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Abstract: The increasing appearance of multiresistant pathogens, as well as emerging diseases, has
highlighted the need for new strategies to discover natural compounds that can be used as therapeutic
alternatives, especially in the genus Streptomyces, which is one of the largest producers of bioactive
metabolites. In recent years, the study of volatile compounds (VOCs) has raised interest because
of the variety of their biological properties in addition to their involvement in cell communication.
In this work, we analyze the implications of VOCs as mediating molecules capable of inducing the
activation of biosynthetic pathways of bioactive compounds in surrounding Actinomycetes. For
this purpose, several strains of Streptomyces were co-cultured in chamber devices that allowed VOC
exchange while avoiding physical contact. In several of those strains, secondary metabolism was
activated by VOCs emitted by companion strains, resulting in increased antibiotic production and
synthesis of new VOCs. This study shows a novel strategy to exploit the metabolic potential of
Actinomycetes as well as emphasizes the importance of studying the interactions between different
microorganisms sharing the same ecological niche.
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1. Introduction

The pandemic caused by SARS-Cov2 has only highlighted something that has been
known for several decades: the lack of new bioactive compounds useful not only to treat
diseases caused by emerging pathogens but also to treat those due to pathogens resistant
to conventional treatments. The World Health Organization (WHO) declared antimicrobial
resistance one of the top 10 global public health threats facing humanity in 2019 and urged
the scientific community to focus on new drug research and development [1].

Most anti-infective drugs are of natural origin, mainly produced by bacteria (with
special mention to Actinomycetes) and fungi. In natural product research, re-isolation of
already known compounds is a major bottleneck, therefore new approaches need to be
followed [2,3]. The search for antibiotic producers in underexplored environments or mutu-
alistic relationships with other organisms has demonstrated its usefulness. Marinopyrrole
A and abyssomicin C are examples of natural drugs produced by marine bacteria with
potent activity against methicillin-resistant Staphylococcus aureus (MRSA) [4,5] and polyke-
tides cyphomycin and sipanmycin isolated from the microbiome of leaf-cutter ants of the
Attini tribe have demonstrated antifungal and antibacterial properties, respectively [6,7].

The development of new genomic techniques has revitalized the field of drug discovery
as it has revealed the enormous biosynthetic potential of some microorganisms, such as
Actinomycetes. In past years, the sequencing of the genome of a vast amount of Streptomycetes
has pointed out the presence of a higher number of biosynthetic gene clusters (BGCs) for
the production of secondary metabolites than initially thought. Many of these BGCs
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are not expressed under laboratory conditions; thus, their products remain unknown.
The induction of the expression of these silent BGCs is an attractive research field in drug
discovery and efforts have been focused mainly on five approaches: (i) genetic manipulation
of global or cluster-specific transcriptional regulators; (ii) expression of natural or synthetic
BGCs in native or heterologous hosts; (iii) ribosomal engineering; (iv) OSMAC approaches
through the systematic variation of growth parameters; and (v) mimicking the ecological
environment of the producer strain via co-culture with other microorganisms or via the use
of chemical elicitors (e.g., rare earth elements, dimethyl sulfoxide, ethanol) [8–13].

Traditionally, research on natural products was based on water-diffusible compounds,
but in recent years, the importance of volatile natural compounds with interesting bioactiv-
ities has attracted the attention of the scientific community. Recently, Liu and co-workers
applied a machine-learning workflow called MSHub/GNPS [14] to 37 different Streptomyces
isolates and discovered the production of 581 different volatile compounds, which pointed
out the high capacity of this bacterial genus to synthesize this kind of metabolite [15].
Volatile compounds (VOCs) are chemically diverse metabolites with common features: low
molecular mass, high vapor pressure, low boiling point, and lipophilic nature [16]. In com-
plex microbial environments, inter- and intra-species relationships are essential to maintain
the balance of the community, and secondary metabolites play a key role in this equilibrium,
as they participate in signaling, antibiosis, or competition between species [17–20]. As stated
above, bacteria in mutualistic relationships with leaf cutter ants are an important source of
new drugs. These ants collect leaves within their nests to cultivate the basidiomycete Leuco-
agaricus gongylophorus, which processes plant material, providing a rich source of nutrients
for the ants [21]. This fungal garden is threatened by the pathogenic fungus Escovopsis weberi,
and to fight against it and protect the stability of the nest, the ants have developed a complex
microbiome composed of antimicrobial-producing Actinomycetes (mainly Pseudonocardia
spp. and Streptomyces spp.) [22]. The production of specialized diffusible bioactive metabo-
lites (e.g., candicidin D, antimycins, selvamycin) by these mutualistic bacteria has been
reported [23]. In a confined space with many chambers filled with air (as is the case of
those nests), it is logical to think that volatile compounds would play a significant role in
this war. In 2021, Dhodary and Spiteller described the antifungal properties of inorganic
ammonia produced by Streptomyces symbionts on Escovopsis sp. through the alkalization of
the medium [24]. However, what about VOCs? Could they exert direct antibiotic activity
or stimulate other microorganisms to produce antibiotics?

In this work, we tested the hypothesis that VOCs emitted by Actinomycetes isolated
from leaf-cutter ants could serve as communication signals capable of activating the produc-
tion of bioactive compounds by other Actinomycetes within the community. Accordingly,
we confronted thirteen different Actinomycete strains isolated from the surface of the Attini
ants (CS strains [7]) in solid culture using a specialized device designed to study the effect of
the VOCs produced in the system (VOC chamber [25]). Using a bioassay-guided screening
approach, we detected the activation or overproduction of chemically diverse bioactive
natural compounds by Actinomycetes (e.g., cycloheximide, collismycin, cosmomycins,
rumycins) when they were exposed to VOCs from other related species. Thus, the impor-
tant role of volatiles as signaling agents and their usefulness for drug discovery studies
were addressed.

2. Materials and Methods
2.1. Strains and Culture Conditions

The Actinomycete strains used in this work belong to an in-lab CS collection isolated
from the cuticle of leafcutter ants from the tribe Attini [7,26]. Strains were routinely grown
on MA plates [27] and incubated at 28 ◦C for 7 days. For metabolite production, strains
were grown on agar plates of R5A [28], soy flour mannitol (SFM; [29]) or YMA (yeast extract
3 g; malt extract 3 g; peptone 5 g and glucose 10 g per liter).
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2.2. Dual-Culture Actinomycetes in VOC Chambers

Actinomycete strains were grown on R5A or SFM plates at 28 ◦C occupying a surface
of 16 cm2 in the central part of the plates so that the edges of the colonies could be observed.
After 24 h, the VOC chamber (J.D. Catalán S.L., Arganda del Rey, Madrid, Spain) device
was mounted as follows: a non-vented central piece was placed on top of the one-day-old
growing Actinomycete plate (facing up) and the other plate was placed upside down on top
of them (Figure 1). The chamber device has a hole in the central part (without any type of
film or filter covering it), allowing the exchange of VOCs between the cultures and avoiding
physical contact between the strains or with the compounds that diffuse into the medium.
The assembled VOC chamber was sealed with Parafilm® (Bemis, E-Thermo Fisher Scientific,
Madrid, Spain). The dual culture was incubated at 28 ◦C for 5 days. Control VOC chambers
were also set with one noninoculated plate and one inoculated plate. Each experiment was
made in triplicate.
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Figure 1. Volatile compound (VOC) chamber. (a) Schematic side-view of a VOC chamber; (b) rep-
resentation of each part of the VOC chamber device. The hole in the middle allows the exchange
of VOCs between cultures (modified from [25]); (c) photographs of an assembled VOC chamber
(without charcoal).

2.3. Multiple Coculture of Actinomycetes

Streptomyces sp. CS065a, CS207, CS113, CS149, and CS090a were cultured on YMA or
SFM small Petri dishes (diameter of 5 cm) at 28 ◦C. After 24 h, four opened small plates were
placed inside a large Petri dish (diameter of 13,5 cm) and this was sealed with Parafilm®

(Bemis, E-Thermo Fisher Scientific, Madrid, Spain). As a control, three noninoculated
small plates and the fourth inoculated plate were settled on a large plate. The culture was
incubated at 28 ◦C for 5 days. Each experiment was made in triplicate.

2.4. Antibiotic Production in Co-Culture

Agar diffusion bioassays against Micrococcus luteus (Gram-positive bacteria), Escherichia
coli (Gram-negative bacteria), the yeast Candida albicans, and the ascomycete Escovopsis
weberi were performed to test antibiotic production in cocultures. Fresh cultures or fungal
spores of each test microorganism were used as seed cultures to inoculate agar plates
of TSA (for bacteria), YMA (for yeast), or SFM (for fungus). A 6 mm agar plug from
each Actinomycete plate of the cocultures grown for 5 days in the VOC chambers was
placed on top of the bioassay plate. The plates were then incubated at 4 ◦C for one hour
to allow metabolites to diffuse into the surrounding medium. Subsequently, the plates
were incubated for 16 h at 30 ◦C (antifungal tests) or 37 ◦C (antibacterial tests). Agar plugs
from control plates grown in single culture were also used. The diameter of the inhibition
zones was measured and compared with the control sample. Each test was performed
in triplicate.

2.5. Extraction of Secondary Metabolites Produced in VOC Chambers, Analysis with UPLC,
and Dereplication

We then extracted 2.5 g of the actinomycete agar plates grown in coculture using
3 mL of different organic solvents [ethyl acetate, ethyl acetate containing formic acid (1%)
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or butanol] and analyzed the extract via reverse phase chromatography in an Acquity
UPLC instrument fitted with a BEHC18 column (1.7 µm, 2.1 mm × 100 mm, Waters), with
acetonitrile and MQ water + 0.1% trifluoroacetic acid (TFA) as the mobile phase. The PDA
detector was set to scan wavelengths between 200 and 600 nm. Samples were eluted with
acetonitrile (10%) for 1 min, followed by a linear gradient of acetonitrile (10–100%) for
7 min (flow rate of 0.5 mL/min; column temperature 35 ◦C). The identity of the metabolites
present in these samples was checked via HRMS-based dereplication against MEDINA
using an Agilent 1200 Rapid Resolution HPLC coupled with a maXis Bruker qTOF mass
spectrometer. The volume injected was 2 µL and a Zorbax SB-C8 column (2.1 × 30 mm,
3.5 µm particle size) was used for separation. The mobile phase consisted of solvent A,
90:10 milliQ water-acetonitrile, and solvent B, milliQ water-acetonitrile, both with 13 mM
ammonium formate and 0.01 TFA. Samples were eluted with a 0.3 mL/min flow rate,
and the gradient used was 90% to 0% to solvent A/10% to 100% solvent B in 6 min, 0%
solvent A/100% solvent B in 2 min, 0% to 90% solvent A/10% to 100% solvent B in 0.1 min,
and 90% solvent A/10% solvent B for 1.9 min. The maXis qTOF mass spectrometer was
operated in ESI positive mode. Source conditions were 4-kV capillary voltage, end plate
offset = 500 V, dry gas (N2) flow = 11 L/min; dry temperature = 200 ◦C, and nebulizer
(N2) pressure at 2.8 bars. Transfer line conditions were RF 300 Vpp, isCD energy = 0 eV,
hexapole = 60 Vpp, quadrupole ion energy = 5 eV, collision cell energy = 10 eV. The mass
spectrometer operated with a mass range of m/z 150–2000 and a spectral acquisition rate
of 3 Hz. TFA-Na cluster ions were used for mass calibration of the instrument prior to
sample injection. Prerun calibration was via infusion with the same TFA-Na calibrant. The
retention time, together with the exact mass (and the derived molecular formula), was
used as a criterion to search the internal database from Fundación MEDINA [30] and the
Dictionary of Natural Products version 26:2 [31] to identify already known compounds.

2.6. Purification of Rumycins

Thirty VOC chambers were mounted as described in Section 2.2, placing the strains
CS149 and CS131 cultured on SFM and incubated at 28 ◦C for seven days across from each
other. The thirty plates in which the CS149 strain was grown were extracted with 600 mL
of butanol and subsequently filtered, concentrated under vacuum and resuspended in
MQ water. The sample was fractionated through a 10 g Sep-PaK® Vac 35 cc C18 cartridge
(Waters) using as mobile phase solvent methanol: MQ water at 5 mL/min and a gradient
of 0% to 100% methanol for 55 min.

Purification of the desired fractions was carried out via reverse phase chromatography
on an Alliance HPLC chromatographic system (Waters 2695 Separation Module) coupled
to a Waters 996 Photodiode Array Detector, using a Sunfire C18 column (10 µm, 10 mm ×
280 mm, Waters) and an isocratic mixture 55:45 MQ Water: ACN for rumycin 1 and 20:80
for rumycin 2 at a flow rate of 5 mL/min. The compounds were collected and lyophilized.

2.7. Biosynthetic Gene Cluster Prediction and Sequence Analysis

Biosynthetic gene cluster prediction for secondary metabolite searches and sequence
analysis was carried out with the online bioinformatic tool antiSMASH v6 [32]. Rumycin
gene clusters were deposited at the Minimum Information about a Biosynthetic Gene
Cluster (MIBiG) repository [33] under the accession number BGC0002753.

3. Results and Discussion
3.1. Morphological and Developmental State of Actinomycete strains in VOC Chambers

The morphology of strains growing on R5A, SFM, and YMA agar plates was compared
in monoculture versus coculture in VOC chambers. No changes in growth rate were
detected and only a slight difference was observed in the timing of the sporulation stage
depending on the particular strain and the strain with which it was paired. In addition,
exploratory behavior at the edge of the colonies was evaluated as a previous study had
revealed the importance of VOCs in this kind of development (Figure S1, Supplementary
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data). Fungal VOCs triggered exploratory growth in Streptomyces venezuelae colonies, and
these “activated” cells could induce this developmental state in other physically separated
Streptomyces colonies by producing the airborne compound trimethylamine (TMA) [34].
In the present study, exploratory growth was not observed in any of the tested strains.
This result could be due to the lack of TMA production by the CS strains or by a different
response to this VOC by the Actinomycete strains employed in the present assay. Further
work is ongoing trying to clarify this point.

The only exception to the observations was Streptomyces sp. CS194. When cultured
on SFM medium, this strain was unable to grow in monoculture (control). Only when
exposed to VOCs from other CS strains did CS194 reach different levels of development
(Figure 2). This fact highlights the importance of VOCs in the communication between
strains within a complex community and demonstrates their role as growth-promoting
agents. Traditionally, microbial growth and development studies have been mainly focused
on pure-culture systems, but now there is increasing evidence that cannot be avoided:
microbes live in changing systems of multiple species, and for that reason, the interaction
between them should be taken into account to gain a deeper understanding of microbial
physiology [35,36]. Several studies have referred to the developmental changes induced by
water-diffusible compounds. The siderophore desferrioxamine E enhanced growth and
antibiotic activity in several Streptomyces species as well as the production of goadsporin, a
microcin-like peptide [37,38]. In addition, volatile γ-butyrolactones have been described
as quorum sensing molecules that stimulate aerial growth and metabolite production in
Streptomyces [39,40]. Most of the strains that promoted the growth and development of
strain CS194 presented in their genomes BGCs responsible for the synthesis of different
types of butyrolactones [41], thus the growth-promoting effect observed in this work could
be due to this family of compounds. More experiments need to be performed to elucidate
this point.
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Figure 2. Strain CS194 grown in SFM medium paired with different CS strains in VOC chambers.

3.2. New or Incremental Increases in Antibiotic Production in VOC Chambers

Agar plate bioassays were carried out using samples extracted from the CS strains
grown in VOC chambers and inhibition areas were compared to controls (strains grown
in monoculture). No positive results were obtained when strains were cultivated on R5A
and only strains CS149 and CS194 showed increased antibiotic activity in coculture when
grown on SFM medium. On the contrary, the secondary metabolism of many more strains
was activated by VOCs emitted by other colonies on YMA. The results obtained could be
summarized as follows (complete results are shown in Supplementary Materials Tables
S1–S13; Data concerning the characterization of compounds by LC-MS are available in
Supplementary Material file: LC-MS dereplication):

• CS014: An increased antibiotic activity against M. luteus was detected in coculture with
CS057, CS081a, CS090a, CS131, and CS149 strains grown on YMA plates (Figure 3a,b).
Comparative UPLC analysis revealed the activation of collismycin production in
the presence of VOCs from the strains mentioned above. Furthermore, increased
production of granaticin C was observed (Figure 3c).

• CS081a: This strain only demonstrated anti-M. luteus activity when grown on YMA
medium in VOC chambers cultured against CS014 strain (Figure 3b). The chromato-
graphic analysis of samples extracted with ethyl acetate exposed the biosynthetic
induction of the cosmomycin anthracycline antibiotic family by CS081a under the effect
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of CS014 VOCs (Figure 3d). In this case, the signaling caused by volatiles emitted by
the strains inside the chamber was bidirectional as VOCs from CS014 impacted the sec-
ondary metabolism of the CS081a strain and vice versa (see the previous paragraph).

Cells 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

in monoculture). No positive results were obtained when strains were cultivated on R5A 
and only strains CS149 and CS194 showed increased antibiotic activity in coculture when 
grown on SFM medium. On the contrary, the secondary metabolism of many more strains 
was activated by VOCs emitted by other colonies on YMA. The results obtained could be 
summarized as follows (complete results are shown in Supplementary Materials Tables 
S1–S13; Data concerning the characterization of compounds by LC-MS are available in 
Supplementary Material file: LC-MS dereplication):  
 CS014: An increased antibiotic activity against M. luteus was detected in coculture 

with CS057, CS081a, CS090a, CS131, and CS149 strains grown on YMA plates (Figure 
3a,b). Comparative UPLC analysis revealed the activation of collismycin production 
in the presence of VOCs from the strains mentioned above. Furthermore, increased 
production of granaticin C was observed (Figure 3c). 

 CS081a: This strain only demonstrated anti-M. luteus activity when grown on YMA 
medium in VOC chambers cultured against CS014 strain (Figure 3b). The chromato-
graphic analysis of samples extracted with ethyl acetate exposed the biosynthetic in-
duction of the cosmomycin anthracycline antibiotic family by CS081a under the effect 
of CS014 VOCs (Figure 3d). In this case, the signaling caused by volatiles emitted by 
the strains inside the chamber was bidirectional as VOCs from CS014 impacted the 
secondary metabolism of the CS081a strain and vice versa (see the previous para-
graph). 

 
Figure 3. Overview of the results obtained for the strains CS014 and CS081a grown on YMA medium.
(a) Upper-view photographs of YMA plates where the strains were grown alone (control plates) or co-
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(MaxPlot) of samples extracted with ethyl acetate. Peaks observed only (or in a higher amount) in
co-culture were highlighted; (e) HRMS spectra and chemical structures of the related compounds.

• CS057: The strain growing on YMA agar plates in a VOC chamber together with
CS081a demonstrated stronger bioactivity against M. luteus and E. weberi. UPLC anal-
ysis revealed an increased production of the related compounds cycloheximide and
actiphenol by CS057 exposed to VOCs from CS081a (Figure 4a,c,d).

• CS090a: Antifungal compounds active against E. weberi were only produced by the
CS090a strain when it was grown on YMA under the effect of VOCs originating from
CS057 and CS081a. Chromatographic analysis found maltophilin and alteramide
activation of the production (Figure 4b,e,f).
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spectrum of alteramide A.

• CS149: No antibiotic activity against the tested microorganisms was detected when
CS149 was grown in monoculture. However, when paired with CS081a or CS131 in
VOC chambers, potent bioactivity against M. luteus was observed. Chromatographic
analysis highlighted the activation of the production of two different compounds that
were not present in samples extracted from monocultures of CS149 (Figure 5a). These
compounds were identified by dereplication as the anti-MRSA cyclic lipopeptides
rumycin 1 and rumycin 2 (Figure 5b–d). In a step-forward study to confirm that the
observed alteration of the CS149 secondary metabolism was due to the VOCs emitted
by CS131, a VOC chamber with 2 g of activated charcoal was assembled and then
the samples extracted with ethyl acetate from SFM CS149-CS131 dual cultures were
analyzed by UPLC. No rumycins could be detected (Figure 5a) indicating that VOCs
from CS131 were adsorbed by the activated charcoal, and thus could not exert their
inductive effect on CS149 biosynthetic machinery. On the other hand, biosynthesis of
rumycins by Streptomyces sp. CS149 does not depend strictly on the growth medium
of the strain; this has been verified in both SFM and R5A. Otherwise, the VOCs that
induced the activation of the secondary metabolism of Streptomyces sp. CS149 were
only produced by CS081a or CS131 if grown on SFM since rumycins could not be
detected when the VOC-emitting strain was cultured on R5A or YMA. We purified
3.6 mg of rumycin 1 and 2.8 mg of rumycin 2 from thirty plates (total volume of
600 mL) of SFM (dual cultures between CS149 and CS131 strains in VOC chambers).
Pure compounds were used for the testing of bioactivity via agar diffusion bioassay.
They demonstrated potent antibacterial activity against M. luteus, even stronger than
the commonly used antibiotic apramycin, but no activity against E. coli, C. albicans,
and E. weberi (Figure 5e).
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Figure 5. Activation of the synthesis of rumycins by the effects of VOCs from Streptomyces sp. CS131
on CS149. (a) Comparative UPLC profile where the peaks containing rumycin 1 and rumycin 2 have
been numbered as P1 and P2, respectively; (b) HRMS spectrum of rumycin 1; (c) HRMS spectrum
of rumycin 2. (d) Chemical structure of rumycins. (e) Bioassay of purified rumycins against M.
luteus. (C+): apramycin (200 mg/mL), (C−): methanol, (R1): rumycin 1 (10 mg/mL), (R2): rumycin 2
(10 mg/mL).

• CS194: When cultivated on SFM, the strain CS194 exposed to VOCs emitted by strains
CS014, CS057, CS081a, or CS227, presented antibiotic activity versus M. luteus. As men-
tioned previously, this strain was not able to grow on SFM in monoculture, thus we
could not state if the production of the antibiotic/s was due to a signaling effect of
VOCs on growth promotion or by the induction of the CS194 secondary metabolism
(or both). In any case, the antibacterial activity of CS194 could be explained by the
production of bioactive piperazinediones, detected by dereplication in samples of
CS194 (Figure S2, Supplementary data).

• CS207: The antibacterial (against M. luteus and E. coli) and antifungal activities of the
strain CS207 were higher when cultivated on YMA in VOC chambers together with
strains CS014, CS057, CS081a, or CS227. Unfortunately, the comparative UPLC analysis
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did not retrieve any differential peak that could explain the observed antibiotic activity,
probably due to the limitation of the analytics based on UV absorbance measurements.

The close relationship between leaf cutter ants and Actinomycetes has been extensively
studied for decades [22,23,42]. Although the true symbiont of the Attini ants has been iden-
tified as Pseudonocardia sp. [43], the role of the Streptomycete population isolated from the
surface of those insects has not been fully elucidated. Batey and colleagues reviewed the
involvement of these Streptomycetes in protecting the nests from pests using the production
of specialized antimicrobial compounds [23]. Thus, symbiotic, mutualistic and antagonistic
behaviors take place in the confined spaces delimited by the subterranean nest chambers,
in such a way that a controlled network of interspecific communication signals plays a key
role in maintaining the stability of the community.

In this work, we have demonstrated the potential of the CS strains as antibiotic
producers but, more importantly, their ability to modulate the biosynthetic machinery
of other related species. VOCs emitted by these strains provoke the overproduction of
compounds with diverse chemical structures known for their remarkable antibiotic activity,
as is the case of the benzoisochromanequinone polyketide granaticins [44], the polycyclic
tetramate macrolactam alteramides [45], and the glutarimide-containing polyketide family
of cycloheximide and actiphenol [46,47], synthesized by Streptomyces sp. CS014, CS090a,
and CS057, respectively.

Furthermore, the application of these VOCs in activating silent biosynthetic gene
clusters that could lead to the discovery of new compounds with potential biomedical
uses is very promising and could be implemented as a routine technique to carry out
during drug screening research programs. Interspecific communication between different
Actinomycetes mediated by VOCs induced the production of several bioactive compounds
that were not biosynthesized when the strains were grown in monoculture. Within the VOC
chambers, we observed the induction of the biosynthesis of collismycins (cytotoxic and an-
tibiotic 2,2′-bipyridyl class of compounds [48]), cosmomycins (glycosylated anthracyclines
with antibiotic properties [49]), maltophilins (macrolactams with antifungal activity [50]),
alteramides, and rumycins (cyclic lipopeptides with strong antibacterial properties, pro-
posed as a treatment against methicillin-resistant Staphylococcus aureus infections [51]). The
potent bioactivity of rumycins against M. luteus observed during this work makes them
good candidates for further research on their biosynthesis.

Notably, the same biosynthetic machinery was activated by VOCs from different
strains (e.g., collismycins and granaticins were produced by Streptomyces sp. CS014 when
exposed to VOCs from five different strains, CS057, CS081a, CS090a, CS131, and CS149).
This fact could indicate a common mechanism among Actinomycetes to modulate the
secondary metabolism of other related bacteria. One possible explanation could be the
production of the same VOC by different strains that triggered the expression of one specific
BGC. On the contrary, another plausible mechanism could be the manifestation of the same
response of the induced metabolic machinery to different VOCs.

3.3. Effect of VOCs in Multiple Co-Culture

There were some strains in which we could not detect any modification in their capacity
to produce antibiotic compounds after being exposed to VOCs from other Actinomycetes
in VOC chambers. With those strains, we performed a multiple co-culture approach
where the strains were under the effect of VOCs from other three different strains to
mimic the complex environment found inside the nests inhabited by the leaf-cutter ants
(complete results were shown in Supplementary Materials Tables S14–S18). Applying this
approach, we were able to detect higher antibacterial activity against M. luteus and E. coli in
Streptomyces sp. CS065a when exposed to VOCs from different combinations of CS strains
(Figure 6a). The comparative UPLC profile between samples of Streptomyces sp. CS065a
grown in monoculture or in multiple cocultures with CS113, CS147, and CS207 (co-culture
1; 1CC); CS090a, CS147, and CS207 (co-culture 2; 2CC; Figure 6b); or CS090a, CS113 and
CS207 (co-culture 3; 3CC) revealed activation of the production of several compounds
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of the alteramide and chromomycin families (Figure 6c,d). The antimicrobial activity
against Gram-positive bacteria could be explained by the action of these two groups of
compounds [45,52]. Therefore, the observed bioactivity against E. coli might in addition
be due to the production of one or more compounds that could not be detected under our
experimental techniques, since alteramides and chromomycins have not been described as
anti-Gram-negative agents individually.
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Figure 6. Results of multiple co-culture of CS065a on SFM. (a) Bioassay against E. coli (first row)
and M. luteus (second row). 1+: Streptomyces CS065; 1CC: co-culture CS065a, CS113, CS147, and
CS207; 2CC: co-culture CS065a, CS090a, CS147 and CS207; 3CC: coculture CS065a, CS090a, CS113
and CS207. (b) Comparative UPLC analysis (MaxPlot) of samples of CS065a in monoculture (black)
versus in co-culture with CS090a, CS147, and 207 (red). Differential peaks are marked with an asterisk.
(c) HRMS spectrum of alteramide A. (d) HRMS spectrum of chromomycin A3.

Coculture has been successfully applied in new drug screening programs because it is
capable of mimicking interaction between naturally occurring microbial communities. By
co-culturing different bacterial and fungal species, the induction of many compounds (e.g.,
aminoglycosides, terpenes, polyketides, or alkaloids) has been reported [53]. Most of these
studies were based on mixed fermentation or solid medium co-cultures, so it is impossible
to determine whether the observed metabolic changes are due to water-diffusible or volatile
compounds. We show the importance of VOCs in the metabolic modulation of related
species and point out the idea that more than one VOC producer may be needed to obtain
the desired results. The biosynthesis of alteramides and chromomycins by Streptomyces
sp. CS065a only occurred when the strain was co-cultured with three other strains, as we
were unable to detect those compounds in samples from monoculture or dual-culture using
VOC chambers pairing the same strains.

3.4. Identification of the Rumycin Biosynthetic Gene Cluster

Among the metabolites whose biosynthetic pathways were activated during this work,
only rumycins were not linked to a previously described BGC. Therefore, bioinformatic
analysis was carried out to identify the rumycin (rmc) gene cluster within the genomic
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sequence of Streptomyces sp. CS149. AntiSMASH v6 predicted the presence of 31 BGCs
in the genomic DNA of Streptomyces sp. CS149 [41]. Based on the chemical structure of
rumycins (cyclic lipopeptides made up of 14 amino acid residues), cluster 17 was identified
as the unique candidate for the BGC responsible for the synthesis of rumycins. The rmc BGC
was classified as an 84 Kb non-ribosomal peptide (NRP) cluster type with a 66% similarity
to the cadaside BGC (Figure 7). BLASTp analysis of each rmc gene product revealed the
presence of genes involved in the synthesis of the NRP chain, transport, regulation, and
synthesis of nonproteinogenic amino acids and the acyl chain. A detailed description of the
predicted functions of the rmc genes is summarized in Table S2 (Supplementary Materials
Table S19).
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4. Conclusions

In complex microbial ecosystems, communication between individuals is a crucial
factor for the survival and health of the community. Inter- and intra-kingdom signaling
plays a key role in the spatial and temporal coordination of cellular developmental pro-
cesses, contributing to the detection of nutritional stress or activating competitive behaviors
through antibiosis [54]. Among the wide array of metabolites produced by microorgan-
isms, the chemical properties of VOCs make them the perfect form of communication
in an environment full of air gaps such as soil [55]. In this work, VOC chambers have
been successfully applied to study the effect of volatiles (separately from water-diffusible
compounds) on the secondary metabolism of related species. The production of bioactive
compounds with different chemical natures and target microorganisms has been improved
by the signaling effect of VOCs emitted by nearby bacterial strains. In addition to its
role in antibiosis, a role in modulating the behavior of the bacterial community to better
combat pests could be attributed to the actinomycete microbiome of the leaf-cutting ants.
As far as we are concerned, this is the first time the VOC-induced production of bioactive
compounds by Actinomycetes has been described, pointing out the potential of volatile
compounds as a useful tool for drug discovery.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cells11213510/s1, LC-MS dereplication: Data corresponding to
the identification of compounds whose production was activated in this work. Figure S1: Complete
panel of dual cultures installed in VOC chambers pairing Streptomyces sp. CS057 with the rest of
the CS strains. Top and bottom views of the YMA agar plates on day 5 of the co-culture. Figure S2:
Dereplication analysis of a sample of the CS194 strain grown in SFM medium under the effect of VOCs
emitted by CS227. Tables S1–S13: Overview of the complete results obtained in dual co-cultures using
VOC chambers. Tables S14–S18: Overview of the complete results obtained in multiple cocultures
using VOC chambers. Table S19. Predicted function of rmc genes.
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