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Abstract: This study investigates the use of an ionic liquid obtained from fatty acids (FAIL) as an ad-
ditive at 2 wt.% in two different base oils: a mineral oil (M1) and a polyol ester (E1). Physicochemical
characterization of the base oil–FAIL blends confirmed the miscibility of the FAIL in the base oils. The
addition of the FAIL hardly changed the density of the base oils and the viscosity slightly increased
at lower temperatures. The tribological performance of the base oils and their blends with the FAIL
was determined using three different tests: Stribeck curve determination and tribofilm formation
tests, both under sliding/rolling motion, and reciprocating wear tests. The M1 + FAIL blend showed
the lowest friction values under the mixed lubrication regime due to its higher viscosity, while the E1
+ FAIL showed the lowest friction values under the elastohydrodynamic lubrication regime, which
may well have been due to its higher polarity. Only the E1 + FAIL blend outperformed the antiwear
behavior of the base oil, probably because it has better chemical affinity (higher polarity) for the
metallic surface. SEM images showed that the predominant wear mechanism was adhesive-type
with plastic deformation and XPS studies proved that the presence of increasing amounts of organic
oxygen on the wear scar caused better antiwear performance when the E1 + FAIL blend was used.

Keywords: fatty acid ionic liquid; lubricant additive; miscibility; friction; wear

1. Introduction

Ethylammoniumnitrate [(C2H5)NH3] [NO3] was reported more than 100 years ago
as a liquid salt, and this moment could be considered as the birth of the so-called ionic
liquids [1]. Research into these special salts, with melting points lower than 100 ◦C, gained
attention again in the 1970s with the utilization of pyridinium/imidazolium cations and
halide/halogen aluminate anions as electrolytes in batteries [2,3]. The issue regarding the
possible basicity or acidity of ILs was solved in the 1990s when Wilkes and Zawarotko [4]
employed neutral weakly coordinating anions, such as tetrafluoroborate [BF4]− and hex-
afluorophosphate [PF6]−, to obtain ILs. Since then, these novel substances have become
important in different industrial applications, such as catalysts, liquid crystals, extraction
technology, solvents and lubrication [5–9].

Research into the use of ILs in lubrication began in 2001 [9], mainly due to some of their
excellent physicochemical properties (e.g., wide liquid range, low volatility, etc.), which
are important for formulated lubricants. The number of studies on this topic has increased
enormously since 2001, showing the great interest these novel substances attract within the
lubrication field [10–20]. It is the tribofilm-forming capacity of these ionic compounds that
is mainly responsible for both the friction and wear reduction [21–30].
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However, though ILs were shown to have special properties, certain problems were
also found regarding their use in lubrication. Firstly, the majority of ILs contain toxic
or hazardous elements that are potentially harmful to the environment (e.g., halogens
and/or heavy metals) [31–35]. Therefore, if ILs are to be considered as “green compounds”,
properties such as their toxicity and biodegradability must be controlled. Secondly, since
the price of ILs remains high, their use as neat lubricants is limited to severe conditions,
such as high temperature, load and vacuum [36–41]. Due to these limitations, the main
application of ILs in lubrication is currently as lubricant additives [25,42–51].

Some lubrication research found that additizing non-polar oils (mineral or polyal-
phaolefin) with a polar additive at low concentration could improve the adsorption of the
former on metallic surfaces due to the polar nature of these substances [52–54]. Taking
this phenomenon into account, several studies have been published employing ILs as a
lubricant additive at low concentrations in non-polar oils, forming base oil–IL emulsions
or unstable base oil–IL blends [55–59]. Attempting to overcome the miscibility problem,
some authors found that ILs display better compatibility with polar oils [51,60–71]. How-
ever, some phosphonium cation-based ILs were also found to be miscible in non-polar
oils [44,46,47].

The increase in social awareness of the global environmental problems caused by
human activity has brought a need to find new lubricants to help confront the growing
effects of pollution on the environment [72–74]. To find these new, environmentally friendly
compounds, the toxicity problems of ILs have been addressed by selecting more appropriate
constituent ions [75–78]. One group of these novel compounds are fatty acid anion-based
ionic liquids (FAILs), obtained via metathesis and first reported in 2013 [79]. Currently,
research into the use of FAILs in lubrication keeps expanding [80–96] and it constitutes a
hot research topic. In this study, one novel FAIL (methyltrioctylammonium octadecenoate
or [N8,8,8,1] [C18:0]), synthetized from natural sources, was tribologically characterized as a
lubricant additive for the first time in two different base oils (synthetic ester and mineral
oil). The [N8,8,8,1] [C18:0] was selected as a neat sample considering the following properties:
no corrosion activity on steel [97] and high thermal stability [98].

2. Materials and Methods
2.1. Ionic Liquid and Base Oils

The fatty acid anion-based ionic liquid methyltrioctylammonium octadecanoate ([N8,8,8,1]
[C18:0]) was synthesized following a three-step process (ester formation, salt metathesis
reaction and the elimination of solvent), as described in previous work [99]. Stearic acid
(natural >98%) and methyltrioctylammonium bromide ionic liquid ([N8,8,8,1] [Br]) (>97%)
were used as anion and cation precursors, respectively. Sodium hydroxide, toluene (99.8%)
and ethanol solution (70% w/w), provided by Sigma-Aldrich Corporation. (St. Louis, MO,
USA) were employed without further purification as chemical reagents for the synthesis.

The molecular structure of this new FAIL was previously identified using Fourier-
transform infrared spectroscopy (FTIR) with a Varian 670-IR from Agilent Technologies
(Santa Clara, CA, USA) and nuclear magnetic resonance (NMR) analysis using a Bruker
serie Avance AV600 from Bruker Corporation (Billerica, MA, USA) [87]. In addition, some
of its properties (water solubility, viscosity, viscosity index and refractive index) were
correlated with its bacterial toxicity and biodegradability [92]. Its corrosion and tribological
performance as a pure lubricant were also investigated [97]. The chemical structure and the
empirical formula of the methyltrioctylammonium octadecanoate ([N8,8,8,1] [C18:0]) ionic
liquid are shown in Figure 1.

Additionally, two different base oils, kindly supplied by REPSOL S.A. (Madrid, Spain),
were used: a mineral base oil (SN-150), coded M1; and a polyolester base oil (Priolube 3970),
coded E1. These base oils were selected among those where the ionic liquid was soluble.
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Figure 1. Chemical structure and empirical formula of the [N8,8,8,1] [C18:0] FAIL.

2.2. Blend Characterization: Miscibility, Viscosity and Density

In order to confirm the miscibility of this novel FAIL in the base oils mentioned above,
solubility tests at 0.5, 1 and 2 wt.% were performed in each of the base oils, using an
ultrasonic probe Bandelin Sonopuls HD2200 from Bandelin Electronics (Berlin, Germany)
at 70% amplitude for 5 min and maintaining the blend temperature below 60 ◦C. Later,
the miscibility of the blends was measured with the light backscattering technique in a
Turbiscan aging station from Formulaction (Toulouse, France). These tests were conducted
at 30 ◦C for 14 days, taking measurements every 24 h to study possible phase separation.

The dynamic viscosity and density of the blends were measured at atmospheric
pressure according to ASTM D7042 over a temperature range of 20–100 ◦C using a Coutte
rotational viscometer Stabinger Viscometer SVM3001 from Anton Paar GmbH (Graz, Austria).

2.3. Tribological Tests

Tests were carried out to study the tribological behavior of the [N8,8,8,1] [C18:0] FAIL
as an additive in two base oils. Firstly, two independent tests were performed using a
Mini Traction Machine tribometer (MTM2), from PCS Instruments (London, UK) with a
ball-on-disk configuration (Figure 2). The first test was undertaken at constant values for
the load, slide-to-roll ratio (SRR) and temperature, while friction was measured over a
speed range to obtain the so-called Stribeck curve. This procedure was repeated for four
temperatures in a single test, allowing the behavior of the blends to be studied under
different lubrication regimes. In order to study tribofilm formation due to the interaction
between the lubricant and the surface, a second test in the MTM2 was performed where
the load, speed, temperature and SRR were kept constant during tests and the ball was
periodically halted, separated from the contact and loaded against a coated glass disc.
Then, the thickness of the tribofilm formed on the ball’s surface was measured by optical
interferometry. The methodology employed was described in [100].
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Table 1 shows the test conditions employed in the two abovementioned experiments.
In all of them, AISI 52,100 steel balls (Ra < 0.02 µm, diameter of 19.05 mm and 800–920 HV)
and discs (Ra < 0.02 µm, diameter of 46 mm and 720–780 HV) were used as specimens and
supplied by PCS Instruments (London, UK). The steel ball was loaded against the steel
disc submerged in 10 mL of the lubricant. Previously, both specimens were cleaned in an
ultrasonic bath with heptane for 15 min, then washed with ethanol and finally dried with
hot air.

Table 1. Test conditions of the experiments conducted in the mini traction machine.

Load (N)/Max. Contact
Pressure (GPa)

Main Entrainment Speed a

(mm·s−1)
Slide-to-Roll
Ratio b (%)

Temperature
(◦C)

Stribeck measurement 30/0.95 2500 to 10 c 50 40, 60, 80, 100
Film formation measurement 50/1.13 150 50 100

a Mean entrainment speed can be defined as (ud + ub)/2, where ud and ub are the lineal velocity of the disk and
the ball at the point of contact, respectively. b Slide-to-roll ratio was calculated as 100 × 2(ud − ub)/(ud + ub). c

Steps of 100 mm·s−1 from 2500 to 100 and steps of 10 mm·s−1 from 100 to 10.

Additionally, accelerated friction and wear tests were carried out in a Bruker UMT-3
tribometer from Bruker Corporation (Billerica, MA, USA) using a reciprocating ball-on-
disc configuration (Figure 3). AISI 52,100 steel balls (Ra = 0.05 µm, diameter of 6 mm
and 58–66 HRC) and discs (Ra = 0.018 µm, diameter of 10 mm and 225 HV) were also
employed in this case. Thirty-minute experiments with the presence of 4 mL of lubricant
sample were performed at a 50 N-load (medium contact pressure of 1.63 GPa), 15 Hz
frequency, 100 ◦C, 4 mm stroke length and relative humidity within the 40–60% range. The
expected lubrication regime was mixed. During the experiments, the coefficient of friction
was recorded. To obtain statistically acceptable results, three repetitions of each test were
performed. The samples were cleaned before each test following the procedure previously
described for the Mini Traction Machine experiments. At the end of these tests, the wear
volume on the disk was determined by using a Leica DCM 3D confocal microscope from
Leica Microsystems GmbH (Wetzlar, Germany).
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2.4. Surface Analysis

In order to identify the predominant wear mechanism, after the wear test in the UMT-3
tribometer, the worn surface on the disk was analyzed by Scanning Electron Microscopy
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(SEM) and Energy Dispersive X-ray spectroscopy (EDX). A JSM 5600 SEM from JEOL
Ltd. (Tokyo, Japan) instrument with an X-ray energy-dispersive microanalyser model Inca
Energy 200 from Oxford Instruments (Abingdon, UK) was used for secondary electron
imaging (SEI), with an accelerating voltage of 20 kV.

Additionally, possible tribochemical interactions between lubricant mixtures and
surfaces were studied using X-ray photoelectron spectroscopy (XPS). Tests were conducted
with a PHI VersaProbe II spectrometer from Physical Electronics (Chanhassen, MN, USA),
using a monochromatized Kα(Al) X-ray source (1486.7 eV, 4.8 W) for the experiments. The
final X-ray spot (diameter 20 µm2) was always focused on the wear scar. Adventitious
carbon at 284.6 eV was selected to correct binding energies. Pass energy was selected in the
30–60 eV range. The total number of scans depended on each sample and element.

3. Results and Discussion
3.1. Miscibility, Viscosity and Density Values

The FAIL was miscible in both base oils for all concentrations. Figure 4 shows the
results of the miscibility tests for the 2 wt.% concentration and the measurements of light
backscattering at 0, 7 and 14 days, confirming the absence of phase separation in the base
oil + FAIL blends.
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Figure 4. Stability of the blends measured by light backscattering technique (a) M1 + 2%FAIL, (b) E1
+ 2%FAIL.

Figure 5 shows density and kinematic viscosity values obtained for the different
base oils and their mixtures with the FAIL. As can be seen, the density of the base oils
hardly changed with the addition of FAIL. The ester base oil (E1), pure or mixed with the
FAIL, showed the highest density values, followed by the mineral oil (M1). Regarding the
kinematic viscosity, it can be observed for both base oils that the addition of 2 wt.% of FAIL
slightly increased the viscosity value, particularly at lower temperatures.

3.2. Tribological Tests

Figure 6 shows traction coefficient results versus mean entrainment speed (Stribeck
curves) for the test conducted with all the lubricants at 40, 60, 80 and 100 ◦C. As expected,
the change from an elastohydrodynamic lubrication (EHL) regime to a mixed lubrication
(ML) regime occurred at a higher speed with increasing temperature. Under the EHL
regime the M1 base oil, with and without FAIL, exhibited the highest traction coefficient
values, which was related to their having the highest viscosity among the lubricant samples.
No important differences in friction value could be observed under this regime (speed >
100 mm/s) between base oils and their corresponding mixtures with the ionic liquid, except
for the E1 base oil at high temperatures, where the presence of FAIL caused an increase in
friction value.
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On the other hand, under the ML regime (speed of 100 mm/s and below), the friction
results were more related to the asperities contact phenomenon. However, in general, the
M1 base oil and its mixture with FAIL showed lower friction values, especially at higher
temperatures, due to their higher viscosity, which facilitates the formation of a thicker
lubricant film.

The tribofilm formation on the balls used in the second kind of test carried out in
the MTM2 is shown in Figure 7. A color change (from blue to brown) can be seen on the
surfaces of the balls and is indicative of layer formation during the tests.
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The thickness of the tribofilm formed on the balls during tests with all lubricants can be
observed in Figure 8. In agreement with the abovementioned results, there was an increase
in the E1 + FAIL tribofilm thickness during the test, which achieved the highest values
recorded for the two lubricant samples studied. The fluctuations in the film thickness may
have been related to the coexisting formation/wear processes that took place during the
test. On the other hand, the M1 + FAIL registered only a very slight increase in tribofilm
thickness, probably due to its high viscosity, which prevents greater interaction between
the FAIL and the surface.
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Figure 9 shows the mean values for the coefficient of friction (COF) in the reciprocating
tests carried out at 100 ◦C. These friction values are characteristic of a mixed lubrication
regime. Analogously to the results obtained in previous works where other FAILs of the
same family were studied [88,96], the addition of 2% of FAIL to a lubricating base oil did
not significantly modify its friction behavior. However, while in the previous studies the
COF increased slightly with the additivation, in the present work the addition of FAIL
caused, in both cases, a slight decrease in COF. This favorable differential behavior could
be attributable to the higher thermal stability of the studied FAIL [98], which is related to
its longer alkyl chain length.
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Figure 10 shows the wear volume on the disc from wear tests at 100 ◦C. The E1 + FAIL
blend achieved a notable reduction in wear compared to the base oil without additives. This
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behavior was probably related to its better chemical affinity with the metallic surface due
to its having both higher polarity [53,54,88] and affinity for the metal surfaces. However,
the antiwear behavior of the blend with the base oil M1 at 100 ◦C worsened, probably due
to the lower polar nature of mineral oils. This could be attributed to the dynamic of the
wear process, where differences in the rate of formation and destruction of the tribolayer in
the contact can lead to wear increases.

Lubricants 2022, 10, x FOR PEER REVIEW 10 of 17 
 

 

Figure 10 shows the wear volume on the disc from wear tests at 100 °C. The E1 + FAIL 
blend achieved a notable reduction in wear compared to the base oil without additives. 
This behavior was probably related to its better chemical affinity with the metallic surface 
due to its having both higher polarity [53,54,88] and affinity for the metal surfaces. How-
ever, the antiwear behavior of the blend with the base oil M1 at 100 °C worsened, probably 
due to the lower polar nature of mineral oils. This could be attributed to the dynamic of 
the wear process, where differences in the rate of formation and destruction of the tribo-
layer in the contact can lead to wear increases. 

 

 

 

 

 

 

 

Figure 10. Wear volume of the discs after tests at 100 °C. 

3.3. Surface Analysis 
The wear scar on the disc after reciprocating wear tests was studied with an SEM tech-

nique and the predominant wear mechanism found was of the adhesive type with plastic 
deformation, which is usually found under mixed lubrication regimes (Figure 11). The state 
of the worn surface shows that the addition of FAIL to the E1 base oil caused a clear decrease 
in the scar width. These results are in agreement with those seen in Figure 10. 

  

Figure 10. Wear volume of the discs after tests at 100 ◦C.

3.3. Surface Analysis

The wear scar on the disc after reciprocating wear tests was studied with an SEM
technique and the predominant wear mechanism found was of the adhesive type with
plastic deformation, which is usually found under mixed lubrication regimes (Figure 11).
The state of the worn surface shows that the addition of FAIL to the E1 base oil caused a
clear decrease in the scar width. These results are in agreement with those seen in Figure 10.

Mathematical curve fitting was performed using CasaXPS software for the XPS anal-
ysis on the disk wear surfaces. Iron was fitted based on the presence of three different
species, Fe2O3 in the 709–711 eV range, FeO in the 707–711 eV range and iron oxy hydrox-
ides (FeOOH) with energies higher than 711 eV. Eventually, iron (0) was searched for at
energies below 707.5 eV, but the content was negligible. Fitting was performed using a
Gaussian–Lorentizan 70:30 curve for FeO and FeOOH, whereas a Gaussian–Lorentizan
45:55 with an exponential blend of 1.5 was used for Fe2O3. Peak position assignation was
carried out based on data published in several databases [101,102] and summarized in
Table 2.

Table 2. Assignation of binding energies. All energies are expressed in eV.

From To

O1s

C=O 532.0 532.2
C–O 533.3 533.5

Oxihydroxides 530.9 531.1
Oxides 529.4 529.7

Fe2p
Fe2O3 707.6 710.3
FeO 710.0 711.2

FeOOH 712.5 713.4
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Figure 11. Micrographs of wear scars on the different discs after tribological tests (a) E1, (b) E1 + 2%
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The O1s results (Table 3) agreed with the antiwear behavior found after analyzing
the wear scars on the disks. An approximately constant amount of organic oxygen (C–O
plus C=O), as well as a constant amount of FeOOH + oxides, was found for the base M1
and the blends with the FAIL. On the other hand, the E1 + FAIL blend exhibited a notable
increase in organic oxygen with respect to the base oil or, in other words, a reduction in the
oxides content.

Table 3. O1s percentage composition.

Oxides C–O FeOOH C=O

E1 54.66 8.44 20.85 16.05
E1 + 2%FAIL 45.65 13.58 18.75 22.03

M 54.01 7.04 22.6 16.34
M1 + 2%FAIL 57.74 6.99 20.41 14.86
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With respect to Fe2p (Table 4), the presence of the ionic liquid seems to have had a
reductant effect on the surface when solved in E1 base oil, since the FeO/Fe2O3 ratio greatly
increased in the presence of FAIL. This effect was not so important in the case of the M1 oil,
for which the increase was slight. Likewise, the amounts of surface iron oxy-hydroxides
did not seem to undergo large modifications in the presence of FAIL in any of the cases. In
fact, although the FeO/Fe2O3 ratio changed in some of the samples, the total amount of
oxides remained constant, as can be seen from the O1s spectra, since for the two kinds of
oxides these spectra are too close to be distinguished.

Table 4. Fe2p percentage composition.

Fe2O3 FeO FeOOH

E1 62.89 21.77 15.34
E1 + 2%FAIL 10.43 63.55 26.01

M1 25.92 57.22 16.86
M1 + 2%FAIL 19.63 60.47 19.89

The surface composition (Table 5) seemed to indicate a significant organic layer with
negligible amounts of nitrogen, thus suggesting a poor interaction with FAIL. Furthermore,
the chemical compositions of the worn surface after tests with lubricant samples with and
without FAIL were very similar in the case of the E1 oil. However, in the lubricant samples
M1 and M1 + FAIL, the presence of the ionic liquid resulted in a lower amount of carbon
and a higher amount of oxygen, although the high-resolution spectra of both Fe2p and O1s
peaks did not reveal significant differences regarding the chemical state.

Table 5. Surface chemical composition (percentage).

C O N Fe

E1 72 23 0.2 4.3
E1 + 2%FAIL 76 20 0.2 3.4

M1 70 24 0.5 5.3
M1 + 2%FAIL 60 30 1.0 9.2

4. Conclusions

A novel FAIL obtained via metathesis synthesis was studied as an additive in two
different base oils at 2 wt.%. The main conclusions that can be drawn from this work are:

• The FAIL was miscible in the two base oils and no important changes in density and
viscosity were found by using it as an additive at 2 wt.% concentration.

• The M1 + FAIL blend showed the highest friction values under the EHL regime and
the lowest ones under the ML regime, corresponding to its higher viscosity, which
facilitates the formation of a thicker lubricant film at lower speeds. In contrast, the
E1 + FAIL showed the lowest friction values under EHL, probably due to its higher
polarity and affinity for the metallic surface.

• E1 + FAIL showed a constant increase in the tribofilm thickness during the test,
achieving the highest values recorded for the two lubricant samples studied. On the
other hand, the M1 + FAIL only registered a very slight increase in tribofilm thickness.

• The E1 + FAIL blend outperformed the antiwear behavior of the base oil, probably due
to the better chemical affinity (higher polarity) of this blend for the metallic surface.

• The predominant wear mechanism found after wear tests was of the adhesive type
with plastic deformation, and the presence of increasing amounts of organic oxygen
(C–O plus C=O) on the wear scar led to better antiwear performance when the E1 + FAIL
blend was used.
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