
Flexible-dimensional EVR-OWA as mean
estimator for symmetric distributions⋆

Juan Baz1[0000−0003−1142−6077], Diego García-Zamora2[0000−0002−0843−4714],
Irene Díaz3[0000−0002−3024−6605], Susana Montes1[0000−0002−4701−2207], and Luis

Martínez2[0000−0003−4245−8813]

1 Department of Statistics and O.R. and Mathematics Didactics, University of
Oviedo, Oviedo, Spain bazjuan,montes@uniovi.es

2 Department of Computer Science, University of Jaén, Jaén, Spain
dgzamora,martin@ujaen.es

3 Department of Computer Science, University of Oviedo, Oviedo, Spain
sirene@uniovi.es

Abstract. In the field of statistics, linear combinations of order statis-
tics, also known as L-statistics, have been widely used for the estimation
of the mean of a population, which is equivalent to considering Ordered
Weighted Averaging (OWA) operators over simple random samples. If
previous data are available or the distribution of the deviation from the
mean is known, it is possible to compute optimal OWA weights that min-
imize the Mean Squared Error of the estimation. However, the optimal
weights can only be used for a specific sample size, while in real Statis-
tics the number of values that must be aggregated may change. In order
to overcome this limitation, this contribution proposes a method based
on the use of the recently defined Extreme Value Reductions (EVRs) to
fit the cumulative optimal OWA weights and then use these EVRs to
compute new weights for a different sample size. In addition, theoretical
and simulated results are provided to show that, if sample sizes that are
similar to the original one are considered, the weights generated by using
EVRs are also similar to the optimal ones.

Keywords: Mean Estimation · EVR-OWA operator · Extreme Values
Reduction · Flexible Sample Size

1 Introduction

Estimating the mean of a population is a classical problem in statistics [21]. One
of the approaches that has been considered in the literature consists of using
linear combinations of order statistics, or L-statistics, in which the values of the
random sample are multiplied by a weight depending on their position when
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of Economy and Competitiveness (PGC2018-099402-B-I00) and by the Spanish Min-
istry of Universities (FPU2019/01203).
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sorted from the lower to the higher one, and then added. This topic of statistics
has been developed from 1952 [17], to the most recent contributions [9,16]. From
the aggregation theory point of view, this linear combination of order statistics is
equivalent to applying an Ordered Weighted Averaging (OWA) operator, see [4],
to the random sample.

In some cases, the distribution of the deviation from the mean is known, or
there are real data available that can be used to compute the optimal weights to
minimize the Mean Squared Error (MSE) when estimating the mean using order
statistics. In these situations, this optimal weighting is expected to be combined
with a new random sample to obtain the best possible estimation. However, in
some cases, the size of the new random sample could be different from the size
of the former sample. One of the most notable examples is the case of censored
samples [2,3,18], which are commonly applied in survival analysis [15], where the
sample size can be reduced due to external factors. However, it is also possible
that the sample size grows because of an increase in, for example, the frequency
of the measure or the number of experts. For all of these cases, it is no longer
possible to use the optimal weights determined for a specific sample.

In order to overcome this drawback, this contribution proposes a method
for estimating the mean of a population with symmetric distribution based on
the EVR-OWA operator introduced by García-Zamora et al. [10] which allow
generating OWA weights for different values of the sample size. In particular,
starting with optimal weights for a sample size, the cumulative weights are fitted
using a family of Extreme Values Reductions (EVR) [11,10]. Subsequently, the
weights for other sample sizes are computed by using the fitted EVR. Theoret-
ical results that endorse this procedure are provided and the behavior of the
method is explored by using simulated data from logistic and hyperbolic secant
distributions.

The remainder of the paper is structured as follows. In Section 2, the main
concepts and basic results involving mean estimation and the EVR-OWA opera-
tor are introduced. The use of the OWA operator for mean estimation is discussed
in Section 3. The theoretical aspects regarding the convergence of the cumula-
tive weights are included in Section 4. Section 5 is devoted to the definition and
study of the behavior of the proposed procedure. Finally, the conclusions and
some comments about future work are discussed in Section 6.

2 Preliminaries

In this section, we introduce the general concepts needed for understanding
the contribution. In particular, we will show some basic definitions and results
concerning mean estimation and the EVR-OWA operator.

2.1 Mean estimation

First, let us recall the basic concepts about mean estimation based on order
statistics. Rohatgi et al. [21] has been used as the main reference.
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Consider a random variable X. We denote its density and cumulative dis-
tribution functions as f and F , respectively. The support of the variable, that
is, {x ∈ R | f(x) > 0}, is denoted as S. Now, consider a random sample, that
is, a (finite) sequence of random variables X1, . . . , Xn such that they are all
independent and have the same distribution as X.

Even though the expression for the density and cumulative distribution func-
tion of X are known, it depends on one or more unknown parameters. If Θ de-
notes the set of possible values for the unknown parameter θ, an estimator of θ
is a function of the random sample whose image is Θ.

Definition 1. Let X1, . . . , Xn be a sequence of independent and identically dis-
tributed (iid for short) random variables with density function fθ depending
on some unknown parameters θ ∈ Θ. An estimator is a measurable function
f : Rn → Θ that does not depend on the value of the unknown parameters.

In classical statistics, scholars and researchers have defined and studied the
desirable properties that an estimator for a certain parameter should satisfy.
Here, we are going to focus on unbiasedness and efficiency.

Definition 2. Let X1, . . . , Xn be a sequence of random variables with the same
density function fθ depending on some unknown parameter θ ∈ Θ. An estimator
T is called unbiased if E[T ] = θ for any θ ∈ Θ.

The efficiency regards on the Mean Squared Error (MSE) between two esti-
mators for a parameter.

Definition 3. Let X1, . . . , Xn be a sequence of iid random variables with density
function fθ depending on the unknown parameter θ ∈ Θ and T1, T2 two estima-
tors of θ. It is said that T1 is more efficient than T2 if MSE(T1) ≤ MSE(T2)
for any θ ∈ Θ and exists θ0 ∈ Θ such that MSE(T1) < MSE(T2).

A relation between the bias and the efficiency of an estimator can be done
by using the well-known Fréchet-Cramér-Rao inequality [6,8,20]. Since the EVR-
OWA, and any other OWA operator, relies on the order of the aggregated values,
when used over a random sample, we need to use the concept of order statistic.

Definition 4. [21] Let X1, . . . , Xn be a sequence of random variables. The func-
tion X(k) of (X1, . . . , Xn) that takes the value k-th smaller value in each possible
observation (x1, . . . , xn) of (X1, ..., Xn) is known as the k-th order statistic or
the statistic of order k (of the sequence X1, . . . , Xn).

The use of order statistics in estimation has been a classic research line in
statistics [17,22,23,24] and continues to be an important topic today [1,7,9,13,16].

2.2 The EVR-OWA operator

This section provides a brief introduction to OWA operators [27,28] based on
EVRs [10], which are essential to provide aggregation whose weights are positive,
symmetric and prioritize the intermediate information.
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Ordered Weighted Averaging Operators OWA operators were proposed to
ensure that the importance of the aggregated values depends on their position
with respect to the median value [27]. Formally:

Definition 5. Let w ∈ [0, 1]n be a weighting vector such that
∑m

i=1 w = 1. The
OWA Operator Ψw : [0, 1]n → [0, 1] associated to w is defined by:

Ψw(x⃗) =
n∑

k=1
wkxσ(k) ∀ x⃗ ∈ [0, 1]n

where σ is a permutation of the n-tuple (1, 2, ..., n) such that xσ(1) ≥ xσ(2) ≥
... ≥ xσ(n).

OWA operators generalize other aggregation functions [4]. For example, the
weighting vector w = ( 1

n , 1
n , ..., 1

n ) ∈ [0, 1]n, produces the arithmetic mean,
whereas the vectors w = (1, 0, ..., 0) ∈ [0, 1]n and w = (0, ..., 0, 1) ∈ [0, 1]n
produce the maximum and the minimum operators, respectively.

It should be highlighted that OWA operators decreasingly order the elements
to be aggregated, while order statistics are defined through an increasing order.
However, when symmetric distributions are considered, these two definitions are
equivalent.

Linear RIM quantifiers to compute OWA weights In order to define
weights for OWA operators Yager [28] proposed the use of Fuzzy Linguistic
Quantifiers [29]. Specifically, given a Regular Increasing Monotonous (RIM)
quantifier, namely an increasing function Q : [0, 1] → [0, 1] such that Q(0) = 0
and Q(1) = 1, the weights for an OWA operator to aggregate n ∈ N elements
were computed as follows:

wk = Q

(
k

n

)
− Q

(
k − 1

n

)
for k = 1, 2, ..., n.

Note that the final values of the weights strongly depend on the choice of a
suitable linguistic quantifier. One of the most widely extended choices [14,19] is
the linear RIM quantifier Qα,β : [0, 1] → [0, 1], 0 ≤ α < β ≤ 1 defined by:

Qα,β(x) =


0 0 ≤ x < α

x−α
β−α α ≤ x ≤ β

1 x ≥ β

,

which allow modifying the importance of the intermediate values by changing
the values of α and β.

The EVR-OWA operator In order to overcome some limitations of the lin-
ear RIM quantifier, García-Zamora et al. proposed the use of Extreme Values
Reductions (EVRs) [10] as RIM linguistic quantifiers:
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Definition 6. [11] Let D̂ : [0, 1] → [0, 1] be a function satisfying:

1. D̂ is an automorphism in the interval [0, 1],
2. D̂ is a function of class C1,
3. D̂ satisfies D̂(x) = 1 − D̂(1 − x) ∀ x ∈ [0, 1],
4. D̂′(0) < 1 and D̂′(1) < 1,
5. D̂ is convex in a neighborhood of 0 and concave in a neighborhood of 1,

then D̂ will be called Extreme Values Reduction (EVR) in the interval [0, 1].

The main property of such functions is the fact that they reduce distances
between the most extreme values of the interval [0, 1] whereas increase the dis-
tances between the intermediate values [11] (see Fig. 1).

Fig. 1. Scheme of an EVR

For instance, some examples of EVRs are the functions sα : [0, 1] → [0, 1],
α ∈]0, 1

2π ] defined by

ŝα(x) = x + α · sin(2πx − π) ∀ x ∈ [0, 1]

and the polynomial functions pα : [0, 1] → [0, 1], α ∈]0, 1] defined as

pα(x) = (1 − α)x + 3αx2 − 2αx3 ∀ x ∈ [0, 1].

Consequently, the EVR-OWA operator was defined as an OWA operator whose
weights were computed by using an EVR [10]:

Definition 7. Let D̂ be an Extreme Values Reduction and consider n ∈ N.
Then, the family W = {w1, w2, ..., wn}, where

wk = D̂

(
k

n

)
− D̂

(
k − 1

n

)
∀ k ∈ {1, 2, ..., n} ,

receives the name of order n weights associated with the EVR D̂, and the OWA
operator ΨD̂ defined with respect to these weights.
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The latter procedure for computing the weights of the OWA operator can
be seen as a particular example of an Extended Ordered Weighted Averaging
(EOWA), we refer to [5], for which the weighting triangles are computed using
an EVR.

3 OWA operator for mean estimation

Regarding the concepts of the previous section, applying an OWA operator to a
random sample is equivalent to making a weighted average of the order statistics,
i.e. an L-statistic. In this section, we will explore the use of the OWA operator
as an estimator when there is symmetric noise.

Suppose that a quantity of interest takes the value µ. When measuring this
quantity, a symmetric noise, i.e., a random variable with mean 0 such as f(x) =
f(−x) for any x ∈ R, is added to the measure. Repeating the same measure
gives us a random sample X1, . . . , Xn in which all the variables have mean µ
and are symmetric.

In this context, we may want to use an OWA operator to estimate the value
of µ. However, we must choose the weighting vector. A common criterion in
statistics is to minimize the Mean Squared Error (MSE). Let us consider the
order statistics vector Z⃗ =

(
X(1), . . . , X(n)

)
and denote as Σ = Var

[
Z⃗

]
the

covariance matrix of Z⃗ and as ∆⃗ = E
[
Z⃗

]
− µ1⃗ the mean drift from µ of the

components of Z⃗.
By using the basic properties of linear combinations of random variables

(see [21]), the MSE to estimate µ has the following expression

E

[(
µ − Ψw

(
X⃗

))2
]

= w⃗′
(

Σ + ∆⃗∆⃗′
)

w⃗.

From this expression, computing the optimal weights is equivalent to solving
an optimization problem, for instance using Lagrange’s multipliers procedure.

Proposition 1. Let X1, . . . , Xn a random sample in which any variable has
mean µ. Then, the weighting vector w⃗ (verifying that

∑n
i=1 wi = 1, wi ≥ 0, i =

1, 2, ..., n) which minimize E
[
(µ − Ψw(x⃗))2

]
is

w⃗ =

(
Σ + ∆⃗∆⃗′

)−1
1⃗

1⃗′
(

Σ + ∆⃗∆⃗′
)−1

1⃗
.

Notice that we allow the weights to have a negative value. Although this does
not coincide with the classical definition of the OWA weights, for our approach,
this is a desirable flexibilization in the definition of the operator. Firstly, we
are making greater the feasible region, thus the result is at least as good as in
the positive weights case. Secondly, the closed expression of Proposition 1, only
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achievable by allowing negative weights, eases the computations in the main
result of the next section. We also remark here that, even though it is possible
to construct examples where negative weights appear, in most cases, among
which are the most widely used distributions, all the weights are positive.

Therefore, we have optimal weights that depend on the distribution of the
noise and the size of the random sample considered. Notice that multiplying the
noise by a factor α does not change the optimal weights, since the only change
would be a factor α2 multiplying Σ + ∆⃗∆⃗′. In Figure 2, the simulated optimal
weights for the Logistic and Hyperbolic secant distributions, when n = 20, are
presented. The density functions, respectively fL and fHs, of these distributions
are as follows:

fL(x) = 1
4σ

sech2
(

x − µ

2σ

) (
µ ∈ R, σ ∈ R+)

, fHs(x) = 1
2sech

(πx

2

)
,

Fig. 2. Optimal weights for the Logistic and Hyperbolic secant distribution when n =
20.

As we indicated in the Introduction, many real-life problems require dealing
with a non-fixed random sample size. In these cases, even we have an expression
of our optimal weights, which could be computed from previous data, we cannot
apply the OWA operator to our new data because the number of aggregated
values changes. In this direction, one may wonder if there exists any relation
between optimal weights when having the same distribution but different sam-
ple sizes. If we can find a connection, we can use the optimal weights initially
calculated for a specific sample size to calculate a suitable weighting vector for
a different value of n.

However, it is difficult to compare weighting vectors with different length. To
fix that, we can follow the same idea that is used in the generation of weights
presented in Subsection 2.2, but in the other direction. Given a weighting vector
w⃗, let us define a cumulative weight function W :

{
0, 1

n , . . . , n−1
n , 1

}
→ R such
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that:

W

(
k

n

)
=

k∑
i=1

wi

Surprisingly, when we represent the cumulative weight functions for different
but close values of n, using the distributions considered in Figure 2, we can see
that the points seem to distribute in a common line (see Figure 3).

Fig. 3. Cumulative weights for the Logistic and Hyperbolic secant distribution when
n ∈ {18, 19, 20, 21, 22}.

4 Convergence of cumulative weights

In this section, the behavior shown in Figure 3 is used as inspiration to define
flexible OWA operators for the mean estimation. In particular, we fit the cumu-
lative weights with a function f and then, if necessary, generate new weights as
wi = f

(
i
n

)
− f( i−1

n ), i ∈ {1, . . . , n}. However, it is necessary to state a theo-
retical result that sustain this procedure. In this section, we will give a result
in this regard by proving that, if the distribution is sufficiently regular, then
the cumulative weight points converge to a function on the unit interval. The
most easy example is the Gaussian distribution. In this case, since the optimal
weights are the balanced ones [17], then the cumulative weights are always over
the graph of the identity function defined over the unit interval.

Before proving the main result, let us prove a useful lemma that allows to
ease the computations when the distribution is symmetric.

Lemma 1. Let X1, . . . , Xn a sequence of idd random variables with symmetric
distribution and mean µ. Then, the weighting vector w⃗ (verifying that

∑n
i=1,
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wi = 1, wi ≥ 0 i = 1, 2, ..., n) which minimizes E

[(
µ − Ψw(X⃗)

)2
]

also mini-

mizes V ar
[
Ψw(X⃗)

]
.

Proof. Since the distribution is symmetric, we have that Cov
[
X(i), X(j)

]
=

Cov
[
X(n−i+1), X(n−j+1)

]
, E[X(i)] − µ = µ − E[X(n−i+1)] and E

[
X( n

2 )
]

= µ (if
n is even) for any i, j ∈ {1, . . . , n}. Thus, Σ is a persymmetric matrix (see [12])
and ∆⃗ holds ∆i = −∆n−i+1 and ∆ n

2
= 0 (if n is even).

By performing the same procedure as in Proposition 1, the weights that
minimize the variance are

w⃗ = Σ−11⃗
1⃗′Σ−11⃗

,

and since the inverse of a persymmetric matrix is persymmetric [12], the resultant
weights hold wi = wn−i+1 for any i ∈ {1, . . . , n}. The result follows by noticing
that w⃗′∆⃗ = 0 ■

In conclusion, since we are considering symmetric distributions, the optimal
weights depend only on Σ. Since we want to find an expression in the limit when
n → ∞, we should study the asymptotic behavior of Σ.

Lemma 2. [25,26] Let X1, . . . , Xn be a sequence of iid random variables with
density function f and cumulative distribution F such that f is continuous and
strictly positive in F −1 ((0, 1)) and there exists ϵ > 0 such that

lim
x→∞

|x|ϵ [1 − F (x) + F (−x)] = 0.

Then, for any δ > 0 and p, q ∈ [δ, 1 − δ], p ≤ q:

lim
n→∞

(n + 2)Cov
(
X(nq), X(np)

)
= (1 − p)q

f (F −1(p)) f (F −1(q))

uniformly.

Remark 1. Note that Σ−1 may be heuristically approximated when n goes to
infinity as Σ−1 ∼ (n + 1)(n + 2)DQD [25], where D is a diagonal matrix that
satisfies Di,i = f

(
F −1( i

n+1 )
)

for any i ∈ {1, . . . , n} and Q = (qij) is the matrix

Q =



2 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

. . . . . . . . . . . . · · ·
...

0 · · · 0 −1 2 −1 0
0 0 · · · 0 −1 2 −1
0 0 0 · · · 0 −1 2


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In the next result, we give sufficient conditions that ensure the convergence of
the cumulative weights and also state the expression of the limit.

Theorem 1. Let X1, . . . , Xn be a sequence of iid random variables with support
S and symmetric distribution whose density function and cumulative distribution
are respectively denoted as f and F . Let us assume that f is bounded, continuous,
twice differentiable, and strictly positive on F −1 ((0, 1)). Suppose that:

– There exists a sequence k(n) such that k(n)
n3 → ∞ satisfying that for any

δ > 0 and p, q ∈ [δ, 1 − δ], p ≤ q

lim
n→∞

k(n)(n + 1)2 (
(n + 2)f

(
F −1 (p)

)
f

(
F −1 (q)

)
Σnp,nq − p(1 − q)

)
= 0

uniformly,
–

∫ 1
0 f

(
F −1(x)

) (
d2

dx2 f
(
F −1(x)

))
dx < ∞.

Then, for any q ∈ [0, 1] ∪ Q with irreducible fraction a
b :

lim
n→∞

W (nb) (q) =


L+

∫ q

0
f(F −1(x))

(
d2

dx2 f(F −1(x))
)

dx

2L+
∫ 1

0
f(F −1(x))

(
d2

dx2 f(F −1(x))
)

dx
if lim

x→inf S

f(x)2

F (x) = L < ∞
1
2 otherwise

.

Proof. For the sake of simplicity, we provide here a sketch of the proof because
developing the necessary computations would require several pages. Let us de-
note the inverse of the covariance matrix of the order statistics of dimension n
as Σ(n)−1. Consider the following sequence:

W (nb) (q) =
∑na

i=1
∑nb

j=1
(
Σ(nb)−1)

i,j∑nb
i=1

∑nb
j=1 (Σ(nb)−1)i,j

.

The imposed convergence conditions guarantee that the following equality
holds:

lim
n→∞

na∑
i=1

nb∑
j=1

(DQD)i,j = lim
n→∞

na∑
i=1

nb∑
j=1

(
Σ(nb)−1)

i,j
,

where D and Q are the matrices defined in Remark 1.
By substituting the expression of the elements of DQD and using the sym-

metry of the distribution, the following expression is obtained:

lim
n→∞

W (nb) (q) = lim
n→∞

f
(
F −1 ( 1

n

))2 + 1
n

∫ q

0 f
(
F −1(x)

) (
d2

dx2 f
(
F −1(x)

))
dx

2f
(
F −1

( 1
n

))2 + 1
n

∫ 1
0 f (F −1(x))

(
d2

dx2 f (F −1(x))
)

dx
.

Note that the limit of the first term of the numerator multiplied by n is
equivalent to limx→inf S

f(x)2

F (x) = L. If this limit converges, we have the first case
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of the Theorem. If the limit diverges, the integral terms are negligible, and the
limit is 0.5. Due to the continuity of f , the sequence must be convergent (it
cannot be oscillatory). ■

Although these conditions may be too restrictive, and some of them, as the
fast convergence of the moments of the ordered statistics, are hard to check, in
our numerical experiments the convergence holds for all the considered distri-
butions. Moreover, even if we simulate distributions that do not satisfy some
condition (for instance, the density function of the Laplace distribution is not
differentiable), the convergence still holds.

5 EVR-OWA operator as mean estimator for symmetric
distributions

In this section, we define a method to fit the cumulative weights associated
with symmetric distributions based on EVRs. We also consider here the limit
case D̂(x) = x ∀ x ∈ [0, 1], which corresponds to the balanced weights associated
with Gaussian distribution. In this case, we consider a family of EVRs consisting
of functions of the form:

D̂α,β,λ = λsα + (1 − λ)pβ

where α ∈
[
0, 1

2π

]
, β, λ ∈ [0, 1].

This family consists of convex combinations of EVRs of the families sα and
pα, defined in Section 2.2, and the limit case corresponding to the identity func-
tion. This family has been considered because it has a good behavior regarding
the logistic and hyperbolic secant distributions, but it can be extended to a more
wide family if needed.

We have applied the latter family to fit the cumulative weights, when n = 20,
for the logistic and hyperbolic secant distributions. The results are shown in
Figure 4, in addition to the cumulative weights for n = 21 and n = 19.

Fig. 4. EVRs fitted to the cumulative weights when n = 20 and cumulative weights
for n = {18, 19, 20, 21, 22} for the Logistic and Hyperbolic secant distributions.
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In particular, the optimal parameters are, in the case of the logistic distri-
bution, α = 0.1592, β = 1, λ = 0.0325 and, in the case of the hyperbolic secant
distribution, α = 0.1591, β = 0.7361, λ = 0.9730. As it is shown in Figure 4,
the fit seems reasonable not only for n = 20 but also for n = 19 and n = 21.
We have also computed the Root Mean Squared Error (RMSE) and the Mean
Absolute Error (MAE) of the fit for the three values of n, which can be consulted
in Table 1.

Distribution Sample size RMSE
(
×10−3)

MAE
(
×10−3)

Logistic

18 0.94 0.72
19 1.19 0.92
20 0.80 0.62
21 0.83 0.66
22 0.94 0.73

Hyperbolic secant

18 1.59 1.19
19 1.14 0.89
20 0.60 0.37
21 1.19 0.98
22 0.98 0.66

Table 1. Root Squared Mean and Mean Absolute Errors of the EVR fitted for the
case n = 20 when n ∈ {19, 20, 21} for the logistic and hyperbolic secant distributions.

As we can see, the RMSE and MAE are lower when n = 20, as expected
because we have fitted the EVRs using these points. However, the increase when
the value of n is changed is not too high, and it seems reasonable to approx-
imate the constructed EVR-OWA for n ∈ {18, 19, 21, 22}, for the considered
distributions. Qualitatively, we expect that both RMSE and MAE increase as
the difference between n and 20 increases.

Comparing both distributions, the fit for the hyperbolic secant distribution
seems to be better than the one for the logistic distribution when n = 20, but
the RMSE and MAE increase more when moving to n = 19 or n = 21.

6 Conclusions and future work

In this contribution, a method for constructing an EVR-OWA operator as a
mean estimator for symmetric distributions that allow changes in the sample size
has been discussed. First, optimal weights regarding Proposition 1 are computed,
using simulated or real data with a fixed sample size n. Then, a family of EVRs is
used to fit the cumulative weights. Finally, we use the fitted function to generate
weights associated to another sample sized different to n.

In order to justify the use of this method, we have presented Theorem 1,
which states that when n goes to infinity, under some particular conditions, the
cumulative weights converge.
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The method have been illustrated using the Logistic and Hyperbolic secant
distributions for n = 20, considering the convex linear combination of sinusoidal
and polynomial EVRs, see Figure 4. Keeping in mind the RMSE and the MAE
of the fit (see Table 1), we conclude that we have to obtain reasonably adequate
results when considering n = 19 or n = 21.

As future work, we want to extend the study to non-symmetric distributions
and also to real data. In this regard, the EVR functions are too limited and we
need a more general family of functions defined over the unit interval. From a
theoretical point of view, we need to extend Theorem 1 for non-symmetric dis-
tributions, and we also wonder if some distribution requirements can be relaxed.
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