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Abstract— One of the major goals in gene expression
data analysis is to explore and discover groups of genes
and groups of biological conditions with meaningful re-
lationships. While this problem can be addressed by al-
gorithms, their results require an analysis within context,
since they may be affected by many side processes —
such as tissue differentiation— that could hinder the tar-
get goal. Visual analytics-based methods for exploratory
analysis of the gene expression matrix (GEM) are essential
in biomedical research since they allow us to frame the
analysis within the user’s knowledge domain. In this paper,
we present a visual analytics approach to discover relevant
connections between genes and samples based on linking
a reordered GEM heatmap and dual 2D projections of its
rows and columns, which can be recomputed conditioned
by subsets of genes and/or samples selected by the user
during the analysis. We demonstrate the capability of our
approach to discover relevant knowledge in three case
studies involving two cancer types plus normal tissue from
the TCGA database.

Index Terms— visual analytics, gene expression, ex-
ploratory data analysis

I. INTRODUCTION

One of the challenges in gene expression data analysis is
to discover patterns involving subsets of genes showing in-
teresting or meaningful behaviors across subsets of biological
samples [1]. The first reference to tackling this problem dates
back to 1972, when Hartigan proposed an algorithm to cluster
cases and variables simultaneously [2]. However, it was not
until 2000 that Cheng and Church introduced the concept of
biclustering as an approach for knowledge discovery from
gene expression data, in terms of algorithms to find subsets
of genes and subsets of conditions with a high similarity [3].
Since then, this kind of technique has become widely spread
in the field of bioinformatics, and many other algorithms have
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been developed for the discovery of biclusters, as shown in
some comprehensive surveys [4], [5].

While the algorithmic approach alone can be very helpful
in the analysis and discovery of potentially relevant patterns,
the results may lack insight since they reflect correlation, but
not necessarily causation. Biomedical research often involves
a vast amount of domain knowledge in terms of known
biological pathways, with complex cascades of interactions
among functionally related genes, external factors and biolog-
ical conditions, through which the discoveries must be framed
to make sense. In this way, approaches such as visual analytics
(VA) [6], [7], that combine data visualization, interaction
and machine learning to take into account the user in the
analytic process, have become increasingly more prominent as
a powerful alternative to provide insight and perspective into
the analysis. Several biclustering analysis tools have been de-
veloped with visualization capabilities, such as BiGGEsTS [8],
which includes a visualization module capable of rendering
GEM heatmaps, dendrograms and expression pattern charts,
BicAT [9] or BiVisu [10], which features parallel coordinate
visualization of computed biclusters. However, although vi-
sualization allows some user supervision of the results, these
methods are mainly one-directional, with reduced possibilities
for the user to reconfigure the analysis based on the observed
outcome.

Arguably, mechanisms to provide rich feedback and foster
an active role of the user in the analytics discourse are of
utmost importance to reconciliate high-dimensional data infor-
mation with complex domain knowledge involving pathways
of gene coregulations and biological conditions related in
intricate ways. Some tools go one step further in the VA
paradigm, providing richer interaction mechanisms, such as
BicOverlapper [11], [12], Bicluster viewer [13] or VisBicluster
[14], enabling the user to explore the data by integrating
interaction mechanisms linking different views such as parallel
coordinates, GEM heatmaps and cluster network visualiza-
tions.

In line with this, other methods following a different
approach based on projection techniques have also been
proposed to address the problem of analysis and discovery
of relevant gene-sample patterns, often featuring a stronger
visual and interactive component. In [15], for instance, the
authors propose nonnegative matrix factorization (NMF) to
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decompose the GEM into biologically relevant factors that
are embedded in a 2D visualization along with genes and
samples. Dimensionality reduction (DR) methods such as t-
SNE [16] and UMAP [17] have been extensively used to
visualize gene expression data in large collections of samples
with thousands of genes. These methods are able to map the
high dimensional gene expression patterns of the samples to
2D points, so samples with similar gene expression profiles
will be projected to close locations, resulting in a visual
map where the samples are spatially organized by genetic
similarity. This idea has been extensively used as a powerful
way to discover and visualize clusters of biologically similar
samples in an intuitive way [18], [19] and has led to many data
visualization tools for gene expression analysis in recent years
[20], [21]. Interestingly, while DR methods have been mostly
used to project samples, they can also be used in a dual way,
projecting genes —instead of the samples— to reveal their
expression similarity across samples, such as in the Neuroblast
tool, which identifies networks of genes coexpressed within or
across neuroanatomic structures [22]. Indeed, the use of DR
methods in both the primal and dual ways allows us to discover
and explore patterns in both the sample and gene domains, as
shown in the BrainScope tool [23].

Despite the fact that the previous approaches tackle the
problem from different angles, there remain some shortcom-
ings to be addressed, from which we highlight two:

• First, regrouping the samples (or genes) in a GEM by
means of algorithms implicitly assumes finding a per-
mutation operation in the rows (or the columns), so that
items with similar expression patterns are placed in close
positions in the final arrangement; such an operation is
closely related to a 1D dimensionality reduction, that pre-
serves the topological closeness between the sample/gene
space and an implicit latent 1D space of scores used for
sorting. Obviously, the intrinsic dimension of the input
data —in the sample or gene spaces— may not be 1D,
potentially leading to cluster overlapping [11], [12].

• Second, biclustering algorithms automatically find sub-
sets of samples and genes to optimize some agnostic cost
function, involving some priors that might not be optimal
for explainability, being able to find correlations, but not
necessarily causal connections. User-guided selection of
subsets of genes and samples in an exploratory way,
followed by algorithms for rearranging the GEM rows
and columns according to the similarity of the expressions
only in these subsets, poses an alternative way in which
the system takes into consideration the user’s domain
knowledge.

In this paper, we propose a methodology to overcome the
above shortcomings. For this purpose, we consider matrix
reordering methods by means of 1D DR of the rows and
columns of the GEM, which can be conditioned by user-
defined subsets of genes and samples, aided by selectable
and interactive dual DR projections —a 2D projection of the
samples plus a 2D projection of the genes—, in a similar way
as proposed in [23]. Meaningful gene/sample subset selections
to condition the sample/gene reordering processes respectively,

are crucial for the success of the analysis, since they define
in what (biological) sense genes or samples are considered
“similar” for the GEM reconfiguration. The visualization and
selection of groups of genes and samples in 2D mappings
overcomes the implicit 1D limitation of algorithmic reordering
approaches, being more able to disentangle data and to reveal
a richer cluster structure than 1D mappings. At the same time,
since this process is supervised by the user with the help
of efficient interaction mechanisms, it provides insight and
sensemaking.

The remainder of the paper is organized as follows. Section
II includes the materials and methods used throughout the
paper, including: the data sources used for the experiments;
the definitions and notation related to GEM, permutations
and selections; reordering methods for heatmap visualization;
the dual 2D projections of genes and samples; the possible
bidirectional interactions between the GEM and the dual
projections; and, finally, we present additional higher level user
interaction through conditional reconfiguration of the GEM
and the dual views for user-selected subsets of genes and/or
samples. Section III explains the analysis workflow allowed
by the proposed approach and discusses several case studies
using a prototype implementation of the proposed approach
to discover relevant patterns in gene expression data involv-
ing microRNA (miRNA) and mRNA expression in samples
including pheochromocytoma-paraganglioma (PCPG), kidney
clear cell carcinoma (KIRC) and normal kidney tissue. Finally,
Section V concludes the paper, providing a general discussion
including the main contributions of this work and suggesting
lines for future research work.

II. MATERIALS AND METHODS

A. Gene expression data sources

RNA sequencing (RNAseq) technologies use massive se-
quencing to provide gene expression data of large amounts
of samples with a large number of expression measurements
of transcripts involving mRNA and miRNA. The Cancer
Genome Atlas (TCGA) database provides gene expression
measurements involving more than 20000 measurements for
thousands of biological samples from more than 33 cancer
types.

The dataset used in this paper was obtained from the TCGA
database (downloaded from the Xenabrowser portal1), and
curated by removing samples with erroneous or missing data
for some of the genes or miRNAs of interest. The result-
ing dataset contains 157 samples of pheochromocytoma and
paraganglioma (PCPG), some carrying mutations in hypoxia
related genes such as VHL, SDH and EPAS1, 221 of kidney
clear cell carcinoma (KIRC), and 71 of normal renal tissue.
For each sample, we selected the expression levels of 129
miRNA and 442 hypoxia-related genes (those available after
data curation from the list of 446 described in [24]), including
the so-called canonical hypoxia genes, and others with special
functions (angiogenesis, extracellular matrix, etc.).

1https://xenabrowser.net/datapages/
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Fig. 1. Schematic representation of DR induced permutation for GEM column sort.

B. Gene expression matrix
Gene expression data are commonly organized in a GEM

involving conditions and genes. In this paper we shall use
columns for the attributes (genes) and rows for the samples
(conditions). A GEM can be defined as an n×m matrix:

G = (gij) (1)

whose rows i = 1, . . . , n represent the samples (e.g., tumors or
other biological conditions) and whose columns j = 1, . . . ,m,
represent the attributes (e.g., gene or miRNA expressions) that
define each sample. Thus, the scalar element gij represents
the expression level of gene j for sample i. Similarly, the j-th
column vector g∗j describes the expression behavior of gene j
across all the samples in G, and the row vector gi∗ represents
the expression pattern of sample i for all the genes in G.

C. Permutations and selections
A permutation is defined as a sequence π = {i1, i2, . . . , in}

containing a rearrangement of n indices {1, . . . , n} in a
different order. Similarly, a selection is defined as a subset
σ = {i1, . . . , ir} of r out of n indices {1, . . . , n}.

We shall denote with Gπr∗ the matrix G with the rows
permuted according to permutation πr. Similarly, G∗πc

repre-
sents the columns permuted according to πc. A simultaneous
row and column permutation is denoted as Gπrπc . A similar
notation will be used for row and column selections, σr and
σc, being Gσr∗, G∗σc

and Gσrσc
submatrices of G with a

subset σr of the rows, a subset σc of the columns, and subsets
σr, σc of both, respectively.

D. GEM reordering methods
In an unordered GEM, the rows (samples) and the columns

(genes) are at arbitrary positions. The typical heatmap visual-
ization in this case will not show patterns revealing genes with
similar functions for all the samples or for certain samples in
a specific condition, such as a cancer type. Similarly, it will
not reveal samples with similar expression patterns for all the
genes or for subsets of genes of interest —e.g. a certain gene
cluster related to a known pathway.

Matrix reordering methods have been extensively used in the
gene expression analysis literature [25], [26]. These methods
involve finding proper permutations for the rows and the
columns of a given matrix without changing the values of
the matrix elements, so the resulting matrix reveals patterns
to the user that help them in the analysis.

GEM reordering methods, in general, should follow a sim-
ilarity principle (similar ≈ close), that is, if the expression of

genes i and j across all the samples —i.e., vectors g∗i and
g∗j— are similar according to some distance measure d(·, ·),
their columns should be placed close to each other in the
matrix. Conversely, if the behaviors are different, their columns
should appear far apart. The same argument is applicable
to rows (samples). The idea behind the similarity principle
is closely related to a continuity or smoothness requirement
and induces an order in the representation that allows the
user to visually identify clusters of genes or samples that
behave similarly, thereby making the user aware of the overall
behavior of genes and their relationships.

As mentioned before, biclustering algorithms are a special
kind of clustering method able to perform simultaneous row-
column clustering [4], resulting in a set of submatrices of G
called biclusters. A bicluster (I, J) is defined by a subset of
the row indices I ⊂ {1, . . . , n} and a subset of the column
indices J ⊂ {1, . . . ,m} for which the gene expressions exhibit
a similar behavior [4]. This information can be used to find
proper row and column permutations so that the rows and
columns of the same bicluster are placed together, thereby
turning the bicluster into a visible pattern. For exhaustive,
nonoverlapping biclusters (checkerboard type) 2 it is easy to
find row and column permutations πr and πc, so that all
the biclusters are visually revealed in the reordered GEM,
Gbicluster = Gπrπc

. An example of such reordered GEM can
be seen in Fig. 4, to be discussed later in the results section.

Alternatively, DR algorithms [27] allow us to define a
mapping φd : RD → Rd that transforms a dataset X, with
dimensionality D into a new dataset Y of a much smaller
dimensionality d, while retaining the geometry of the data
and the mutual similarities among the samples, as much as
possible. For convenience we shall denote Y = φd(X),
assuming that the mapping φd is learned from X, and applied
to all rows of it, that is, yi∗ = φd(xi∗). Particularly, DR
mappings on 1D latent spaces can be used to reorder the rows
or columns of the GEM. For a row reordering of G with n
samples (rows) and m genes (columns), a 1D dimensionality
reduction mapping φ1 : Rm → R1 can be defined, using
state-of-the-art methods such as t-SNE [16], [18] or UMAP
[17], [19], and then applying the mapping to the rows of G,
that is, φ1(G), resulting in n scalars gi. Under good topology
preservation of the mapping it is expected that close scalars gi
and gj refer to samples i and j with similar gene expression
patterns gi∗ and gj∗. Sorting the scalars, the resulting permu-
tation πr = arg sort(g1, . . . , gn) = {i1, . . . , in} induces an

2This does not apply to more general types, such as overlapping biclusters;
specific visualization methods have been proposed for these —see [11], [12].
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ordered sequence in the rows of the gene expression matrix
gi1∗,gi2∗, . . . ,gin∗, where consecutive rows can be expected
to be similar. Reordering the matrix G according to this
permutation yields a reordered matrix, Gπr∗, for which an
image heatmap representation shows groupings far more easily
perceived by the user.

In a similar fashion, it is straightforward to define an
ordering in the columns, by first computing a 1D-mapping
that transforms the columns gj = φ1(G

T ), obtaining the
permutation of the sorted scalars πc = arg sort(g1, . . . , gm),
and finally reordering the columns to yield the sorted matrix
G∗πc

. Finally, applying both methods to obtain the matrix
simultaneously sorted by rows and columns is also straightfor-
ward, as Gπrπc . A schematic diagram of the GEM reordering
based on DR described in this section can be seen in Fig. 1.

E. Dual 2D projections

In general, matrix reordering methods used to sort rows or
columns according to similarities, including the ones described
in Section II-D, but also many other standard techniques,
such as hierarchical clustering techniques used in heatmap
visualizations [28], are inherently a 1D projection problem,
since they imply a mapping between row or column vectors
on a 1D vector of scores used to define the permutations
to be done for rows or columns. This poses an important
limitation, since regions in the input space with a larger
intrinsic dimensionality may require more than one factor to
visually explain how samples are organized.

Therefore, we propose dual 2D UMAP projections —
similar to the dual t-SNEs proposed by [23]— as a powerful
complementary method for clustering (and relating) samples
and genes. This is done by defining two 2D dimensionality
reduction mappings, one for samples and one for genes, which
we call the sample view and the gene view, respectively.
Both mappings, visually represented as scatterplots, can be
used to interact with the GEM in many ways and may
also be recomputed conditioned by user-selected subsets of
samples or genes —described later in II-H—, providing a
powerful comprehensive view, better than the GEM or the
dual projections alone.

1) The sample view: A 2D mapping learned using UMAP,
φ2 : Rm → R2, is applied to all the samples (rows) of the
GEM to produce an n × 2 sample projection matrix P =
φ2(G). The rows of P, i.e., pi∗, are coordinates of 2D points
that are visually displayed in a scatterplot representation,
called the sample view.

Each point i in the sample view has a color that represents
the expression level of the currently selected gene j for that
sample. Since close samples in the latent space have similar
gene expression profiles, spatial changes in the color result in
visually identifiable patterns of expression for gene j that help
the user to spot interesting details. Whenever the user changes
the current gene j in the pointer selection with a simple mouse
move over the GEM view, this color pattern of expressions
is immediately and fluidly recomputed, allowing the user to
browse the whole gene collection looking for relevant patterns
across the samples.

This scatterplot can be used to interact with the GEM in
a bidirectional way. The user can interactively select samples
on the sample view using a lasso selection. This produces
a highlight of the corresponding rows in the GEM, which is
updated in real time, as the user draws the lasso, allowing them
to obtain immediate feedback on the relationships between
both views. On the other hand, a selection of rows in the
GEM (the vertical span of a box selection) will highlight the
samples in this view. These selections of samples can also
be used to define a conditional reordering of the GEM genes
(columns) —see section II-G.

2) The gene view: Similarly, a 2D mapping learned with
UMAP for the genes, φ2 : Rn → R2, is applied to all m
genes (each a column with n expression levels) of the GEM
to produce an m×2 gene projection matrix Q = φ2(G

T ). The
rows of Q, i.e., qi∗, are also 2D points, that are represented
in a scatterplot representation, called the gene view.

F. Bidirectional interactions among the views
Linked selection is a powerful interaction mechanism able

to highlight relationships among different representations of
a multifaceted problem. This mechanism —which implies
both selection and connection [29]— is particularly suited for
interactive GEM analysis. Indeed, an interface may have at
least these three elements sharing indices:

G = (gij) a gene expression matrix with two dimensions,
samples i and genes j that is presented in a heatmap
representation. Selections of items both in samples and
genes can be performed.
P = (pi∗) a 2D projection of the samples represented
in a scatterplot view. This view allows the selection of a
subset of the samples.
Q = (qj∗) a 2D projection of the genes also represented
in a scatterplot view. This view allows the selection of a
subset of the genes.

Four bidirectional linked selection operations can be carried
out in a simple way, as shown in Fig. 2: (a) point selection,
matching the i, j pixel in the GEM with sample i in the
sample view and gene j in the gene view; (b) sample matching,
relating a row of the GEM to a point in the sample view; (c)
gene matching, relating a column of the GEM to a point in the
gene view; and (d) bicluster matching, relating an area of the
GEM to a subset I of samples and a subset J of genes in the
sample and the gene view respectively. For instance, the user
can select samples in the 2D sample view or genes in the 2D
gene view and see the highlighted rows (Gσs∗) or columns
(G∗σg

) in the heatmap. Conversely, the user can select a box
area in the heatmap, and see the highlighted points both in the
sample view (Pσs∗) and the gene view (Qσg∗).

These operations do not involve algorithmic computations
and can be performed at framerate. Lasso or box selection
tools available in most interactive visualization libraries can
trigger updated events for any incoming or outgoing point in
the selection area “on the fly”, allowing for fluid interaction
[30], whereby the user queries and the immediate feedback are
synchronized, resulting in a seamless analysis loop, fostering
user engagement and boosting the discovery of interesting
patterns.
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Fig. 2. Bidirectional interactions between the GEM and the dual maps (sample view and gene view): (a) point selection; (b) sample selection; (c)
gene selection; (d) bicluster selection.

G. Conditional matrix reordering

While most state-of-the-art tools allow us to reorder the
GEM both by genes and samples, it is possible to customize
the ordering criteria by selecting the attributes considered.
With the approach described in this paper, this can be done
through simple interaction pipelines.
Example: conditional sorting of GEM rows (samples). This
example describes a procedure for GEM reordering of rows
according to similarity in the expression pattern of the samples
for a specific set of genes (for instance, known gene clusters,
or genes known to have specific functions of interest):

1) The user selects a cluster of related genes in the gene
view (e.g. using a lasso selection tool) or directly spec-
ifying them in a text window. This produces a selection
σ that includes the indices of the selected genes.

2) Compute a 1D-DR mapping to project the samples using
only the selected genes as attributes, first applying the
column selection operator on G and then projecting the
rows (samples) of the resulting matrix, that is, φ1 (G∗σ).

3) Sort the resulting scalars gi and apply the resulting
permutation of samples Gsorted = Gπ∗, where π =
arg sort(g1, . . . , gn).

Following similar procedures as the one in the previous
example, other conditioning schemes can be carried out. For
instance, conditional sorting of the GEM columns (genes) can
be performed by Gsorted = G∗π with

π = arg sort(φ1[(Gσ∗)
T ])

Finally, simultaneous sorting of rows and columns conditioned
by subsets of genes and samples, respectively can be achieved
by Gsorted = Gπsπg

with

πs = arg sort(φ1(G∗σg
))

πg = arg sort(φ1[(Gσs∗)
T ])

These procedures, while simple (they indeed can be carried
out with a few clicks), provide powerful analytic capabilities,
since they allow us to condition the matrix reordering patterns
to user-specified elements having known common traits. This
makes it possible, for instance, to organize the matrix samples

according to their similarity in a specific set of genes belonging
to a functional cluster or known to take part in a certain path-
way. Conversely, the GEM columns (genes) can be organized
according to their expression patterns for a certain biological
condition (e.g., a cancer type) represented by a selection of
the samples.

H. Conditional rearrangement of the 2D views
The sample and gene views, being 2D projections, provide

a far more powerful —yet complementary— representation of
the similarities between the samples and the genes than the
implicit 1D mechanism behind any reordering operation of
rows or columns of the GEM.

In addition to conditional GEM reordering, the user can
compute a conditional 2D projection of the samples using
only a selection σ of genes to define similarity as (pi∗) =
φ2 (G∗σ). The resulting 2D points pi∗ reflect the samples
organized by their similarities in the expression of the selected
genes. Similarly, a conditional 2D projection of the genes
according to a subset σ of the samples (e.g., a cancer subtype)
(qj∗) = φ2

[
(Gσ∗)

T
]
.

III. RESULTS

Fig. 3 describes the workflow of the analysis following the
knowledge model of [31]. The gene expression visualizations
(GEM, dual views) are fed to the user through the perception
P , increasing their current knowledge K. This knowledge can
condition how information is perceived (P ), suggesting new
questions, patterns to look and further reconfiguration (explo-
ration E) of the GEM and the dual views through classical
zoom, pan, etc., as well as through selection of biologically
meaningful groups of samples and genes to condition the GEM
ordering and dual map computation (sample view and gene
view).

A. Case 1. Similar expression profile of KIRC and
VHL-mutated PCPG for a specific set of genes

To start the analysis with a big picture, we decide to
visualize a bicluster arrangement of the GEM selecting, for
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Fig. 3. Workflow for knowledge discovery with the proposed approach.

example, 4 clusters as an initial specification (see Fig. 4).
We see that the PCPG, KIRC and normal kidney samples
are clearly separated, revealing a remarkably different genetic
profile, for the genes considered in the analysis, between both
cancer types, as well as between KIRC and normal renal tissue.

Fig. 4. Bicluster arrangement of the GEM.

Alternatively, we can carry out a 1D-UMAP sorting of the
GEM, involving rows and columns, resulting in the GEM
arrangement shown on the left of Fig. 5. In this case, a more
detailed bicluster organization is observed, where biclusters
are not restricted to rectangular areas; however, the qualitative
information about subsets of genes and samples is consistent
with the previous bicluster representation.

Combining the other elements in the tool with any of the
former GEM arrangements, a more detailed analysis can be
performed that actually provides richer and more detailed ge-
netic information, highlighting relevant biclusters that involve
featured groups of samples, which are related to featured
groups of genes. A first bicluster could be identified com-
prising a subset of the PCPG samples with a gene expression
profile more similar to KIRC than to the rest of PCPG samples.
An analysis of the genetic features published for these samples
[32] revealed that they correspond to all PCPG tumors carrying
mutations in VHL genes, a genetic defect also present in most
KIRC samples. Complementary to the former, their location in

the 2D sample view reveals their relative position with respect
to the rest of the samples.

Using basic interaction mechanisms (zoom and pan in the
GEM view, as well as in the sample view and the gene
view), the user can quickly identify a set of genes commonly
upregulated in KIRC and VHL-PCPG (large dotted area of
the GEM view in Fig. 5). A visual inspection of this area,
with the help of linked selections, that connect the GEM
and the 2D views, revealed the presence of three biclusters
that were found to correspond to functionally related genes:
1) genes of the hypoxia pathway highly overexpressed in all
KIRC samples but moderately overexpressed in VHL-PCPG
samples; 2) genes of the extracellular matrix (ECM in Fig.
5) upregulated in both, KIRC and VHL-PCPG; and 3) genes
involved in angiogenesis upregulated in VHL-PCPG and most
KIRC but not altered in approximately 30% of KIRC (smaller
dotted area in the rightmost part and bottom half of the GEM).

Collectively, this analysis provided compelling evidence that
VHL-PCPG and KIRC, as expected, share a similar hypoxia-
related gene expression profile. Importantly, it also allowed the
finding of nonpreviously published data: a bicluster of KIRC
not overexpressing angiogenic genes compared with normal
kidney tissue and most KIRC.

B. Case 2. Discovering genes with similar behavior for
tumor subtypes

As another interesting case of analysis, our approach allows
the discovery of genes with similar genetic behavior for a
subset of the samples that corresponds to tumors of specific
cancer subtypes. In this case —see Fig. 6— the biomedical
researcher is interested in the behavior of the SLC16A3 gene.
This gene is essential for cancer cell survival and predicts
tumor progression in patients with KIRC [34], [35]. It has
been biochemically associated with VHL-regulated signaling
pathways [34] such that it is expected to be upregulated in
VHL-deficient KIRC and PCPG. The SLC16A3 gene can be
located either interactively using zoom, pan and mouseover
with pointer selection in the GEM or by a simple text
search. According to our prediction, all KIRC samples and
the VHL-mutated PCPG tumors are highlighted in orange
color in the resulting sample view indicating that SLC16A3 is
overexpressed in the two types of tumors.

These samples can then be selected for conditioned anal-
ysis in the resulting 2D sample view, and then the gene
view can be updated so that it reflects the similarities of
the genes’ expressions, constrained to the selected sam-
ples. It is expected that genes in the neighborhood of
SLC16A3 in the resulting gene view show similar gene
expression behavior for KIRC and VHL-mutated samples.
A simple inspection reveals that some of the neighboring
genes and miRNAs are ALDOA, ENO1, FAM57A, GYS1,
RAB40C, SLC16A3, TPI1 and hsa-let-7b-5p. Hov-
ering the mouse pointer in the GEM view over each of these
genes, the user can observe their expressions with a color scale
across all samples in the sample view. In Fig. 6 the expression
patterns in the sample view for two of the neighboring genes
(ENO1 and FAM57A) are shown, confirming that they are
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Fig. 5. Case 1. On the left, the GEM with the pointer selection marker, selecting at this moment the sample TCGA-B0-5695-01 and gene BNIP3.
The cancer types and subtypes, as well as relevant clusters of genes have been color-highlighted on the right and bottom sides of the GEM. On
the right, the gene and sample views with the corresponding sample and gene clusters and zoom views (rightmost subfigures). Note the pointer
selection marker also appears on both views showing the current sample and gene positions. The annotated areas reveal a predominance of genes
with the corresponding function, according to a gene enrichment analysis with Metascape® tool [33].

Fig. 6. Workflow for discovering genes with similar behavior to SLC16A3 on KIRC samples and VHL-mutated PCPG samples.

upregulated in KIRC and VHL-mutated samples, as in the
case of SLC16A3.

C. Case 3. Conditional GEM sort and 2D maps

Conditional analysis according to angiogenesis genes: Our
approach may also help to identify similarities and differences
between tumors with different gene mutations. We illustrate
in Fig. 7 how, by using the 2D sample view, the different
gene expression profiles in PCPGs carrying mutations in the
VHL or SDH genes can be easily and interactively studied.
By selecting hypoxia-related genes known to be involved
in angiogenesis (see supplementary material for a list of
genes considered), we can conditionally rearrange the GEM
and the sample view to identify similarities between samples

according to the angiogenesis gene set. This analysis led to
the reconfiguration of the sample view showing increased
closeness of PCPG and KIRC samples, indicating that the
angiogenic profiles of both types of tumors are similar. More
specifically, considering two selections of PCPG samples, one
for those with VHL mutations and the other for those with
SDH mutations, it also highlights that VHL-PCPG samples
cluster together in the vicinity of KIRC. In contrast, PCPGs
with mutations in SDH genes are scattered among PCPGs
lacking VHL or SDH mutations. Therefore, VHL-PCPG but
not SDH-PCPG are closely related to angiogenesis in KIRC.
Similar conclusions can be drawn from the conditioned GEM,
as shown in Fig. 7. VHL mutated PCPG appear as rows in
the KIRC cluster of the GEM (except one that appears in
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Fig. 7. Conditional analysis using the GEM and the 2D sample view. Left two columns (according to angiogenesis genes): VHL-mutated and
SDH-mutated PCPG samples shown as dark points and rows. Right column (according to glycolysis genes): VHL-mutated PCPG samples shown
as dark points and rows.

the PCPG cluster, but next to the KIRC cluster), confirming
that their angiogenic profile is similar to that of KIRC.
Additionally, in accordance with the sample view, most SDH
samples appear in the PCPG cluster of the GEM, except two
that are in the KIRC cluster.

Conditional analysis according to glycolysis genes: A similar
analysis using a different gene set shows relevant novel
data. The hypoxia-related genes involved in glycolysis can
be selected for reordering the samples in the GEM view and
recomputing the sample view. This analysis shows that PCPG
and KIRC samples remain apart in differentiated clusters
except for VHL-PCPG samples that lay in the vicinity of
KIRC samples, thus revealing that activation of glycolysis is
a feature of tumors with deleterious mutations or deletions of
the VHL gene and that this does not occur in other types of
PCPG, including PCPG with SDH mutations. This situation
is clearly shown in the GEM, where all the VHL-mutated
samples appear together next to the KIRC cluster.

IV. DISCUSSION

The first case study demonstrates the potential of dual
representation of samples and genes on similarity maps, where
the user can utilize common tools such as pan, zoom and select
to explore the data and reveal functionally related genes that
display similar expression patterns in different types of cancer
(KIRC and VHL-mutated PCPG). The exploratory analysis
shows, in an intuitive and rapid manner, a new discovery in
the data: a group of KIRC samples that do not overexpress

angiogenesis genes in the same way as the rest. This type of
finding can lead to new hypotheses.

The other two case studies highlight the potential of inter-
active conditional reorganization of the visualization based on
both sample and gene subgroups. In Case 2, selecting KIRC
tissues and VHL-mutated PCPG samples in the sample view
allows for rapid identification of genes that behave similarly
in these subgroups. In Case 3, reorganizing the GEM based
on only selected genes in the gene view shows the similarities
and differences in KIRC and PCPG tissues with VHL or SDH
mutations with regard to functions such as angiogenesis or
glycolysis.

There are several methods in the literature for visualizing
the gene expression matrix, including those that incorporate
interaction mechanisms and more complex bicluster represen-
tations with overlapping clusters [11], [12], [14]. However,
the most commonly used methods yield simple checkerboard
representations. Our proposed 1D-DR reordering technique
presents an alternative that retains the heatmap representation
while providing more detailed and specific regions in the
GEM. Unlike some biclustering methods, it does not require
a predetermined number of clusters to be identified. For
instance, in one case, the 1D-DR reordered GEM allowed for
the identification of a specific bicluster in KIRC samples that
was not visible in the standard checkerboard representation.

Most importantly, using 2D projections, such as sample
maps and gene maps, can help to overcome the inherent 1D
limitation in GEM reordering. These projections provide an
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extra degree of freedom for representing samples and genes,
allowing for a more detailed representation of the mutual
relationships, similarities, and cluster structures among genes
and samples.

The proposed method also has some limitations that may
be noted. One of them is scalability. The GEM, like any other
heatmap representation, has limitations on the amount of data
that it can effectively represent. The size of the data also
impacts the efficiency of the algorithms used for reordering
the GEM and calculating the 2D maps. As a result, the
latencies in the workflow can make it less smooth and the
recommended GEM size is limited to approximately 1,000
items per dimension.

It must also be considered that the proposed approach is
exploratory in nature. Unlike machine learning methods, it is
not automated and does not provide precise or quantifiable
answers. It requires a user-guided process, and may be prone
to subjectivity and potential misinterpretation by the user.
Additionally, it is worth mentioning that while our approach
allows for the discovery of bicluster structures that are more
general than the baseline checkerboard type, it is limited to
nonoverlapping constant value biclusters, according to [4].
However, the proposed approach does not lose validity if
another GEM sorting algorithm is used that detects more
complex types of biclusters, but this remains an area for future
work.

It may be challenging to fully understand the value of
such an interactive process through a written description alone
(it is suggested to view the accompanying video for further
understanding). However, the case studies demonstrate the
potential of the proposed technique. By combining a GEM
heatmap visualization with linked 2D dual representations, the
technique offers a more comprehensive and useful represen-
tation of the data compared to the traditional checkerboard
representation. Additionally, the use of conditional reordering
based on user-selected subsets of genes and samples in various
views allows for a more in-depth exploratory analysis that
is guided by the biomedical researcher’s domain knowledge,
rather than that of the algorithms used. This is, in our opinion,
a key differential factor for success in its utilization.

V. CONCLUSIONS

In this paper, we have proposed a visual analytics approach
that integrates machine learning, data visualization and user
interaction in the analysis pipeline, helping the user to keep
insight along the whole discovery process.

To achieve this, we combined two related analysis mech-
anisms: the visualization of the GEM and dual 2D UMAP
projections of genes and samples. Although both techniques
—especially the first one— have been used in the literature,
our approach bridges them in novel ways by means of tight in-
teraction elements involving linked selections and conditional
rearrangement of both the GEM and the dual 2D projections,
according to user-specified subsets of genes and/or samples.

We tested the proposed approach on three case studies,
showing potentially relevant discoveries through a progressive
exploration process where the user keeps insight through

all the steps. It should be stressed, however, that while our
approach facilitates the exploration of gene expression data, it
does not generate medical results or evidence. It allows users
to raise hypotheses that could lead to new knowledge, but
the quality of the data and the user’s judgment are important
factors in this process. During the analysis, conclusions should
be accompanied by the assumptions and hypotheses used to
generate them to avoid bias, and the observations should not
be considered conclusive and must be subsequently validated
by other means.

We argue that properly designed interaction mechanisms to
efficiently connect complementary techniques (visualization
and/or machine learning), and having the user as an active
agent in the analytics discourse lead to improved knowledge
discovery, with respect to the techniques used independently.
The framework of analysis presented here opens new avenues
for the development of tools that integrate other data visual-
ization techniques and machine learning algorithms for knowl-
edge discovery in transcriptomic data analysis. Our method-
ology can also be extrapolated to other high dimensional
biomedical problems that can be posed in data matrix form,
such as single-cell RNAseq analysis, where the samples are
individual cells, allowing for a more in-depth understanding
of cell diversity and leading to broader types of analyses
involving, for instance, cell-wide response to stimuli and
conditions.

Finally, while the findings are potentially relevant and
provide insight into the role of hypoxia mechanisms in KIRC
and PCPG cancers, they are preliminary results aiming mainly
to demonstrate the usefulness of the proposed approach for dis-
covering valuable knowledge from genomic data. The insights
obtained from these results suggest further work including
further downstream analyses to confirm their clinical utility,
such as for the development of biomarkers.

VI. AVAILABILITY AND SUPPLEMENTARY MATERIAL

A video demo of the approach and its application to the
case studies in this paper is available at https://youtu.
be/NcJSxbF9E4w. The source code of a small demo app
used for the results is available at https://gitlab.
com/idiazblanco/gem-i and can be tried at https:
//gsdpi.edv.uniovi.es/matrices_ordenables_
interactivas. Finally, we also include the lists of genes
and samples used in the case studies.
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