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Unit Cell in a Geometrical 4-D Parallelotope
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Abstract—In this work, surrogate models based on support vec-
tor regression (SVR) of a multi-resonant unit cell in a geometrical
4-D parallelotope domain are trained and used in a reflectarray
antenna design. The multiple sharp resonances of the unit cell
prevent a suitable training process in the whole orthotope defined
by the available degrees of freedom (DoF). Thus, a strategy to
improve the training process and obtain highly accurate models is
devised. It consists in defining a parallelotope around a rectangle
of stability, which is in turn defined at a lower dimensionality.
The SVR models with four geometrical DoF obtained in this
parallelotope are shown to provide highly accurate results for
the design of a large contoured-beam reflectarray for space
applications. The direct optimization with the surrogate models
allows to improve the cross-polarization performance several
dB while considerably increasing computational performance.
Furthermore, compared to lower dimensionality models, the 4-D
models offer better results when applied to wideband and dual-
band reflectarray direct optimization.

Index Terms—Machine learning, surrogate model, support
vector regression (SVR), reflectarray antenna, wideband, dual-
band, parallelotope, orthotope

I. INTRODUCTION

MACHINE learning techniques applied to solve complex
electromagnetic problems have had a lot of momentum

in the past few years [1], [2]. Although there is a wide
availability of highly accurate full-wave solvers based on
different techniques such as the method of moments (MoM)
[3], finite element method [4] or finite-difference time-domain
method [5], sometimes they are deemed too slow for design
and/or optimization tasks. In the particular case of reflectarray
antennas [6] this is specially critical since these antennas are
comprised of hundreds or even thousands of unit cells that
have to be individually analysed assuming local periodicity
(LP) [7]. Thus, achieving a high computational efficiency is
an important goal to tackle complex reflectarray designs.
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In this regard, several machine learning techniques have
been applied to model the electromagnetic response of reflec-
tarray unit cells, including neural networks [8]–[10], support
vector regression (SVR) [11], and ordinary kriging [12], [13].
The goal of using these techniques is to achieve a fast com-
putational performance compared with the use of full-wave
solvers while keeping a high degree of accuracy [1]. When
applied to the design of reflectarrays at a single frequency,
usually only one degree of freedom (DoF) per orthogonal
polarization is necessary [6]. Still, advanced optimizations
with improved cross-polarization performance may need more
DoF [14]. However, when increasing the number of DoF in
surrogate models the curse of dimensionality comes into play
[1], [15]. Nevertheless, it is feasible to at least save two DoF
by considering several surrogate models, one per angle of
incidence [15], allowing to increase the number of geometrical
DoF that are useful to perform optimizations.

In this work, we show the results of surrogate models of a
multi-resonant reflectarray unit cell with several geometrical
DoF per polarization [16]. Two geometrical DoF per linear
polarization are considered as input variables to each of the
SVR models that are trained per angle of incidence using the
LIBSVM tool [17]. Due to the sharp resonances introduced
by the unit cell, the training process in an orthotope1 defined
by the available DoF, with a physical range close to the cell
periodicity, is unsuitable. Thus, a novel strategy to overcome
this limitation is proposed. We initially consider a rectangu-
lar 2-D domain of stability where the sharp resonances are
avoided. Then, we carry out the surrogate model training in
a 4-D domain that consists of a parallelotope containing the
stability rectangle. The number of training samples and size
of the parallelotope are selected so the predicted reflection
coefficients show a high degree of accuracy. Finally, the 4-D
SVR surrogate models are employed in the design, analysis,
and optimization of a very large contoured beam reflectarray
antenna for space applications, showing a considerable im-
provement in the computational performance while keeping a
high degree of accuracy with regard to the MoM-LP tool used
as reference. Moreover, thanks to the extra DoF, improved
results are obtained in wideband and dual-band direct reflectar-
ray optimizations in both in-band copolar gain and polarization
purity when compared to using lower dimensional models.

1An orthotope is the generalization of the rectangle in 𝑁 dimensions, while
a parallelotope is the generalization in 𝑁 dimensions of a parallelepiped [18].
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Some preliminary results were already presented in [19].
Here, new insights into the characteristics of the parallel-
otope domain, a generalization of the domain formulation
and generation procedure to any reflectarray unit cell, error
analysis studies in the training domain, comparison with lower
dimensionality models showing the superiority of the proposed
training methodology, and new examples of the application of
the high dimensionality models are provided.

II. SURROGATE MODELLING BASED ON SVR
SVR is based on the application of support vector machines

(SVM) [20] to a regression problem. To that end, the training
procedure employs a set of 𝑁 inputs (®𝑥𝑖 ∈ 𝜒 ⊆ R𝐿) and
outputs (𝜌𝑖 ∈ R, corresponding to the real or imaginary part
of a reflection coefficient of the reflectarray unit cell), denoted
as 𝑇 = {®𝑥𝑖 , 𝜌𝑖}𝑖=1,2,...,𝑁 . The SVR training provides model
functions, noted in general as 𝑓 , that allow to estimate new
values of the reflection coefficients for inputs that were not
considered in the training process. The number of those re-
gression functions depends on the strategy used. For instance,
in this work we use ten of those functions for each angle of
incidence and frequency. The real and imaginary parts of each
complex coefficient are modelled separately and, due to the
achieved precision, the magnitude of the copolar coefficients
yields also two extra models. This function takes the form:

𝑓 (®𝑥) = 𝑏 +
𝑁𝑠∑︁
𝑛=1

𝛼𝑛𝐾 (®𝑥𝑛, ®𝑥) , (1)

where ®𝑥 ∈ 𝜒 is the new input; 𝑏 is the offset; 𝑁𝑠 is the number
of support vectors; 𝛼𝑛 = 𝛼−

𝑛 − 𝛼+𝑛 are the differences of the
optimal Lagrange multipliers; 𝐾 is the kernel function; and
®𝑥𝑛 are the support vectors. For this work, the Gaussian kernel
function is employed:

𝐾 (®𝑥, ®𝑥′) = exp
(
−𝛾∥®𝑥 − ®𝑥′∥2

)
, (2)

where 𝛾 is a tunable parameter and ∥ · ∥ is the Euclidean norm.
The library LibSVM [17] is employed to carry out the

training and obtain 𝑏, 𝑁𝑠 , 𝛼𝑛 and ®𝑥𝑛 that are necessary
to evaluate (1). LibSVM finds these parameters after the
minimization of a regularized risk functional that factors in
the empirical errors weighted by a tunable parameter 𝐶 and
the flatness of function 𝑓 (which is related to the generalization
properties of the SVR model [20]). In addition, the empirical
errors are accounted for by means of the 𝜖-insensitive loss
function, which does not consider the regression errors below
a given 𝜖 ≥ 0. Thus, each SVR model is tuned by parameters
𝛾, 𝐶 and 𝜖 .

In the present work, parameters 𝛾 and 𝐶 for each SVR
model are obtained through a process of cross-validation. To
that end, set 𝑇 is divided into three disjoint subsets with 𝑁𝑟

samples for training, 𝑁𝑣 samples for validation and 𝑁𝑡 samples
for testing, such that 𝑁 = 𝑁𝑟 + 𝑁𝑣 + 𝑁𝑡 . A grid search in
the (𝛾, 𝐶) plane is performed to find the optimal values. For
each point in the (𝛾, 𝐶) plane, the cross-validation procedure
uses the training set to train the model and the validation set
to obtain the model error. The best model obtained in this
way is ultimately evaluated with the test set, giving the error
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Fig. 1. Sketch of the unit cell employed in this work, with several parallel
and coplanar dipoles that provide several degrees of freedom to employ in
reflectarray optimization.

of the final selected model. For this process, the following
logarithmic relative error in dB is employed:

RE = 20 log
( ∥ ®𝑒∥
∥ ®𝜌∥

)
, (3)

where ®𝜌 = (𝜌1, 𝜌2, . . . , 𝜌𝑀 ) is a vector of 𝑀 samples of
actual outputs, and ®𝑒 = (𝑒1, 𝑒2, . . . , 𝑒𝑀 ) with 𝑒𝑖 = 𝜌𝑖 −
𝑓 (®𝑥𝑖), 𝑖 = 1, 2, . . . , 𝑀 is a vector of the difference between
the predicted output and the actual output, where 𝑓 is defined
in (1). Moreover, parameter 𝜖 is dynamically adjusted for each
surrogate model depending on the value of the actual outputs
as [11]:

𝜖 =

√︂
3
𝑁𝑟
𝜎RE∥ ®𝜌∥, (4)

where 𝜎RE is the standard deviation of the relative error in
linear scale:

𝜎RE =

√︄
E

{ ∥ ®𝑒∥2

∥ ®𝜌∥2

}
(5)

being E{·} the notation for the expected value. 𝜎RE corre-
sponds to the desired error achievable in the asymptotic case
(𝑁𝑟 → ∞).

Further details on the SVM background, the grid search on
the (𝛾, 𝐶) plane, and the derivation of the expression for 𝜖 in
(4) may be consulted in [11].

III. DEFINITION OF A 4-D PARALLELOTOPE-SHAPED
TRAINING REGION

In this Section, a methodology for the definition of a 4-D
parallelotope-shaped training region is provided. Although the
methodology is general, it is detailed with a specific unit cell
and subsequently shown how it is applied to other reflectarray
elements that offer enough DoF.
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A. Unit Cell and Reflectarray Specifications

In this work, the unit cell of Fig. 1 is employed. It consists
of four parallel and coplanar dipoles per linear polarization
in two layers of metallization. As reference analysis tool, the
MoM-LP described in [21] is employed. It will provide the
electromagnetic response of the unit cell in the form of four
complex reflection coefficients that will be used as outputs in
the process of obtaining the SVR models. As inputs, some
of the dipole lengths will be employed, keeping constant
the rest of the parameters of the unit cell (substrate, dipole
widths, etc.). The results shown in the following sections
were obtained employing a substrate with ℎ𝐴 = 2.363 mm of
thickness, Y𝑟𝐴 = 2.55 and tan 𝛿𝐴 = 0.0009 for the bottom layer,
and a substrate with ℎ𝐵 = 1.5 mm of thickness, Y𝑟𝐵 = 2.17 and
tan 𝛿𝐵 = 0.0009 for the top layer (see Fig. 1). In addition, the
width of the dipoles is 0.5 mm and the separation centre to
centre between parallel dipoles is 3.9 mm.

For the practical application of the SVR models, a large
reflectarray is considered, comprised of 7052 elements in a
regular grid of 86 × 82 elements and with a feed placed
at (−358, 0, 1070) mm with regard to the reflectarray center,
generating an average edge illumination taper of −18.5 dB.
The antenna is placed on a satellite in geostationary orbit
with a footprint providing European coverage, defined by
the French national space agency CNES [22]. The results
shown in Sections III, IV, and V were obtained at 11.85 GHz,
while multiple frequencies are considered in the direct layout
optimizations of Section VI.

B. Degrees of Freedom of the Unit Cell

The dipoles of the unit cell provide a number of resonances
that allow to obtain a considerable phase-shift for reflectarray
design [3]. However, the relative and absolute lengths of
the dipoles, as well as the periodicity, have to be carefully
adjusted to avoid sharp resonances, which eventually yield
direct coefficients losses, while providing a smooth variation
of the phase response [16]. In addition, the appearance of sharp
resonances in the SVR training domain may also hamper the
training process [23] and eventually increase the error on the
surrogate models. Consequently, it is convenient to circumvent
sharp resonances as much as possible.

To that end, we start by reducing the eight DoF provided
by the lengths of the dipoles to two, named 𝑇𝑥 and 𝑇𝑦 , by
establishing scaling parameters between parallel dipoles. The
rationale behind this strategy is to have only one variable
per linear polarization (𝑇𝑥 for polarization 𝑋 and 𝑇𝑦 for
polarization 𝑌 ) such that it is easy to prevent resonances in a
subset of the (𝑇𝑥 , 𝑇𝑦) plane by tuning the scaling parameters.
The relation of 𝑇𝑥 and 𝑇𝑦 with the dipole lengths of Fig. 1 is:

𝐿𝑎1 = 𝛼𝑎1𝑇𝑦 ; 𝐿𝑎2 = 𝛼𝑎2𝑇𝑦 ; 𝐿𝑎3 = 𝛼𝑎3𝑇𝑦 ; 𝐿𝑎4 = 𝛼𝑎4𝑇𝑥

𝐿𝑏1 = 𝛼𝑏1𝑇𝑥 ; 𝐿𝑏2 = 𝛼𝑏2𝑇𝑥 ; 𝐿𝑏3 = 𝛼𝑏3𝑇𝑥 ; 𝐿𝑏4 = 𝛼𝑏4𝑇𝑦 .
(6)

The value of parameters 𝛼𝑎𝑖 and 𝛼𝑏𝑖 , 𝑖 = 1, 2, 3, 4, must be
chosen such that a smooth and large enough variation of the
phase-shift is obtained, while sharp resonances are avoided
as much as possible. In this respect, we have followed the
parametrization suggested in [16], which is summarized next.
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Fig. 2. Magnitude of the (a) direct coefficient 𝜌𝑦𝑦 and (b) cross-coefficient
𝜌𝑦𝑥 in the (𝑇𝑥 , 𝑇𝑦 ) plane for oblique incidence with (\ = 29°, 𝜑 = 35°) ,
a periodicity 𝑝𝑥 = 𝑝𝑦 = 14 mm, and 𝛼𝑎1 = 𝛼𝑎3 = 0.58, 𝛼𝑎2 = 𝛼𝑎4 = 1,
𝛼𝑏1 = 𝛼𝑏3 = 0.63, 𝛼𝑏2 = 0.93, 𝛼𝑏4 = 0.95.

In the first place, preserving the symmetry of the lateral
dipoles, by considering 𝛼𝑎1 = 𝛼𝑎3 and 𝛼𝑏1 = 𝛼𝑏3 , considerably
reduces the cross-polarization of the unit cell. In the second
place, a smooth phase response with a sufficiently large range
is achieved when using 𝛼𝑎1 = 𝛼𝑎3 = 0.58;𝛼𝑎2 = 𝛼𝑎4 = 1, 𝛼𝑏1 =
𝛼𝑏3 = 0.63, 𝛼𝑏2 = 0.93;𝛼𝑏4 = 0.95. Moreover, the periodicity
of the unit cell, 𝑝𝑥 and 𝑝𝑦 , as well as the maximum value that
𝑇𝑥 and 𝑇𝑦 take must be studied to avoid sharp resonances in
the electromagnetic response of the unit cell.

Fig. 2 shows an example for a unit cell with periodicity
𝑝𝑥 = 𝑝𝑦 = 14 mm. It plots the magnitude of two reflection
coefficients, 𝜌𝑦𝑦 and 𝜌𝑦𝑥 , with 𝑇𝑥 , 𝑇𝑦 ∈ [0.1, 13.3] mm to
avoid overlap between orthogonal dipoles. For high values
of 𝑇𝑥 and 𝑇𝑦 a sharp resonance appears, which transfers
energy from the direct coefficient to the cross-coefficient [24].
These resonances can be avoided by restricting the range of
𝑇𝑥 and 𝑇𝑦 as well as by reducing the periodicity. In this
paper, we use the range [4, 10] mm for both 𝑇𝑥 and 𝑇𝑦 . This
rectangular domain associated to the geometrical features 𝐿𝑎2

and 𝐿𝑎4 defines (in addition to the selected values of the other
parameters 𝛼𝑎𝑖 and 𝛼𝑏𝑖 , 𝑖 = 1, 2, 3, 4) a stability region, or a
rectangle of stability, where the sharp resonances are avoided.
In addition, the previously-described procedure to find the
rectangle of stability is robust since it depends on several
parameters (scaling factors, periodicity and range of 𝑇𝑥 and
𝑇𝑦) that offer enough flexibility to establish a good enough
stability region.

The use of variables 𝑇𝑥 and 𝑇𝑦 is enough for designs of dual-
polarized reflectarray antennas at a single frequency. However,
it is desirable to extend the model to include more geometrical
DoF in order to perform advanced reflectarray optimizations
[14]. To extend the model to four dimensions, we define the
4-D space (𝑇𝑥1 , 𝑇𝑥2 , 𝑇𝑦1 , 𝑇𝑦2 ), whose variables are related to
the dipole lengths of Fig. 1 as follows:

𝐿𝑎1 = 𝛼
′
𝑎1𝑇𝑦1 ; 𝐿𝑎2 = 𝛼

′
𝑎2𝑇𝑦2 ; 𝐿𝑎3 = 𝛼

′
𝑎3𝑇𝑦1 ; 𝐿𝑎4 = 𝛼

′
𝑎4𝑇𝑥2

𝐿𝑏1 = 𝛼
′
𝑏1
𝑇𝑥1 ; 𝐿𝑏2 = 𝛼

′
𝑏2
𝑇𝑥2 ; 𝐿𝑏3 = 𝛼

′
𝑏3
𝑇𝑥1 ; 𝐿𝑏4 = 𝛼

′
𝑏4
𝑇𝑦2 .

(7)

As in the 2-D case, the variation of the geometrical variables
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is restricted to a certain interval. While in the 2-D case this
region was a rectangle, in the 4-D case is an orthotope.
If we use the same range of variation for the geometrical
features in 4-D than in 2-D, we obtain an orthotope that is
the fittest one containing the stability rectangle (represented
in green color in Fig. 3). The orthogonal projections of this
orthotope over the subspaces (𝑇𝑥1 , 𝑇𝑥2 ) and (𝑇𝑦1 , 𝑇𝑦2 ) are
rectangles that are depicted, with blue color, in Fig. 3(a) and
Fig. 3(b), respectively. Assuming that we use the same number
of samples for training the SVR in both domains (the 2-D
stability rectangle and the fittest 4-D orthotope), the accuracy
of the obtained 4-D models is quite low compared to that of the
2-D models. To overcome this lack of accuracy, it is necessary
to dramatically increase the number of training samples, which
in turn substantially increases the training time, making this
approach unappealing.

This is illustrated in Fig. 4, which represents the relative
error (in dB) on the real part of the estimated direct coefficient
𝜌𝑥𝑥 , when compared to MoM’s, at the stability rectangle for
oblique incidence with (\ = 29°, 𝜑 = 35°) and a periodicity
𝑝𝑥 = 𝑝𝑦 = 12 mm. Fig. 4(a) shows the SVR error when
the training domain is the 2-D stability rectangle, which is
below −30 dB for most of the considered points. Meanwhile,
Fig. 4(b) plots the error when the training domain is the 4-D
fitted orthotope, which is close to 0 dB for a non-negligible
number of considered points. The mean error over all the data
plotted in Fig. 4(a) is −37.2 dB, while this error is −16.5 dB
for Fig. 4(b). Similar errors are obtained for other coefficients
and angles of incidence.

To increase the accuracy of the 4-D SVR without increasing
the number of training points, we suggest performing the
training in a parallelotope around the rectangle of stability
in the (𝑇𝑥 , 𝑇𝑦) space defined by (6). To that end, we define
the parallelotope faces in 4-D by variables (𝑇𝑥2 , 𝑇𝑦2 ,Δ𝑥 ,Δ𝑦)
with the following relations:

𝑇𝑥1 = 𝛼𝑏1𝑇𝑥2 ± Δ𝑥

𝑇𝑦1 = 𝛼𝑎1𝑇𝑦2 ± Δ𝑦

(8)

and:
𝛼′𝑎1 = 𝛼

′
𝑎3 = 1 ; 𝛼′𝑎2 = 𝛼𝑎2 ; 𝛼′𝑎4 = 𝛼𝑎4

𝛼′𝑏1
= 𝛼′𝑏3

= 1 ; 𝛼′𝑏2
= 𝛼𝑏2 ; 𝛼′𝑏4

= 𝛼𝑏4

(9)

The two new variables Δ𝑥 and Δ𝑦 define, respectively, the
size of the parallelotope in the 𝑇𝑥1 and 𝑇𝑦1 dimensions. In this
way, Δ𝑥 and Δ𝑦 allow to control how far from the rectangle of
stability the models are trained. Please note that when Δ𝑥 =
Δ𝑦 = 0 the model is reduced to the 2-D case of (6), with
𝑇𝑥2 = 𝑇𝑥 , 𝑇𝑦2 = 𝑇𝑦 , 𝛼𝑎1 = 𝛼𝑎3 and 𝛼𝑏1 = 𝛼𝑏3 , preserving the
symmetry of the lateral dipoles. Fig. 3 shows a representation
of different projections of the 4-D parallelotope in 2-D and
3-D subspaces, illustrating, in green color, the rectangle of
stability as well.

C. Application to Other Unit Cells

Although the parallelotope has been described for the unit
cell shown in Fig. 1, the methodology is general and can be
applied to other unit cells that provide several DoF. Indeed, the

(a) (b)

(c)

}

(d)

Fig. 3. Low-dimensionality illustration of the region where the SVR models
are trained depending on the variables from (7) (in blue) and (8) (in
gray). (a) Parallelogram (rectangle) yielded by the orthogonal projection of
the parallelotope (orthotope) SVR domain over the (𝑇𝑥1 , 𝑇𝑥2 ) subspace.
(b) Parallelogram (rectangle) produced by the orthogonal projection of the
parallelotope (orthotope) SVR domain over the (𝑇𝑦1 , 𝑇𝑦2 ) subspace. (c) Par-
allelepiped yielded by the orthogonal projection of the parallelotope SVR
domain over the (𝑇𝑥1 , 𝑇𝑥2 , 𝑇𝑦2 ) subspace. (d) Parallelepiped that results from
the cut of the parallelotope SVR domain along the hyperplane 𝑇𝑦2 = 𝑇 . For
the sake of clarity, only the orthogonal projections of the fittest orthotope
are depicted (beneath the parallelotope projections). In all cases, the stability
region is plotted in green.

definition of the parallelotope in (8) depends on four variables,
𝑇𝑥2 , 𝑇𝑦2 , Δ𝑥 and Δ𝑦 , from which 𝑇𝑥1 , 𝑇𝑦1 are obtained. As long
as a unit cell is able to provide at least four DoF, the same
method can be followed to define a 4-D parallelotope where
the SVR models may be trained.

As an example, consider a unit cell that comprises two
stacked rectangular patches of variable size backed by a
ground plane [25]. This unit cell provides a total of four DoF,
the width and length of the two rectangular patches, which
can be denoted as 𝑇𝑥1 , 𝑇𝑦1 , 𝑇𝑥2 and 𝑇𝑦2 . First, the rectangle
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Fig. 4. Relative error in dB of the real part of the estimated direct coefficient
𝜌𝑥𝑥 at the stability rectangle for oblique incidence with (\ = 29°, 𝜑 = 35°)
and a periodicity 𝑝𝑥 = 𝑝𝑦 = 12 mm when the SVR is trained using 2500
random samples placed at (a) the stability rectangle and (b) the most fitted
orthotope containing the stability rectangle.

of stability in a plane (𝑇𝑥 , 𝑇𝑦) is obtained by finding two
suitable scaling factors, 𝛼𝑥 and 𝛼𝑦 such that 𝑇𝑥 = 𝑇𝑥1 = 𝛼𝑥𝑇𝑥2

and 𝑇𝑦 = 𝑇𝑦1 = 𝛼𝑦𝑇𝑦2 . Then, the parallelotope is defined by
considering two new variables, Δ𝑥 and Δ𝑦 and using (8). In
this way, a geometrical 4-D parallelotope has been defined for
a different unit cell by following the same procedure described
above.

IV. ERROR ANALYSIS IN THE TRAINING DOMAIN

A. Error Versus the Size of the Parallelotope

Once the parallelotope region has been defined in (8), it is
interesting to analyse how the error of the surrogate models
varies with the size of such region. The rectangle of stability
is defined for:

Δ𝑥 = Δ𝑦 = 0, (10)

and:

𝛼𝑎1 = 𝛼𝑎3 = 0.58 ; 𝛼𝑎2 = 𝛼𝑎4 = 1
𝛼𝑏1 = 𝛼𝑏3 = 0.63 ; 𝛼𝑏2 = 0.93 ; 𝛼𝑏4 = 0.95,

(11)

in (6). Thus, we will analyse the error when the range of Δ𝑥

and Δ𝑦 varies. Specifically, we consider the range Δ𝑥 ,Δ𝑦 ∈
[0,Δ], with Δ = 0, 0.25, . . . , 2 mm and 𝑇𝑥2 , 𝑇𝑦2 ∈ [4, 10] mm.

To analyse the error, the models will be trained using as
input variables 𝑇𝑥2 , 𝑇𝑦2 , Δ𝑥 , Δ𝑦 as defined in (7), (8), (9) and
(11) in the ranges specified above. In addition, the training
process consists in an efficient grid search in the plane defined
by the SVR parameters based on cross-validation [11]. To
that end, a total of 𝑁 = 2500 samples in a random grid are
considered, divided into three disjoint sets: 𝑁𝑟 = 1750 for
training, 𝑁𝑣 = 375 for validation and 𝑁𝑡 = 375 for test. The
samples were obtained employing an in-house MoM-LP based
on the formulation of [21]. More details on the training process
may be found in [11]. Moreover, models are generated for
152 different angles of incidence (discretization #19 from [26,
Table 2]), since the angles of incidence are not considered as
input variables to the model. Thus, a total of 380 000 samples
were generated to train all SVR models (ten per angle of
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Fig. 5. Relative test error vs. the size of the parallelotope, with Δ𝑥 , Δ𝑦 ∈
[0, Δ] and 𝑇𝑥2 , 𝑇𝑦2 ∈ [4, 10] mm. The total average error also includes the
error of the magnitude of the direct coefficients.

incidence). An average time of 6 ms is needed to generate
each sample in parallel mode in a workstation with two Intel
Xeon E5-2650v3 CPU at 2.3 GHz. Thus, less than 40 min were
required to obtain all samples.

Fig. 5 shows the evolution of the error with the size of
the parallelotope. In particular, it shows the average test error
(i.e., the error over the test set) across all considered angles of
incidence for the magnitude of the direct reflection coefficients
(|𝜌𝑥𝑥 | and |𝜌𝑦𝑦 |) as well as for the real and imaginary part of
all coefficients. It shows an average increase in the test error
as the range of the offset variables, Δ𝑥 and Δ𝑦 , increases.
As a reference, the total average error for Δ = 0.25 mm is
−36 dB, while for Δ = 2 mm is −12 dB, taking into account
all reflection coefficients.

Fig. 6 shows the simulation of the real part of cross-
coefficient 𝜌𝑦𝑥 , for oblique incidence (\ = 29°, 𝜑 = 35°),
using the MoM-LP tool and the SVR models trained for
three different parallelotope sizes (those corresponding to
Δ = 0.5, 1, 2 mm). It can be seen how, as the size of the
parallelotope increases, part of a resonance is included in
the training area. In addition, this resonance is smoothed
out by the response predicted by the SVR, partly account-
ing for the increase in the error shown in Fig. 5. Similar
results were obtained for other coefficients and cuts of the
4-D parallelotope. From inspecting Fig. 6, it seems that the
analysed coefficient is almost independent of 𝑇𝑦1 , at least in
the resonance-free region. Nevertheless, there is, in fact, a
clear dependence on variable 𝑇𝑦1 that is illustrated in Fig. 7.
Fig. 7(a) plots the MoM simulation of the real part of 𝜌𝑦𝑥 ,
for oblique incidence (\ = 29°, 𝜑 = 35°), over the stability
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Fig. 6. Simulation of the real part of 𝜌𝑦𝑥 for oblique incidence (\ = 29°, 𝜑 =
35°) using (a) the MoM-LP tool, and SVR models for different parallelotope
sizes with (b) Δ = 0.5 mm, (c) Δ = 1 mm, and (d) Δ = 2 mm in the plane
(𝑇𝑦2 , 𝑇𝑦1 ) for 𝑇𝑥1 = 3.9 mm and 𝑇𝑥2 = 7.1 mm. The projection of the
different parallelotopes is plotted in the top left subfigure for Δ = 0.5 mm
(solid), Δ = 1 mm (dashed) and Δ = 2 mm (dotted).

rectangle. Fig. 7(b) depicts the relative difference between the
coefficient in Fig. 7(a) and the same one simulated over a
rectangle that differs from the stability one just on the relation
between 𝑇𝑦1 and 𝑇𝑦2 that is 𝑇𝑦1 = 0.7467𝑇𝑦2 − 1.1667 (instead
of 𝑇𝑦1 = 0.58𝑇𝑦2 ). Note that this rectangle is contained in
the smallest parallelotope considered in Fig. 6 (Δ = 0.5 mm).
Fig. 7(b) shows remarkable relative differences at some areas
of the rectangle (𝑇𝑥2 , 𝑇𝑦2 ) just by varying 𝑇𝑦1 .

Based on these results and for comparison purposes, we
will select two different 4-D SVR sets of models with a
moderately low error for reflectarray analysis and design.
The first set, denoted from here on as SVR #1, corresponds
to the parallelotope defined by 𝑇𝑥2 , 𝑇𝑦2 ∈ [4, 10] mm and
Δ = 0.5 mm. These ranges provide an average test error
across all models for all reflection coefficients and angles of
incidence of −31 dB and a mean training time of 78 s per
model following the efficient procedure described in [11]. The
second set of models corresponds to Δ = 1 mm (denoted
as SVR #2) to test a larger parallelotope, obtaining a mean
relative error of −26 dB with a mean training time of 94 s per
model. In addition, a 2-D SVR model (Δ = 0 mm) will also
be used for comparison purposes when the 4-D SVR models
are employed in both a wideband and dual-band reflectarray
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Fig. 7. MoM simulations of the (a) real part of 𝜌𝑦𝑥 , for oblique inci-
dence (\ = 29°, 𝜑 = 35°) , over the stability rectangle and (b) relative
difference between the studied coefficient in the stability rectangle and in
a rectangle, contained in the parallelotope with size Δ = 0.5 mm, defined by
𝑇𝑦1 = 0.7467𝑇𝑦2 − 1.1667 and 𝑇𝑥1 = 0.63𝑇𝑥2 .

direct optimization.

B. Error Versus the Number of Training Samples

The relative error shown in Fig. 5 was obtained for a
fixed number of training samples, 𝑁𝑟 = 1750. This number
was chosen a posteriori to guarantee a low error of the
SVR models. Fig. 8(a) shows the evolution of the average
relative test error for all reflection coefficients and angles of
incidence for three different sizes of the pallelotope when
the number of training samples is varied. As can be seen,
as the number of training samples is increased, the average
test error decreases, albeit at a slower pace as 𝑁𝑟 increases.
However, as shown in Fig. 8(b), the average training time per
model (using serial processing) shows a meaningful increase
with 𝑁𝑟 . Thus, there exists a trade-off between the average
test error and training time: low errors are achieved at the
expense of longer training times and more training samples
with diminishing returns. Nevertheless, the training of SVR
models can be easily parallelized for each reflection coefficient
and angle of incidence, taking advantage of modern multi-
processor computers.

In addition, the relative error for the 2-D SVR stagnates
early, and the improvement of the error for 𝑁𝑟 > 750 is
negligible. However, this is not the case for the 4-D SVR,
whose error has not yet significantly stagnated and could
be further reduced by increasing 𝑁𝑟 . However, in order to
perform a fair comparison between the 2-D and 4-D models,
the same number of training samples per angle of incidence
will be selected. Furthermore, in order to also guarantee a
low test relative error without further increasing the training
time, 𝑁𝑟 = 1750 is selected for subsequent Sections, since it
guarantees a low error in both 2-D and 4-D SVR models.

Finally, the computing time shown in Fig. 8(b) does not
include the time taken to obtain the training samples (see Sec-
tion IV-A), which was less than 40 min. However, obtaining
the training samples is very efficient with an in-house MoM-
LP [21] and it is also a highly parallelizable task.
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Fig. 8. (a) Average relative test error of the SVR models (Δ = 0, 0.5, 1 mm)
and (b) average training time per model versus the number of training samples
𝑁𝑟 per angle of incidence.

V. ACCURACY OF THE MODELS FOR LAYOUT DESIGN AND
REFLECTARRAY ANALYSIS

In the case of reflectarray design, an accurate prediction of
the phase-shift produced by the direct coefficients is important
since it is used to obtain the layout [27]. In this regard, Fig. 9
shows a comparison of the phase and magnitude between
MoM-LP simulations and the prediction of the SVR models
for the direct coefficient 𝜌𝑥𝑥 and the cross-coefficient 𝜌𝑥𝑦 for
oblique incidence (\ = 35°, 𝜑 = 25°). As can be seen, both
SVR models show a high degree of accuracy in both phase and
magnitude. In particular, the accuracy in the prediction of the
phase-shift allows to perform a dual-linear polarized design by
following the procedure detailed in [27] with a mean absolute
deviation (MAD) in the obtained layout of only 0.11% for the
SVR #1, and a MAD of 0.23% in the case of using the SVR
#2. The high accuracy in the layout design can be better seen
in Fig. 10, which shows the relative error, for each reflectarray
element, of the dipole length 𝐿𝑎2 for linear polarization Y with
regard to the design carried out with the MoM-LP tool.

In addition, the use of surrogate models accelerate the
process of layout design more than two orders of magnitude.
While the use of MoM-LP for this task took 2062 seconds
using a computer with an Intel i9-9900 at 3.1 GHz, using the
SVRs took less than 12 seconds. When a single analysis of
the reflectarray is considered, the MoM-LP took an average
time of 62 seconds, while the SVR-based analyses took less
than 40 milliseconds, giving an acceleration factor larger than
three orders of magnitude. In all cases, computations are
parallelized, processing one reflectarray element per available
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Fig. 9. Comparison of the MoM-LP and SVR simulations of the reflection
coefficients (a) 𝜌𝑥𝑥 and (b) 𝜌𝑥𝑦 in phase and magnitude for oblique incidence
(\ = 35°, 𝜑 = 25°) . Results on the stability rectangle.

thread with OpenMP [28].
When the layout is simulated by the different tools, the

radiation pattern shown in Fig. 11 is obtained. As can be
seen, both the copolar pattern and the crosspolar discrimination
(XPD) show a high degree of accuracy between the different
simulation tools. The small discrepancies in the case of the
XPD are produced in areas where the crosspolar pattern
presents values 40 dB or more lower than the peak copolar
gain. Since the accuracy of the SVR models in the prediction
of the reflection coefficients and copolar component of the
radiation pattern is very high, these small differences in the
XPD are partly attributed to the discretization of the angles of
incidence [26].

Table I summarizes the results concerning the main fig-
ures of merit in the coverage zone. CPmin is the minimum
copolar gain, given in dBi; while XPDmin and XPI are the
minimum crosspolar discrimination and crosspolar isolation,
respectively, and are given in dB. The values of these figures of
merit are predicted with a very high degree of accuracy by both
SVR models. It is noteworthy that, for the case of the cross-
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Fig. 10. For the reflectarray layout design, relative error of the dipole length
𝐿𝑎2 for linear polarization Y and for each reflectarray element with regard
to the design carried out with MoM-LP when employing the (a) SVR #1 and
(b) SVR #2.

polarization figures of merit, the largest discrepancy is smaller
than 0.4 dB, produced for the XPI in polarization X. These
results show the high degree of accuracy achieved with the
surrogate models by following the proposed training strategy.

It is worth mentioning that other works comparing 2-D SVR
models with MoM-LP have shown a similar degree of accuracy
in the prediction of the radiation patterns as the 4-D SVR
models presented here [27].

VI. DIRECT LAYOUT OPTIMIZATION FOR
CROSS-POLARIZATION PERFORMANCE IMPROVEMENT

A. Single Frequency Optimization

The main goal of increasing the dimensionality of surrogate
models with geometrical features of the unit cell is to use these
extra DoF in optimization. Here, a direct layout optimization at
a single frequency, 11.85 GHz, will be carried out to improve
the cross-polarization figures of merit XPDmin and XPI while
keeping CPmin as high as possible. The optimization will be
done in dual-linear polarization. For this task, the generalized
intersection approach (GIA) [29] for reflectarray antennas [27]
is employed. The starting point for this optimization is the
reflectarray layout designed with the SVR #1. Since to obtain
this layout only variables 𝑇𝑥 and 𝑇𝑦 from (6) are employed,
the starting value of Δ𝑥 and Δ𝑦 is zero. The optimization will
consider four optimizing variables per reflectarray element,
𝑇𝑥2 , 𝑇𝑦2 , Δ𝑥 and Δ𝑦 . In addition, the optimization must
consider the different range of each variable for which the
SVR models were trained.

The GIA is run for eight iterations with SVR #1, after which
the cross-polarization figures of merit are close to 40 dB,
which was the goal set. Table II shows the results of the
radiation pattern figures of merit. Both the initial and opti-
mized layout were obtained with the SVR #1. The simulations
using the MoM-LP tool with the real angles of incidence
are considered the reference. They show an improvement of
more than 5 dB of the cross-polarization figures of merit over
the initial layout, while maintaining the gain in the coverage
area. When compared to the SVR-based simulation, there
is a discrepancy of around 1.5 dB for the cross-polarization
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Fig. 11. Comparison of the simulations with MoM-LP, SVR #1 and SVR #2
for the (a) copolar pattern and (b) crosspolar discrimination for polarization X
of a reflectarray with European coverage using a layout obtained with SVR #1.

Table I
FIGURES OF MERIT OF A EUROPEAN COVERAGE PATTERN WHEN THE

ANALYSIS IS CARRIED OUT USING DIFFERENT TOOLS. CPMIN IS IN DBI
AND XPDMIN AND XPI ARE IN DB.

Polarization X Polarization Y

Tool CPmin XPDmin XPI CPmin XPDmin XPI

MoM-LP 30.03 32.91 32.86 30.00 32.88 32.82
SVR #1 30.03 32.75 32.53 30.02 32.86 32.82
SVR #2 30.02 32.85 32.64 29.97 32.66 32.61

parameters for both linear polarizations. These differences are
partly attributed to small inaccuracies in the SVR model that,
along with the very low value of the crosspolar pattern after
the optimization procedure, cause larger differences than in the
non-optimized layout, as shown in Table I. When the MoM-LP
simulation is carried out with the same angular discretization
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Table II
FIGURES OF MERIT OF A EUROPEAN COVERAGE PATTERN AFTER THE GIA OPTIMIZATION ALGORITHM IS RUN FOR EIGHT ITERATIONS TO PERFORM A

DIRECT LAYOUT OPTIMIZATION TO IMPROVE CROSS-POLARIZATION PERFORMANCE. CPMIN IS IN DBI AND XPDMIN AND XPI ARE IN DB.

Layout Analysis Tool θ,φ
Polarization X Polarization Y

CPmin XPDmin XPI CPmin XPDmin XPI

Initial MoM-LP Real 30.03 32.91 32.86 30.00 32.88 32.82
Optimized MoM-LP Real 30.04 38.35 38.18 30.01 38.31 38.27
Optimized MoM-LP Discretized 30.05 38.70 38.57 30.00 38.83 38.61
Optimized SVR Discretized 30.06 39.96 39.76 30.01 39.82 39.54
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Fig. 12. Comparison of the simulations with MoM-LP and SVR #1 of the
XPD for the optimized layout.

used in the SVR models, differences are smaller. Fig. 12 shows
the comparison of the simulations with MoM-LP and SVR #1
of the XPD for the optimized layout. The achieved accuracy
in the contour lines is comparable to that shown in Fig. 11(b).
Similar results were obtained with SVR #2.

B. Multi-Frequency Optimization

To assess the improvement of the 4-D SVR over previous
works that employ a 2-D SVR [23], two more optimizations
in dual-linear polarization were done. First, a single wideband
optimization in the range 10.95 GHz–12.75 GHz (15.2% rela-
tive bandwidth) is carried out. This band is divided into five
equispaced frequencies at which the optimization is performed.
In addition, the feed generates an average illumination taper
that varies between −14.8 dB and −25.3 dB in the whole band.
Second, a dual-band optimization for a transmit-receive reflec-
tarray is carried out. The transmit band comprises the range
11.70 GHz–12.20 GHz, while the receive band comprises the
range 13.75 GHz–14.25 GHz. Furthermore, the feed generates
an average illumination taper of −19.4 dB in the transmit band,
and of −26.2 dB in the receive band.

For both optimizations, two different SVR are considered.
On the one hand, a 2-D SVR is employed. This SVR model is

obtained by simply considering a parallelotope with Δ = 0 mm,
since in this case Δ𝑥 = Δ𝑦 = 0 and the domain is reduced to
the rectangle of stability. On the other hand, for the 4-D SVR
we use SVR #1 (Δ = 0.5 mm). The starting layout for both
multi-frequency optimizations is the layout that radiates the
European coverage obtained with SVR #1 in Section V. The
goal is to achieve a minimum copolar gain of 28 dBi [22] and
maximize the cross-polarization performance.

Tables III and IV show the results for the single wideband
and dual-band optimizations, respectively. For each frequency,
the worst result between both linear polarizations is shown.
Although the optimizations were carried out with the SVR
models, the results shown in both Tables were obtained after
simulating the final optimized layouts with a MoM-LP. Since
the initial layout was obtained at 11.85 GHz, its performance
at frequencies close to the design one is relatively good.
However, performance quickly deteriorates as the frequency is
shifted away from 11.85 GHz. After the optimization with the
2-D SVR, both copolar and cross-polarization performances
are improved across all frequencies. However, the minimum
copolar gain does not comply with the goal of 28 dBi. These
results are consistent with the ones obtained with the 2-D
SVR in previous works [23]. The 4-D SVR provides extra
DoF to improve the performance of the antenna. Indeed, in
addition to improving the copolar gain, complying with the
goal of achieving at least 28 dBi at all frequencies, cross-
polarization performance is further improved, showing how the
4-D SVR provides an edge when compared to the 2-D SVR
for wideband and dual-band reflectarray direct optimization.

Finally, Fig. 13 shows the synthesized layout of the dual-
band reflectarray top layer obtained with the 4-D SVR.

C. Computational Performance Improvement

Regarding computational performance of the GIA, the di-
rect layout optimization considered four DoF per reflectarray
element, thus having in total 28 208 optimizing variables. A
short instance of the GIA was run with the MoM-LP at a
single frequency for comparison purposes. The mean time per
iteration when using MoM-LP is 243.5 s, while it is 64.8 s
when using SVR #1. The main building blocks accelerated by
the use of surrogate models is the computation of the cost
function, which goes from 36.7 s using MoM-LP to 0.04 s
using SVR, an acceleration factor of three orders of magnitude;
and the calculation of the Jacobian matrix, which goes from
147.3 s down to 9.2 s, more than one order of magnitude faster.
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Table III
FIGURES OF MERIT OF A EUROPE COVERAGE AFTER A WIDEBAND OPTIMIZATION AT FIVE DIFFERENT FREQUENCIES WITH A 2-D SVR (Δ = 0 mm) AND

A 4-D SVR (Δ = 0.5 mm). OPTIMIZED LAYOUTS WERE SIMULATED WITH MOM-LP. ΔCPMIN IS THE DIFFERENCE BETWEEN THE ACHIEVED MINIMUM
GAIN AND THE GOAL OF 28 DBI IN THE COVERAGE AREA. ΔCPMIN AND XPI ARE IN DB.

10.95 GHz 11.40 GHz 11.85 GHz 12.30 GHz 12.75 GHz

ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI

Initial layout −4.62 25.86 0.23 30.06 1.89 32.25 −1.22 29.01 −5.65 23.85
Opt. SVR 2D −0.70 31.95 1.07 34.86 1.36 35.79 1.06 35.70 −0.07 34.47
Opt. SVR 4D 0.09 38.48 0.59 39.25 0.95 39.73 0.64 39.21 0.19 38.54

Table IV
FIGURES OF MERIT OF A EUROPE COVERAGE AFTER A DUAL-BAND OPTIMIZATION AT SIX DIFFERENT FREQUENCIES WITH A 2-D SVR (Δ = 0 mm) AND

A 4-D SVR (Δ = 0.5 mm). TRANSMIT BAND IS 11.70 GHZ–12.20 GHZ, AND RECEIVE BAND IS 13.75 GHZ–14.25 GHZ. OPTIMIZED LAYOUTS WERE
SIMULATED WITH MOM-LP. ΔCPMIN IS THE DIFFERENCE BETWEEN THE ACHIEVED MINIMUM GAIN AND THE GOAL OF 28 DBI IN THE COVERAGE AREA.

ΔCPMIN AND XPI ARE IN DB.

11.70 GHz 11.95 GHz 12.20 GHz 13.75 GHz 14.00 GHz 14.25 GHz

ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI ΔCPmin XPI

Initial layout 1.69 32.21 1.82 31.25 −1.60 29.00 −14.71 11.57 −4.36 −6.20 −25.87 0.34
Opt. SVR 2D 0.59 32.94 1.91 33.98 0.68 34.36 −0.09 31.63 −0.25 30.32 −1.81 26.66
Opt. SVR 4D 0.10 38.59 1.64 40.26 0.88 39.69 0.58 38.44 0.51 36.98 0.04 35.19

ŷ

x̂

Fig. 13. Mask layout of the top layer of the optimized dual-band reflectarray
with European coverage obtained with SVR #1.

However, the rest of the computationally heavy operations
in the GIA are not sped-up by the use of machine learning
algorithms, including matrix-matrix multiplications and the
linear equation solver. Still, the time gains in whole opti-
mization processes may be substantial when multiple stages
comprised of many iterations are involved, and these gains
are larger when multi-frequency optimizations are carried out.
For the case in which the optimization is carried out at five
different frequencies, the average time per iteration goes from
1060.8 s with the MoM-LP to 133.1 s with SVR #1. Thus

the average speed-up factor of using SVR instead of MoM-
LP goes from 3.76 (64.8 s instead of 243.5 s, or 178.7 s of
time saved per iteration) at a single frequency to 7.97 (133.1 s
instead of 1060.8 s, or 927.7 s of time saved per iteration) when
optimizing at five different frequencies, as it is the case of the
wideband optimization whose results are shown in Table III.
These computational time savings show another advantage of
the presented technique in the context of wideband or dual-
band optimization compared to the monochromatic case.

VII. CONCLUSION

A novel general strategy to train surrogate models based
on SVR on a 4-D geometrical parallelotope domain has been
presented. The model solely uses geometrical features as
input variables since only those are used in direct layout
optimizations. Consequently, each angle of incidence asso-
ciates a different surrogate model. Since the model training
within the 4-D orthotope, defined by the original geometrical
features ranges, yields a dramatical decrease on their accuracy
compared to the one obtained on the 2-D models, the model
training is carried out in a parallelotope around a rectangle
of stability without sharp resonances. Results show a high
degree of accuracy between the SVR models and the reference
MoM-LP simulations in design, reflectarray analysis, and
direct layout optimization for cross-polarization improvement.
Moreover, when compared with lower dimensionality models
employed in previous works, the new 4-D SVR models yield
better results in both wideband and dual-band reflectarray
direct optimizations. In addition, the use of these surrogate
models allows to considerably speed up the analysis, layout
design, and direct layout optimization. Specifically, they are
accelerated more than three, two, and one orders of magnitude
respectively, while keeping a high degree of accuracy with
regard to the MoM-LP tool. Finally, the proposed methodology
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to train surrogate models in a 4-D geometrical parallelotope
domain can also be used with other machine learning algo-
rithms such as artificial neural networks and ordinary kriging.
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[26] D. R. Prado, J. A. López-Fernández, and M. Arrebola, “Systematic study
of the influence of the angle of incidence discretization in reflectarray
analysis to improve support vector regression surrogate models,” Elec-
tronics, vol. 9, no. 12, pp. 1–18, Dec. 2020.
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