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A B S T R A C T   

Sweet chestnut plantations, irrespective of their main productive orientation (nut or timber production), are key 
elements of the landscape as well as the cultural heritage of the areas where they are found and provide 
important functions and services. Hence, recent initiatives have been aimed at extending the area occupied by 
chestnut trees through forest plantations. Nevertheless, the role of these young chestnut plantations as carbon 
sinks has been often ignored. The National Inventory of Greenhouse Gas Emissions (GHG) must include estimates 
of the so-called ‘transition forests’ during the 20 years following their plantation. 

In this study, new tools for estimating the total amount of above and belowground biomass stored in young 
plantations of chestnut were developed to quantify the carbon storage capacity of these plantations. A new set of 
aboveground biomass and root-shoot ratio models were fitted for individual-tree level based on four different 
independent variables – root collar diameter, total height, diameter at breast height and crown projection area – 
and their combinations. The expansion to stand level was based on age, plantation density, productive orien-
tation of the plantation (nut or timber), site index and climate covariates as possible independent variables. At 
tree level, the best aboveground biomass models were those that include the product of root-collar or breast 
height diameters and tree height, whereas for root-shoot ratio the best results were obtained when only diameter 
at breast height is included. At stand level, the most accurate models included age, plantation density and site 
index for aboveground biomass and only age for root-shoot ratio. The fitted models provided accurate and 
unbiased predictions of aboveground biomass in the first years of reforestations. 

The different fitted equations can be used to estimate carbon stocks in young plantations depending on the 
available data and the objective of the prediction. Individual tree-level equations are recommended when ac-
curate estimates are needed and detailed inventory measurements are available. Stand level equations, only 
using plantation age, can be an appropriate alternative for use with forest statistics at national scale, although the 
inclusion of additional covariates can greatly improve the accuracy of the age-based stand level equations. Our 
results indicated that even low-density nut-oriented chestnut plantations can play a relevant role as C sinks.   

1. Introduction 

Trees and forests capture atmospheric C by means of photosynthetic 
activity, which helps to regulate the climate and reduce the concentra-
tion of greenhouse gases. The restoration of forests and increase in 
forested area through afforestation and reforestation have been re- 
proposed as effective tools to mitigate climate change by slowing CO2 
accumulation in the atmosphere, thus mitigating climate warming 
(Chazdon and Brancalion, 2019; Griscom et al., 2017; Lee et al., 2018). 

International initiatives such as the United Nations Decade 
(2021–2030) on Ecosystem Restoration, the 1 Trillion Trees Initiative of 
the World Economic Forum, the Bonn Challenge to restore 350 million 
ha by 2030, or the plantation of 3 billion trees in the UE by 2030 through 
the Forest Strategy, highlight the recognition of this important role as a 
C sink. Despite this rising interest in reforestation as an approach to 
climate change mitigation, high uncertainty exists around the potential 
of C capture by new forest land (Lewis et al., 2019). An accurate 
assessment of the potential for C uptake in new reforestations is 
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required, since these areas must be considered in Land Use, Land Use 
Change and Forestry (LULUCF) statistics, as well as in national in-
ventories of greenhouse gases (GHG). Until now, C uptake quantification 
in new reforestations has commonly been carried out using methods 
developed for adult and natural stands, which may lead to biased and 
inaccurate estimations of C stocks during the first years after afforesta-
tion (Menéndez-Miguélez et al., 2022a). Most of the existing biomass 
equations for tree species have been developed for trees with diameter at 
breast height over 7–10 cm, which is the minimum threshold used in 
forest inventories, and only a few individual tree-level biomass equa-
tions for young afforestations have recently been developed for some 
forest species (Annighöfer et al., 2016; Menéndez-Miguélez et al., 
2022a, 2022b). 

Regarding the estimation of biomass at stand level, the scaling-up 
approach is one of the most commonly used methods at local scales. 
This method consists of using previously developed individual-tree- 
biomass models to predict stand biomass as the sum of the predicted 
biomass of individual trees (e.g., Balboa-Murias et al., 2006). When the 
aim is to estimate biomass in larger management areas with limited 
forest inventory data, more efficient estimation methods such as stand 
biomass equations (SBE) or biomass expansion factors (BEF) must be 
used (Somogyi et al., 2007). Most of the stand-level models developed 
predict biomass using stand variables such as dominant height and/or 
stand basal area, although these variables are not frequently available 
for young afforestations. Moreover, other variables commonly ignored 
in these equations, such as plantation age, initial plantation density or 
early site management and soil preparation can be critical parameters 
for characterizing young plantations (Waring et al., 2020). Thus, precise 
assessment of the C uptake capacity of reforestations during their initial 
stages requires the development of specific tools and methods. 

Chestnut (Castanea sativa Mill.) covers >2.5 million hectares in 
Europe, distributed from the Southern Mediterranean to Central, 
Atlantic, and Eastern Europe (Conedera et al., 2004a). In Spain, chestnut 
is a native species (Conedera et al., 2004b; Krebs et al., 2019; Roces-Díaz 
et al., 2018a) distributed across an area of 272,400 ha, of which 
154,500 ha are pure stands (chestnut cover rate ≥ 60 %). The existing 
chestnut woodland differs widely in terms of the main productive aim 
(nut or wood production) and stand structure (coppice stands or high 
forest), implying different stand densities and therefore, different 
amounts of C fixation. The establishment of new chestnut agroforestry 
plantations oriented to fruit production is one of the main actions 
required to promote, conserve and recover traditional landscape in rural 
areas (Díaz-Varela et al., 2018, Castedo-Dorado et al., 2021). Moreover, 
the role of timber-oriented plantations, devoted to high-quality timber 
production (Lemaire, 2008) or even to biomass production under short- 
rotations (McKay et al., 2022) will be maintained, especially in areas 
with high rainfall (Pereira-Lorenzo and Ramos Cabrer, 2004). Despite 
this recognized importance of chestnut as a source of different services 
and provisions, as well as the recent initiatives to extend the area 
occupied by the species, the role that could be played by young chestnut 
plantations in carbon capture (sink effect) and accumulation (reservoir 
effect), and therefore in mitigating climate change, has been largely 
ignored (EUROCASTANEA, 2019). This may be due, on the one hand, to 
the agronomic or agroforestry character of these plantations (especially 
nut-oriented plantations), commonly occupying former arable land. On 
the other hand, the fact that these plantations tend to be small and 
privately owned means that many of them are neither considered in the 
forest statistics nor integrated in the LULUCF statistics. Furthermore, the 
lack of reliable, accurate tools for assessing biomass and C fixation in 
these plantations may hinder the task. 

Individual tree biomass, aboveground stand biomass along with their 
yearly increments and nutrient contents have been studied in chestnut 
coppices in Spain, Italy and France (Bédéneau, 1988; Cutini, 2000; Santa 
Regina, 2000; Menéndez-Miguélez et al., 2015) as well as in high forest 
in both Portugal (Patrício et al., 2005; Patrício, 2006; Patrício and 
Nunes, 2017; Patrício and Tomé, 2018) and Spain (Ruiz-Peinado et al., 

2012). However, all of these studies focus on adult stands, thus their 
findings are not applicable to biomass estimation or C quantification in 
the initial stages of reforestation. 

The main aim of this study is to provide new tools for determining 
the total amount of aboveground and belowground biomass stored by 
young chestnut plantations during the initial stages (<25 years) and to 
quantify the biomass storage capacity of these plantations. Two 
modelling approaches were used: 

- Individual-tree-level models which use different tree-level attri-
butes as predictors (crown size, height and both root collar and diameter 
at breast height). Their main use is to estimate total biomass of the 
plantation using detailed data at tree level from field or remote sensing 
based inventory. 

- A set of models for total biomass stored in the plantation per hectare 
(stand level), using plantation age and other easy-to-measure plantation 
characteristics, such as density, productive orientation, site index or 
mean climate traits as predictors. These models allow us to estimate the 
biomass stored in young chestnut plantations in those cases where scarce 
information is available at stand level, as is the case of national or 
regional forest statistics. 

We hypothesized that: (i) combining different tree variables results 
in more accurate predictions of the biomass of each tree; (ii) plantation 
age combined with other plantation characteristics that are simpler to 
determine may be as efficient in predicting total biomass as the models 
involving dendrometric covariates measured from field inventories; (iii) 
the capacity of young chestnut plantations as atmospheric C sinks, even 
in the low density nut-oriented plantations, is similar to the capacity of 
other forest plantations commonly used in the territory. 

2. Material and methods 

2.1. Material 

2.1.1. Network of plots 
Since the main aim of the study was to construct biomass equations 

with countrywide geographical validity (Spain), we attempted to iden-
tify young chestnut plantations throughout the whole area in which the 
species occurs (Fig. 1). Plantations were selected such that the wide 
range of environmental conditions identified was embraced (annual 
rainfall: 700–1600 mm, mean annual temperature: 11–15 ◦C), with ages 
ranging between 2 and 28 years. The selected plantations included both 
plantations with native sweet chestnut (Castanea sativa Mill.) or hybrids 
selected for their high timber-quality or nut productivity. The planta-
tions are representative of the different management alternatives found 
across the territory. Given the difficulty involved in identifying the exact 
hybrid used, or the fact that some plantations include different hybrids 
mixed with C. sativa trees, the clone or variety was not considered as a 
potential predictor, and all plantations were pooled in a single data set. 
Based on the initial density, plantations were classified as timber- 
oriented (those over 400 stems ha− 1 initially) and nut-oriented, those 
with an initial density below this value (Roces-Díaz et al., 2018b) (see 
Fig. 2). The dataset included seventy-six plots, of which thirty-two were 
specifically installed by INIA-CSIC (henceforth INIA plots) in the 
framework of the current study. These plots cover the whole set of 
Spanish regions in which the species has recently been used in re-
forestations. The remaining forty-four plots belong to a network 
installed in 2010 by the University of Oviedo (henceforth UNIOVI plots) 
in young chestnut plantations at different locations in NW Spain. 
Table S.1 in Supplementary material includes a detailed list of the 
sampled plots. 

Plots from both data sets have similar characteristics; they are rect-
angular, with variable size (200 m2 – 20000 m2), aiming to include at 
least 25 trees, and with similar inventory protocols. For all the trees 
included in the plots, root-collar diameter (RCD, cm), diameter at breast 
height (dbh, cm) (once reached) and total height (h, m) were measured. 
From these data, plot level variables were also computed, namely, 
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number of trees per hectare (N), mean height (Hm, m), mean diameter 
(dm) and Weise dominant height (Ho), defined as the mean height of the 
20 % thickest trees per hectare (Table 1). For UNIOVI plots, only the 
mean plot level values were available. Additional information for slope, 
aspect, soil preparation technique, percentage of failures in the refor-
estation, accompanying vegetation, etc. was also collected during the 
inventory. Plantation age was assessed after consulting with owners and 
Forest Services, and in case of doubt, confirmed using historical aerial 
photographs. Mean climatic values (mean annual rainfall and mean 
annual temperature) were derived for each plot from the climatic model 

by Gonzalo et al. (2010). Plot dominant height and plantation age were 
used to compute site index (SI), defined as the dominant height (m) of 
the plot at a plantation age of 10 years, using the site index model by 
Álvarez-Álvarez et al. (2010), specifically constructed for young chest-
nut plantations: 

SI = Ho.

[
1 − exp(− 0.139•10)

1 − exp(− 0.139•T)

]0.886

[1]  

where H0 represents plot dominant height at age T. 

Fig. 1. Plot location. Each square corresponds to 1–5 neighbouring plots.  
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2.1.2. Sampled trees 
To estimate tree-level biomass, 31 trees with average growing con-

ditions were destructively sampled in a subsample of 10 INIA plots, 
covering an age range of 4 – 28 years. In each of these plots three trees 
were selected, belonging to the lowest, middle and highest tercile of the 
height distribution. In addition to the tree-level measurements carried 
out during plot inventory, two perpendicular crown diameters (dc, cm) 
were also measured for each sample tree before felling. The two 
perpendicular crown diameters allowed the crown projection area (CPA, 
m2) to be estimated along with biomass-packing (BP, m3), defined as the 
product between tree height and crown projection area (CPA). Sampled 
trees were felled, separated into biomass components and weighed in 
the field to obtain the fresh weight of each component. A procedure 
similar to that proposed by Montero et al. (1999, 2005) was adapted to 
the small size of the plants, dividing them into only two compartments, 
(i) stem and branches with diameter over > 2 cm, and (ii) branches with 
diameter less than < 2 cm and leaves. In addition, in a subset of 12 trees 

(aiming to cover all the range of observed root collar diameters), root 
system was extracted using a backhoe digger, and weighed in the field. 
Difficulties for the digging machinery to enter the plantations prevented 
us from sampling more roots. 

Representative composite samples were taken to the laboratory and 
oven-dried at 102 ◦C to determine humidity. Humidity of these samples 
was then applied to the fresh measured-at-field weight to determine the 
dry weight of each component. For this study, stems, branches and 
leaves were finally grouped as aboveground biomass (AGB), while roots 
(when available) defined the belowground biomass. For further infor-
mation on the field and laboratory procedures, see Menéndez-Miguélez 
et al. (2022a). Mean data on the destructive sampling is shown on 
Table 2. 

2.2. Methods 

2.2.1. Biomass and root-shoot equations at tree level 
The most common mathematical model used for biomass prediction 

takes the form of Snell (1892) power function y = β0 • xβ1 (Kaitaniemi, 
2004; Zianis et al., 2005; Zianis and Mencuccini, 2004). For model 
fitting purposes, we preferred to use nonlinear models in order to 
maintain the additive structure of the residuals and avoid the inherent 
bias associated with logarithmic-transformed linear models. This non- 
linear model was tested to relate aboveground tree biomass with tree 
variables measured in the field such as RD, dbh, total height or crown 
projection area (models 2.1–2.4). Three additional models with a com-
bination of tree variables were also tested, using RCD2h (model 2.5), d2h 
(model 2.6) and the BP (model 2.7) as independent covariates: 

AGB = β0 • RCDβ1 [2.1]  

AGB = β0 • hβ1 [2.2]  

AGB = β0 • CPAβ1 [2.3]  

AGB = β0 • (dbh)β1 [2.4]  

AGB = β0 •
(
RCD2h

)β1 [2.5]  

AGB = β0 •
(
dbh2h

)β1 [2.6]  

AGB = β0 • BPβ1 [2.7]  

where AGB is the aboveground dry biomass (kg), RCD is the root-collar- 
diameter (cm), dbh is diameter at breast height (cm), h is the total tree 
height (m), CPA is the crown projection area (m2), BP is the biomass 
packing (crown projection area * height, m3), βi are the parameters of 
the model. 

For belowground biomass, we computed the root-shoot ratio (dry 
weight of the roots divided by the dry weight of the stem and branch 
fractions) and aimed to relate this attribute with the same explanatory 
covariates using the power function (referred to in the Results section as 

Fig. 2. Timber-oriented chestnut plantation (above, density 693 stems ha− 1, 
age 10 years) and nut-oriented plantation (below, density 125 stems ha− 1, age 
14 years). 

Table 1 
Descriptive statistics for the main attributes recorded at plot level.   

Nut oriented (n ¼ 41) Timber-oriented (n ¼ 35) 

Attribute Mean Min Max Mean Min Max 

N (trees ha¡1) 199 59 394 715 400 1942 
Age (years) 11.1 2.0 28.0 9.0 2.0 20.0 
Hm (m) 5.32 1.20 9.57 5.34 0.88 11.65 
H0 (m) 6.66 1.65 11.25 6.87 1.43 14.10 
dm (cm) 11.18 0.21 36.21 7.19 0.06 25.40 
SI (m) 6.7 2.6 9.7 7.5 3.9 11.7 
Rainfall (mm) 1034 706 1587 1257 857 1557 
Tm (◦C) 12.6 12.6 15.0 11.3 11.3 13.6 

Note. N is the stand density, Hm is the average height, H0 is the dominant height, 
dm is the mean diameter, SI is the site index, Tm is the mean annual 
temperature. 

Table 2 
Mean attributes of the trees destructively sampled for biomass estimation.  

Attribute n mean min max 

RCD (cm) 31  16.04  5.40  34.00 
dbh (cm) 31  13.56  1.30  33.60 
h (m) 31  6.14  2.78  9.70 
CPA (m2) 31  11.55  0.44  45.96 
AGB (kg dry matter tree-1) 31  57.53  1.35  179.06 
BGB (kg dry matter tree-1) 12  17.41  2.90  49.30 
Root-shoot ratio 12  0.594  0.187  1.716 

Note. RCD is the root collar diameter, dbh is the diameter at breast height, h is the 
total height, CPA is the crown projection area, AGB is the total aboveground 
biomass, BGB is the belowground biomass. 
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models [2.8] to [2.14]). Given the small size of the sample, and the well- 
known allometric relationship between above and belowground 
biomass (Kurz et al., 1996) we preferred to use root-shoot ratio instead 
of directly modelling root weight. The advantage of this ratio is that it 
can be applied to individual trees or stands, at local, regional or land-
scape level (Mokany et al., 2006), and is commonly used in National 
Greenhouse Gas Inventories. 

2.2.2. Aboveground biomass equations at stand level 
The best equation identified in the previous section was then used to 

compute aboveground biomass for every tree within each INIA plot 
(btree). The sum of the individual values of tree biomass gives the 
aboveground biomass for the plot, which was then upscaled to the 
hectare to obtain total aboveground biomass per ha (Wha, kg dry matter. 
ha− 1). In the case of the UNIOVI plots, since no data were available at 
individual tree level, we used data from INIA plots to construct an 
auxiliary model for predicting the mean value of aboveground tree 
biomass within the plot. This value was then upscaled to the hectare by 
multiplying it by the plantation density (N, stems ha− 1) to calculate total 
aboveground biomass per ha (Wha, kg dry matter. ha− 1). See supple-
mentary material S3 for additional information on this model for mean 
tree biomass. 

The aim of the study was to construct models to predict total 
aboveground biomass Wha in young chestnut plantations using planta-
tion age as well as other easily obtained covariates (not involving 
complex field-based forest measurements). To do this, first we proposed 
to fit a simple model which only depends on plantation age T (years): 

Wha = aTb [4] 

In a second phase, we evaluated the expansion of parameters a and b 
by including a single additional explanatory covariate X1: 

Wha = (a0 + a1X1)T (b0+b1X1) [5] 

As potential explanatory covariate X1 we tested:  

● Plantation density N (stems ha− 1).  
● Plantation productive orientation, by creating a dummy variable 

Nut, with a value 1 if the plantation is nut oriented (i.e. stand density 
below 400 stems ha− 1) and zero if it is timber oriented.  

● Site index SI for the plantation (m), computed according to Álvarez- 
Álvarez et al. (2010), and specifically built for young chestnut 
plantations.  

● Climate covariates: annual cumulative rainfall (mm) and mean 
annual temperature (◦C) calculated for the plantation from the cli-
matic models by Gonzalo et al. (2010). 

For each individual covariate we compared the complete model [5] 
(including the additional explanatory covariate in both parameters a 
and b) with reduced models, considering the expansion of only one of 
the parameters and with the general basic model in eq. [4]. Comparisons 
among nested models were made by means of the Non-linear extra sum- 
of-squares F-test (Calama et al., 2003; Huang et al., 2000; Pillsbury et al., 
1995). This F-test uses the following statistic: 

F =

[
SSr − SSf
df r − df f

]

[
SSf
df f

] [6]  

where SSf and SSr refers to the sum of the squared error for the complete 
and the reduced model, and dff and dfr the degrees of freedom for 
complete and reduced model, respectively. If F statistics is distributed as 
a F Fisher-Snedecor with parameters (1–α; dfr–dff; dff) we cannot reject the 
null hypothesis of the reduced model explaining as much variability as 
the complete one, and we will therefore select the reduced model. As an 
additional criterion, the level of significance of the parameters was 
checked. 

Once we had selected the best model for age and each single addi-
tional covariate, we explored the inclusion of a potential second co-
variate X2. 

Wha = (a0 + a1X1 + a2X2)T (b0+b1X1+b2X2) [7] 

For the sake of simplicity and to prevent multicollinearity we 
imposed the following constraints:  

● A model cannot simultaneously include the two stocking related 
covariables (N or Nut) as predictors.  

● Only the best climate covariate (annual rainfall or annual mean 
temperature) identified in the fitting of the one-single-predictor 
models would be evaluated in this second phase.  

● A model cannot simultaneously include the two environmental 
related variables (Site index or the best climate covariate) as predictors. 

As in the previous phase, we evaluated the different possible alter-
natives for entering the covariates X1 and X2 in the parameter a and b of 
the model by comparing the complete model [7] with different reduced 
models through the Non-linear extra sum-of-squares F-test. 

Root-shoot ratio models for individual-tree level were used to 
compute the root-shoot ratio for each tree within the plots, and therefore 
to compute the mean value of the ratio for the plot. Given the available 
data, only that from the network of INIA plots was used to fit this model. 
This mean root-shoot ratio was modelled as a function of plantation age 
using the power function. Given the small size of the sample and the high 
uncertainty associated, we did not consider the inclusion of other po-
tential covariates apart from age. 

For all the fitted models we first carried out a preliminary fitting 
using ordinary non-linear least squares techniques and residuals were 
checked for heteroscedasticity, a common problem associated with 
biomass models. If detected, we fitted the models using Weighted non- 
linear least squares, where each observation was corrected by weight-
ing it with the inverse of its residual variance. As an independent sample 
was not available for validation, we carried out a leave-out-one cross 
validation (LOOCV, Sammut and Webb, 2011) of the selected models. In 
this method we refitted each model k times (where k is the sample size), 
assuming that at each replicate one of the observations is removed, and 
then applied the so-fitted model to this observation and compute the 
LOOCV residuals. All the models were fitted using the SAS/STAT® NLIN 
and SAS/ETS® MODEL procedures (SAS Inc., 2004). The behaviour of 
the different fitted models was evaluated by means of the root of mean 
squared error (RMSE) and R2

adj. Although all the fitted models allow 
biomass to be estimated in terms of dry matter, C storage capacity can 
easily be assessed using the tabulated value of C content for the species 
as reported in Montero et al. (2005). 

3. Results 

3.1. Biomass and root-shoot equations at individual tree level 

Table 3 shows the parameter estimates and goodness-of-fit statistics 

Table 3 
Parameter estimates and goodness-of-fit statistics for the models of individual 
tree aboveground biomass.  

Model Covariate β0 β1 RMSE R2
adj  

[2.1] RCD  0.6258  1.0641  22.4897  0.8382  
[2.2] h  0.7059  2.3604  50.2156  0.1938  
[2.3] CPA  4.2332  0.9851  31.7554  0.6776  
[2.4] dbh  0.8238  1.5324  22.8726  0.8327  
[2.5] RCD2h  0.0919  0.8419  18.1903  0.8942  
[2.6] dbh2h  0.2074  0.7511  19.1853  0.8823  
[2.7] BP  1.1069  0.8922  29.9842  0.7125 

Note. βj are fitting parameters, RMSE is the root mean square error, R2
adj is the 

adjusted coefficient of determination. 
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for the biomass models at tree level using different tree-size attributes. 
All the models and parameter estimates were highly significant, and 
reached values of R2

adj over 0.65, except for the model which only 
included tree height as a predictor. The best results were obtained for 
models 2.1 and 2.5, which used the product between the square RCD or 
the squared dbh in combination with total tree height as predictors, 
reaching R2

adj close to 0.90. The models which only included d or RCD 
reached values over 0.83, while the models which included crown-size 
related attributes (CPA and BP) explained over 0.67 – 0.70 of the 
observed variability. In contrast, we observed that height was not a good 
predictor – when used alone – of individual tree biomass. Cross- 
validation statistics (Table S.5) reveal a similar behaviour, reinforcing 
the robustness of the models. 

Individual-tree-level models for root-shoot ratio (Table 4) revealed a 
similar behaviour to that of the models for aboveground biomass of 
trees, with the only exception being that the best predictor was dbh (R2

adj 
= 0.6686, parameter β0 = 1.8887, parameter β1 = -0.6296). 

3.2. Aboveground biomass and root-shoot ratio equations at stand level 

The basic stand-level biomass model (eq. [4]), where only plantation 
age was used as a predictor, resulted in low predictive accuracy (R2

adj =

0.2029, RMSE > 18000 kg ha− 1) (Table 5), with high uncertainty in the 
estimates for older plots (Fig. 3). 

In the next step we expanded the original parameters of the power 
function in eq.4 to test the inclusion of a single additional covariate (see 
Table S.2 in Supplementary material). The results for parameter estimates 
and goodness-of-fit statistics of the selected model for each covariate are 
shown in Table 5. The results of the sequential procedure indicated that, 
in this first step, the individual covariate that best explained observed 
variability was plantation density (N), entered in parameter a, reaching 
a R2

adj close to 0.80. Expansion of parameter b over site index or pro-
ductive orientation (dummy covariate Nut) resulted in R2

adj values over 
0.71, while expansion of both parameters a and b over annual rainfall 
reached R2

adj of 0.69. In contrast, the inclusion of mean annual temper-
ature in the model did not lead to a significant improvement (p-value 
0.1283) with respect to the basic model [4], so this covariate was not 
tested in further analyses. The results showed that, as expected, existing 
biomass per hectare increases as plantation density, annual rainfall or 
site index increases. Furthermore, timber oriented plantations are much 
more productive in terms of biomass growth than nut oriented ones 
(Fig. 4). 

Table S.3 in the Supplementary material shows the sequential pro-
cedure for the biomass models including two covariates, according to 
the proposed expansion in model [7], while parameter estimates and 
goodness-of-fit statistics of the best model for each combination of 
covariates are shown in Table 5. Table S.3 shows that the inclusion of a 
second covariate leads to a significant improvement over the single- 
covariate models. The best selected model was that which included SI 
in both parameters a and b, and plantation density only in parameter b, 
resulting in the five-parameter model 9.2 (see table 5), which reached a 
R2

adj over 0.9314 and RMSE of 5350 kg ha− 1. Models including the Nut 

productive orientation and site index (model 7.7) along with density and 
annual rainfall (model 10.9) reached similar R2

adj values of around 0.86. 
Finally, model 8.9, expanding parameter b over both Nut and Rainfall, 
reached a R2

adj value of 0.75. Similar values were identified in the cross- 
validation process (Table S.6 in Supplementary material), confirming the 
validity of the models. 

Finally, the fitted model for the mean root-shoot ratio (Table 6, 
Fig. 5) showed a clear decreasing pattern, with a trend towards stabili-
sation at plantation ages over 15–20 years (Table 6, Fig. 5). 

4. Discussion 

In this study, we develop different sets of equations for predicting 
above and belowground biomass at both tree and stand (plot) levels for 
young chestnut plantations. Regarding individual-tree biomass equa-
tions, previously existing models for the species were mainly developed 
using data from coppice forests or from high mature forests (Cutini, 
2000; Menéndez-Miguélez et al., 2013; Patrício et al., 2005; Ruiz- 
Peinado et al., 2012; Salazar et al., 2010). These models have a 
limited capacity for use in young reforestations, since they were fitted 
using trees with dbh > 10 cm, further compounded by the fact that 
biomass allocation within the tree shifts with tree ontogeny and devel-
opmental stage (Xiang et al., 2021). 

The set of individual-tree fitted equations valid for young plantations 
(age < 25 years) used RCD, dbh, h, CPA and different combinations of the 
previous covariates as predictors. Our results indicate that the highest 
accuracy at individual-tree level was attained when using the product 
RCD2h (R2

adj over 0.89), and the product dbh2h (R2
adj over 0.88), which is 

in agreement with findings of previous studies using the few existing 
biomass equations for young trees (Annighöfer et al., 2016; Menéndez- 
Miguélez et al., 2022a), although these studies did not include Castanea 
sp. among the studied species. In addition, these results allowed the 
confirmation of the first hypothesis set out in the study. The use of RCD 
or dbh as a single predictor, a much less time-consuming option, results 
in R2

adj values over 0.83, with a very slight advantage of RCD over dbh. 
Given the similar behaviour of RCD and dbh when used alone or in 
combination with total height, and taking into account that RCD mea-
surement is a challenging task (Menéndez-Miguélez et al., 2022a) due to 
the presence of branches at the base of the stem, root collar deformities, 
plant shelters or the need to adopt a crouched position, we recommend 
using dbh, except where plants have not reached a height of 1.30 m. This 
recommendation is supported by the greater observed correlation be-
tween dbh and root-shoot ratio for calculating belowground biomass 
(Ledo et al., 2018). In contrast, the use of total plant height as a single 
predictor for individual biomass in chestnut led to the poorest results 
(R2

adj < 0.20), which is consistent with the results obtained by 
Annighöfer et al. (2016), who found height the worst predictor variable 
for all species. Finally, crown projection area, either as a single predictor 
or in combination with height, resulted in less accurate models (R2

adj =

0.68–0.71) than those only considering dbh or RCD. Since crown-size 
measurement in field inventories is a time consuming task, the use of 
these crown-based models is only justified if both crown diameter and/ 
or tree total height are estimated from aerial photographs or airborne 
laser scanning (e.g. Mäkinen et al., 2006). This set of individual tree- 
level equations is recommended if detailed inventory measurements 
(including tree dbh, tree h and stand density) are available at plot level. 

Previously existing stand-level biomass models for the species 
(Castaño-Santamaría et al., 2013; Menéndez-Miguélez et al., 2013; 
Prada et al., 2019) present the same limitations as those described above 
(constructed using adult coppice forests), and use stand density, basal 
area and mean or dominant height as predictors. In our case, we propose 
a new set of equations, which are valid for young reforestations, using 
plantation age as the main predictor (Yamaura et al., 2021). Unlike 
natural high forests or coppices, stand age is a commonly known trait in 
young chestnut plantations. Moreover, when using national or regional 
statistics, plantation age and area are often the only variables available 

Table 4 
Parameter estimates and goodness-of-fit statistics for the models for individual 
root-shoot ratio.  

Model Covariate β0 β1 RMSE R2
adj  

[2.8] RCD  13.2183  − 1.3458  0.2457  0.6370  
[2.9] h  6.5297  − 1.5962  0.2824  0.5202  
[2.10] CPA  0.8410  − 0.4790  0.2854  0.5102  
[2.11] dbh  1.8887  − 0.6296  0.2347  0.6686  
[2.12] RCD2h  13.8963  − 0.5199  0.2532  0.6146  
[2.13] dbh2h  2.3718  − 0.2676  0.2386  0.6577  
[2.14] BP  1.4472  − 0.3959  0.2798  0.5292 

Note. βj are fitting parameters, RMSE is the root mean square error, R2
adj is the 

adjusted coefficient of determination. 
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to Forest Services, which use these data to estimate the annual carbon 
fixation capacity by new plantations (e.g. for LULUCF accounts). Our 
simpler model only includes age as a predictor for both aboveground 

biomass and root-shoot ratio, without the need for any additional 
measurements, although the resulting accuracy of the model is low. The 
more complex models include additional covariates besides plantation 
age, although the additional measurements proposed are not difficult to 
measure in the field (tree counting for density and dominant height 
estimation for site index). Furthermore, the productive orientation (nut- 
timber) can be considered as a proxy for stand density and can be easily 
determined by visual observation or query to the owners. Finally, mean 
annual rainfall may provide a proxy for site index and is easily deter-
mined from the geographical coordinates of the plantation. 

The inclusion of both site index and plantation density resulted in the 
most accurate estimates of stand-level biomass (R2

adj = 0.93), even 
comparable to the previously existing models for chestnut coppices 
using basal area, plantation density and dominant height, thus con-
firming our second initial hypothesis. The simulations using this model 
(Fig. 6) reveal that though both site index and stand density have a large 
influence on aboveground biomass per hectare, changes in site index 
result in larger productivity increments than those observed in the case 
of changes in stand density, this finding having previously been reported 
for chestnut (Castaño-Santamaría et al., 2013). In this regard, it must be 
noted that the proposed site index model presents high correlation with 
both soil and climate attributes (see Álvarez-Álvarez et al., 2010), thus 
accurately capturing the variability observed in these environmental 
traits. 

In addition, plantation density is a reliable indicator of the different 
management types observed in the area, with lower densities aiming to 
nut production and higher densities focusing on timber. Either 
substituting plantation density for productive orientation (Nut dummy 
covariate) or site index for mean annual rainfall in the model resulted in 
similar predictive accuracy (R2

adj = 0.86). Productive orientation, as a 
categorical dummy classification introduced by Roces-Díaz et al. (2018b) 
using a threshold of 400 stems ha− 1, is an accurate predictor, even if 
entered alone in the model (Fig. 5). As expected, denser timber-oriented 
plantations display much more efficient C uptake, but the differences in 
stand density within a given orientation can be compensated by differ-
ences in individual tree size. Furthermore, mean annual rainfall is a 
covariate which is highly correlated with both standing biomass and 
reforestation success, and was identified as one of the environmental 
covariates most closely related with site classification in chestnut 
plantations (Álvarez-Álvarez et al., 2010). Finally, the model which in-
cludes both productive orientation and mean annual rainfall has the 

Table 5 
Parameter estimates and goodness-of-fit statistics for basic model [4] and the best selected model for each combination including one (model [5]) or two (model [7]) 
additional covariates.  

Model X1 X2 a0 a1 a2 b0 b1 b2 RMSE R2
adj 

4 – –  269.7    1.6640   18,621  0.2029 
5.3 Nut –  112.5    2.2686  − 0.5721  11,087  0.7135 
5.5 Density –  3.2767  0.1519   2.2198   9363  0.7957 
5.9 IS –  1324.6    0.0520  0.1231  11,077  0.7140 
5.10 Rainfall –  29.6196  − 0.0173   0.6935  0.00202  11,354  0.6954 
7.7 Nut IS  − 691.5   180.7  1.4673  − 0.3538  7765  0.8575 
8.9 Nut Rainfall  41.7066    1.8891  − 0.3681  0.00060 10,238  0.7523 
9.2 Density IS  1787.4   − 147.6  − 1.1235  0.00032  0.2863 5350  0.9314 
10.9 Density Rainfall  9.5388    1.7251  0.00037  0.00091 7781  0.8569 

Note. aj and bj are fitting parameters, RMSE is the root mean square error, R2
adj is the adjusted coefficient of determination. Model number refers to the codes shown in 

tables S.2 and S.3 in supplementary material. 

Fig. 3. Observed (dots), fitted line and 95% confidence bands of model 4 for 
total aboveground biomass as a function of the age of the plantation. 

Fig. 4. Observed (dots), fitted line and 95% confidence bands of model 5.3 for 
total aboveground biomass as a function of the age of the plantation and the 
productive orientation (nut-oriented in blue, timber-oriented in red). (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 6 
Parameter estimates and goodness-of-fit statistics for the model for mean root- 
shoot ratio as a function of plantation age (years).  

Response variable a0 b0 RMSE R2
adj 

Root-shoot ratio  3.1052  − 0.7437  0.1364  0.6732 

Note. aj and bj are fitting parameters, RMSE is the root mean square error, R2
adj is 

the adjusted coefficient of determination. 
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lowest accuracy. However, since it does not require additional mea-
surements and can be spatially upscaled to regional level, it may provide 
a useful tool for classifying the territory according to the potential for C 
fixation. 

Both our observations and simulations indicate that a mean, timber- 
oriented, 20 year-old chestnut plantation may have a total aboveground 
biomass of 100 Mg ha− 1, while at the same age a mean, nut-oriented 
plantation will reach 20 Mg ha− 1, with an expected root-shoot ratio of 
25 %. Values for new timber-oriented plantations are of the same order 
as those proposed for chestnut coppices in Spain by Menéndez-Miguélez 
et al. (2016), who found values close to 100 Mg ha− 1 across a wide range 
of ecological and management conditions in a 20 year-old coppice stand. 
Nevertheless, our values are below those given for young chestnut 
plantations in N America (180 Mg ha− 1 at 19 years, Jacobs et al. (2009)) 
or coppices in Great Britain (200 Mg ha− 1 at 20 years, Brasika et al. 
(2017)). The biomass growth capacity for timber-oriented chestnut 
plantations located in humid areas of NW Spain (>5 Mg ha− 1-yr− 1) is 

lower than that observed for highly productive Pinus radiata or Euca-
lyptus plantations (Pérez-Cruzado et al., 2011), but may be similar to 
that observed in other productive conifer plantations of Pinus pinaster 
subsp Atl. (Porté et al., 2002) or Pinus nigra (unpublished data). On the 
other hand, nut-oriented plantations in drier areas of inland Spain can 
reach an average annual growth capacity over 1 Mg ha-1yr− 1, a value 
which is comparable or even larger than those observed in plantations of 
typical Mediterranean species such as Quercus ilex, Ceratonia siliqua or 
Pinus pinea (Lara-Gómez et al., 2020; Palacios-Rodríguez et al., 2022; 
Menéndez-Miguélez et al., 2022b). Considering both above and below-
ground biomass, and assuming a carbon content for the species of 48.4 % 
(Montero et al., 2005), annual C uptake capacity of these plantations 
during their first 20 years may vary between 2.2 and 11.1 Mg CO2 eq ha- 

1yr− 1 revealing the important contribution of Castanea plantations to 
removing carbon from the atmosphere and storing it and confirming the 
last hypothesis set out in our study. 

Although the models have been fitted using data from Spain, they 

Fig. 5. Observed (dots), fitted line and 95% confidence bands of the model for mean root-shoot ratio as a function of plantation age.  

Fig. 6. Total aboveground biomass estimates for a typical timber-oriented (red, 1000 stems.ha− 1) and nut-oriented (blue, 200 stems.ha− 1) chestnut plantation with 
site index = 5 m or site index = 9 m, at a reference age of 10 years. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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could easily be adapted to other European regions in which the species is 
planted, such as France, Italy or Portugal, as long as the ecological 
conditions and management practices in these regions are similar to 
those found in Spain (Fernández-López and Alía, 2003; Beccaro et al., 
2020). Despite the relevance of these new equations, our approach 
presented a main potential limitation, related to the restricted sample 
size (especially in the number of felled trees) compared with the wide 
range of management practices and ecological conditions observed in 
the territory. Future research effort should focus on sampling new areas 
and management conditions in order to construct more robust equa-
tions, with a larger range of validity. 

5. Conclusions 

We present a set of new equations for predicting standing biomass 
and C stocks retained by trees and stands in young chestnut plantations 
in Spain. The choice among the proposed equations will depend on the 
available data and the objective of the prediction. Individual tree-level 
equations are recommended if detailed inventory measurements are 
available and accurate estimates at small-farm level are required. Stand- 
level equations only using plantation age could be applied in forest 
statistics at national scale. The accuracy of the age-based stand-level 
equations can be markedly improved if additional covariates are avail-
able, including those which are very straightforward to determine such 
as productive orientation or mean annual rainfall (from climate grid 
models). 

As expected our results reveal the high C uptake capacity of timber- 
oriented young chestnut plantations. In addition, we demonstrate that 
despite having traditionally been considered as agroforestry or even 
agronomic systems, low-density nut-oriented plantations can play an 
important role as C sinks, which must be taken into account in general 
statistics of C uptake by forest plantations (e.g. LULUCF accounts). 
Nevertheless, C uptake should be considered an additional service pro-
vided by these plantations, which also play an important role as part of 
the landscape and cultural heritage of the areas in which the species 
grows. The new set of equations will allow forest owners and managers 
to assess the C uptake capacity of the plantations and to consider this an 
additional and valuable ecosystem service provided by their chestnut 
farms. 
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López-Senespleda: Writing - review & editing. P. Álvarez-Álvarez: 
Writing - review & editing. M. Madrigal: Writing - review & editing.M. 
Del Río: Writing - review & editing. R. Calama: Conceptualization, 
Funding acquisition, Methodology, Writing - original draft. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgements 

The authors wish to thank CICYTEX (Elena Nieto and Paula Serrano) 
and CESEFOR Foundation (Roberto Rubio and Darío Arias) for their 
valuable help in identifying and locating chestnut plantations and con-
tacting farm owners. This research was funded by the Ministry of 

Science, Innovation and Universities grant number AGL2017-83828-C2- 
1-R; Ministry of Agriculture, grant number EG17-042-C02-02; and INIA 
grant number IMP- 2018-004-C02-02. The publication is also part of the 
CARE4C Project, which has received funding from the European Union’s 
HORIZON 2020 Research and Innovation Program under the Marie 
Sklodowska-Curie grant agreement N◦ 778322. We thank Adam Collins 
for revising and editing the English grammar. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.foreco.2022.120761. 

References 
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2016. Species-specific and generic biomass equations for seedlings and saplings of 
European tree species. Eur. J. For. Res. 135, 313–329. 

Balboa-Murias, M., Rodríguez-Soalleiro, R., Merino, A., Álvarez-González, J.G., 2006. 
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