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Simple Summary: Extensive animal production systems are generally considered more sustainable
and beneficial for the environment and for maintaining rural populations. However, there is no
defined concept of what extensive milk production is. It is assumed to be a kind of production based
on pasture and forage, with animals spending part of their daytime free and with a low stocking
density. In order to increase consumer confidence in this type of product, we have studied markers
based on molecules naturally present in the milk that allow us to differentiate the production system
in which the cows that have produced the milk have come from. In addition, we are attempting to
determine whether the milk production system can have benefits for consumer health.

Abstract: Studying microRNA (miRNAs) in certain agri-food products is attractive because (1) they
have potential as biomarkers that may allow traceability and authentication of such products; and
(2) they may reveal insights into the products’ functional potential. The present study evaluated
differences in miRNAs levels in fat and cellular fractions of tank milk collected from commercial farms
which employ extensive or intensive dairy production systems. We first sequenced miRNAs in three
milk samples from each production system, and then validated miRNAs whose levels in the cellular
and fat fraction differed significantly between the two production systems. To accomplish this, we
used quantitative PCR with both fractions of tank milk samples from another 20 commercial farms.
Differences in miRNAs were identified in fat fractions: overall levels of miRNAs, and, specifically,
the levels of bta-mir-215, were higher in intensive systems than in extensive systems. Bovine mRNA
targets for bta-miR-215 and their pathway analysis were performed. While the causes of these miRNAs
differences remain to be elucidated, our results suggest that the type of production system could
affect miRNAs levels and potential functionality of agri-food products of animal origin.

Keywords: milk; miRNA; dairy production systems; biomarker

1. Introduction

Consumers’ growing concern about food characteristics has contributed to the creation
of a new concept of quality, particularly for animal products. This concept includes
traditional attributes related to nutritional value, flavor, aroma, and color, together with
new indicators related to ethical aspects, such as animal welfare and environmental impact
of the production system [1]. Consumers assume that products from cows raised under
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pasture and/or grazing are more natural and better for meeting animal welfare demands
than those from the cows raised under the cereal-rich diets typical of intensive production
systems. Intensive systems are considered less sustainable than production based on
pastures, particularly because they have a larger ecological footprint and because they
divert cereals from human consumption. These considerations highlight the need to
compare whether agri-food products obtained from one production system or the other
may have advantages, so that consumers can make fully informed purchasing decisions [2].

Milk is a complex secretory product and a source of nutrients for children and adults.
Milk also contains numerous biomolecules, including microRNAs (miRNAs), a group of
non-coding RNAs that bind to specific regions within messenger RNA to regulate gene
expression post-transcriptionally [3]. In vitro models [4] have suggested that exogenous
miRNAs, such as bovine milk miRNAs, may influence the health of humans due to their
resistance to stomach digestion, and that they may affect cellular function. Nevertheless,
the potential bioactivity of dietary miRNAs is still under study, and several aspects remain
poorly understood, including the dose needed to produce biological effects [5]. The miRNA
level of milk depends on genetic factors, such as the animal’s breed and physiology [6,7],
as well as environmental factors, such as the animal’s lifestyle, pathological state, and
diet [8–11]. Furthermore, the miRNA level depends on the milk fractions, milk fat, whey,
and cells [12]. The miRNAs found in milk are highly resistant to acidic pH and to enzymes
such as RNases [13], which implies that they are very stable and resistant to industrial
treatments [13–15]. For these reasons, miRNAs have been proposed as biomarkers of
quality control in dairy products, and they have been used to control for fraud in the
labeling of milk powder [14].

Changes in diet have been shown to affect the expression of genes in the mammary
gland [16,17]. Considering that miRNAs are essential regulators of gene expression, miRNA
profiles in milk may also change with diet. However, few studies have investigated the
effect of diet on miRNA profiles in bovine milk [18], such as through comparisons of the
quite different diets in intensive or extensive production systems. Therefore, our objective
was to evaluate differences in miRNA levels of bovine milk produced under extensive
or intensive systems. Characterizing production systems as intensive or extensive is not
always straightforward, given the lack of regulatory definitions and the complexity of the
factors involved [19]. In the present study, we defined intensive systems as those without
grazing and with high amounts of maize silage and concentrate in the diet. We defined
extensive systems as those with grazing and a diet with a low amount of concentrate
and no maize silage. Our work was carried out in Asturias, north of Spain, where the
edapho-climatic conditions permit the coexistence of different milk production systems,
varying from intensive systems, with animals fed indoors, to extensive pastured-based
systems. This results in a fairly wide range of production systems covering all management
possibilities [20]. Furthermore, we also explored the use of miRNA markers for the charac-
terization and traceability of agri-food products. We used bioinformatics to predict what
target genes may be regulated by miRNAs whose levels differ between the two production
systems, in an effort to examine how certain miRNAs may reveal the functional properties
of agri-food products.

2. Materials and Methods
2.1. Sample Collection and Preparation

In order to maximize potential differences in milk composition between intensive
and extensive production systems, for sequencing, we sampled six farms at the end of
one spring season (May 2016). On three farms (extensive production), animals grazed
for at least for 12 h each day and ate a diet based on fresh grass with a small amount of
concentrates. On three farms (intensive production), animals did not graze, instead eating
a diet based on conserved feed and concentrates. Farm characteristics and details of the
diets are described in Table 1. All animals on all farms were Holstein cows.
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Table 1. Characteristics and diet of cows on the dairy farms where milk was sampled for RNA
sequencing.

Production
System

Number of
Cows

Milk Production
(L/Day/Cow) Grazing (h/Day) Grass Silage (kg

F */Day/Cow)
Maize Silage (kg

F */Day/cow)
Hay (kg F

*/Day/Cow)
Concentrate (kg

F */Day/Cow)

Intensive (3
farms)

51 30 0 17 10.0 2 10

65 28 0 10 15.0 10 11

90 29 0 16 20.0 2 12

Extensive (3
farms)

24 21 20 10 0.0 2 7

14 31 >12 14 0.0 6 6

15 29 18 15 0.0 3 6

* kg F, kg of fresh matter.

For validation by RT-qPCR, twenty farms were sampled during autumn 2017 and
spring 2018. Ten dairy farms applied an extensive system in which animals grazed and
consumed a diet based on fresh grass, without maize silage and with a low amount of
concentrates (4–8 kg/animal/day), while the other ten applied an intensive system in
which animals were housed and ate a diet consisting of a high dry matter intake of maize
silage (16–30 kg/animal/day) and a high amount of concentrate (>10 kg/animal/day)
(Table 2).

Table 2. Characteristics and diet from twenty dairy farms featuring extensive or intensive production
systems, where milk was sampled for quantitative real-time PCR validation.

Production
System

Number of
Cows

Milk
Production

(L/Day Cow)

Grazing
(h/Day)

Grass Silage
(kg F

*/Day/Cow)

Maize Silage
(kg F

*/Day/Cow)

Hay (kg F
*/Day/Cow)

Concentrate
(kg F

*/Day/Cow)

Intensive
(10 farms)

124 37.4 0 8.0 30.0 0.8 11.5

116 37.0 0 10.0 30.0 0.0 10.5

90 29.0 0 16.0 20.0 3.0 12.0

240 36.0 0 10.0 16.0 2.5 12.0

250 38.0 0 12.0 30.0 0.9 12.3

37 27.0 0 14.0 28.0 0.0 10.5

110 30.0 0 16.0 20.0 0.0 11.0

72 28.0 0 15.0 20.0 2.5 12.0

118 36.0 0 16.0 22.0 0.0 10.5

124 37.0 0 11.0 20.0 4.5 12.0

Extensive
(10 farms)

20 21.0 6 10.0 0.0 6.8 6.5

24 21.0 20 12.0 0.0 0.0 7.0

12 26.2 22 0.0 0.0 6.0 4.0

8 18.8 21 0.0 0.0 4.6 4.1

35 19.5 20 14.0 0.0 0.0 4.7

15 29.0 18 33.0 0.0 0.7 6.2

30 27.0 18 0.0 0.0 4.0 8.0

7 20.0 22 6.0 0.0 0.0 5.0

16 23.0 21 0.0 0.0 0.0 5.0

22 24.0 20 0.0 0.0 0.0 6.0

* kg F, kg of fresh matter.
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From each type of farm, bulk tank milk was sampled after an even number of milkings
(to avoid differences due to afternoon and morning milk composition). Samples were
maintained at 4 ◦C and immediately transported to the laboratory for processing. Milk was
well mixed, and 50 mL of each sample was centrifuged at 1900× g for 20 min. The fat in
the upper phase was transferred to a new 50-mL RNase-free tube. Then, 7.5 mL of QIAzol
lysis reagent (Qiagen, Crawley, UK) was added, and the emulsion was vigorously mixed
until the fat was well dispersed. The pellet (cellular fraction) from the initial centrifugation
was washed twice with phosphate-buffered saline, then homogenized with 1 mL of QIAzol
lysis reagent. All samples were stored at −80 ◦C until RNA extraction.

2.2. RNA Isolation

For each sample, total RNA was extracted from 2 mL of milk fat in QIAzol lysis reagent,
and from 1 mL of cell pellet resuspended in QIAzol lysis reagent. RNA was extracted using
the miRVana miRNA isolation kit (Applied Biosystems, Foster City, CA, USA) following
the manufacturer’s instructions, then stored at −80 ◦C. The concentration and integrity of
RNA (RIN: RNA Integrity Number) for sequencing was further determined on an Agilent
2100 Bioanalyzer using an RNA 6000 Pico kit (both from Agilent Technologies, Santa Clara,
CA, USA).

2.3. Search for miRNAs Candidates from Sequencing
2.3.1. RNA Sequencing

In order to identify miRNAs differing between the two production systems, 12 libraries
corresponding to the fat or cellular fractions of milk from six samples of bulk tank milk
(three per production system) were prepared and sequenced using the Illumina platform
(Illumina, San Diego, CA, USA) as 50 bp single reads. The raw sequence data were
processed for quality control, and low quality reads were removed from raw data using
CASAVA 1.8 based on chastity. Then, adaptors were trimmed, and sequences with read
lengths between 15 to 40 nt were mapped to the bovine genome (bostau 7) and the miRNA
database (miRBase, release version 21) in order to identify the known miRNAs. Expression
levels of each miRNA were estimated based on the frequency of reads, and results were
normalized to the number of reads per million (RPM) using the following formula: RPM =
(specific miRNA reads number/total mapped miRNA reads per library) × 106.

2.3.2. Identification of Reference miRNAs for qPCR Normalization

In order to select the miRNAs to be used as candidates for normalizers in RT-qPCR,
we chose those miRNAs with more stable expression among samples for each milk fraction,
that is, miRNAs with the smallest coefficient of variation (CV = standard deviation/mean).

2.3.3. Identification of miRNAs Whose Levels Differed between Production Systems

In order to identify those miRNAs whose levels differ between production systems,
the results from miRNA sequencing were analyzed using three statistical tests. One test
was the ratio of the difference between the means to the sum of the standard deviations
between the two production systems: value = |(mean1–mean2)|/(standard deviation1 +
standard deviation2) (strict Cohen’s d). This ratio indicates how many sums of deviations fit
between the means; the higher the ratio is, the greater the difference between the means [21].
Another test was Student’s t test, for which lower t values indicated greater differences
between the means for the two production systems [22]. The third test was the absolute
value of the correlation coefficient; the higher this value was, the greater the difference
between the two systems [23]. Afterward, to choose the miRNAs whose levels differed
between production systems, they were ranked first according to each statistical test, and
then according to the average of the classification of the three tests.



Vet. Sci. 2022, 9, 661 5 of 14

2.4. Validation of Candidate miRNAs Using RT-qPCR
2.4.1. RT-qPCR Analysis

A subset of the miRNAs which were determined to differ significantly between the
two production systems identified in Section 3.2 were validated using quantitative RT-PCR
and milk samples from twenty dairy farms featuring extensive or intensive production
systems (Table 2).

Total RNA was used for cDNA synthesis using the TaqMan Advanced miRNA cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA), and the resulting cDNA
was stored at −20 °C until use. Levels of miRNAs were determined using quantitative
RT-PCR (TaqMan Advanced miRNA Assays; ThermoFisher Scientific, Waltham, MA, USA)
in a StepOne thermocycler (Applied Biosystems, Foster City, CA, USA). The final reaction
solution contained 10 µL of 2 × TaqMan Fast Advanced Master mix (ThermoFisher Scien-
tific, Waltham, MA, USA), 1 µL of 20× TaqMan Advanced miRNA Assay (ThermoFisher
Scientific, Waltham, MA, USA), 4 µL of RNase free water, and 5 µL of cDNA (diluted 1:10).
The thermocycling program was set at 95 ◦C for 20 s, followed by 40 cycles at 95 ◦C for 1 s
and 60 ◦C for 20 s. All PCR reactions were performed in duplicate, and a maximum of 0.5
threshold cycles were permitted between duplicates.

2.4.2. Selection of Stable Reference miRNAs. GeNorm Analysis

Normalization is an essential component of a reliable qPCR assay. geNorm [24] is
one of the most popular algorithms to find stable reference genes from a set of tested
candidate reference genes in a given experimental condition. We used geNorm to find the
optimal number and choice of reference genes for normalization, using miRNAs identified
in Section 3.2 in 22 tank milk samples, representing the experimental variation of the dairy
production systems existing in the area of study [25].

2.4.3. miRNAs Levels Normalization and Estimation

Levels of miRNA were normalized based on the geometric mean of the selected
reference miRNAs selected by geNorm, estimated using QBase+ 3.1 software, Biogazelle
(Gent, Belgium) [26] and expressed in base log10. Unless otherwise noted, results were
reported as mean ± standard deviation. Mean miRNAs levels between extensive and
intensive production systems were compared using Student’s t test in R-Commander 2.7-1.
Significance was defined as p < 0.05.

2.5. Prediction and Functional Analysis of Genes Targeted by miRNAs

The Target Scan 7.2 bioinformatics tool [27] was used to predict bovine mRNA targets
of candidate miRNAs. A pathway analysis of targeted genes was performed using Panther
bioinformatics tool version 16.0 (http://www.pantherdb.org/ accessed on 8 June 2021)
based on Gene Ontology classification [28].

3. Results
3.1. miRNAs Levels in Fat and Cellular Fractions of Milk

The total mean RNA concentration was 192.4 ± 37.4 ng/µL in milk fat and
30.6 ± 15.8 ng/µL (mean ± SD) in milk cells. The RIN value was 2.6 ± 0.15 for RNA
from milk fat, and 6.5 ± 0.3 for RNA from milk cells.

The six libraries from the cellular fraction of milk yielded a mean of 24,017,290.17
reads, significantly more than the 6,964,122.33 reads from the six libraries from the fat
fraction (p = 0.004, Table 3). Almost half of the reads came from small RNAs, of which the
most abundant were transfer RNAs (tRNAs) in the cellular fraction and non-coding RNAs
(ncRNAs) in the fat fraction. Significant differences were found between the fat and cellular
fractions for a percentage of all small RNAs, except for small nuclear RNAs (snRNAs) and
miRNAs. Ribosomal RNAs (rRNAs), small nucleolar RNAs (snoRNAs), and ncRNAs were
more abundant in the fat fraction than in the cellular fraction, while the converse was true
for tRNAs. The levels of miRNAs in the fat fraction differed significantly between extensive

http://www.pantherdb.org/
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and intensive systems (p = 0.040, Table 4). Intensive production was associated with higher
miRNAs levels.

Table 3. Read mapping statistics.

Total
Reads

Small RNA
Reads

Small RNAs (%)

Total rRNA snRNA snoRNA tRNA miRNA ncRNA

C
el

lu
la

r
fr

ac
ti

on Intensive
Farms

32,560,190 16,693,358 0.5 12.7 3.3 5.7 45.0 2.2 31.1

26,678,803 13,626,331 0.5 8.3 2.0 4.7 64.3 0.9 19.8

23,616,528 11,871,084 0.5 16.5 3.7 5.5 37.6 2.0 34.8

Extensive
Farms

19,944,125 9,753,050 0.5 13.6 3.1 5.6 51.5 1.4 24.7

21,166,161 9,650,109 0.5 14.9 3.9 6.6 45.4 1.4 27.8

20,137,934 10,053,989 0.5 15.9 3.9 6.1 36.8 2.3 34.9

Fa
tf

ra
ct

io
n

Intensive
Farms

7,620,977 3,867,636 0.5 20.6 3.4 6.1 29.8 1.7 38.4

7,209,138 3,139,312 0.4 21.9 3.7 6.6 25.3 1.9 40.6

6,180,232 3,115,110 0.5 26.0 3.8 6.0 15.8 1.6 46.9

Extensive
Farms

7,056,743 2,599,438 0.4 19.4 3.7 8.4 24.8 2.2 41.5

6,682,264 3,279,814 0.5 25.0 4.1 7.1 16.9 2.4 44.5

7,035,380 3,854,280 0.6 25.9 4.3 7.0 19.2 2.3 41.4

rRNA: ribosomal ribonucleic acid; snRNA: small nuclear RNA; snoRNA: small nucleolar RNA; tRNA: transfer
RNA; miRNA: microRNA; ncRNA: non-coding RNA.

Table 4. Differences in abundance of small RNA classes depending on milk fraction and production
system.

Small RNA Class

p-Value Based on Student’s t Test

Cellular vs. Fat
Fraction *

Cellular Fraction:
Extensive vs.

Intensive

Fat Fraction:
Extensive vs.

Intensive

rRNA 0.004 0.513 0.827

snRNA 0.196 0.268 0.184

snoRNA 0.024 0.127 0.050

tRNA 0.004 0.827 0.513

miRNA 0.260 0.825 0.040

Non-coding RNA 0.004 0.827 0.513
* Both intensive and extensive production systems together. rRNA: ribosomal ribonucleic acid; snRNA: small
nuclear RNA; snoRNA: small nucleolar RNA; tRNA: transfer RNA; miRNA: microRNA; ncRNA: non-coding
RNA. In bold are significant differences.

We identified 518 known miRNAs in the cellular fraction of milk and 477 in the fat
fraction. Most of these miRNAs (454) were present in both fractions (Table S1).

3.2. Validation of miRNAs Whose Levels Differed between Intensive and Extensive Production

The first 10 miRNAs in the fat fraction whose levels differed between the two produc-
tion systems are ranked in Table 5, and those in the cellular fraction are ranked in Table 6.
Levels of the first five miRNAs from each fraction were validated using quantitative RT-PCR
and milk samples from another 20 farms. The following miRNAs in the fat fraction were
subjected to validation: bta-miR-215, bta-miR-369-3p, bta-miR-6520, bta-miR-7863, and
bta-miR-133a. The following miRNAs in the cellular fraction were subjected to validation:
bta-miR-574, bta-miR-3432a, bta-miR-2285e, bta-miR-197, and bta-miR-2284y.
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Table 5. Ranking average of the first ten differentially expressed miRNAs in the fat fraction, the three
applied tests’ values, and their rankings.

miRNA
Result for Ranking According to Average

Ranking

Test 1 a Test 2 b Test 3 c Test 1 Test 2 Test 3

bta-miR-215 * 3.180 0.010 0.960 1 1 1 1.0

bta-miR-369-3p * 1.760 0.020 0.900 3 2 2 2.3

bta-miR-6520 * 1.360 0.030 0.850 4 3 4 3.7

bta-miR-7863 * 1.970 0.080 0.860 2 7 3 4.0

bta-miR-133a * 1.300 0.040 0.840 5 5 5 5.0

bta-miR-532 1.260 0.040 0.840 6 4 6 5.3

bta-miR-148a 1.210 0.120 0.780 7 13 7 9.0

bta-miR-138 1.000 0.070 0.770 22 6 8 12.0

bta-miR-450a 1.190 0.140 0.760 8 18 10 12.0

bta-miR-6527 1.010 0.090 0.770 21 8 9 12.7

* These miRNAs were validated using quantitative RT-PCR. a Strict Cohen’s d test. b Student’s t test. c Correlation
coefficient test.

Table 6. Ranking average of the first ten differentially expressed miRNAs in the cellular fraction, the
three applied tests’ values, and their rankings.

miRNA
Result for Ranking According to Average

Ranking

Test 1 a Test 2 b Test 3 c Test 1 Test 2 Test 3

bta-miR-574 * 5.770 0.000 0.990 1 1 1 1.0

bta-miR-3432a * 5.520 0.010 0.980 2 3 2 2.3

bta-miR-2285e * 2.540 0.010 0.950 5 2 3 3.3

bta-miR-197 * 1.970 0.010 0.920 6 4 5 5.0

bta-miR-2284y * 2.750 0.020 0.940 3 8 4 5.0

bta-miR-219 1.740 0.010 0.910 9 5 7 7.0

bta-miR-2397-3p 1.770 0.020 0.900 8 7 8 7.7

bta-miR-2308 2.560 0.050 0.910 4 14 6 8.0

bta-miR-2419-5p 1.620 0.020 0.890 11 6 9 8.7

bta-miR-2409 1.790 0.040 0.890 7 12 10 9.7

* These miRNAs were validated using quantitative RT-PCR. a Strict Cohen’s d test. b Student’s t test. c Correlation
coefficient test.

Six miRNAs in each milk fraction were chosen as candidates for normalization (Table 7).
Following GeNorm, normalization of levels in the fat fraction was optimal using the
geometric mean of bta-miR-151-3p and bta-miR-30a-5p. In the case of cellular fraction,
GeNorm recommended the use of the geometric mean of the three most stable miRNAs
(bta-miR-103, bta-miR-107, bta-miR-28).

Based on analysis of the normalized miRNAs levels (Figures 1 and 2), the only miRNA
in the fat or cellular fraction that differed significantly between intensive and extensive
production systems was bta-miR-215, in the fat fraction. This miRNA was significantly
more abundant in the fat fraction of milk from intensive production (p = 0.030). The
miRNAs bta-miR-2284y and bta-miR-2285e in the cellular fraction showed a trend towards
lower levels in milk from extensive production, but the differences did not reach statistical
significance.
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Table 7. Ranking of the most stable miRNAs according to the coefficient of variation.

Milk Fraction miRNA Coefficient of Variation

Fat

bta-miR-532 0.060

bta-miR-151-3p 0.070

bta-miR-27b 0.090

bta-miR-103 0.090

bta-miR-30a-5p 0.090

bta-miR-99a-3p 0.090

Cellular

bta-miR-103 0.080

bta-miR-107 0.090

bta-miR-181a 0.090

bta-miR-28 0.100

bta-miR-345-3p 0.100

bta-miR-28342 0.100
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Figure 1. Average levels of miRNAs estimated by qRT-PCR in fat fractions of milk from extensive
and intensive farms. On the X axis, production systems are represented; on the Y axis, average levels
of each miRNA are represented. Levels of bta-miR-369-3p showed a skewed distribution, so they are
shown using a box-and-whisker plot. The errors bars in the other plots indicate standard deviation.
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(Acvr2b), Activin A Receptor, Type 2A (Acvr2a), Mitogen-Activated Protein Kinase 1 
(Mapk1), and bone morphogenetic protein receptor type II (Bmpr2). 

Figure 2. Average levels of miRNAs estimated by qRT-PCR in cellular fractions of milk from extensive
and intensive farms. On the X axis, production systems are represented; on the Y axis, average levels
of each miRNA are represented. The errors bars indicate standard deviation.

3.3. Putative Target Gene and Pathway Analyses

Using Target Scan, 143 potential target genes were identified for bta-miR-215, which
was abundant in intensive compared to extensive dairy production (Table S2). Among these
targets, one gene was particularly involved in lipid metabolism and energy metabolism:
the fatty acid binding protein 3 (Fabp3).

The pathway analysis of bta-miR-215 target genes allowed for the identification of
41 associated biological pathways. The gonadotropin-releasing hormone receptor path-
way and the Transforming Growth Factor β (TGF-β) signaling pathway (Figure 3) were
highlighted, as they include the most bta-miR-215 target genes, i.e., Activin Receptor Type-
2B (Acvr2b), Activin A Receptor, Type 2A (Acvr2a), Mitogen-Activated Protein Kinase 1
(Mapk1), and bone morphogenetic protein receptor type II (Bmpr2).



Vet. Sci. 2022, 9, 661 10 of 14Vet. Sci. 2022, 9, x FOR PEER REVIEW 11 of 15 
 

 

 
Figure 3. Functional Gene Ontology classification of bta-miR-215 pathway analysis of targeted 
genes. 

Figure 3. Functional Gene Ontology classification of bta-miR-215 pathway analysis of targeted genes.



Vet. Sci. 2022, 9, 661 11 of 14

4. Discussion

The objective of this study was to identify a set of miRNAs in milk whose levels
differed with the production system, in order to (1) determine whether miRNAs profiling
can be used to authenticate milk from a given production system, and (2) investigate
whether the production system can influence the functional properties of agri-food products
such as bovine milk. To address these questions, we sampled milk from dairy farms in
Asturias in northern Spain that applied intensive or extensive production practices, which
differ significantly in numerous characteristics that can alter milk quality, including feeding
management, animal density, and access to exercise through grazing [29].

The origin of miRNAs in milk is controversial, and most miRNAs in milk are not
found in blood [30]. In addition, the miRNA profile in milk differs across the fractions of
fat, whey, and cells [12]. In the present work, we decided not to study the whey fraction
because its miRNA content is lower, its miRNA profile is highly similar to that of milk
fat [12], and it is not exploited in certain dairy industry practices, such as cheese production.

We successfully isolated total RNA from fat and cellular fractions of bovine milk,
especially considering that the samples came from milk tanks on commercial dairy farms.
The RIN was low for RNA from milk fat, which likely reflects its abundant content of
low-molecular-weight RNA, which is different from ribosomal RNA [12].

RNA sequencing analysis confirmed different RNA profiles in the fat and cellular
fractions of bovine milk (Table 3). Interestingly, we did not identify significant differences
in miRNAs levels between the two fractions, although we did obtain what appears to be
the first evidence that miRNAs in the fat fraction differ between milk from intensive or
extensive production systems. Given that milk has been proposed as a major epigenetic
modulator of the gene expression of the milk recipient [31], and its modulation can be
dependent on the amount of miRNAs [32], our results imply that the animal production
system can influence the functional properties of agri-food products of animal origin.

Sequencing results did not allow for the identification of miRNAs that were specific
to a given production system in either the fat or cellular fraction. Therefore, we focused
on miRNAs whose levels differed between the two systems, and we validated a subset of
the promising miRNAs using quantitative RT-PCR. The only miRNA that we validated
to differ significantly between the two production systems was bta-miR-215 in the fat
fraction (Table 5). This miRNA was upregulated in milk from intensive production. At
the moment, we can only speculate as to why intensive production might upregulate this
miRNA. One possibility is that its upregulation somehow compensates for poor efficiency
of feed conversion into milk: dairy cows with medium potential show lower conversion
efficiency during indoor feeding than during grazing in pastures [33], and Angus cows, less
efficient at feed conversion, show upregulation of bta-miR-215 [34]. Consistent with this
possibility is that heat and oxidative stress, which can easily occur in intensive production
systems, upregulate bta-miR-215 in the serum of Holstein cows [35].

Among the 143 genes identified by bioinformatic tools, Fabp3 stands out for its
involvement in fatty acid transport and activation in the bovine mammary gland [36].
Vargas-Bello-Perez et al. (2020) [37] demonstrated that when the diet of Holstein dairy
cows is supplemented with hydrogenated vegetable oil, Fabp3 is downregulated in milk
somatic cells. Likewise, when fed a high-concentrate diet, the fatty acid transporter Fabp3 is
inhibited in mammary glands [38]. In our study, bta-miR-215 increased in milk in response
to intensive farming conditions, which are generally associated with high-energy diets,
which is consistent with its likely involvement in the downregulation of Fabp3. A direct
relationship between bta-miR-215 and Fabp3 has, indeed, been validated in bone marrow
mesenchymal stem cells [39].

Apart from Fabp3, another two genes are of particular interest: Mapk1 and Bmpr2.
Mapk1 is involved in the regulation of milk protein synthesis [40], and Bmpr2 is associated
with the glucose metabolism and insulin response. In fact, when Bmpr2 is altered, it likely
blunts glucose response and lipid uptake [41]. Altogether, they likely have a negative
impact on protein and lactose synthesis in animals bred under intensive dairy systems.
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We also identified the miRNAs bta-mir-2284y and bta-mir-2285e in the cellular fraction
of milk whose levels tended to differ between intensive and extensive production systems.
Further analysis showed that these differences became significant when we compared
animals on diets containing more or fewer than 10 kg of concentrates per day (data not
shown). These results suggest that our failure to detect significant differences in levels of
bta-mir-2284y and bta-mi-2285e in the overall analysis may reflect milk sampling from
commercial farms, as well as the difficulty of defining intensive and extensive production.
Further studies should examine these two miRNAs as additional potential biomarkers for
authentication and functional analysis of agri-foods.

Finally, our study presents several limitations. The study was carried out in com-
mercial farms, where managing conditions and diets are quite different even within the
same group. Validation in controlled conditions at experimental farms, which reduce
internal variance of the experimental groups, should help to identify miRNAs as putative
biomarkers for dairy production systems. In vitro experiments will help to elucidate the
functional features of milk produced under different dairy systems.

5. Conclusions

We investigated differences in miRNA profiles of raw cow tank milk from commercial
farms which applied either intensive or extensive production systems. We identified bta-
miRNA-215 in the fat fraction of milk as a possible biomarker of milk from intensive
production systems. Our results imply that the type of production system can influence
miRNA levels, and, therefore, functional properties of bovine milk, as well as, potentially,
other agri-food products of animal origin.

Supplementary Materials: The following supporting information can be downloaded at: https:
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