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Abstract: Familial hypercholesterolemia (FH) is the most common genetic disorder associated with
premature atherosclerotic cardiovascular (CV) disease (ASCVD). However, it still is severely un-
derdiagnosed. Initiating lipid-lowering therapy (LLT) in FH patients early in life can substantially
reduce their ASCVD risk. As a result, identifying FH is of the utmost importance. The increasing
availability of genetic testing may be useful in this regard. We aimed to evaluate the genetic profiles,
clinical characteristics, and gender differences between the first consecutive patients referred for
genetic testing with FH clinical suspicion in our institution (a Spanish cohort). Clinical information
was reviewed, and all participants were sequenced for the main known genes related to FH: LDLR,
APOB, PCSK9 (heterozygous FH), LDLRAP1 (autosomal recessive FH), and two other genes related
to hyperlipidaemia (APOE and LIPA). The genetic yield was 32%. Their highest recorded LDLc
levels were 294 ± 65 SD mg. However, most patients (79%) were under > 1 LLT medication, and
their last mean LDLc levels were 135 ± 51 SD. LDLR c.2389+4A>G was one of the most frequent
pathogenic/likely pathogenic variants and its carriers had significantly worse LDLc highest recorded
levels (348 ± 61 SD vs. 282 ± 60 SD mg/dL, p = 0.002). Moreover, we identified an homozygous
carrier of the pathogenic variant LDLRAP1 c.207delC (autosomal recessive FH). Both clinical and
genetic hypercholesterolemia diagnosis was significantly established earlier in men than in women
(25 years old ± 15 SD vs. 35 years old ± 19 SD, p = 0.02; and 43 ± 17 SD vs. 54 ± 19 SD, p = 0.02,
respectively). Other important CV risk factors were found in 44% of the cohort. The prevalence
of family history of premature ASCVD was high, whereas personal history was exceptional. Our
finding reaffirms the importance of early detection of FH to initiate primary prevention strategies
from a young age. Genetic testing can be very useful. As it enables familial cascade genetic testing,
early prevention strategies can be extended to all available relatives at concealed high CV risk.

Keywords: familial hypercholesterolemia (FH); atherosclerotic cardiovascular disease (ASCVD);
genetic testing; cardiovascular prevention
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1. Introduction

According to the last European guidelines on cardiovascular disease prevention,
atherosclerotic cardiovascular (CV) disease (ASCVD) is still a major cause of morbidity and
mortality. Smoking cessation, the adoption of a healthy lifestyle, and risk factor treatment is
recommended for all patients [1]. In addition, dyslipidaemia is known to be one of the main
causal but also modifiable ASCVD risk factors [1]. Low-density lipoprotein cholesterol
(LDLc), along with other apoB-containing lipoproteins, has demonstrated a causal role in
the development of ASCVD [1,2]. Randomised controlled trials (RCTs) have proven that
lowering LDLc levels with lipid-lowering therapy (LLT) safely reduces ASCVD risk, even
at extremely low LDLc levels [1,2]. The absolute benefit of lowering LDLc depends on
the absolute risk of ASCVD and the absolute reduction in LDLc [1]. In fact, even a small
absolute reduction in LDLc may be beneficial in high or very high-risk patients [3].

In this regard, some patients with dyslipidaemia could have an inherited genetic
disorder: familial hypercholesterolemia (FH). Initiating LLT in FH patients early in life can
substantially reduce their ASCVD risk [4]. However, untreated young adults with FH could
have a 90-fold increase in ASCVD mortality [5]. Therefore, it is not surprising that current
European guidelines consider FH patients directly as ASCVD high-risk patients [1]. As a
result, early identification of FH has a potential important impact for clinical management
and public health [6]. Prevention strategies on the prompt diagnosis of FH and accurate
LLT treatment are of the utmost importance.

Historically, the diagnosis of FH has been based on clinical diagnostic criteria, such
as the Dutch Lipid Clinic Network Diagnostic Criteria (DLCN) [7,8] or the Simon Broome
Register Diagnostic Criteria [9]. Clinical data have included information about personal
or family history of premature ASCVD, personal or family elevated LDLc levels, and
physical examination (including corneal arcus or tendon xanthomas), among others [10,11].
Although FH diagnosis can be made based on clinical findings alone, genetic testing can be
key to achieving the definite diagnosis [10]. In fact, identifying pathogenic variants of FH
in genetic testing has been considered the “gold standard” for FH diagnosis [12].

Although FH is the most common genetic disorder associated with premature AS-
CVD [13] and one of the most common genetic conditions, with a prevalence of 1/250–1/500
individuals [6,14,15], it still is severely underdiagnosed [16]. The increasing availability,
accessibility, and quality of genetic testing worldwide may improve this issue. Accordingly,
next-generation sequencing (NGS) has recently been implemented in our centre for FH
diagnosis, without the need for further external referral.

In this scenario, we aimed to evaluate the genetic profiles, clinical characteristics, and
gender differences between the first consecutive patients referred for genetic testing with
an FH diagnosis in our institution.

2. Materials and Methods
2.1. Study Population

In this retrospective study, we reviewed all consecutive patients referred for genetic
testing due to clinical suspicion of FH, from 2018 to 2022, in a Spanish national reference
centre for inherited cardiac conditions.

We retrospectively collected clinical data from this cohort. We reviewed their birth
data, age at first dyslipidaemia diagnosis, and the age of definite genetic diagnosis. Histori-
cally higher levels and the most recent ones of total cholesterol (TC), LDLc, high-density
lipoprotein cholesterol (HDLc), and triglycerides (TGs) were evaluated. Current LLT was
also reviewed. In addition, classical cardiovascular risk factors such as high blood pressure
(HBP), tobacco consumption, diabetes mellitus (DM), dyslipidaemia, body mass index
(BMI), renal failure, and personal or familiar ASCVD were also collected. Lipoprotein A
(LPa) levels were reviewed, when available.

Clinical suspicion of FH was evaluated according to the Dutch Lipid Clinical Network
(DLCN) criteria. Punctuation was obtained via direct (reflected in clinical history) or indirect
calculation (calculated by the investigators based on available clinical data). Premature
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cardiovascular disease was considered, according to the DLCN definition, in men <55 years
old and women <60 years old [1].

All patients who wished to participate had signed written consent to grant access to
their genetic data for investigational purposes. The research protocol followed institutional
ethics guidelines. This study was evaluated by the local Ethical Committee (CEImPA
2022.254).

2.2. Genetic Testing

Blood samples were obtained from all patients who accepted undergoing genetic
testing, collected in a 9 mL tube with EDTA anticoagulant. DNA was isolated from their
peripheral blood leukocytes via the standard salting-out method, a simple and non-toxic
DNA extraction technique that isolates high-quality DNA from the total blood [17].

All genes related to FH were evaluated: LDLR, APOB, PCSK9 (heterozygous FH),
LDLRAP1 (autosomal recessive FH), and 2 other genes related to hyperlipidaemia (APOE
and LIPA). All patients were sequenced via NGS with a total of 210 genes that were asso-
ciated with cardiovascular disease, including FH-associated genes. The genetic detailed
procedure has been previously reported elsewhere [18–21]. All participants were NGS
sequenced for the same gene panel, including the coding sequence plus at least 5 flanking
intronic base pairs of LDLR, APOB, PCSK9, APOE, LDLRAP1, and LIPA genes via Ion
Torrent semiconductor chip technology in an Ion GeneStudio S5 Sequencer (Thermo Fisher
Scientific, Waltham, MA, USA), according to previously described protocols [18–21]. Over-
all, in silico coverage of the included genes was 100%. Variant Caller v5 software was used
for variant identification (Thermo Fisher Scientific). Ion Reporter (Thermo Fisher Scientific,
Waltham, MA, USA) and HD Genome One (DREAMgenics S.L., www.dreamgenics.com,
Oviedo, Spain) software were used for variant annotation, including population, functional,
disease-related, and in silico predictive algorithm databases.

Interpretation of all gene variants with an allele frequency of <0.01 in the gnomAD
European non-Finnish database was based on the American College of Medical Genetics
and Genomics (ACMG-AMP) 2015 Standards and Guidelines [22]. According to ACMG-
AMP criteria, they were classified as likely pathogenic/pathogenic variants (LP/P), and
variants of uncertain significance (VUS). If only benign or likely benign variants were
found, they were not reported, and the genetic result was informed as negative.

Variants of interest classified as likely pathogenic were confirmed in the corresponding
patients via capillary Sanger sequencing of PCR fragments (Figure 1).

2.3. LDLR Intron 16 Variant, Transcript Analysis

We hypothesised that the LDLR intron 16 + 4 (c.2389+4A>G) change might affect the
pre-mRNA splicing. To confirm this, we amplified and sequenced a fragment from leuko-
cyte cDNA. Briefly, total RNA was isolated from leukocytes in 5 mL of blood. The RNA
was reverse transcribed (High-Capacity cDNA Reverse Transcription Kit, Life Technologies,
Carlsbad, CA, USA) and the cDNA was amplified with primers that matched exons 14–15
and 17–18.

To support the variant pathogenicity, its prevalence was evaluated among 500 blood
donors from our region, without known history of FH and LDLc values <150 mg/dL. They
were genotyped using Real Time PCR with Taqman probes that recognised the wild-type
(A) and mutation (G) alleles.

2.4. Statistical Analysis

Statistical analyses were performed using SPSS v.19. Descriptive data for continuous
variables are presented as mean ± SD and as frequencies or percentages for categorical
variables. The chi-square test or Fisher exact test was used to compare frequencies, whereas
differences in continuous variables were evaluated with either the Student t-test or the
Mann–Whitney U test. p < 0.05 was considered to be significant.

www.dreamgenics.com
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Figure 1. Sanger sequencing of one of the multiple carriers of LDLR, c.2389+4A>G, and the homozy-
gous carrier of LDLRAP1: c.207delC variant. For the LDLR, we show the reverse strand sequence 
with the exon 16-intron 16 site. 
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Figure 1. Sanger sequencing of one of the multiple carriers of LDLR, c.2389+4A>G, and the homozy-
gous carrier of LDLRAP1: c.207delC variant. For the LDLR, we show the reverse strand sequence
with the exon 16-intron 16 site.

3. Results

Due to clinical suspicion of FH based on LDLc levels and clinical findings, 182 Spanish
Caucasian patients were referred for genetic testing.

Genetic testing identified a genetic LP/P variant in 58 patients. As a genetic final
diagnosis of FH was established in 58 patients, the genetic yield of the cohort was 32%. All
genetic relevant variants are shown in Table 1. In two patients who were already carriers of
a pathogenic variant in LDLR that could solely explain their FH phenotype, an additional
VUS was found: one was a carrier of the P variant LDLR p.Gly592Glu and a VUS (LDLR
Arg253Gln); and another was a carrier of the P variant LDLR p.Glu288Lys and a VUS in
APOB (APOB Asp1908Asn). The clinical significance of these additional VUS is unknown.

In the remaining 124 patients, genetic results were either negative or inconclusive
(carriers of either benign/likely benign variants or variants of unknown significance). In
those patients with negative results, the historical LDLc meant that the highest levels were
242 mg/dL ± 75 SD. From them, 49% had an at-least-probable clinical diagnosis of FH
according to the DLCN criteria (score of 6 or higher). In 20% (25 patients) of them, despite
negative genetic testing, the clinical diagnosis had been considered definite.

The mean age of clinical hypercholesterolemia diagnosis was 29 ± 17 SD. However,
there was a delay in genetic FH confirmation of more than 18 years. General clinical
characteristics are shown in Table 2. A personal history of premature cardiovascular
disease was very rare, whereas family history was present in nearly half of the cohort (41%).
Moreover, most patients reported a family history of hypercholesteremia.

When reviewing the medical history of this FH cohort, we found that their highest
recorded LDLc levels were high, with a mean value of around 300 mg/dl (294 ± 65 SD).
However, most patients were undergoing LLT and the last mean LDLc recorded levels
were 133 ± 50 SD (Figure 2). These numbers should soon improve, as LLT was still being
adjusted in those patients whose LDLc levels were off target. Moreover, one of the highest
last LDLc levels was found in a pregnant woman whose LLT had to be interrupted.
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Table 1. Genetic variants identified via NGS which may play a role in FH.

Gene Transcript Protein cDNA
gnomAD v2.1
(European
Non-Finnish)

Carriers ACMG

LDLR NM_000527 (p.Glu31Ter) c.91G>T - 1 P

LDLR NM_000527 (p.Cys155Tyr) c.464G>A - 1 P

LDLR NM_000527 (p.Glu174Ter) c.520G>T - 1 P

LDLR NM_000527 (p.Ser177Leu) c.530C>T - 1 P

LDLR NM_000527 (p.Glu288Lys) c.862G>A - 1 P

LDLR NM_000527 (p.Asp354Asn) c.1060G>A - 1 LP

LDLR NM_000527 (p.Arg406Trp) c.1216C>T - 1 P

LDLR NM_000527 (p.Arg416Trp) c.1246C>T 1/113,496 3 P

LDLR NM_000527 (p.Val429Met) c.1285G>A 1/113,592 11 P

LDLR NM_000527 (p.Trp490Ter) c.1470G>A - 1 P

LDLR NM_000527 (p.Phe530SerfsTer20) c.1589_1614del 2 P

LDLR NM_000527 (p.Gly592Glu) c.1775G>A 15/129,176 7 P

LDLR NM_000527 (p.Leu599Ser) c.1796T>C - 1 LP

LDLR NM_000527 (p.Glu602Ter) c.1804G>T - 1 P

LDLR NM_000527 (p.Phe655Leu) c.1965C>G - 1 LP

LDLR NM_000527 (p.Leu658Pro) c.1973T>C - 2 LP

LDLR NM_000527 (p.Asp700Gly) c.2099A>G - 1 LP

LDLR NM_000527 (p.Leu799PhefsTer127) c.2395_2404del 1 P

LDLR NM_000527 (p.Arg814Gln) c.2441G>A - 2 LP

LDLR NM_000527 Splicing c.313+2insT - 2 P

LDLR NM_000527 Splicing c.1987+1G>A - 1 P

LDLR NM_000527 Splicing c.1988-2A>T - 1 P

LDLR NM_000527 Splicing c.2389+4A>G 1/113,644 11 P

LDLR NM_000527 Copy number variant c.2390-2583del - 1 P

LDLRAP1 NM_015627 p.Ala70ProfsTer19 c.207delC - 1 P

APOB NM_000384 (p.Thr1558Ala) c.4672A>G - 1 VUS

APOB NM_000384 (p.Asp1908Asn) c.5722G>A 2/129,088 1 VUS

LDLR NM_000527 (p.Asn297His) c.889A>C - 1 VUS

LDLR NM_000527 (p.Ala606Ser) c.1816G>T 30/129,154 1 VUS

LDLR NM_000527 (p.Hys656Asn) c.1966C>A 3/113,732 1 VUS

LDLR NM_000527 (p.Arg253Gln) c.758G>A - 1 VUS

FH: familial hypercholesterolemia; LP: likely pathogenic; P: pathogenic; VUS: variant of unknown significance.

Despite the relatively young mean age of the cohort (mean age 51 ± 19 SD), other
important CV risk factors were found, with smoking being the most prevalent (22% con-
sidering smokers and previous smokers together. See Table 2). In 44% of FH patient
participants, at least one additional modifiable cardiovascular risk factor (defined as DM,
current or previous smoker, or HBP) was identified.

Women from this cohort were older than the men (57 ± 19 SD vs. 45.5 ± 17 SD,
p = 0.02). Both dyslipidaemia diagnosis and genetic confirmation diagnosis were signifi-
cantly established earlier in men than in women (25 years old ± 15 SD vs. 35 years old ± 19 SD,
p = 0.02; and 43 ± 17 SD vs. 54 ± 19 SD, p = 0.02, respectively). Although both the higher
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LDLc recorded levels or the last ones were slightly worse in women, the difference was not
statistically significant. Among other CV risk factors, women had significantly more HBP
(p = 0.05). Nonetheless, there were no other significant differences found in cardiovascular
risk factors, or personal or family history.

Table 2. Clinical characteristics of patients with genetic diagnosis of FH.

Identified Patients (58) N/Mean Frequency/SD

Men 31 53.5%

Women 27 46.5%

Current age (years), mean ± SD 51 ±19 SD

Age at dyslipidaemia diagnosis 29 ±17 SD

Age at definite genetic diagnosis 48 ±19 SD

Other cardiovascular risk factors

Previous smoker/ Current smoker 13 22%

High BP 11 19%

DM 8 14%

At least 1 cardiovascular risk factor 26 45%

Kidney failure 1 2%

Peripheral vascular disease 1 2%

Personal history of PCVD 3 5%

Family history of PCVD 24 41%

Family history of hypercholesteremia 53 91%

Corneal arcus and/or tendon xanthomas 9 15.5%

Lipid profile

Highest LDLc level (mg/dL) 294 ±65 SD

Last LDLc level (mg/dL) 133 ±50 SD

LpA (nmol/L) 34 ±74 SD

Medical treatment

None 3 5%

Statins 9 15.5%

Statins + ezetimibe 39 67%

Statins + ezetimibe + IPCSK9 7 12%

DLCN criteria

<3 6 10%

3–5 possible 8 14%

6–8 probable 21 36%

>8 definite 23 40%

FH: familial hypercholesterolemia; SD: standard derivation; BP: blood pressure; DM: diabetes mellitus; LDLc: low-
density lipoprotein cholesterol; PCVD: premature cardiovascular disease; DLCN: Dutch Clinical Lipid Network;
IPCSK9: proprotein convertase subtilisin/kexin type 9 inhibitors.

The LDLR intron 16 +4 (c.2389+4A>G) was one of the most common FH variants
in our population, being the cause of FH in 19% of this cohort (11/58 patients). Patients
without this intron variant amplified fragments of the normal size, while carriers of the
intron 16 + 4G showed an additional shorter band (Figure 3). Sequencing of these PCR
fragments confirmed the absence of exon 16 in these carriers. Moreover, this variant was
absent in our control cohort of healthy patients with neither FH nor dyslipidaemia. In
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contrast to the global genetic FH cohort, most FH carriers of this variant were women
(6/11). Nearly all of them had a family history of hypercholesterolemia (10/11) and half
of them had a family history of premature ASCVD. Their LDLc highest recorded levels
were significantly higher than the rest of the FH cohort (348 ± 61 SD vs. 282 ± 60 SD
mg/dL, p = 0.002). Moreover, a female carrier presented tendon xanthoma and a male
carrier presented both corneal arcus and tendon xanthomas.

One male patient was a homozygous carrier of the LDLRAP1 c.207delC pathogenic
variant. He was a 39-year-old male who had been diagnosed with dyslipidaemia at the age
of 13, with 376 mg/dl being his highest LDLc recorded level. He also presented corneal
arcus and tendon xanthomas, giving him the higher punctuation in the DLCN score from
the cohort. However, he had no family history of dyslipidaemia nor premature ASCVD.
Family screening confirmed that each parent was an asymptomatic carrier of one of the
autosomal recessive pathogenic variants.
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and the LDLR intron 16 + 4 (c.2389+4 A>G) variant. The cDNA from leukocytes of heterozygous
carriers showed two bands of the normal size (exon 16 present) and a shorter band that corresponded
to the fragment lacking exon 16. (B). Sanger sequence (reverse strand) of PCR fragments from patients
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4. Discussion

In most patients, FH is caused by a single pathogenic variant in the three primary genes
associated with heterozygous autosomal dominant FH [10]. Therefore, genetic testing for
patients with suspected FH should, at a minimum, include the analysis of LDLR, APOB, and
PCSK9 [10]. More than 90% of reported FH-causing variants are in the genes encoding the
low-density lipoprotein receptor (LDLR; OMIM #606945). In our cohort, as expected, most
genetically confirmed FH patients had LP/P variants in this gene. LDLR LP/P pathogenic
variants can be produced by numerous mechanisms including nonsense, missense, and a
few synonymous variants; variants in the promoter and canonical splice sequences; and
small insertions and deletions and large DNA rearrangements [23,24]. In our cohort, most
pathogenic variants in LDLR were missense, followed by those which affect the splicing
and nonsense variants. In this Spanish cohort, LDLR c.2389+4A>G was one of the single
pathogenic variants that was the most prevalent, being present in nearly one in every five
patients with genetically confirmed FH. Carriers of this variant had a high prevalence of
familial history of premature ASCVD and hypercholesterolemia. In addition, interestingly,
LDLR INT 16 + 4 A>G carriers had significantly worse LDLc levels than the rest of the
genetically confirmed FH cohort. Moreover, to support its pathogenicity, we demonstrated
that the change affected the splicing and that it was absent in a healthy control population
of our own region (Figure 3).

Secondly, 5% to 10% of pathogenic variants are found in apolipoprotein B (APOB;
OMIM #107730), and thirdly, less than 1% affect the proprotein convertase subtilisin–kexin
type 9 gene (PCSK9; OMIM #607786) [10,14,25–27]. Multiple gain-of-function variants
in PCSK9 have been reported [28–30]. In our cohort, we did not find any pathogenic
variant in this PCSK9. On the other hand, in the European population, the predominant
pathogenic variant identified in FH cases affecting APOB is APOBp.Arg3527Gln (previously
referred to as p.Arg3500Gln) [31]. Other APOB variants located outside of this region have
been reported [32]. Nevertheless, its pathogenicity has been difficult to establish [33–37].
In this study, we identified two VUS affecting different regions of APOB. The carrier of
APOB Asp1908Asn had another P variant (LDLR E288K) that was solely sufficient for
an established genetic FH diagnosis. Nonetheless, in another patient (who had been
diagnosed with hypercholesterolemia at 23 years old, whose highest LDLc recorded level
was 232 mg/dL, and who had both hypercholesteremia and a premature ASCVD family
history), genetic testing only identified the rare variant APOB Thr1558Ala. Although we
believe that this variant may play a role in FH, it is classified as a variant of unknown
significance.
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In addition, in those patients with clinical FH suspicion but without LP/P variants
in LDLR, APOB, and PCSK9 genes, possible alternative molecular etiologies should be
considered. For instance, it could be caused by pathogenic variants in the APOE gene, or
in LIPA (lysosomal acid lipase deficiency autosomal recessive phenocopy) [10]. Moreover,
there is an autosomal recessive form of hypercholesterolemia caused by biallelic pathogenic
variants in the LDLRAP1 gene, encoding the LDLR adaptor protein 1 (110). In the present
study, to improve the genetic diagnosis yield, we evaluated all patients with an expanded
panel including other genes: LDLR, APOB, PCSK9, LDLRAP1, LIPA, and APOE. As a result,
we were able to identify one patient with autosomal recessive FH who was a homozygous
carrier of the c.207delC LDLRAP1 pathogenic variant. Remarkably, he was one of only two
patients in this cohort who presented not only corneal arcus but also tendon xanthomas.
Moreover, he not only had one of the highest LDLc levels recorded (376 mg/dl), but also had
the highest DLCN score of the cohort. His parents were asymptomatic heterozygous carriers
of the LDLRAP1 variant. Thanks to the diagnosis of this rare autosomal recessive FH,
accurate genetic counselling of recurrence risk information for relatives is now possible [10].

Despite FH being one of the most common genetic conditions and the main genetic
disorder associated with premature ASCVD [6,13–15,20], FH is not only clinically under-
diagnosed [16], but is also genetically underdiagnosed. For instance, in the CASCADE-FH
registry, only 3% of all cases had genetic confirmation [38]. In this sense, in the Simon
Broome FH register, only 13% of the total cohort had a DNA-confirmed diagnosis [39].
As in any other genetic condition, the yield of FH genetic testing depends on the pre-test
probability. For instance, a pathogenic variant in one of the main three FH genes can be
found in up to 60–80% of patients with a clinical “definite” FH diagnosis. However, the
genetic yield is lower (21% to 44%) in those with a clinical “possible” diagnosis [26,40–42].
Likewise, in our cohort, the global genetic yield for genetic FH was 32%. Nonetheless, if
only those patients with probable to definite clinical FH diagnosis were sequenced, this
genetic yield would improve to 42%.

Although the diagnosis of FH could be made based on clinical findings alone, genetic
testing is of the utmost importance [10]. It has been reported that the risk for ASCVD
was higher in FH pathogenic variant carriers compared with non-carriers, at any LDLc
value [10,43]. Even small mean reductions in LDLc levels with LLT were significantly
associated with delayed CV events and prolonged survival of FH patients [44]. Moreover,
patients with FH diagnosed through DNA testing had a higher perceived efficacy of
medication (79). Thus, genetic results provide not only prognostic information and the
ability to perform personalised risk stratification [10], but also encourage intensive LLT
both for patients and physicians [10].

Most untreated FH patients can experience a CV event or death by the second decade
of life [44]. Their risk for coronary heart disease is over 50% for men by the age of 50
and at least 30% in women aged 60 years old [45,46]. However, if FH patients are treated
with LLT from an early age, their ASCVD risk could be substantially reduced [4]. What
is more, when FH is properly treated from an early age, the risk of myocardial infarction
above 55 years old could be reduced to that of the general population [4]. However, in
general, FH is not only an underdiagnosed but also an undertreated condition. According
to the CASCADE-FH registry [38], only 45% of patients were under statin treatment. In
this sense, there was a high prevalence of family history of premature ASCVD in patients
with FH genetic diagnosis from our cohort (41%). However, we found an encouraging
low prevalence of personal history of premature ASCVD (5%). We believe that this low
rate of CV events may be due to the early beginning of LLT in the population and high
rates of LLT (95%, considering one untreated woman due to pregnancy). In our cohort, the
genetic confirmation of FH was achieved at a mean age of 48 years old, similar to that in the
national CASCADE-FH registry [38]. However, most patients had already been diagnosed
with hypercholesterolemia and subsequently began LLT before the age of 30. Moreover, 79%
of our patients received >1 LLT medication. This percentage, although still improvable, is
better than those reported in other registries, such as 45% in the CASCADE-FH registry [38].
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Moreover, thanks to the availability of IPCSK9 (proprotein convertase subtilisin/kexin type
9 inhibitors), better reductions in LDLc levels are expected.

In addition, ASCVD risk reductions were found both in men and women in most
studies [4]. However, other studies about LLT in FH patients showed excess mortal-
ity in women [39,47] and suggested that women with FH may have not been properly
treated [47–49]. In this sense, it has been reported that LLT is initiated about 5 years ear-
lier in men than in women [39]. Unfortunately, LLT prescribing rates have been shown
to be lower in women than in men in the general population [50]. Women’s ASCVD
risk can be underestimated due to the misperception that they are ‘protected’ before the
menopause [51]. In general, women are less likely to be prescribed according to evidence-
based guidelines, and less aggressively treated in cardiology care for both primary and
secondary prevention [39,52]. In addition, statins are not recommended during pregnancy
and breastfeeding. In the present study, we did not find statistically significant differences
between genders for LDLc highest and last control levels. However, dyslipidaemia diagno-
sis and genetic confirmation were indeed established significantly earlier in men. Moreover,
there was a pregnant woman with high LDLc levels, whose LLT had been interrupted due
to pregnancy.

On the other hand, our study reaffirms the importance of identifying other traditional
modifiable cardiovascular risk factors in patients with FH. At least one additional modifi-
able cardiovascular risk factor was identified in 44% of the already high-risk FH patients
(Table 1). These findings are largely consistent with previous studies and reinforce the
importance of comprehensive preventive care to minimise cardiovascular risk in those with
FH [38].

Apart from this, genetic testing also enables cascade testing [10], a major opportunity
to identify relatives at high ASCVD risk, with a grade I recommendation, supported by
extensive epidemiological and cost analyses data [10]. For instance, in this cohort, thanks to
genetic results, the first-degree relatives of all FH patients can be genetically tested for the
identified LP/P variant. If any relative is a carrier of the LP/P variant, clinical follow-ups
to control LDLc levels with LLT from a young age can be scheduled, and so on with their
first-degree relatives. In summary, prevention strategies can be extended to all available
relatives with concealed high cardiovascular risk.

Increasing public and health professional awareness about FH is essential [53–55].
Current evidence suggests that early detection of FH and cascade testing meet most of
the criteria for a worthwhile screening program [55]. Primary care is a key target area
to increase identification of new index cases. For instance, child–parent screening was
feasible in primary care practices at routine child immunisation visits [56]. Moreover,
coronary care units are other settings where FH may be identified [20,55]. An interesting
meta-analysis by Beheshti et al. reported an FH prevalence that was 20-fold higher among
patients with premature ischemic heart disease, and 23-fold higher among those with
hypercholesterolemia with LDL levels ≥ 190 mg/dl [57]. As a result, we believe that
opportunistic genetic screening in high-risk populations, including patients with high
LDLc levels or presenting premature ASCVD, could be cost-effective.

5. Limitations

Gene dosage for the identification of large deletions was not routinely performed in
our patients. Deletions of multiple exons had been identified in some patients with high
LDLc values and highly penetrant familial FH, especially in the LDLR gene. Thus, our study
could have underestimated the rate of pathogenic variant carriers by not including these
rare forms of FH. If routinely performed, the genetic yield could have been even higher.

6. Conclusions

In this Spanish cohort, genetic testing identified FH in nearly one in every three
patients with clinical FH suspicion. Genetic FH diagnosis was established in their fourth
decade of life and significantly later for women. The LDLR c.2389+4A>G was one of the
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most common FH variant and its carriers had significantly worse LDLc highest recorded
levels. An autosomal recessive FH patient (homozygous carrier of the LDLRAP1 c.207delC
pathogenic variant), was also found.

Although the presence of a family history of premature ASCVD and other CV risk
factors was frequent (41% and 44%), nearly 95% of them were on statins and their personal
history premature ASCVD was extremely low. Our finding reaffirms the importance of
primary prevention strategies from a young age in all FH patients, with particular attention
paid to women with FH.
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