprivation and high irradiance [64]. This protein is
related to several proteins according to the DIABLO network (Figure 4), where we can
see proteins related to secondary metabolism with possible antioxidant capacity, such as
terpenes ((+)-neomenthol dehydrogenase and carotenoid cleavage dioxygenase 4) and
flavonoids (NAD(P)H-dependent 6′-deoxychalcone synthase).
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3. Materials and Methods
3.1. Plant Material and Experiment Description

The drought experiment was performed with seedlings of the drought-tolerant Quercus
ilex species [7]. Six-month-old seedlings obtained from healthy open-pollinated acorns
from trees located in Almadén de la Plata (Seville, Andalusia, Spain; 37◦52′ N, 6◦28′ W)
were used. These seedlings had a size of about 10–15 cm and had 8 to 10 adult leaves.
The experiment was performed under the typical summer conditions in Andalusia, (mean
temperature 37 ◦C, maximum temperature 44 ◦C, minimum temperature 19 ◦C, and relative
humidity 40%) under severe drought conditions (withholding water for 28 days) [7]. Well-
watered plants (C) were kept at 100% substrate moisture throughout the experiment [22].
Leaves were collected when the chlorophyll fluorescence in seedlings subjected to drought-
like conditions decreased by 20% (17 days of drought, D1, early response) and 45% (24
days of drought, D2, late response) with respect to the control, well-watered, seedlings [7].
Three asymptomatic seedlings were analyzed at each sampling point (C1,D1 and C2,D2),
each seedling being a biological replicate. Adult leaves without stress symptoms were
washed, frozen in liquid nitrogen, and stored at −80 until extraction (metabolites, proteins,
and RNA). Detailed information about plant material and the experiment can be found
elsewhere [22].

3.2. Non-Targeted Transcriptomic Analysis

RNA extraction has been described in Ref. [24], and the high-throughput sequenc-
ing Illumina Hiseq 4000 platform (Illumina, San Diego, CA, USA) was used to obtain
the libraries. Previously, a de novo transcriptome for Q. ilex was generated from raw
data obtained from Illumina and Ion Torrent [13,24]. Such raw data, together with the
datasets for well-watered seedlings and seedlings exposed to drought-like conditions,
were used to assemble all clean Q. ilex reads into contigs by using RAY v. 2.3.1 [65]. The
assembly structure was evaluated with QUAST v. 5.0.0 [66]. This new version of the
Q. ilex transcriptome was annotated using Sma3s v. 2 [67] and the UniRef90 database
(www.uniprot.org, accessed on 29 June 2019). To quantify the expression of transcripts,
RSEM [68] was used to map the filtered reads to the reference transcriptome, obtaining
the abundance of each transcript. The complete transcript dataset used in the analysis
is available in Supplementary Table S3a. The transcriptome raw data are available in
the NCBI’s Gene Expression Omnibus repository (GEO, accession number GSE145009,
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145009, accessed on 15 Octo-
ber 2020).

3.3. Non-Targeted Proteomic Analysis

Protein extraction, separation, and mass spectrometry analysis have been described in
Ref. [22]. Briefly, proteins were extracted by following the trichloroacetic acid (TCA)/acetone–
phenol protocol according to Wang et al. [69]. Protein samples were run 1 cm in 12% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), and the resulting single
bands were trypsin-digested and subjected to shotgun proteomics analysis (nano-LC-MS-
UHPLC Ultimate 3000-Orbitrap Fusion, Thermo Scientific, San Jose, CA, USA) according to
Gómez-Gálvez et al. [70]. MS/MS data were processed employing Proteome Discoverer 2.3
(Thermo, San Jose, CA, USA), the proteins were identified using the SEQUEST algorithm
with the species-specific Q. ilex transcriptome database [13,24], and the data were enriched
with the RNA-seq data generated in this experiment, as described above. Proteins were
quantified as described in Ref. [71]. The complete proteomic dataset used in the analysis is
available in Supplementary Table S3b. The protein raw mass spectrometry was deposited
in the ProteomeXchange Consortium via the PRIDE partner repository [72] with the dataset
identifier PXD017493 (http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=
PXD017493, accessed on 15 October 2020).

www.uniprot.org
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE145009
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD017493
http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD017493
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3.4. Non-Targeted Metabolomics Analysis

Metabolite extraction, separation, and mass spectrometry analysis have been described
in Ref. [8]. Briefly, metabolites were extracted as described by Valledor et al. [73] using three
replicates of each treatment and a quality control mix. Dried extracts were re-dissolved
in 1 mL of 50% methanol and 0.1% formic acid. After filtration, 5 µL of the sample was
subjected to chromatographic separation with a Dionex Ultimate 3000 RS UHPLC sys-
tem (Thermo Fisher Scientific, Bremen, Germany) equipped with an Acquity UPLC BEH
(bridged ethyl hybrid) C18 column (1.7 µm; 100 × 2.1 mm) (Waters Corporation, Manch-
ester, UK) held at 40 ◦C. Chromatography parameters and analysis have been described
in Ref. [8]. The software Compound discoverer® (v. 3.1) (Thermo Scientific, San Jose,
CA, USA) was used to quantify and identify each feature. The area under the curve of
the peaks was used for the relative quantification. Identification was performed by com-
paring with three different databases included in the software (mzCloud, ChemSpider,
and KEGG). The complete metabolomic dataset used in the analysis is available in Sup-
plementary Table S3c. Metabolite raw data were deposited in the NIH Common Fund’s
National Metabolomics Data Repository (NMDR) website, the MetabolomicsWorkbench,
https://www.metabolomicsworkbench.org (accessed on 13 September 2020), where it has
been assigned the project ID PR001361. The data can be accessed directly via the project
DOI 10.21228/M8SQ6J.

3.5. Data Preprocessing and Statistical Analysis

Previous preprocessed data of transcripts [14], proteins [14,22], and metabolites [8]
were used (Supplementary Table S3). Scaled and centered values (z-scores) were subjected
to multivariate analysis with the integration of omic levels. Principal component analy-
sis (PCA) and DIABLO (Data Integration Analysis for Biomarker discovery using Latent
variable approaches for Omics studies) [74] were conducted with pRocessomic v.1.8 (avail-
able on http://github.com/Valledor/pRocessomics, accessed on 29 January 2020). Both
analyses are a dimensional reduction approach, but DIABLO selects the optimal number of
variables to obtain the maximum discriminant power and provides the inter-relationship
between the different omic layers. The autotune() function was used in DIABLO to select
the optimal number of variables to include from the three integrated omic layers (with
significant variable features p < 0.05). This function involves comparing multiple models
by selecting different numbers of variables within each dataset, choosing the number of
variables that best predict their own accuracy [75]. So, 350 transcripts (250 in component 1
(comp1) and 100 in component 2 (comp2)), 514 proteins (300 in comp1 and 300 in comp2,
with 86 in both components), and 71 metabolites (62 in comp1 and 10 comp2, with 1 in both
components) were selected and included in DIABLO analysis. PCA was performed first
with all variables in the datasets (47,569 transcripts; 3312 proteins; 342 metabolites) and then
with only the significant variables at p < 0.05 (4574 transcripts; 567 proteins; 81 metabolites).
Heatmap and plots were made using pRocessomic v.1.8. The networks and visualization
were generated by pRocessomic and Cytoscape program 3.9 [76], using DIABLO analysis
(DIABLO network, Figure 4) and the StringApp plugin (STITCH network, Figure 5), using
the model species A. thaliana [77]. The networks were simplified to interactions with a
threshold of ±0.9 or higher. In the DIABLO network, −0.97 to −0.9 (negative) and 0.9 to
0.97 (positive) represent the strongest correlations between variables, and in the STITCH
network, 0.9 to 1 represents the interactions with the highest confidence.

4. Conclusions

We have used an integrated multiomics analysis to generate new information beyond
that obtained by using transcriptomic, proteomic, and metabolomic approaches indepen-
dently of each other, contributing to the knowledge of the responses of Q. ilex to drought.
In the study of the response to drought, DIABLO provided a better model than PCA and
allowed us to interrelate the different omic layers. Within the interaction networks, we con-
firm the importance of previous candidates in the response to drought, such as the FTsH6

https://www.metabolomicsworkbench.org
http://github.com/Valledor/pRocessomics
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protease, involved in the degradation of the light-harvesting complex of photosystem II,
and the ClpB proteases, with several members of this family within both networks. These
processes appear to be key in the permanent changes to stress. On the other side, early
responses are characterized by the appearance of transcription factors (DEBR2A, WRK65,
CONSTANT, etc.) up-regulating stress-related genes. The appearance of these TFs could be
related to the prioritization of the gene response in the early stress stage and to the increase
in the osmoprotectant proline observed in later stages, among others. At the spatiotempo-
ral level, we have seen that some responsive gene products or metabolites are transiently
accumulated in early stages (DEBR2A, WRK65, and CONSTANT) and later stages (such
as L-proline), whereas others (such as FTSH6, APX2, and glutathione S-transferase) are
permanently accumulated in both sampling times. The latter ones can be proposed as
markers of resilience; one of them has been proposed in previous studies.

We have gone one step ahead in the molecular study of the responses of an orphan
tree species, Q. ilex, to drought. We have shown that it is possible to take the systems
biology approach not only in model plants, such as A. thaliana, but also in non-model,
orphan, and recalcitrant organisms. However, the systems biology approach with non-
domesticated and poorly characterized species is challenging and with limitations since
the results depend, largely, on the homology of species-specific genes to those of model
species, such as Arabidopsis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/plants11223067/s1: Figure S1: Heatmap of the variables selected for DIABLO: 350 transcripts
(250 in comp1 and 100 in comp2), 514 proteins (300 in comp1 and 300 in comp2, with 86 in both
components), and 71 metabolites (62 in comp1 and 10 in comp2, with 1 in both components), Table S1:
principal component analysis (PCA); (1) all variables of omics datasets, (2) only omics variables
with p-value < 0.05: (a) explained variance, (b) loadings are shown; Table S2: identification (ID),
description and contribution to component 1 and 2 of DIABLO selected variables: (a) transcripts,
(b) proteins, (c) metabolites; Table S3: datasets used for integrative multiomics analysis: (a) transcripts
dataset, (b) proteins dataset, (c) metabolites dataset.
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