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A B S T R A C T   

Reliable data on the availability of solar energy is needed, as solar energy is an essential resource for sustainable 
development worldwide. However, ground-based radiometric stations are scarce, at least in large areas far from 
population and in developing countries, so there are difficulties in validating methods for estimating solar ra
diation. Indirect models mitigate the problem by providing radiation data from other meteorological variables, 
which can be measured with low-cost equipment and calibrated with data from secondary station networks. 
However, models’ accuracy decreases if estimations are required far away from the calibration stations. It is 
hoped that modified models that include the influence of geographical and topographical variables can attenuate 
this drawback in data-scarce regions. This paper evaluates the accuracy and generality of 14 existing models of 
monthly global solar radiation based on temperature, which is a routinely measured variable. At first, models are 
locally calibrated at 105 stations in three large areas in Spain. Then, from the local coefficients of eight stations 
selected in each area, general equations are derived for the coefficients of each model as function of the ratio 
between elevation and distance to the sea. The predictions of these modified models, i.e., using coefficients 
derived from general equations, are compared both for the eight base stations and the remaining ones used for 
validation. In the comparisons, not only errors averaged in groups of stations are considered, but also local 
results. Several models perform well in some areas, but a simple homogeneous model is the only one whose 
indicators are good in all areas and hardly vary when using general coefficients derived from the data measured 
at all available stations.   

1. Introduction 

Solar energy is one of the main alternatives to sustainably meet the 
world’s growing energy demand and thus contribute to the development 
of the actions urgently called for by the Intergovernmental Panel on 
Climate Change to reduce the severe environmental impact [1]. 
Consequently, there is currently strong interest in both solar thermal and 
photovoltaic systems for agricultural [2], industrial and, above all, 
residential applications [3,4], as cities in developed countries are 
thought to be the main consumers of energy worldwide [5]. However, 
reliable data on solar energy availability are not always known for 
project development, especially in remote areas and developing 
countries. 

Due to the scarcity of weather stations with solar radiation records 
[6,7], models for indirect estimation of global solar radiation (GSR) have 
been developed for decades, using abundantly measured meteorological 

variables or, more recently, satellite images. Alternative methodologies 
using artificial intelligence techniques have also been developed, such as 
those based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) and 
Artificial Neural Network (ANN) methods [8]. Traditional GSR models 
have occasionally been preferred to soft-computing techniques, because 
of their computational simplicity [9], and have been suggested as 
complementary tools to more complex physical models [10]. 

The predictions of models are usually accurate for locations where 
they can be calibrated, but so far no model has outperformed all others 
everywhere [11]. Some authors questioned the need to develop new 
models [12], while others argued that most existing models have yet to 
be analysed over a wide geographical and climatic range [13]. 
Depending on the input variables, the models can be classified into 
sunshine-based, temperature-based, cloud-based, and other climatic 
parameters-based models [14]. Among the hundreds of existing GSR 
models [12], a small number of hybrid models include the influence of 
geographical variables. Many of these models are the result of replacing 
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the coefficients of previous models with functional relationships 
involving geographical or meteorological variables, which increases the 
complexity of the original model. For example, hybrid models derived 
from the Ångström-Prescott model have up to 6 variables and 10 co
efficients more than the original model [15,16]. Potential benefits of 
complexity have to be assessed according to objectives. If the only 
objective were to improve accuracy by using locally calibrated co
efficients, a model with a larger number of variables and adjustment 
coefficients could be advantageous. However, the calibrated coefficients 
often vary from site to site, and increasing the number of variables and 
coefficients reduces the degrees of freedom of a model. Complexity can 
then limit the generality of a model, i.e., its applicability to large 
geographical areas. It is therefore understandable that the most 
comprehensive review to date has recommended seeking the optimal 
compromise between accuracy and complexity [12]. 

Daily sunshine fraction has been mostly used in hybrid models 
involving geographical variables. In fact, out of a total of 94 recently 
compiled hybrid models [17], latitude, longitude or altitude were 
included as influencing variables in 16 cases, 11 of which were modi
fications of classical sunshine-based models, with two regression co
efficients in one case and 4 to 12 coefficients in the remaining cases. One 
of this models, having relative sunshine, altitude and the month index as 
input variables, explained roughly 90% of the variability in the data 
from 59 stations in 19 European countries [18]. Precipitation and lati
tude were the only variables used in another model, with three co
efficients [19], while temperature, relative humidity, precipitation, and 
wind speed were model inputs in other two cases [15,20], with 9 and 11 
coefficients, respectively. In the remaining two models [21,22], tem
perature was the only meteorological variable used. 

This paper aims to assess the trade-off between accuracy and gen
erality of models. The target is limited to models of monthly average 
GSR on horizontal surface, which can be used to estimate irradiance 

using semi-empirical models [23]. As air temperature measurement 
requires low-cost equipment and is widespread [7], temperature-based 
models have been chosen as the subject of the study. Only one of the 
above-mentioned temperature-based models is dimensionally homoge
neous, which has the advantage of reducing the number of influential 
variables that may be implicit in the coefficients [17]. An equation was 
previously proposed to express the only coefficient of this model as a 
function of the z/L ratio, which provided acceptable results for a large 
coastal region of northern Spain [17,22]. In this article such a model is 
compared for the first time with other 13 temperature-based models of 
low or moderate functional complexity. The coefficients of the 14 
models are locally calibrated using data from 105 weather stations, 
located in three areas covering a large part of peninsular Spain, and then 
analysed for the first time as a function of the z/L ratio. The analysis 
leads to modified models that are actually new hybrid models. Given the 
geographical and climatic variety of the area studied, it is expected that 
specific results may be of interest to other countries. Since the ratio 
between coastal and inland stations could influence the model quality, 
comparisons are made not only based on averages calculated over a set 
of stations but also by looking at the accuracy of local predictions. 

The procedure consists of the following stages, carried out sequen
tially in each of the three areas: 

1) Obtaining, for each model, site-calibrated coefficients at each 
station, from monthly experimental data averaged over the corre
sponding time period. 

2) Comparison of model performance with site-calibrated co
efficients, using appropriate statistical quality indicators. 

3) Obtaining new general hybrid models for each geographical area, 
i.e., obtaining equations that allow the local coefficients to be expressed 
as a function of geographical variables, using data from eight stations 
representative of the climatic variety of each region. 

4) Comparison between the performance of the new general hybrid 

Nomenclature 

ai Empirical parameter 
E′ Centred pattern RMSE (kWh/m2)=
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2
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√

E′

n Normalised centred pattern RMSE = E′

/σo 
H Global solar irradiation on horizontal surface (kWh/m2) 
H0 Extraterrestrial global solar irradiation on horizontal 

surface (kWh/m2) 
KGCC Köppen-Geiger climate classification 
L Distance to the sea (m) 
MBE Mean bias error (kWh/m2)=
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i=1(si − oi)/n 
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i=1(si − oi)/n
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RMSE Root mean square error (kWh/m2)=
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2
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RMBE Relative mean bias error =
∑n

i=1((si − oi)/oi )/n  

RRMSE Relative root mean square error =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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i=1((si − oi)/oi )
2
/n

√

si Simulated value 
Tm Mean air temperature (K) 
Tmax Maximum air temperature (K) 
Tmin Minimum air temperature (K) 
z Elevation above sea level (m) 
ΔT Temperature difference (K)= Tmax − Tmin 

φ Latitude (rad) 
λ Longitude (rad) 
σo Standard deviation of experimental solar irradiation 

(kWh/m2)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑n
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2
)/

n
√

σs Standard deviation of simulated solar irradiation (kWh/ 

m2)=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(∑n

i=1(si − si)
2
)/

n
√

σsn Normalised standard deviation = σs/σo  
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models, using scatter plots and appropriate statistical quality indicators, 
both at the eight base stations and at the remaining stations used for 
validation purposes in each area. 

As the optimisation of the selection of representative stations in each 
area is beyond the scope of the article, an approximate evaluation of the 
representativeness of the eight base stations in each area is finally car
ried out. For this purpose, the performance of the modified models using 
general equations derived from data at eight stations is compared with 
that obtained using general equations derived from data at all stations in 
each area. 

2. Materials and methodology 

2.1. Selection of temperature-based GSR models 

The models described below have been selected from dozens of 
existing GSR models that allow indirect estimation of the H/H0 ratio 
from air temperature measurements [9,13], with a maximum of three 
parameters, seeking a representative variety of the variables used and 
the types of functional relationship. 

2.1.1. One-parameter models 
Model No.1: Hargreaves and Samani [24] suggested that the clear

ness index could be estimated from the amplitude of the air temperature 
oscillation by means of the following equation: 

H/H0 = a1ΔT0.5 (1) 

The coefficient a1 was initially set at 0.17 for arid and semiarid cli
mates, but later values of 0.16 and 0.19 were recommended respectively 
for inland and near the coast [25]. The site dependence of a1 is to some 
extent due to the fact that equation (1) is not homogeneous [22], as it is 
impossible to construct a dimensionless group using only the variables 
H, H0 and ΔT. This parameter should therefore be interpreted as con
taining implicit variables, despite which this classical model has ach
ieved satisfactory results in many locations. 

Model No.2: Meza and Varas [26] proposed the following variant of 
the classical Bristow and Campbell approach [27] to analyse monthly 
averages of GSR in Chile: 

H/H0 = 0.75
(

1 − e− a1ΔT2
)

(2) 

Site-calibrated values of a1 falling in the range from 0.00150 to 
0.01944 were obtained for 20 locations in Chile. This dispersion may 
also be related to some extent to the inhomogeneity of the model. [17]. 

Model No.3: The model proposed by Weiss et al. [28], also non- 
homogeneous, has the same functional form and number of parame
ters as the previous model, but employs the same variables as the Goodin 
et al. model [29], i.e.: 

H/H0 = 0.75
(

1 − e− a1ΔT2/H0
)

(3) 

Model No.4: The model proposed by Annandale et al. [21] is a 
modification of model No.1 that has outperformed other temperature- 
based models in regions of complex orography such as India [30], due 
to the incorporation of an altitude correction factor, i.e.: 

H/H0 = a1
(
1 + 2.7 • 10− 5z

)
ΔT0.5 (4) 

The originally recommended value for the parameter is a1 = 0.16, 
but a simple dimensional analysis allows to detect that both a1 and the 
factor 2.7 • 10− 5 contain implicit variables. 

Model No.5: Prieto et al. [22] derived this model from the dimen
sional analysis of model No.1: 

H/H0 = a1(ΔT/Tmin)
0.5 (5) 

with a1 being dependent on z/L, in agreement with the models of 
Hargreaves and Samani, Allen [31] and Annandale. It has been validated 

in the coastal provinces of northern Spain [17]. 

2.1.2. Two-parameter models 
Model No.6: Hargreaves et al. [32] proposed this other evolution of 

model No.1, which obtained good results under different climatic con
ditions [33,34] due to the use of two parameters, i.e.: 

H/H0 = a1 + a2ΔT0.5 (6) 

Model No.7: Chen et al. [35] developed this model from daily GSR 
data at 48 stations in China, obtaining the best results among 
temperature-based models, such as model No.6. It consists of the 
following logarithmic equation, which is not homogeneous, so there are 
implicit variables in at least one of the parameters: 

H/H0 = a1 + a2lnΔT (7) 

Model No.8: Pandey and Katiyar [36] proposed to express the 
clearness index as polynomial functions of the ratio Tmax/Tmin instead of 
the difference ΔT. Although no mention is made of respect, the pro
cedure yields homogeneous equations. The linear version corresponds to 
the following equation: 

H/H0 = a1 + a2Tmax/Tmin (8) 

Model No.9: Adaramola [37] proposed this model for various loca
tions in Nigeria, in the absence of data required by sunshine-based 
models: 

H/H0 = a1 + a2Tm (9) 

Model No.10: Chen and Li [38] developed this model for monthly 
GSR estimates at 13 stations in Yangtze River Basin in China. It can be 
considered as the linear, also non-homogeneous, version of model No.6: 

H/H0 = a1 + a2ΔT (10)  

2.1.3. Three-parameter models 
Model No.11: Li et al. [39] developed this model for daily GSR es

timates and obtained somewhat better results than model No.6 with data 
measured in Chongquing, China. The same variables as in model No.8 
were used in a non-homogeneous equation with three parameters, i.e.: 

H/H0 = a1 + a2Tmax + a3Tmin (11) 

Model No.12: This model is the second degree polynomial version of 
equation (8), proposed by the same authors [36]: 

H/H0 = a1 + a2Tmax/Tmin + a3(Tmax/Tmin)
2 (12) 

Model No.13: This model is the second-degree polynomial version of 
equation (9), i.e.: 

H/H0 = a1 + a2Tm+a3T2
m (13) 

It was proposed by Ohunakin et al. [40] from experimental mea
surements in Nigeria, assuming Tm ≈ (Tmax +Tmin)/2, due to data 
availability. 

Model No.14: This model, proposed by Hassan et al. [41], obtained 
the most accurate GSR estimates among 20 temperature-based GSR 
models evaluated in Egypt at different locations, especially at coastal 
sites, using Tm as a variable. It is based on the following non- 
homogeneous equation: 

H/H0 = a1 + a2H0Ta3
m (14)  

2.2. Meteorological stations. 

Tables A1-A3 in the Appendix show the geographical and climatic 
characteristics of the 105 meteorological stations used for the model 
analysis. Stations 1–71 are in Andalusia, a region in southern Spain with 
an area of approximately 87,600 km2, corresponding to 17.3% of the 
Spanish territory. Two of its eight provinces are inland, while the 
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remaining provinces have abundant coastline with either the Atlantic 
Ocean or the Mediterranean Sea. Stations No.72–84 are distributed over 
a wide area, from relatively arid provinces of the central plateau of Spain 
to the Mediterranean coast. Finally, stations No.85–105 are in coastal 
provinces of northern Spain, covering a strip of about 1000 km in length 
but little variation in latitude. As can be seen from the tables and Fig. 1, 
the geographic, orographic, and climatic diversity is wide. 

2.3. Experimental data. 

Monthly mean values of maximum and minimum air temperatures 
and horizontal solar irradiation at both ground and extraterrestrial 
levels for each weather station during the respective time period are 
provided as Appendix A in Supplementary Data. 

2.4. Statistical indicators 

Various methods have been proposed to assess the fit between 
experimental observations and model estimates but none of them are 
free of limitations [43]. Since non-expert stakeholders can easily inter
pret percentage results [44], in this article the performance of the 
models is assessed using dimensionless statistical indicators, namely the 
relative root mean square error RRMSE, the relative mean bias error 
RMBE, and the coefficient of determination R2. To facilitate compari
sons with results from other authors, the Nash-Sutcliffe coefficient of 
model efficiency, NSE, and the normalised values of the root mean 
square error and mean bias error, NRMSE and NMBE, have also been 
calculated, using the mean values of the measurements as references for 
the latter two. 

The accuracy of the models is considered high when the percentage 
errors are less than 10% [45], while, depending on the degree of 

Fig. 1. Köppen-Geiger climate classification of meteorological stations [42].  

Fig. 2. (a) Geometric basis of the Taylor diagram; (b) Variation of the coefficient of determination as a function of the centred pattern RMS difference for σsn = R.  
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agreement between estimates and measurements, R2 values range from 
0 to 1 and NSE values range from –∞ to 1. Negative NSE values suggest 
that the mean of the measurements is a better predictor than the model 
estimates themselves [46]. Some authors warn against the risk of 
identifying the meaning of R2 and NSE [47], while others try to avoid 
confusion by classifying the former as an indicator of dispersion and the 
latter as an indicator of overall performance [44]. For example, while 
R2 = 0.8 indicates that the model explains 80% of the variance in the 
observed data, the value NSE = 0.8 has a totally different meaning, i.e., 
that the model mean squared error represents 20% of the observed 
variance. The cause of possible confusion may be that R2 can be inter
preted as a maximum potential value for NSE, as the following equation 
reduces to NSE = R2 for the optimal case of si = oi and σsn = R [46]: 

NSE = 2σsnR − σ2
sn −

(
si − oi

σo

)2

(15) 

Although not yet widely used in GSR model analysis [48], Taylor 
diagrams have been recommended for visualising results [49]. In this 
article, this type of chart is used as an alternative to the usual scatter
plots, because it is a graphical tool that provides a concise statistical 
summary of how well patterns match each other in terms of their cor
relation, their root-mean-square difference, and the ratio of their vari
ances. The Taylor diagram is based on the definition of the centred 
pattern RMS difference [49]: 

E′

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1

[
(si − si)

2
− (oi − oi)

2 ]
√

(16) 

which is related to the key statistical indicators by means of the 
following equations: 

RMSE = (si − oi)
2
+E′2 (17)  

(E
′

)
2
= σ2

o + σ2
s − 2σoσsR (18) 

The following relationship is derived from normalising equation (18) 
by σo, and is the basis for the graphical representation of the degree of 
closeness between a model and the reference data set, using dimen
sionless variables (Fig. 2a): 

E
′

n =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + σ2
sn − 2σsnR

√

(19) 

For the value σsn = R, which corresponds to the maximum value of 
NSE, this equation reduces to the following expression, which can be 
used as a basis for proposing rating intervals based on E′

n, with criteria 
similar to those based on NSE [43] (Fig. 2b): 

R2 = 1 −
(
E

′

n

)2
(20) 

However, it is recommended to perform assessments based on 
equation (19), as dispensing with σsn would reduce advantages with 
respect to other procedures. For example, E′

n = 20% is obtained for σsn =

R ≈ 0.9800, but if σsn = 0.8 it is necessary to reach R = 0.9999 to obtain 
the same deviation. 

3. Results and discussion 

3.1. Model performance with site-calibrated coefficients 

The regression coefficients obtained for each model and station when 
fitting the experimental monthly GSR data, as well as the corresponding 
annual mean relative errors, are provided as Appendix B in 

Supplementary Data. 
In general, all models perform well at all stations in Andalusia (Table 

B1). The highest errors are obtained by models No.2, 3 and 14, with 
RRMSE values in the range of 10–20% at 7, 55 and 2 stations, 
respectively. 

The results are not very different for the stations in the central zone 
(Table B2), with most RRMSE values below 10%. Models No.1, 4, 5 and 
9 reach RRMSE values slightly higher than 10% at one station, while 
model No.2 has values in the range 10–20% at 6 stations and model 
No.14 reaches values in the range 15–50% at 3 stations. Model No.3 still 
shows the worst performance, with errors of 10–20% at 10 stations and 
higher values at the remaining 3 stations. 

Similar trends are observed at the northern stations (Table B3), 
although with slightly higher errors for all models. Models No.1 and 4 
reach RRMSE values a few tenths above 10% at station No.92, like model 
No.5 at stations No.92 and 94. Model No.2 obtains errors in the range 
10–20% at 8 stations, while the values of model No.3 are in the range 
10–50% at all stations. For each of the stations, it is observed that the 
lowest RRMSE values are generally obtained using models with the 
highest number of coefficients. However, at some stations model No.14 
shows less favourable results than models No.11–13, or other models 
with a smaller number of coefficients. 

On the other hand, the results obtained at the two stations with data 
for different periods allow a brief evaluation of the influence of the 
period on the comparisons. Thus, in station No.86 the site-calibrated 
coefficients hardly differ from those obtained in station No.97 for 
models No.1, 2, 4 and 5, as well as in stations No.101 and 102 for models 
No.1, 2, 4–7 and 10. Therefore, pending more complete studies, it can be 
deduced that the period is more influential for model No.3 and the 
models with more parameters. 

Table 1 shows the averages of statistical indicators obtained by each 
model for the set of stations in each geographical area. Normalised 
values can be converted to ordinary variables taken into account that the 
average of the 852 monthly GSR data in Andalusia is H =

5.016kWh/
(
m2 • day

)
, with a standard deviation σo = 1.969kWh/

(
m2 •

day
)

caused by the natural variability of irradiation, while the average of 
the 156 monthly data in central Spain is H = 4.311kWh/

(
m2 • day

)
, 

with standard deviation σo = 1.914kWh/
(
m2 • day

)
, and the average of 

the 252 monthly data in northern Spain is H = 3.350kWh/
(
m2 • day

)
, 

with standard deviation σo = 1.509kWh/
(
m2 • day

)
. When the signs of 

RMBE and NMBE are not coincident, bias analyses based on the sum of 
relative values are considered more advisable. As can be seen, all models 
provide high quality estimates, except model No.3 in all geographical 
areas and model No.14 in the central area. Model No.11 achieves the 
best results and errors increase with latitude except for model No.14. 

Fig. 3(a), 3(b) and 3(c) show the Taylor diagrams obtained for the 
performance of the models at the stations of each geographical area. In 
short, the charts are a clear and meaningful tool for corroborating ob
servations previously derived from tabulated results. 

3.2. Model performance using general equations derived from data at 
eight stations 

For each model, an analysis of the geographical dispersion of site- 
calibrated coefficients has been carried out. In each geographical area, 
the calibrated coefficients of eight stations have been used to obtain 
trend lines by the least squares method and the coefficients of the 
remaining stations have been used for validation purposes. 

The analyses are based on the z/L ratio because longitude is not an 
influential variable, variations in latitude are small in each area, and the 
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Table 1 
Summary of model performance using site-calibrated coefficients.  

Station\Model No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 

Stations No.1–71 RRMSE (%)  3.55  6.55  13.28  3.54  4.04  2.43  2.45  2.86  2.86  2.46  1.58  2.64  2.75  4.39  
RMBE (%)  0.20  − 1.95  0.21  0.12  0.31  0.06  0.06  0.08  0.07  0.06  0.03  0.07  0.07  0.19  
NRMSE (%)  3.36  4.15  13.19  3.37  3.89  2.41  2.43  2.83  2.70  2.41  1.54  2.55  2.64  4.57  
NMBE (%)  − 0.37  − 1.05  − 4.24  − 0.45  − 0.56  − 0.15  − 0.13  − 0.23  − 0.34  − 0.16  − 0.08  − 0.18  − 0.37  0.48  
NSE  0.9927  0.9888  0.8870  0.9926  0.9902  0.9962  0.9962  0.9948  0.9953  0.9962  0.9985  0.9958  0.9955  0.9864  
R2  0.9935  0.9913  0.9464  0.9936  0.9924  0.9963  0.9962  0.9950  0.9960  0.9963  0.9985  0.9959  0.9962  0.9873  
σsn  0.9687  1.0383  0.7545  0.9679  0.9509  0.9904  0.9899  0.9858  0.9718  0.9905  0.9950  0.9723  3.2729  1.0210  
E′

n(%)  8.52  10.24  31.83  8.51  9.81  6.12  6.18  7.19  6.83  6.14  3.92  6.49  6.65  11.58 
Stations No.72–84 RRMSE (%)  5.21  10.33  19.22  5.20  5.70  4.14  4.16  4.11  5.37  4.17  3.43  3.74  5.02  18.14  

RMBE (%)  0.39  − 3.60  − 1.94  0.26  0.51  0.17  0.16  0.16  0.29  0.17  0.11  0.14  0.25  1.12  
NRMSE (%)  4.97  7.21  20.94  5.00  5.48  4.21  4.26  4.20  4.80  4.20  3.32  3.95  4.45  20.42  
NMBE (%)  − 0.61  − 1.70  − 8.27  − 0.74  − 0.86  − 0.20  − 0.20  − 0.18  − 0.46  − 0.20  − 0.06  − 0.12  − 0.43  3.18  
NSE  0.9874  0.9736  0.7776  0.9873  0.9847  0.9910  0.9908  0.9910  0.9883  0.9910  0.9944  0.9921  0.9900  0.7884  
R2  0.9885  0.9803  0.8337  0.9886  0.9873  0.9911  0.9909  0.9911  0.9886  0.9911  0.9944  0.9921  0.9903  0.8626  
σsn  0.9643  1.0623  0.7667  0.9629  0.9468  0.9888  0.9869  0.9906  0.9808  0.9903  0.9977  0.9800  0.9555  1.1915  
E′

n(%)  11.12  15.78  43.33  11.13  12.20  9.48  9.59  9.45  10.75  9.46  7.47  8.88  9.98  45.44 
Stations No.85–105 RRMSE (%)  6.37  10.43  29.66  6.36  6.70  5.09  5.07  5.55  6.32  5.11  4.01  5.25  6.19  6.19  

RMBE (%)  0.53  − 2.35  − 10.46  0.46  0.56  0.26  0.26  0.31  0.39  0.26  0.17  0.27  0.37  − 0.53  
NRMSE (%)  6.00  8.94  36.53  6.02  6.39  5.41  5.38  5.94  5.57  5.45  4.03  5.41  5.36  6.86  
NMBE (%)  − 0.95  − 1.94  − 20.51  − 1.02  − 1.15  − 0.46  − 0.45  − 0.65  − 0.27  − 0.47  − 0.14  − 0.56  − 0.25  0.33  
NSE  0.9823  0.9606  0.3420  0.9821  0.9799  0.9856  0.9857  0.9826  0.9847  0.9854  0.9920  0.9856  0.9859  0.9768  
R2  0.9852  0.9632  0.5764  0.9853  0.9842  0.9862  0.9864  0.9839  0.9847  0.9860  0.9920  0.9866  0.9859  0.9826  
σsn  0.9422  1.0086  0.5952  0.9414  0.9313  0.9699  0.9699  0.9597  0.9950  0.9697  0.9906  0.9639  0.9952  1.0672  
E′

n(%)  13.15  19.38  67.12  13.17  13.95  11.97  11.91  13.11  12.36  12.05  8.94  11.95  11.88  15.22  
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Fig. 3. Comparison of model performance using site-calibrated coefficients: (a) Stations No.1–71; (b) Stations No.72–84; (c) Stations No.85–105.  
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use of z and L as separate independent variables would lead to non- 
homogeneous equations. In the search for models of maximum 
simplicity, polynomial trend lines with a degree greater than two have 
not been considered. 

3.2.1. Andalusia 
Although an optimal selection of representative stations for the re

gion is beyond the scope of the article, care has been taken to cover the 
variety of climatic and geographic characteristics. In this sense, few 
stations in the region are outside the range 0.5 < z/L < 50, which 
roughly corresponds to the selected stations No.1–8. With respect to 
climate, six stations were selected with Csa climate, which is predomi

nant in the region (56 stations), another one among the eight stations 
with BSh climate, and the remaining one is the only station in the region 
with BWk climate. The six stations with BSk climate are not represented, 
so their data can be used for validation purposes. 

Equations (21) to (48) are the result of the analysis for each model at 
stations No.1–8. The trend lines derived from the regression analyses are 
shown in Figs. 4 to 6, where the site-calibrated coefficients for stations 
No.1–71 are also plotted to visualise the degree of dispersion. 

It becomes evident that the performance of the models is discrimi
nated if the coefficients of the models are expressed by general equations 
as a function of the z/L ratio. In the group of one-parameter models, the 
R2 values are relatively low and similar. For model No.5, despite having 

Fig. 4. Dispersion of regression parameters for one-parameter models in Andalusia.  
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Fig. 5. Dispersion of regression parameters for two-parameter models in Andalusia.  
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Fig. 6. Dispersion of regression parameters for three-parameter models in Andalusia.  
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a slightly lower R2 value, equation (26) is preferred to equation (25), 
represented by a dashed line, as the functional form of the former avoids 
physically meaningless parabolic branches that do not agree with ob
servations about the influence of the distance to the sea [6]. The 
dispersion is greater in the groups of models with two or three param
eters, being models No.11, 12 and 14 the only ones that meet or exceed 
the R2 values obtained with one-parameter models. 

Model No.1: 

a1 = 0.164013 − 0.000079z/L+ 1.26 • 10− 5(z/L)2 (21) 

Model No.2: 

a1 = 0.008786 − 0.000019z/L+ 3.42 • 10− 6(z/L)2 (22) 

Model No.3: 

a1 = 0.074666 − 0.000921z/L+ 4.27 • 10− 5(z/L)2 (23) 

Model No.4: 

a1 = 0.163878 − 0.000073z/L+ 1.24 • 10− 5(z/L)2 (24) 

Model No.5: 

a1 = 0.163878 − 0.000073z/L+ 1.24 • 10− 5(z/L)2 (25)  

a1 = 4.439 − 1.715e− 0.0060z/L (26) 

Model No.6: 

a1 = 0.014949 − 0.019053z/L+ 0.000423(z/L)2 (27)  

a2 = 0.157909+ 0.005445z/L − 0.000109(z/L)2 (28) 

Model No.7: 

a1 = − 0.171993 − 0.026114z/L+ 0.000617(z/L)2 (29)  

a2 = 0.295337+ 0.010375z/L − 0.000229(z/L)2 (30) 

Model No.8: 

a1 = − 6.229355 − 0.285993z/L+ 0.005130(z/L)2 (31)  

a2 = 6.513271+ 0.273878z/L − 0.004865(z/L)2 (32) 

Model No.9: 

a1 = − 1.974561+ 0.027861z/L − 0.000358(z/L)2 (33)  

a2 = 0.008850 − 0.000092z/L+ 0.000001(z/L)2 (34) 

Model No.10: 

a1 = 0.309877 − 0.008672z/L+ 0.000193(z/L)2 (35)  

a2 = 0.021009+ 0.000719z/L − 0.000012(z/L)2 (36) 

Model No.11: 

a1 = 0.359028 − 0.007241z/L+ 0.000130(z/L)2 (37)  

a2 = 0.015814+ 0.000577z/L − 0.000006(z/L)2 (38)  

a3 = − 0.012665 − 0.000651z/L+ 0.000006(z/L)2 (39) 

Model No.12: 

a1 = − 16.571563 − 25.516618z/L+ 0.566704(z/L)2 (40)  

a2 = 24.279863+ 48.696416z/L − 1.081515(z/L)2 (41)  

a3 = − 7.535744 − 23.233044z/L+ 0.516037(z/L)2 (42) 

Model No.13: 

a1 = 12.797385 − 0.514723z/L+ 0.012958(z/L)2 (43)  

a2 = − 0.092683+ 0.003654z/L − 0.000091(z/L)2 (44)  

a3 = 0.000174 − 0.000006z/L+ 1.59 • 10− 7(z/L)2 (45) 

Model No.14: 

a1 = 478721+ 0.001332z/L − 0.000054(z/L)2 (46)  

a2 = 0.006199 − 0.000420z/L+ 0.000025(z/L)2 (47) 

Fig. 7. Andalusia: (a) Number of stations in RRMSE ranges; (b) RRMSE variations at each station.  
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Table 2 
Summary of model performance using general equations derived from data at eight stations in Andalusia.  

Station\Model No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 

Stations No.1–8 RRMSE (%)  6.57  11.74  14.41  6.58  7.15  7.10  7.31  8.35  4.17  7.14  6.21  8.90  3.92 21.58  
RMBE (%)  0.42  − 2.80  1.16  0.44  0.59  0.53  − 0.01  1.18  − 0.10  1.04  1.45  − 0.51  − 0.09 − 2.03  
NRMSE (%)  6.76  9.34  13.51  6.76  7.19  7.45  7.14  9.27  3.53  8.00  7.11  8.54  3.45 27.32  
NMBE (%)  0.34  − 1.41  − 2.45  0.32  0.23  0.59  0.09  1.26  − 0.53  1.09  1.48  − 0.25  − 0.54 − 2.50  
NSE  0.9698  0.9423  0.8793  0.9698  0.9658  0.9633  0.9663  0.9431  0.9917  0.9577  0.9665  0.9517  0.9921 0.5063  
R2  0.9707  0.9548  0.8954  0.9707  0.9661  0.9656  0.9678  0.9496  0.9926  0.9617  0.9705  0.9552  0.9929 0.6410  
σsn  1.0156  1.0829  0.8360  1.0134  1.0005  1.0289  1.0227  1.0481  0.9706  1.0378  1.0350  1.0360  0.9723 1.1620  
E′

n(%)  17.37  23.74  34.17  17.36  18.49  19.10  18.36  23.63  8.98  20.39  17.89  21.96  8.77 69.97 
Stations No.1–71 RRMSE (%)  14.10  18.13  20.42  14.01  9.81  46.66  60.33  49.19  7.45  36.31  25.50  117.79  8.77 ###  

RMBE (%)  − 2.97  − 9.94  − 6.01  − 2.97  − 3.58  0.03  0.85  0.29  − 1.13  − 0.48  0.20  5.37  − 1.20 ###  
NRMSE (%)  14.23  16.37  22.35  14.14  10.38  47.43  61.36  50.41  7.06  36.91  25.22  121.80  8.03 ###  
NMBE (%)  − 3.02  − 7.77  − 9.42  − 3.05  − 3.94  0.30  1.29  0.49  − 1.52  − 0.38  0.13  6.27  − 1.62 ###  
NSE  0.9597  0.8945  0.8145  0.9596  0.9641  0.9450  0.9354  0.9348  0.9972  0.9521  0.9697  0.8932  0.9971 0.9200  
R2  0.8782  0.8767  0.7365  0.8795  0.9410  0.3962  0.2874  0.3668  0.9693  0.5152  0.6973  0.1033  0.9598 0.0053  
σsn  0.9983  1.0439  0.8016  0.9954  0.9398  1.5553  1.8518  1.6139  0.9725  1.3501  1.1672  3.2729  0.9776 ###  
E′

n(%)  35.43  36.73  51.64  35.19  24.47  120.87  156.32  128.45  17.56  94.06  64.27  309.97  20.04 ###  
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a3 = 0.622002 − 0.039309z/L+ 0.000518(z/L)2 (48) 

The annual mean relative errors obtained from general equations 
(21) to (48) for each model at each station in Andalusia are included as 
Table C1 of Appendix C in Supplementary Data. It is observed that the 
lowest errors are obtained with models No.9 and 13, and the highest 
with models No.3 and 14, while models No.1, 4, 5, 10 and 11 lead to 
results that seem acceptable and similar. On the other hand, it is 
observed that all models except model No.5 lead to very high errors for 
the highest value of z/L, i.e., at station No.24. Model No.5 obtains a 
value of RRMSE = 10.49% at this station, while it reaches the maximum 
value of 23.36% at station No.14. The remaining models have errors 
greater than 30% at some station. With respect to the six BSk climate 
stations, no differences with results obtained in other zones can be 
observed. 

Fig. 7(a) shows for each model the number of stations obtaining 
RRMSE values in four percentage ranges, while Fig. 7(b) shows the 
RRMSE variations obtained with the 14 models at each station. 

The averages of statistical indicators calculated for stations No.1–8 
and for all 71 stations, listed in Table 2 and depicted in Fig. 8(a) and 8 
(b), facilitate a more precise analysis. For the eight stations on which 
equations (21) to (48) are based, the performance of all models except 
No.3 and 14 could be qualified as very good using the criteria in Fig. 2 
(b). With the same equations and criteria, the estimates of models No.9, 
13 and 5 would be very good for all 71 stations, while those of models 
No.1, 2 and 4 would be good and the performance of the remaining 
models worsens significantly. 

3.2.2. Central Spain 
In this case, the dispersion analysis of the model coefficients is based 

on data from stations No.72–79, i.e., six inland stations and two on the 
Mediterranean coast, while three stations to the west and two to the east 
are used for validation purposes. A large area in the interval 1 < z/L <

12 and a wide climatic variety are thus covered. 
Equations (49) to (76) are the result of the analysis carried out for 

each model at stations No.72–79, following the same procedure as in the 

previous case. The trend lines derived from the regression analyses are 
shown in Figs. 9 to 11, where the site-calibrated coefficients for stations 
used for validation purposes are also plotted to visualise the degree of 
dispersion. 

Except in the case of model No.13, the coefficients of determination 
obtained at stations No.72–79 are lower than those obtained at stations 
No.1–8 in Andalusia whatever the number of parameters in the model. 
For model No.5 a near-zero value of R2 is obtained by fitting the locally 
calibrated coefficients to a functional relationship formally similar to 
equation (26), so it is not surprising that the result is a1 =

4.386 − 1.714e0.0000 = 2.672, which is close to the mean of the co
efficients, i.e., a1 = 2.646. As the figures show, models No.1 and 4 are 
not far from analogous performance in the z/L range studied. 

Model No.1: 

a1 = 0.164955 − 0.002044z/L+ 8.58 • 10− 5(z/L)2 (49) 

Model No.2: 

a1 = 0.007436+ 0.001135z/L − 1.77 • 10− 4(z/L)2 (50) 

Model No.3: 

a1 = 0.064900+ 0.003023z/L − 7.10 • 10− 4(z/L)2 (51) 

Model No.4: 

a1 = 0.164349 − 0.001815z/L+ 5.66 • 10− 5(z/L)2 (52) 

Model No.5: 

a1 = 2.760237 − 0.022105z/L+ 2.760237(z/L)2 (53)  

a1 = 2.672 (54) 

Model No.6: 

a1 = − 0.724725+ 0.351466z/L − 0.031761(z/L)2 (55)  

a2 = 0.382516 − 0.109364z/L+ 0.009957(z/L)2 (56) 

Fig. 8. Comparison of model performance using general equations derived from data at eight stations in Andalusia: (a) Stations No.1–8; (b) stations No.1–71.  
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Fig. 9. Dispersion of regression parameters for one-parameter models in central Spain.  

J.-I. Prieto and D. García                                                                                                                                                                                                                     



Energy Conversion and Management 268 (2022) 115950

15

Fig. 10. Dispersion of regression parameters for two-parameter models in central Spain.  
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Model No.7: 

a1 = − 1.105429+ 0.478799z/L − 0.044989(z/L)2 (57)  

a2 = 0.686702 − 0.203369z/L+ 0.019159(z/L)2 (58) 

Model No.8: 

a1 = − 16.766892+ 4.616474z/L − 0.400258(z/L)2 (59)  

a2 = 16.651543 − 4.451209z/L+ 0.386091(z/L)2 (60) 

Model No.9: 

a1 = − 1.049686 − 0.417381z/L+ 0.068256(z/L)2 (61)  

a2 = 0.005867+ 0.001271z/L − 0.000215(z/L)2 (62) 

Model No.10: 

a1 = − 0.038519+ 0.148164z/L − 0.012605(z/L)2 (63)  

a2 = 0.053217 − 0.014714z/L+ 0.001289(z/L)2 (64) 

Model No.11: 

a1 = 0.479686 − 104432z/L+ 0.009400(z/L)2 (65)  

a2 = 0.009127+ 0.005210z/L − 0.000284(z/L)2 (66)  

Fig. 11. Dispersion of regression parameters for three-parameter models in central Spain.  
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a3 = − 0.010229 − 0.002188z/L − 0.000317(z/L)2 (67) 

Model No.12: 

a1 = 919.852486 − 438.474010z/L+ 40.404874(z/L)2 (68)  

a2 = − 1782.197657+ 846.999992z/L − 78.061084(z/L)2 (69)  

a3 = 863.702912 − 409.039734z/L+ 37.703265(z/L)2 (70) 

Model No.13: 

a1 = 46.092197 − 28.956920z/L+ 3.321779(z/L)2 (71)  

a2 = − 0.320486+ 0.198886z/L − 0.022739(z/L)2 (72)  

a3 = 0.000565 − 0.000342z/L+ 0.000039(z/L)2 (73) 

Model No.14: 

a1 = − 1.733084+ 0.911482z/L − 0.097708(z/L)2 (74)  

a2 = 1.683487 − 0.706755z/L+ 0.074787(z/L)2 (75)  

a3 = − 0.846567+ 0.366024z/L − 0.047162(z/L)2 (76) 

The annual mean relative errors obtained for each model at each 
station in central Spain are provided as Table C2 of Appendix C in 
Supplementary Data. It is observed that models No.1, 4 and 5 predict the 
lowest RRMSE values, while the highest values correspond to models 
No.3 and 14, which obtains errors greater than 10% at all stations. Most 
models predict high RRMSE values for the highest value of z/L, i.e., at 
station No.84, where models No.1, 4 and 5 reach values slightly higher 
than 10%. Models No.6–8, 10 and 12 lead to similar results to the best 
ones except for station No.84. 

Fig. 12(a) shows for each model the number of stations obtaining 
RRMSE values in four percentage ranges, while Fig. 12(b) shows the 
RRMSE variations obtained with the 14 models at each station. 

The averages of statistical indicators calculated for stations 
No.72–79 and for the 13 stations as a whole, listed in Table 3 and 

depicted in Fig. 13(a) and 13(b), facilitate a more precise analysis. For 
the eight stations on which equations (49) to (76) are based, the per
formance of all models except No.3 and 14 could be qualified as very 
good using the criteria in Fig. 2(b). With the same equations and criteria, 
the estimates of models No.1, 4–8, 10 and 12 would also be very good for 
the set of 13 stations, while the performance of the remaining models 
worsens significantly. 

3.2.3. Northern Spain 
In this case, the dispersion analysis of the model coefficients is based 

on data from the only seven stations in the Principality of Asturias with 
GSR records during 2003–2016, and from the nearest station in neigh
bouring provinces with data during the same period. For validation 
purposes, another 13 data series are used, corresponding to stations 
located along a wide strip of the northern coast of Spain, with little 
climatic diversity but a range of z/L that is wider than in previous cases, 
i.e., 4 < z/L < 400, approximately. 

Equations (77) to (104) are the result of the analysis carried out for 
each model at the eight stations used as the basis of the study, following 
the same procedure as in the previous cases. The trend lines derived 
from the regression analyses are shown in Figs. 14 to 16, where the site- 
calibrated coefficients for stations used for validation purposes are also 
plotted to visualise the degree of dispersion. As the figures show, except 
for models No. 13 and 14, the coefficients of determination obtained in 
stations No.85–92 are higher than in the previous regions, especially for 
the one-parameter models. In the set of 21 stations, the degree of 
dispersion increases for all models except for model No.5, using equa
tion (82). 

Model No.1: 

a1 = 0.139833+ 0.000181z/L+ 2.11 • 10− 8(z/L)2 (77) 

Model No.2: 

a1 = 0.014543 − 0.000171z/L+ 6.91 • 10− 7(z/L)2 (78) 

Model No.3: 

a1 = 0.067672 − 0.000259z/L+ 1.71 • 10− 6(z/L)2 (79) 

Fig. 12. Central Spain: (a) Number of stations in RRMSE ranges; (b) RRMSE variations at each station.  
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Table 3 
Summary of model performance using general equations derived from data at eight stations in central Spain.  

Station\Model No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 

Stations No.72–79 RRMSE (%)  5.76  10.07  16.31  5.79  6.20  6.11  6.11  5.95  8.49  6.15  6.26  7.16  8.36  124.15  
RMBE (%)  0.43  − 3.28  − 0.70  0.47  0.57  − 0.56  − 0.53  − 0.81  1.24  − 0.59  − 1.38  − 1.30  1.10  84.08  
NRMSE (%)  6.11  8.28  17.09  6.13  6.79  7.15  7.21  6.99  9.02  7.12  7.04  9.31  8.78  159.75  
NMBE (%)  − 0.45  − 1.34  − 6.55  − 0.50  − 0.71  − 1.71  − 1.65  − 1.91  0.36  − 1.76  − 1.83  − 2.61  0.20  96.29  
NSE  0.9801  0.9633  0.8441  0.9799  0.9754  0.9727  0.9722  0.9739  0.9565  0.9729  0.9735  0.9537  0.9588  − 12.6343  
R2  0.9811  0.9716  0.9190  0.9811  0.9779  0.9764  0.9759  0.9780  0.9566  0.9767  0.9755  0.9594  0.9588  0.4861  
σsn  0.9610  1.0710  0.7305  0.9574  0.9414  0.9418  0.9412  0.9426  0.9810  0.9422  0.9720  0.9342  0.9759  3.5550  
E′

n(%)  14.08  18.89  36.47  14.12  15.60  16.04  16.22  15.54  20.83  15.94  15.72  20.66  20.29  294.63 
Stations No.72–84 RRMSE (%)  7.27  47.87  30.17  7.34  7.52  8.74  8.42  8.05  25.97  9.32  20.12  8.89  25.76  298.12  

RMBE (%)  1.24  − 18.85  − 8.99  1.15  1.67  1.92  1.41  1.10  11.34  2.41  − 1.36  1.43  11.17  3.64  
NRMSE (%)  6.44  46.03  31.96  6.55  6.56  7.29  7.22  6.84  21.10  7.59  22.60  8.61  20.49  309.47  
NMBE (%)  − 0.07  − 15.50  − 14.34  − 0.23  − 0.04  0.46  0.13  − 0.39  8.49  0.78  − 3.83  − 0.21  8.16  23.08  
NSE  0.9790  − 0.0751  0.4816  0.9782  0.9782  0.9730  0.9736  0.9762  0.7741  0.9708  0.7409  0.9624  0.7869  − 47.5952  
R2  0.9797  0.4893  0.5813  0.9791  0.9805  0.9738  0.9742  0.9776  0.8268  0.9716  0.7606  0.9631  0.8329  0.0814  
σsn  0.9579  1.4139  0.8843  0.9543  0.9401  0.9610  0.9626  0.9524  1.0641  0.9604  1.0120  0.9555  1.0515  7.3618  
E′

n(%)  14.61  101.05  65.84  14.89  14.82  16.39  16.26  15.40  44.40  17.03  50.89  19.39  43.17  714.10  
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Model No.4: 

a1 = 0.139742+ 0.000183z/L+ 1.68 • 10− 8(z/L)2 (80) 

Model No.5: 

a1 = 2.351488+ 0.003207z/L+ 6.15 • 10− 9(z/L)2 (81)  

a1 = 3.485 − 1.350e− 0.0191z/L (82) 

Model No.6: 

a1 = 0.106637 − 0.023557z/L+ 0.000065(z/L)2 (83)  

a2 = 0.072081+ 0.011131z/L − 0.000030(z/L)2 (84) 

Model No.7: 

a1 = 0.027675 − 0.018355z/L+ 0.000052(z/L)2 (85)  

a2 = 0.137861+ 0.012377z/L − 0.000034(z/L)2 (86) 

Model No.8: 

a1 = − 2.522739 − 0.611678z/L+ 0.001679(z/L)2 (87)  

a2 = 2.752747+ 0.602542z/L − 0.001653(z/L)2 (88) 

Model No.9: 

a1 = 0.387247 − 0.035580z/L+ 0.000083(z/L)2 (89)  

a2 = 0.001388 − 0.003579a1 (90) 

Model No.10: 

a1 = 0.244437 − 0.011180z/L+ 0.000031(z/L)2 (91)  

a2 = 0.007666+ 0.002467z/L − 0.000007(z/L)2 (92) 

Model No.11: 

a1 = 0.156048 − 0.006212z/L+ 0.000017(z/L)2 (93)  

a2 = 0.025634+ 0.001109z/L − 0.000003(z/L)2 (94)  

a3 = − 0.025711 − 0.001009z/L+ 0.000003(z/L)2 (95) 

Model No.12: 

a1 = 3540.407793 − 211.316172z/L+ 0.502365(z/L)2 (96)  

a2 = − 6909.900957+ 412.544347z/L − 0.980072(z/L)2 (97)  

a3 = 3371.847460 − 201.339882z/L+ 0.477983(z/L)2 (98) 

Model No.13: 

a1 = 4.826063 − 0.835812z/L+ 0.002077(z/L)2 (99)  

a2 = − 0.030319+ 0.005664z/L − 0.000014(z/L)2 (100)  

a3 = 0.000052 − 0.000010z/L+ 2.39 • 10− 8(z/L)2 (101) 

Model No.14: 

a1 = 0.360945 − 0.000221z/L+ 0.000001(z/L)2 (102)  

a2 = 0.007763e− 2.064736a3 (103)  

a3 = − 2.020620 − 0.038092z/L+ 0.000125(z/L)2 (104) 

The annual mean relative errors obtained for each model at each 
station in northern Spain are provided as Table C3 of Appendix C in 
Supplementary Data. It is observed that all models predict higher 
RRMSE values than in the previous regions, which are approximately 
less than 20% at all stations except for models No.2, 3 and 12. The error 

Fig. 13. Comparison of model performance using general equations derived from data at eight stations in central Spain: (a) Stations No.72–79; (b) Sta
tions No.72–84. 

J.-I. Prieto and D. García                                                                                                                                                                                                                     



Energy Conversion and Management 268 (2022) 115950

20

Fig. 14. Dispersion of regression parameters for one-parameter models in northern Spain.  
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Fig. 15. Dispersion of regression parameters for two-parameter models in northern Spain.  
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Fig. 16. Dispersion of regression parameters for three-parameter models in northern Spain.  
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variability is not associated with extreme values of the z/L ratio, which 
seems to indicate that stations No.85–92 are representative of the model 
performance for the set of 21 stations. 

Fig. 17(a) shows for each model the number of stations obtaining 
RRMSE values in four percentage ranges, while Fig. 17(b) shows the 
RRMSE variations obtained with the 14 models at each station. It is 
observed that all models obtain values above 20% at some station except 
model No.5, that the mean RRMSE value of the 14 models is between 10 
and 20% at each of the stations No.85–92, and that this error is higher at 
six other stations. 

The averages of statistical indicators calculated for stations 
No.85–92 and for the set of 21 stations, listed in Table 4 and depicted in 
Fig. 18(a) and 18(b), facilitate a more precise analysis. For the eight 
stations on which equations (77) to (104) are based, the performance of 
all models except No.2, 3, 12 and 14 could be qualified as very good 
using the criteria in Fig. 2(b). With the same equations and criteria, the 
estimates of models No.1, 4, 5 and 11 would also be very good for the set 
of 21 stations. The best performance is achieved by model No.5, while 
models No.2, 3 and 12 are not suitable for this area. 

3.3. Model performance using general equations derived from data at all 
stations. 

In order to roughly assess the representativeness of the eight stations 
selected as the basis for each regional analysis, trend lines of the model 
coefficients as a function of z/L have been obtained using calibrated data 
at all stations in each area. The results derived from the same procedure 
used in the previous sections, which are summarised in Table 5 and 
Fig. 19, broadly corroborate those obtained from the inter-model com
parisons based on eight stations in each area. 

As can be seen, models No. 9 and 13 obtain the best results in 
Andalusia, followed by models No. 1, 4 and 5, with small differences 
between the latter. In the central area, models No.1, 4–8, 10 and 11 
obtain the best results, again with differences in E′

n of the order of 1%. 
Finally, in the northern zone, model No.5 obtains the best results, with 
differences in E′

n of the order of 3% with respect to models No.1 and 4. 

On the other hand, among the models with good performance, model 
No.5 is the only one with values of E′

n that differ little from those given in 
Tables 2-4. 

Equations (105) to (116) correspond to the best performing models 
in each area, while Tables 6 and 7 facilitate the comparison between 
results obtained by the best models using respectively equations (21) to 
(104) and equations (105) to (116). The differences between the aver
ages indicated in both tables can be considered as margins of improve
ment that a model could reach depending on the climatic 
representativeness of the stations selected to obtain the general equa
tions of the model coefficients. With the data used, there is no doubt that 
the averages of model No.9 outperform other results in Andalusia. 
However, it should also be noted that these averages are favoured 
because, among the 71 stations in Andalusia, the z/L ratio is high only at 
station No.24, where this model obtains RRMSE = 50.32% and is 
therefore not acceptable from the perspective of local performance. As a 
low average error calculated in a large set of stations may mask 
important errors at some individual stations, the distribution of stations 
in different z/L ranges is of paramount importance in the averaging of 
local results, which has not been noticed so far.  

• Model No.1: 

Stations No.1–71: 

a1 = 0.166715+ 0.000801(z/L) − 2.25 • 10− 6(z/L)2 (105) 

Stations No.72–84: 

a1 = 0.158368 − 0.000258(z/L) − 3.56 • 10− 6(z/L)2 (106) 

Stations No.84–105: 

a1 = 0.139656+ 0.000477(z/L) − 8.42 • 10− 7(z/L)2 (107)    

• Model No.5: 

Stations No.1–71: 

Fig. 17. Northern Spain: (a) Number of stations in RRMSE ranges; (b) RRMSE variations at each station.  
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Table 4 
Summary of model performance using general equations derived from data at eight stations in northern Spain.  

Station\Model No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 

Stations No.85–92 RRMSE (%)  9.94  24.13  36.94  9.95  9.70  9.51  10.02  9.50  10.64  9.24  10.43  26.61  10.56  13.99 
RMBE (%)  0.96  2.33  − 13.78  0.97  0.87  − 2.04  − 2.85  − 2.02  1.18  − 1.33  0.27  15.34  1.24  − 3.84 
NRMSE (%)  10.63  25.53  44.91  10.62  10.49  10.81  11.35  10.77  11.38  10.53  11.59  26.96  11.29  18.80 
NMBE (%)  − 0.37  1.43  − 24.96  − 0.38  − 0.66  − 2.88  − 3.68  − 3.08  0.37  − 2.16  0.06  13.13  0.41  − 4.47 
NSE  0.9372  0.6375  − 0.1221  0.9373  0.9388  0.9350  0.9283  0.9355  0.9279  0.9383  0.9252  0.5958  0.9291  0.8034 
R2  0.9374  0.7198  0.2322  0.9375  0.9396  0.9397  0.9360  0.9413  0.9292  0.9409  0.9290  0.7517  0.9304  0.8254 
σsn  0.9582  1.1333  0.5699  0.9581  0.9454  0.9602  0.9565  0.9467  0.9994  0.9647  1.0254  1.1118  0.9987  1.0126 
E′

n(%)  25.05  60.11  88.07  25.02  24.70  24.57  25.32  24.34  26.84  24.31  27.35  55.52  26.61  43.06 
Stations No.85–105 RRMSE (%)  10.52  34.11  35.99  10.55  9.20  14.98  15.06  14.75  13.10  15.23  10.99  68.97  12.93  18.28 

RMBE (%)  − 1.82  − 1.94  − 11.79  − 1.79  0.91  2.21  1.30  2.28  − 4.19  3.17  1.46  44.05  − 4.87  − 11.66 
NRMSE (%)  12.33  39.26  43.20  12.28  9.11  16.94  17.02  16.14  16.64  17.30  12.97  93.65  16.65  24.79 
NMBE (%)  − 3.39  − 1.47  − 21.11  − 3.58  − 0.92  1.67  0.59  1.44  − 6.58  2.83  1.97  50.79  − 7.22  − 14.89 
NSE  0.9250  0.2400  0.0800  0.9257  0.9590  0.8586  0.8571  0.8716  0.8635  0.8525  0.9171  − 3.3238  0.8633  0.6970 
R2  0.9316  0.5695  0.3459  0.9316  0.9612  0.8764  0.8707  0.8838  0.8886  0.8782  0.9322  0.5948  0.8945  0.8221 
σsn  0.9354  1.3277  0.8033  0.9347  0.9382  1.0642  1.0488  1.0459  0.8815  1.0844  1.0804  2.3981  0.8719  0.7810 
E′

n(%)  26.32  87.12  83.69  26.33  20.13  37.42  37.78  35.69  33.93  37.89  28.46  174.70  33.31  44.01  
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a1 = 4.509 − 1.701e− 0.0085z/L (108) 

Stations No.72–84: 

a1 = 2.646 (109) 

Stations No.84–105: 

a1 = 3.332 − 1.225e− 0.0261z/L (110)    

• Model No.9: 

Stations No.1–71: 

a1 = − 2.044716+ 0.033104(z/L) − 0.000231(z/L)2 (111)  

a2 = 0.009101 − 0.000111(z/L)+ 0.000001(z/L)2 (112) 

Stations No.72–84: 

a1 = − 1.559798 − 0.065362(z/L)+ 0.010916(z/L)2 (113)  

a2 = 0.007196+ 0.000270(z/L) − 0.000041(z/L)2 (114) 

Stations No.84–105: 

a1 = − 0.924541 − 0.016093(z/L)+ 0.000040(z/L)2 (115)  

a2 = 0.001460 − 0.003538a1 (116) 

Consistent with other analyses [50], it can be observed that: a) 
decreasing the number of constant coefficients may reduce accuracy but 
increases simplicity, i.e., degrees of freedom, as is the case for models 
No.1–5; b) such an increase implies that a lower R-squared is needed for 
the significance of the model at a given confidence level; and c) gener
ality is improved by using ratios of variables as model inputs, as is the 
case for model No.5. On the other hand, the ability of model No.5 to 
adapt to different climatic and geographical conditions is favoured by 
the use of functional relationships of the type of equation (26), with 
physically meaningful asymptotes at the extremes of the z/L definition 

range. This advantage is most noticeable in the northern coastal area, 
where the percentage of stations with high z/L is notorious. Therefore, 
pending criteria to avoid parabolic branches characteristic of other 
models for high z/L values, model No.5 is recommended for areas in 
Spain with scarce radiometric data. In addition, Fig. 20 suggests that 
further improvements can be expected from future work by analysing 
the influence of latitude on the geographical variability of model 
coefficients. 

4. Conclusions 

Fourteen temperature-based GSR models have been compared using 
data from 105 stations located in three areas covering a large part of 
peninsular Spain and its climatic variety. 

Using site-calibrated coefficients, accuracy generally improves for 
models of higher functional complexity. Model No.11 achieves the best 
results in all three areas, however, most models have high accuracy and 
none improve on the others at any location. 

The variation of the local coefficients in each geographical area was 
analysed as a function of the z/L ratio, obtaining equations based on data 
from eight stations and using the remaining ones for validation pur
poses. In Andalusia, models No.9 and 13, followed by model No.5, 
provided the most accurate estimates. All models except model No.5 
lead to very high errors for the highest value of z/L in this area, i.e., at 
station No.24, where the model No.5 obtains a RRMSE value of 10%, 
approximately. In the central area, models No.1, 4 and 5 achieve the best 
performance, with RRMSE values in the order of 10% at the station with 
the highest z/L value, i.e., station No.84, where the remaining models 
predict inaccurate values. In this area, the coefficient of model No.5 is 
independent of z/L, even though some stations are close to the border 
with Portugal and others on the Mediterranean coast. In the coastal area 
of northern Spain, model No.5 achieves the best results, followed at a 
moderate distance by models No.1 and 4, and further away from the 
remaining models. Thus, the z/L ratio seems to be a suitable variable to 
represent geographical and topographical influences on the model per
formance, but inter-model comparisons should take into account that 

Fig. 18. Comparison of model performance using general equations derived from data at eight stations in northern Spain: (a) Stations No.85–92; (b) Sta
tions No.85–105. 
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Table 5 
Summary of model performance using general equations derived from data at all stations in each area.  

Station\Model No.1 No.2 No.3 No.4 No.5 No.6 No.7 No.8 No.9 No.10 No.11 No.12 No.13 No.14 

Stations No.1–71 RRMSE (%)  9.10  12.93  17.55  9.13  9.54  10.69  10.78  10.38  4.51  10.86  8.75  18.32  4.44  21.49 
RMBE (%)  0.49  − 1.34  0.65  0.51  0.64  0.56  − 0.19  − 0.21  0.12  1.33  1.10  − 0.78  0.17  − 20.45 
NRMSE (%)  9.17  11.60  17.16  9.18  9.51  11.15  10.79  10.91  3.97  11.82  9.50  22.52  3.99  26.69 
NMBE (%)  0.20  − 0.38  − 3.38  0.17  0.05  0.81  0.10  − 0.16  − 0.34  1.56  1.48  − 1.53  − 0.31  –22.03 
NSE  0.9745  0.9547  0.8997  0.9744  0.9728  0.9616  0.9623  0.9660  0.9972  0.9587  0.9739  0.9272  0.9971  0.8756 
R2  0.9459  0.9214  0.8256  0.9458  0.9414  0.9258  0.9288  0.9259  0.9904  0.9202  0.9488  0.7285  0.9903  0.9719 
σsn  0.9948  1.0528  0.8118  0.9928  0.9786  1.0409  1.0298  1.0188  0.9706  1.0559  1.0517  1.0906  0.9716  0.6403 
E′

n(%)  23.36  29.53  42.87  23.38  24.23  28.35  27.49  27.80  10.08  29.86  23.92  57.24  10.14  38.41 
Stations No.72–84 RRMSE (%)  7.00  10.87  18.96  7.05  7.29  6.94  6.88  6.74  11.18  7.04  7.22  12.90  11.27  86.15 

RMBE (%)  0.59  − 3.50  − 1.29  0.62  0.68  0.62  0.43  0.63  1.51  0.82  − 0.62  − 2.78  1.12  60.09 
NRMSE (%)  6.37  8.76  19.56  6.40  6.78  6.68  6.78  6.59  10.39  6.63  6.92  17.85  10.38  110.36 
NMBE (%)  − 0.74  − 1.57  − 7.83  − 0.79  − 1.01  − 0.71  − 0.91  − 0.57  0.00  − 0.49  − 0.98  − 5.16  − 0.33  69.10 
NSE  0.9794  0.9610  0.8059  0.9792  0.9767  0.9774  0.9767  0.9780  0.9452  0.9777  0.9757  0.8384  0.9454  − 5.1798 
R2  0.9813  0.9695  0.8755  0.9814  0.9805  0.9790  0.9789  0.9788  0.9452  0.9787  0.9761  0.8520  0.9455  0.6074 
σsn  0.9487  1.0710  0.7359  0.9455  0.9310  0.9509  0.9455  0.9599  0.9660  0.9572  0.9926  0.9119  0.9605  2.6187 
E′

n(%)  14.31  19.49  40.55  14.38  15.16  15.01  15.18  14.86  23.42  14.95  15.47  38.49  23.37  194.31 
Stations No85-105 RRMSE (%)  9.94  20.38  31.99  9.98  8.91  10.15  10.98  10.04  12.41  9.72  24.76  23.56  12.42  13.44 

RMBE (%)  1.15  1.60  − 7.99  1.16  0.83  − 1.40  − 2.41  − 0.92  1.80  − 0.45  17.45  11.60  1.77  − 5.23 
NRMSE (%)  10.59  23.66  37.31  10.48  9.13  11.77  12.63  11.69  13.29  11.38  27.35  29.65  13.29  17.25 
NMBE (%)  − 0.46  2.54  − 17.72  − 0.75  − 1.01  − 2.15  − 3.21  − 1.89  0.11  − 1.14  17.55  11.44  0.05  − 7.38 
NSE  0.9447  0.7241  0.3135  0.9458  0.9589  0.9317  0.9214  0.9326  0.9129  0.9361  0.6312  0.5666  0.9129  0.8534 
R2  0.9449  0.8116  0.4697  0.9449  0.9614  0.9343  0.9266  0.9345  0.9129  0.9375  0.8864  0.7802  0.9130  0.8843 
σsn  0.9592  1.1913  0.7220  0.9584  0.9358  0.9838  0.9754  0.9777  0.9633  0.9955  1.2629  1.2695  0.9600  0.8762 
E′

n(%)  23.50  52.22  72.91  23.52  20.15  25.69  27.12  25.61  29.52  25.15  46.58  60.73  29.50  34.62  
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Fig. 19. Comparison of model performance using general equations derived from data at all stations in each area: (a) Stations No.1–71; (b) Stations No.72–84; (c) 
Stations No.85–105. 
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low average errors in a group of stations may include unacceptable local 
results. 

The accuracy of the models increases with coefficients derived from 
equations based on data from all available stations in each region, but 
the ranking of the models does not vary, with model No.5 being the only 
one that obtains good results in all areas and with hardly any variation of 
centred pattern RMS difference in both scenarios. The ability of this 
model to adapt to different locations is due to its simplicity, its dimen
sional homogeneity and the equation used to express its unique coeffi
cient, with physically significant asymptotes for the extreme values of 
z/L instead of the parabolic branches of other models. 

The results obtained are applicable to the models and experimental 
data used, but the climatic variety of the Spanish stations considered 
allows predicting that the analysis procedure may be of interest for other 
countries. 
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Table 6 
Comparison between best performing models in each area using coefficients derived from data measured at eight stations.   

Stations No.1–71 Stations No.72–84 Stations No.85–105 

Model RRMSE (%) E′

n(%) RRMSE (%) E′

n(%) RRMSE (%) E′

n(%) 

No.9  7.45  17.56  25.97  44.40  13.10  33.93 
No.1  14.10  35.43  7.27  14.61  10.52  26.32 
No.5  9.81  24.47  7.52  14.82  9.20  20.13  

Table 7 
Comparison between best performing models in each area using coefficients derived from data measured at all stations.   

Stations No.1–71 Stations No.72–84 Stations No.85–105 

Model RRMSE (%) E′

n(%) RRMSE (%) E′

n(%) RRMSE (%) E′

n(%) 

No.9  4.51  10.08  11.18  23.42  12.41  29.52 
No.1  9.10  23.36  7.00  14.31  9.94  23.50 
No.5  9.54  24.23  7.29  15.16  8.91  20.15  

Fig. 20. Comparison between experimental data and predictions of model No.5 in three areas of Spain.  
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Table A1 
Geographical and climatic characteristic of weather stations in Andalusia.  

Station No. Location Province φ λ z L z/L KGCC Period    
(◦) (◦) (m) (km) (m/km)   

1 Tabernasa Almería  37.09  2.30  437.5  28.24  15.49 BWk 2000–2018 
2 Villamartína Cádiz  36.84  5.62  173.5  4.81  36.07 Csa 
3 Santaellaa Córdoba  37.52  4.89  209.5  209.05  1.00 Csa 
4 Cádiara Granada  36.92  3.18  952.5  18.88  50.45 Csa 
5 La Palma del Condadoa Huelva  37.37  6.54  194.5  35.68  5.45 Csa 
6 Úbedaa Jaén  37.94  3.30  360.5  131.41  2.74 BSh 
7 Esteponaa Málaga  36.44  5.21  201.5  4.55  44.29 Csa 
8 La Rinconadaa Sevilla  37.46  5.92  39.5  76.87  0.51 Csa 
9 Adraa Almería  36.75  2.99  44.5  3.22  13.82 BSh 
10 Almeríaa  36.84  2.40  24.5  1.17  20.94 BSh 
11 Cuevas de Almanzoraa  37.26  1.80  22.5  2.93  7.68 BSh 
12 Fiñanaa  37.16  2.84  973.5  45.93  21.20 BSk 
13 Huércal-Overaa  37.41  1.88  319.5  18.72  17.07 BSk 
14 La Mojoneraa  36.79  2.70  144.5  8.96  16.13 BSh 
15 Níjara  36.95  2.16  184.5  16.14  11.43 BSh 
16 Tíjolaa  37.38  2.46  742.5  60.28  12.32 BSk 
17 Virgen de Fátimaa  37.39  1.77  187.5  7.80  24.03 BSk 
18 Almería Airport-AEMETb  36.85  2.36  23.5  0.94  25.03 BSh 
19 Basurta-Jerez de la Fronteraa Cádiz  36.76  6.02  62.5  27.54  2.27 Csa 
20 Conil de la Fronteraa  36.33  6.13  26.5  2.71  9.80 Csa 
21 Jerez de la Fronteraa  36.64  6.01  34.5  20.67  1.67 Csa 
22 Jimena de la Fronteraa  36.41  5.38  55.5  14.72  3.77 Csa 
23 Vejer de la Fronteraa  36.29  5.84  26.5  13.54  1.96 Csa 
24 Cádiz-AEMET Observatoryb  36.50  6.26  4.5  0.03  140.63 Csa 
25 Cabra-IFAPA Centrea Córdoba  37.50  4.43  549.5  88.44  6.21 Csa 
26 Hornachuelosa  37.72  5.16  159.5  130.81  1.22 Csa 
27 El Carpioa  37.91  4.50  167.5  134.73  1.24 Csa 
28 Córdobaa  37.86  4.80  119.5  132.90  0.90 Csa 
29 Bélmeza  38.25  5.21  525.5  184.94  2.84 Csa 
30 Baenaa  37.69  4.31  336.5  106.78  3.15 Csa 
31 Adamuza  38.00  4.45  92.5  145.63  0.64 Csa 
32 Bazaa Granada  37.56  2.77  816.5  84.55  9.66 BSk 
33 Iznalloza  37.42  3.55  937.5  75.07  12.49 Csa 
34 Jerez del Marquesadoa  37.19  3.15  1214.5  49.20  24.69 Csa 
35 Lojaa  37.17  4.14  489.5  46.70  10.48 Csa 
36 Puebla de Don Fadriquea  37.88  2.38  1112.5  86.08  12.92 BSk 
37 Zafarrayaa  36.99  4.15  907.5  27.84  32.59 Csa 
38 Granada Air Base-AEMETb  37.14  3.63  689.5  44.27  15.57 Csa 
39 Almontea Huelva  37.15  6.48  20.5  17.67  1.16 Csa 
40 Arochea  37.96  6.95  301.5  84.14  3.58 Csa 
41 El Campilloa  37.66  6.60  408.5  61.98  6.59 Csa 
42 Gibraleóna  37.41  7.06  171.5  21.78  7.87 Csa 
43 La Puebla de Guzmána  37.55  7.25  290.5  38.54  7.54 Csa 
44 Lepea  37.30  7.24  76.5  10.67  7.17 Csa 
45 Moguera  37.15  6.79  89.5  3.11  28.77 Csa 
46 Nieblaa  37.35  6.74  54.5  25.08  2.17 Csa 
47 Huelva-AEMETb  37.28  6.91  21.5  3.55  6.05 Csa 
48 Mancha Reala  37.92  6.27  438.5  131.56  3.33 Csa 
49 Chiclana de Seguraa Jaén  38.30  2.00  577.5  101.39  5.70 Csa 
50 Huesaa  37.75  3.06  782.5  113.87  6.87 Csa 
51 Linaresa  38.09  3.57  284.5  149.86  1.90 Csa 
52 Pozo Alcóna  37.67  2.93  895.5  102.02  8.78 Csa 
53 Sabiotea  38.08  3.24  824.5  147.08  5.61 Csa 
54 San Jose de los Propiosa  37.86  3.23  511.5  123.05  4.16 Csa 
55 Torreblascopedroa  37.99  3.69  293.5  138.08  2.13 BSh 
56 Málagaa Málaga  36.76  4.54  70.5  11.56  6.10 Csa 
57 Antequeraa  37.06  4.56  459.5  150.42  3.05 Csa 
58 Sierra Yeguasa  37.14  4.84  466.5  60.43  7.72 Csa 
59 Vélez-Málagaa  36.80  4.13  51.5  7.42  6.94 Csa 
60 Málaga CMT-AEMETb  36.67  4.48  23.5  1.95  12.06 Csa 
61 Aznalcazara Sevilla  37.15  6.27  6.5  29.37  0.22 Csa 
62 Écijaa  37.59  5.08  127.5  144.11  0.88 Csa 
63 La Luisianaa  37.53  5.23  190.5  129.47  1.47 Csa 
64 La Puebla del Río Ia  37.23  6.13  27.5  45.11  0.61 Csa 
65 La Puebla del Río IIa  37.08  6.05  43.5  41.08  1.06 Csa 
66 Las Cabezas de San Juana  37.02  5.88  27.5  51.63  0.53 Csa 
67 Lora del Ríoa  37.66  5.54  70.5  113.51  0.62 Csa 
68 Osunaa  37.26  5.13  216.5  119.98  1.80 Csa 
69 Puebla Cazallaa  37.22  5.35  231.5  102.73  2.25 Csa 
70 Sanlúcar La Mayora  37.42  6.26  90.5  52.32  1.73 Csa 
71 Sevilla San Pablo-AEMETb  37.42  5.88  36.5  74.19  0.49 Csa  

a Environmental Climatology Information Network of the Andalusian Regional Government. 
b Spanish State Meteorological Agency. 
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Table A2 
Geographical and climatic characteristic of weather stations in central Spain.  

Station No. Location Province φ λ z L z/L KGCC Period    
(◦) (◦) (m) (km) (m/km)   

72 Valladolida Valladolid  41.641  − 4.754  738.0  195.30  3.78 Csa 2004–2017 
73 Toledoa Toledo  39.885  − 4.045  518.0  322.07  1.61 BSk 
74 Ciudad Reala Ciudad Real  38.989  − 3.920  631.0  248.19  2.54 BSk 
75 Madrida Madrid  40.452  − 3.724  667.0  308.79  2.16 BSk 
76 Soriaa Soria  41.775  − 2.483  1085.0  169.56  6.40 Cfb 
77 Albacetea Albacete  39.006  − 1.862  679.0  139.40  4.87 BSk 
78 Valenciaa Valencia  39.485  − 0.475  59.0  12.63  4.67 BSk 
79 Tortosaa Tarragona  40.820  0.493  53.0  17.53  3.02 Csa 
80 Cáceresa Cáceres  39.471  − 6.339  408.0  229.50  1.78 Csa 
81 Leóna León  42.588  − 5.641  914.00  104.8  8.72 Csb 1998–2016 
82 Salamancaa Salamanca  40.959  − 5.498  793.0  266.69  2.97 Csb 2004–2017 
83 Lleidaa Lleida  41.626  0.598  188.0  72.68  2.59 BSk 
84 Tarragonaa Tarragona  41.145  1.164  74.0  6.43  11.51 Csa  

a Spanish State Meteorological Agency. 

Table A3 
Geographical and climatic characteristic of weather stations in northern Spain.  

Station No. Location Province φ λ z L z/L KGCC Period    
(◦) (◦) (m) (km) (m/km)   

85 Avilésa Asturias  43.584  –5.918  12.0  1.59  7.56 Cfb 2003–2016 
86 Oviedob  43.354  –5.873  350.0  25.72  13.61 Cfb 
87 Oviedoa  43.371  –5.836  189.2  22.79  8.30 Cfb 
88 Mieresa  43.258  –5.773  206.0  32.75  6.29 Cfb 
89 Langreoa  43.309  –5.706  247.0  26.32  9.38 Cfb 
90 Gijóna  43.531  –5.672  32.0  1.43  22.34 Cfb 
91 Niembroc  43.439  –4.850  136.0  0.36  376.65 Cfb 
92 Santander-CMTb Cantabria  43.491  –3.801  60.0  0.18  333.33 Cfb 
93 A Coruñab Coruña  43.366  –8.421  60.0  0.70  85.71 Csb 1985–2016 
94 Santiagob  42.888  –8.411  372.0  40.90  9.10 Cfb 
95 A Coruña-Airportb  43.304  –8.378  100.0  4.07  24.59 Csb 2004–2016 
96 Lugob Lugo  43.115  –7.456  446.0  50.82  8.78 Csb 1985–1989 
97 Oviedob Asturias  43.354  –5.873  350.0  25.72  13.61 Cfb 1975–2016 
98 Gijónd  43.545  –5.693  12.5  0.29  42.85 Cfb 1993–2005 
99 Santander-Centreb Cantabria  43.491  –3.819  72.0  1.13  63.52 Cfb 1989–1997 
100 Bilbaob Vizcaya  43.298  –2.906  44.0  9.50  4.63 Cfb 1985–2016 
101 Vitoria (II) b Alava  42.882  –2.735  513.0  54.20  9.46 Cfb 2000–2008 
102 Vitoria(I) b  42.884  –2.723  508.0  55.30  9.19 Cfb 2011–2016 
103 San Sebastiánb Guipuzcoa  43.306  –2.041  263.0  1.10  239.09 Cfb 1983–2016 
104 Pamplonab Navarra  42.777  –1.650  461.0  66.00  6.98 Cfb 2003–2008 
105 Gironab Girona  41.912  2.763  145.0  24.70  5.87 Csa 1998–2016  

a Service of Environmental Information of the Principality of Asturias. 
b Spanish State Meteorological Agency. 
c Spanish Ministry of Environmental Issues. 
d City Council of Gijón. 
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