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Abstract
Ranking aggregation, studied in the field of social choice theory, focuses on the 
combination of information with the aim of determining a winning ranking among 
some alternatives when the preferences of the voters are expressed by ordering the 
possible alternatives from most to least preferred. One of the most famous ranking 
aggregation methods can be traced back to 1959, when Kemeny introduces a meas-
ure of distance between a ranking and the opinion of the voters gathered in a profile 
of rankings. Using this, he proposed to elect as winning ranking of the election the 
one that minimizes the distance to the profile. This is factorial on the number of 
alternatives, posing a handicap in the runtime of the algorithms developed to find 
the winning ranking, which prevents its use in real problems where the number of 
alternatives is large. In this work we introduce the first algorithm for the Kemeny 
problem designed to be executed in a Graphical Processing Unit. The threads identi-
fiers are codified to be associated with rankings by means of the factorial number 
system, a radix numeral system that is then used to uniquely pair a ranking with 
the thread using Lehmer’s code. Results guarantee constant execution time up to 14 
alternatives.
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1 Introduction

Due to the broad usage of decision-making tools nowadays in many contexts of 
our daily lives, how to develop programs that are able to make this decision is a 
hot topic in many research areas. In this kind of contexts, situations where deal-
ing with the preferences of multiple voters over a set of alternatives is needed are 
frequently found. When voters express their preferences by ranking the potential 
options from most to least favored, the process of making a decision about the 
winning ranking is known as ranking aggregation, and it is a subfield of social 
choice theory [1, 2]. Recently, computational social choice has gain attention 
[3], motivated among other reasons by studying efficient algorithms that imple-
ment some ranking aggregation methods that, although properly mathemati-
cally defined, are not computationally efficient so they cannot be applied in real 
contexts.

A prominent example of one of these methods is the one proposed by Kemeny 
[4]. He began by proposing a distance, between a ranking and the opinion of the 
voters, to measure the disagreement between the ranking and the preferences. 
Using this, he proposed that the ranking with the shortest distance to the pro-
file (among all the possible rankings defined over the set of alternatives) must 
be chosen as the election’s winner. This method soon gained attention, as it was 
proved [5] to be the only ranking aggregation method that is at the same time 
neutral, consistent and moreover ranks in the best position the alternative that 
wins all others pairwisely (known as Condorcet winner) if it exists, some very 
desirable properties for any ranking aggregation method. Due to these properties 
the method would be suitable to be used in many situations, but this is prevented 
by its computational complexity. Finding the solution as proposed by Kemeny 
constitutes a NP-hard [6] problem, which makes it not appropriate for its use in 
most of the real situations, especially in presence of time constraints.

Therefore, the execution time when the number of alternatives is large repre-
sents a huge problem. For example, if the sequential computation of the distance 
of each ranking to the profile takes 1 second for 6 alternatives, then the time for 
10 alternatives would be 40 min. Again, as it is factorial, this is even more notice-
able when the number is large: for example, from 13 to 14 alternatives the execu-
tion time would change from approximately 9 days to 2 months. Due to these 
differences, the study of algorithms that aim to solve this problem is very impor-
tant to make the method useful in real contexts. For this reason, even improve-
ments that allow to increase one single alternative are a great contribution to the 
research field.

In the last years, Azzini and Munda [7] introduced an exact algorithm that 
greatly improved the runtime in relation to others published before [8, 9]. We 
have improved these results in [10, 11], ensuring the feasibility of the execution 
up to 13 alternatives. However, the runtime of the branch and bound algorithms 
(B &B) proposed in these works depends on the characteristics of the input pro-
files and cannot be exactly known prior to the execution. Notice that, there is an 
obvious dependence between the runtime and the number of alternatives of the 
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profile and, moreover, the nature of branching algorithms makes that, even for 
problems with the same size, the real execution of the algorithm is sometimes 
possible and sometimes not, as it depends on the solutions pruned from the search 
space, which cannot be determined prior to the execution itself. This implies that 
the behavior of these algorithms varies widely even for different profiles that 
share the same number of alternatives and voters [12–14].

All the previously mentioned algorithms are designed and developed to be 
executed in a Central Processing Unit (CPU). However, the computational field is 
conditioned by the development in the hardware tendencies. Currently, the use of 
Graphical Processing Units (GPUs) for general parallel computing tasks, known as 
GPGPU after General Programming GPU, has provided a platform for investigating 
methods that leverage concurrent threads to tackle complex problems in computa-
tional terms. Nevertheless, how to translate classical CPU algorithms to GPU algo-
rithms is not straightforward for many reasons. For example, CPU algorithms, espe-
cially those based on techniques such as B &B, are complex in the management of 
memory, and GPUs have more memory restrictions than CPUs despite being faster 
on parallel tasks. Moreover, some more problems appear when the development 
paradigm changes. Indeed, for combinatorial problems such as finding the Kemeny 
ranking, one of the main issues regards the storage space and how to handle the flow 
of data between CPU and GPU. Also the paradigm for the development of the code 
changes from CPU to GPU.

In this work, we propose an algorithm to be executed in a NVIDIA GPU using 
CUDA and Numba for Python. On the one hand, CUDA [15] is a compute platform 
that allows developers to run code in a massively parallel fashion on NVIDA GPUs. 
On the other hand, Numba [16] is a just-in-time Python function compiler that pro-
vides a tool for compiling Python code to CUDA for NVIDIA GPUs. The aim of 
this work is to introduce the first algorithm for the Kemeny problem developed to 
be executed in a GPU. This poses some main questions such as how to distribute 
the rankings in parallel and how to handle the management of the memory both in 
CPU and GPU. We propose to use thread identifiers, associating them with rankings 
by means of the factorial number system, which is a radix numeral system. Then, 
we use this factorial codification to uniquely pair a ranking with a thread using 
Lehmer’s code. The considerations about the memory space that must be taken into 
account for the feasibility of this algorithm are also addressed.

The remaining of the document is structured as follows. In Sect. 2 the ranking 
aggregation problem is formally introduced, as well as the Kemeny method. Sec-
tion 3 gives the explanation related to the codification systems used for paralleling 
and gives the algorithm proposed. The results obtained are discussed in Sect.  4. 
Final conclusions are drawn in the last section.

2  Ranking aggregation

Consider a set of n alternatives A = {a1,… , an} and a set of m voters expressing 
their preferences over A . In this work, the scenario where preferences over A are 
expressed in the form of rankings is considered. We use the term ranking to refer 
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to any strict order relation defined over A , such that, for every pair of alternatives 
ai, aj ∈ A , with ai ≠ aj , a strict ( ai ≻ aj or aj ≻ ai ) relation is defined.

The multiset �n
m

 of rankings given by the m different voters over the set of 
n alternatives is called profile of rankings. As some voters may agree on their 
ranking, if all the rankings were listed this would lead to a representation of the 
profile containing repeated rankings. Assuming that anonymity of the voters is 
ensured, we use the compact representation of the profile of rankings that only 
contains m′ ≤ m different rankings, where each ranking ri ∈ �n

m
 is weighted by the 

number wi of voters that expressed the ranking ri . Thus, m =
∑m�

i=1
wi.

The alternatives in A may be also compared in a pairwise fashion by using a 
matrix O of dimension n × n , known as the outranking matrix [17]. Each ele-
ment oij of O , with 1 ≤ i, j ≤ n , represents the number of voters that prefer alter-
native ai over alternative aj . The value of the element oij is obtained from �n

m
 by 

adding 1 point every time that ai ≻ aj appears in a ranking of the profile. There-
fore, for each pair of alternatives ai and aj with i ≠ j , it holds that oij + oji = m . By 
definition, all the elements of the diagonal are set to 0. This representation con-
tains the pairwise information provided by the profile of rankings and, although 
the preference orders are lost, it is enough to compute the Kemeny distance from 
a ranking to a profile as will be later explained in Eq. 1.

Ranking aggregation functions are used to summarize the preferences in the 
profile of rankings �n

m
 in such way that the ranking chosen as winner represents a 

consensus ranking. How this consensus is reached is not trivial and has been and 
still is deeply studied in the field of social choice theory.

Condorcet [18] stated that an alternative ai should be ranked at a better position 
than another alternative aj in the winning ranking if ai is preferred by the majority 
of the voters over aj , which in terms of the outranking matrix means that oij > oji . 
Using this idea, Condorcet proposed a function to aggregate the preferences that 
results in a ranking where each alternative wins by majority every other alterna-
tive ranked in a worse position. The ranking that fulfills these characteristics is 
called Condorcet ranking. Accordingly, the alternative in the first position of the 
Condorcet ranking is known as Condorcet winner, i.e., the alternative that wins 
by majority in a pairwise comparison against any other alternative. Unfortunately, 
the relations given by the voters are not necessarily transitive as they may lead 
to situations in which ai ≻ aj , aj ≻ ak and ak ≻ ai , even if the preferences were 
expressed in the form of strict orders. This is famously known as voting paradox. 
When the voting paradox occurs, there is not Condorcet ranking. Nevertheless, 
sometimes it is possible to find a Condorcet winner even in absence of a Con-
dorcet ranking. A ranking aggregation method is called a Condorcet method if it 
finds as winning alternative the Condorcet winner if it exists.

A prominent family of ranking aggregation functions is one based on the use 
of a distance function � on the set of rankings. The distance of a ranking s to a 
profile of rankings �(s,�n

m
) is computed by adding the individual distances from 

s to all rankings in �n
m

 . From all the possible n! complete rankings that can be 
obtained by permuting the set of n alternatives A , the one (or ones) that mini-
mizes the value of � is selected as the winning ranking.
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The most representative example of this family of distance-based methods is the one 
proposed by Kemeny [19], who established a method based on the Condocet principle 
that uses distances in order to reach a solution if cycles are present in the profile.

2.1  Kemeny ranking rule

According to Kemeny, the distance between two rankings is the number of discrepan-
cies in the relative order of every pair of alternatives. Formally, 1 point is added to the 
distance every time that two alternatives appear in the ranking in reverse order. Thus, 
the distance of a ranking s to the profile of rankings �n

m
 is defined as the sum of the 

Kemeny distances from s to all the rankings ri ∈ �n
m
.

The distance � from a ranking s to a profile represented by the outranking matrix O 
can be computed using this matrix such that, having

the Kemeny distance is the sum of the values

For the profile of rankings in Table 1, the distances from all possible rankings on the 
set of alternatives A = {A,B,C,D} are shown in Table 2. The distance is minimized 

xij =

{

oji if ai ≻ aj
oij otherwise

(1)�(s,�n
m
) =

n
∑

i=1

n−1
∑

j=i+1

xij .

Table 1  Profile of rankings 
�4

10
 given by ten voters on 

the set of four alternatives 
A = {A,B,C,D} (left) and 
corresponding outranking 
matrix (right)

Number of 
voters

Ranking A B C D

3 A ≻ B ≻ C ≻ D A 0 5 7 3
2 D ≻ B ≻ A ≻ C B 5 0 10 6
2 D ≻ A ≻ B ≻ C C 3 0 0 6
3 B ≻ C ≻ D ≻ A D 7 4 4 0

Table 2  Distance � for all the possible rankings according to the Kemeny method for the profile of rank-
ings in Table 1

Ranking � Ranking � Ranking � Ranking �

A ≻ B ≻ C ≻ D 23 B ≻ A ≻ C ≻ D 23 C ≻ A ≻ B ≻ D 37 D ≻ A ≻ B ≻ C 23
A ≻ B ≻ D ≻ C 25 B ≻ A ≻ D ≻ C 25 C ≻ A ≻ D ≻ B 39 D ≻ A ≻ C ≻ B 33
A ≻ C ≻ B ≻ D 33 B ≻ C ≻ A ≻ D 27 C ≻ B ≻ A ≻ D 37 D ≻ B ≻ A ≻ C 23
A ≻ C ≻ D ≻ B 35 B ≻ C ≻ D ≻ A 23 C ≻ B ≻ D ≻ A 33 D ≻ B ≻ C ≻ A 27
A ≻ D ≻ B ≻ C 27 B ≻ D ≻ A ≻ C 21 C ≻ D ≻ A ≻ B 35 D ≻ C ≻ A ≻ B 35
A ≻ D ≻ C ≻ B 37 B ≻ D ≻ C ≻ A 25 C ≻ D ≻ B ≻ A 35 D ≻ C ≻ B ≻ A 37
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by the ranking B ≻ D ≻ A ≻ C . Therefore, this is the Kemeny ranking, i.e., the solu-
tion to the Kemeny problem for the profile of rankings in Table 1.

Unfortunately, as it was previously mentioned, the problem of finding a 
Kemeny ranking has been proved to be NP-hard [6, 20]. This means that it does 
not exist an algorithm to compute the Kemeny ranking in polynomial time for any 
number of alternatives.

3  Developing a Kemeny algorithm for the GPU

Considering the definition given by Kemeny to find the consensus of the winning 
ranking, any algorithm to find the Kemeny ranking can be roughly summarized 
into the following steps: 

Step 1 For each possible strict ranking obtained as a permutation of n alternatives: 
compute the distance from the ranking to the profile of rankings given by the 
voters.

Step 2 Find the minimum distance obtained.
Step 3 Keep as winners only those strict rankings whose distance is equal to the 

minimum distance found after evaluating all the possible solutions.

Currently, in the literature there are several algorithms that solve the Kemeny rank-
ing. These are implemented for CPUs [7, 9, 11]. The ones showing the best results 
are those that are designed as branch and bound (B &B) algorithms. B &B algo-
rithms list the possible solutions to a problem in a tree structure known as search 
space. Then, they use rules to prune off regions of the search space that cannot lead 
to an optimal solution, thus avoiding the exploration of all the possible solutions, 
which notably can reduce the runtime. However, this reduction depends on the rules 
defined to prune the tree and also on the characteristics of the input profile. For this 
reason, the runtime that will be saved in relation to the full exploration of the pos-
sible solutions cannot be known in advance, and sometimes it could be so small that 
could prevent the execution of the algorithm in real time.

In this work it is presented a different approach for solving the Kemeny prob-
lem by developing a GPU algorithm instead of CPU algorithms. This algorithm 
looks for the winner ranking by executing multiple threads in parallel, where each 
thread takes care of computing the distance from different rankings to the profile 
in parallel. This saves time that requires to execute sequential tasks in the CPU 
but it comes with the cost that each thread is independent of the computations 
done by other thread.

The steps presented for the basic algorithm must be divided in smaller pieces 
such that some of them can be parallelized and done independently. Step 1 can be 
parallelized as for each ranking the same independent task must be done. How-
ever, when focusing on Step 2, it is necessary to know the computations done by 
the other threads in order to determine the winner.
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As the cost of copying the rankings from the CPU to the GPU would be very 
expensive, the first step in order to define a GPU algorithm is to determine how to 
make each thread capable of knowing for which ranking must compute the distance 
without explicitly knowing the ranking first. The second step is to determine how to 
combine the information obtained by each thread and reduce it.

Moreover, there are some key implementation aspects that are usually not con-
sidered in the definition of the algorithm but when dealing with such large amount 
of information are extremely important to take into account in order to develop a 
suitable algorithm for the GPU. In contrast to happens in the CPU, where the use of 
arrays that require dynamic memory is very common, the memory required by the 
GPU to perform all the operations must be known in advance. This implies that cop-
ies of memory must be simplified as minimum. Moreover, the memory space of the 
GPU is limited, therefore, it is recommendable to reuse the arrays and mind the data 
types.

3.1  Mapping rankings to threads

As previously stated, the first step of the algorithm is to determine how each thread 
knows the ranking for which it must compute the distance. This can be divided in 
three different tasks: 

1. Associate each thread with its factorial number (see Sect. 3.1.2).
2. Use the factorial number of the thread to get a ranking (see Sect. 3.1.3).
3. Compute the distance of the ranking to the profile using Eq. 1.

3.1.1  Ranking codification

A strict ranking can be understood as a numeric vector of non-repeated numbers, 
where each element of the vector is a natural number in the interval [0, n − 1] that 
represents the position of the alternative in the ranking, being 0 the best possible 
position and consequently n − 1 the worst possible one. The codification proposed 
represents with the number 0 the alternative in the best position due to computa-
tional convenience. The alternative of A in the ith position of vector representing the 
ranking r, with i ≤ 0 < n , is denoted by r(i) and can be referred by its index j in the 
set A with 0 ≤ j < n . For example, given a set of alternatives A = {A,B,C,D} the 
ranking C ≻ A ≻ D ≻ B can be represented by the vector below show in Fig. 1.

Fig. 1  Representation of a ranking as a vector. Given a set of n elements, the ith element of the vector 
stores the numeric representation of the alternative that is in that position of the ranking. Thus, the lower 
the index of an alternative in the vector, the better an alternative is ranked
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The GPU automatically associates a unique integer identifier (henceforth id) to 
each thread in the grid of all the possible threads. The algorithm proposed in this 
work takes advantage of this to codify the id as factorial number that can be later 
associated with a ranking.

3.1.2  Factorial system

The factorial number system [21, 22], also known as factoradic, is a mixed radix 
numeral system. It is specially useful in combinatorics due to its property for num-
bering permutations [23].

In order to convert a natural number (in decimal base representation) to a facto-
rial representation, it is necessary to obtain the sequence of digits in a factorial base. 
For a number lower than n! are required n digits. Thus, using a vector of n elements, 
the most-left element corresponds with the times that (n − 1)! must be multiplied, 
the next element with (n − 2)! and so on. For example, the vector (2, 0, 1, 0) repre-
sents the number 2 × 3! + 0 × 2! + 1 × 1! + 0 × 0! = 13 . This can be expressed also 
as 2:0:1:0! to denote the factorial base.

Algorithm 1 shows how to formally compute the factorial number from an integer 
number.

An example of how to apply Algorithm 1 is shown in Table 3. This illustrates 
how to compute the factorial number 789. First of all, the vector f to represent 
this number must have at least n = 7 positions, as 7! > 789 > 6! . The vector f is 
filled from right to left with the reminder obtained from the consecutive opera-
tions. In the first iteration i = 0 , the number is divided by the radix = 1 , obtain-
ing as results the same number and the reminder 0, that is used for filling the last 
element of f . Then, the radix is incremented and the quotient of the last opera-
tion, which is again the initial number, is divided by 2, and the obtained remain-
der 1 added to fn−radix . In the result of the previous operation, 394, is divided by 
radix = 3 , and so on, until the result obtained is 0. The vector f = (0, 0, 2, 3, 1, 1, 0) 
obtained as the factorial number corresponding to 789 can be separated as 
0 × 6! + 0 × 5! + 2 × 4! + 3 × 3! + 1 × 2! + 1 × 1! + 0 × 0! = 789 . Notice how, as 
the most-right element corresponds always with the reminder of dividing the num-
ber by 1, this value is always 0, so it could be omitted in the representation to save 
memory space.
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3.1.3  Lehmer’s code for GPU

The factorial number can be converted into a ranking using the numbers as inversion 
table. The aim is to be able to do the translation of a factorial number as shown in 
Fig. 2. In this work, we choose to translate the factorial number as ranking applying 
Lehmer’s code.

Lehmer [24] proposed an encoding for each possible permutation of a sequence of 
n numbers. As there are n! factorial permutations, each one of them can be used to 
represent one of the n! rankings over a set of alternatives. To obtain Lehmer’s code 
from a factorial representation, the position of the alternatives in the set of n values is 
considered (starting in 0). The alternative in the position of the first number of the fac-
torial representation is taken out of the set. After taking the first alternative from the set 
of n elements, the indexes are updated and the next alternative is obtained from a fixed 
set of n − 1 elements, and so forth decreasing the number of possibilities until the last 
number for which only a single fixed value is allowed.

The steps to get a ranking r from a factorial number f using Lehmer’s code are the 
following:

• Consider that the elements in A are numerated from 0 to n − 1 and the factorial 
number is defined by the vector f , also indexed from 0 to n − 1.

Table 3  Example of the iterations needed for getting the factorial number of 789

Fig. 2  Example of the ranking 
obtained over the set of alterna-
tives A = {A,B,C,D} from a 
factorial number
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• For i ∈ [0, n) , do: 

1. Take from A the alternative x that is in position fi in the set.
2. Update r(i) = x.
3. Remove x from A.
4. Renew the indexes of the alternatives in A.

Table 4 exemplifies how to get a ranking from the factorial number 1:1:0:0! . The 
first column is the iteration number i; the second column represents the factorial 
number f , highlighted in yellow the i-th alternative being evaluated at each itera-
tion i and crossing the alternatives that have been already evaluated; the third col-
umn shows the set of the alternatives A (which are represented by its position in the 
set, i.e., 0=A,1=B,2=C,3=D) and above them its corresponding index in A for each 
iteration is shown; the ranking r resulting in each iteration appears in the fourth col-
umn. The status of the vectors with the factorial number and the set of alternatives 
after the iteration are shown in the 5 th and 6 th columns.

A natural implementation in a CPU for this procedure would be to use dynamic 
memory for having a vector of variable length representing the set of alternatives. 
Unfortunately, developing code for GPU kernels is much more restricted. For exam-
ple, the allocation of the memory must be static, meaning that the portion of mem-
ory that must be allocated is required to be known at compile time. Thus, we pro-
pose Algorithm 2 for obtaining Lehmer’s code from the factorial number f , which 
uses a Boolean vector to keep track of the alternatives that have been already added 
to the ranking.

The Boolean vector a is used to mark the alternative, which also avoids to reindex 
them manually, as a counter is used to keep track of the positions. In line 1, the iteration 
over all the elements of the set begins. Then it is required to iterate until the value fi is 
reached, which determines the element of the set of alternatives in that position that has 

Table 4  Example on how to obtain a ranking from a factorial number using Lehmer’s code
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not been explored yet. This is the element that must be considered to be added to the 
ranking. To make this possible, line 2 defines a counter, to keep track of the alternatives 
that have been explored. Also, the alternative that will be added is stored in j. Lines 5 to 
10 iterate over the vectors looking for the alternative to add following this idea. When 
this alternative is found, it is marked as already added in the Boolean vector a (line 11) 
and added to the ranking in line 12.

Notice how in the algorithm proposed the vector f is overwritten over the factorial 
representation, as shown in line 12 of the algorithm. This means that column 2 and 4 
in Table 4 are in fact the same vector in memory. This drastically saves memory space, 
helping the feasibility of the implementation as, otherwise, the size of the grid would 
be duplicated, which makes impossible the execution of the algorithm due to hardware 
restrictions. To illustrate this, let us refer by ‘grid’ to a matrix stored in memory where 
each row corresponds to the codification of one factorial number (i.e., each vector f ) or 
one ranking (as the codification shown in Fig. 2). Therefore, if this grid is defined for 
n = 4 , this must have 4! = 24 rows and 4 columns, i.e., a total of 96 elements to be able 
to store the codifications for all the possible rankings with 4 alternatives. If each ele-
ment of the grid is codified as an unsigned integer of 8 bits (i.e., using 1 byte), the size 
of the grid in memory is equal to 96 bytes (i.e., 96B). Following the same idea, it would 
require 600B for 5 elements, 4.22KB for 6 elements and so on. To calculate the number 
of bytes required in memory to store the grid when the value of n is increased one unit, 
the following expression can be used:

Considering that �(n − 1) is the memory required by the grid of n − 1 alternatives, 
as for the exponential nature of the grid the size of n − 1 must be multiplied n times, 
and then one more column must be added to all rows, i.e., n! elements of 1 byte (so 
the ×1 factor can be skipped in the equation).

(2)n ∗ �(n − 1) + n! .
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Following the example where each element is of 1 byte, for 12 alternatives 
the memory for the grid is up to 5.35 GB. The fact that the algorithm avoids to 
create one grid for the factorial codification and another for the ranking obtained 
using Lehmer’s code, and instead uses codifications that allows to create a single 
grid which elements can be overwritten to obtain both codification as explained 
in Algorithm 2, saves in this case more than 5GB of RAM memory.

An example of Algorithm 2 is shown in Table 5, where the iterations to get a 
ranking from the number 1:1:0:0! , that represents the number 8 are detailed until 
the ranking (1, 2, 0, 3) is obtained. This ranking represents B ≻ C ≻ A ≻ D over 
the set of alternatives A = {A,B,C,D}.

Table 5  Detailed trace of an example using Algorithm 2
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3.2  Final algorithm

Physical restrictions of the hardware are usually omitted when algorithms are pre-
sented. However, when developing an algorithm that deals with such amount of 
data, hardware comes as the principal restriction in terms of memory capability. For 
this reason, it is necessary to design the algorithm taking into account the memory 
limitations of the hardware. One of these limitations has been already mentioned in 
the previous section, as it is necessary to reuse the grid employed for the representa-
tion of the factorial number to later store the rankings, from which the distance must 
be computed. A theoretical idea of this implementation is that showed in Fig. 3 for 
the set of alternatives A = {A,B,C} , where each thread computes a distance for a 
single ranking.

However, the implementation of the idea shown in this figure is not feasible in 
reality. A main hardware restriction concerns the size of the grid to store the facto-
rial representation and the rankings. For this reason, a stride is introduced in the 
algorithm to have control over the number of threads, recycling each thread to com-
pute those rankings which factorial number can be codified using a multiple of the 
id of the thread. This means that each thread do not take care only of the ranking 
associated which its id, but also all those that are associated with the integer number 
(id+(stride×i)) < n! with i taken the value of the natural numbers until the condition 
is not fulfilled anymore. Thus, the size of the grid to store the codifications can be 
reduced to stride×n , and the vector corresponding to each thread is overwritten iter-
atively. The value of the stride can be set prior to the execution and allows the code 
to be executed effectively by GPUs with different architectures and capabilities.

Note also that it is not feasible (neither useful nor necessary) to keep all the 
distances. Therefore, it is used a general register to store the �∗ , the best distance, 
which initially is +∞ . The threads access this variable to check whether the distance 
they are computing improves the one stored there. In case this is true, the variable 
is updated and the id of the ranking that gives the new distance is considered as 
solution.

The final algorithm is presented in Algorithm 3. The process is launched in the 
CPU, which transfer the preferences to the GPU to compute the solution in parallel 
following the algorithms presented, and then the solution reached is given back to 
the CPU so it can be returned to the user. The CPU is the intermediary between the 

Fig. 3  Theoretical diagram of 
the GPU codification
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user of the algorithm and the GPU. This algorithm has been developed in Python 
3.8 and the Numba [16] package, which provides an interface for developing code in 
CUDA for NVIDIA GPUs [15]. The code that implements the algorithm is publicly 
available in http:// github. com/ noeli arico/ kemen yGPU.

4  Experiments and results

The algorithm proposed has been tested for a total of 19600 profiles of rankings. 
These profiles have been also used in the work [11], so using them provides a fair 
comparison between the results obtained for the CPU algorithm in relation to the 
ones obtained with the GPU algorithm proposed in this work. The list of profiles of 
rankings have been synthetically generated as follows:

http://github.com/noeliarico/kemenyGPU
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• For each number of alternatives n ∈ [8, 14]:

– For each number of alternatives in m ∈ {10, 50, 100, 250, 500, 1000, 2000} 
and the same numbers plus 1. 

1. Randomly select the number d ≤ m of different rankings in the profile.
2. Obtain d random different permutations of the n alternatives.
3. A random vector of d elements whose sum is equal to m is generated 

where each element represents the number of voters associated to each 
ranking generated in the second step.

4. If the profile does not have a Condorcet winner, create the outranking 
matrix and add this to the list.

When a Condorcet ranking exists, the solution of the Kemeny method for the 
ranking aggregation problem is this Condorcet ranking, which is straightforward 
to compute and thus the application of the algorithm is not required. This makes 
the profiles that do not have a Condorcet ranking more ‘difficult’ to solve.

The GPU algorithm has been tested using a NVIDIA GPU model GeForce 
RTX 3090. The runtime for each profile of rankings has been measured three 
times, keeping the median value as runtime of the profile. The results obtained 
for all the profiles with n = 13 keeps constant no matter the characteristics of the 
profile of rankings with a runtime around ∼15  s, never exceeding the threshold 
of ∼17 s. Moreover, for n = 14 alternatives, the runtime in seconds of any profile 
are in the interval [∼42,∼47] , with a mean result for all the profiles of rankings 
with any number of voters ∼45 s. The variation in the runtime is justified as it can 
occurs that other processes may interfere in the communication between the CPU 
and the GPU, slightly slowing the copy of data.

In comparison with the results obtained for the CPU in [11], in this case the 
execution times in CPU are achieved due to the bounds of the algorithm, which 
makes the algorithm very variable and unpredictable as the execution time cannot 
be known in advance. The best runtimes in CPU for n = 13 gives similar results 
than the GPU but is very affected by the number of voters and whether this is 
odd or even and also slowing the algorithm when it increases. The improvement 
in the GPU algorithm is shown for n = 14 , as for the CPU algorithm it is not 
guaranteed that the solution can be reached. The results obtained for 14 alterna-
tives in the CPU are only for those profiles with low number of voters, for which 
the algorithm is faster, and even some of those can unpredictably overpass the 
two minutes of execution time. Moreover, for the CPU algorithm is highlighted 
that, considering profiles of the same number of alternatives, the number of vot-
ers impact on the execution time, even if the dimension of the outranking matrix 
is the same for any number of n.

It is important to highlight that, apart from the reduction in the execution times 
provided by the GPU, the greatest advantage is that the runtimes obtained with 
the GPU are invariable for any profile with any number voters when fixing the 
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number of alternatives, in contrast of what happens with the CPU version. This 
means that the GPU can guarantee the execution time for any profile if another 
profile of the same number of alternatives have been previously executed.

5  Conclusion

In this work, we present a solution to the aggregation problem based on a GPU codi-
fication. This is a novel work in the field of social choice theory, introducing modern 
programming techniques to the field. The results show an advantage in relation to 
the previous implementation of the Kemeny method in CPU, ensuring the execution 
times for profiles of rankings with 14 alternatives around ∼45 s. Moreover, the runt-
imes of the GPU are constant and not affected by the characteristics of the profile 
of rankings, as happened in the CPU algorithms, which performance relies in the 
characteristics of the input profile of rankings. Furthermore, this comparison is made 
between a CPU algorithm that already include many restriction to reduce the search 
space and the first approach done in GPU, which is a brute force approach with room 
for improvement. This shows a promising path in this research line, as the algorithm 
can be further studied to improve, for example designing how to include rules to 
reduce the search space that have been previously proved useful for CPU algorithms.

We consider that the main contribution of this work is the modeling of the codi-
fication, associating each thread with a ranking by means of the factorial representa-
tion and the Lehmer code to solve the Kemeny problem. Also, the codification of 
both steps sequentially into the same grid is important, as ensures the feasibility of 
the implementation. This is not a trivial translation from a brute force implementa-
tion in CPU, and the combination of the codifications proposed provides a setting 
for further research in parallel algorithms to solve the Kemeny problem. Moreover, 
the codification chosen for the ranking codification ease the study of the inclusion of 
bounds based on theoretical restrictions. Our motivation for choosing this encoding 
and no other is that Lehmer’s code lists the rankings in lexicographical order, which 
makes possible to locate sections of consecutive rankings that have a common top 
alternatives and discard them from the search, in the fashion of B &B algorithms, 
which is not trivial as the reduction in the runtime is not so easily achieved [25].
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