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1 Introduction

Chern-Simons gauge theories are interesting topological quantum field theories in three-
dimensions [1]. It is of interest to investigate their holographic realization, when the rank of
the gauge group is large. This endeavor can shed new light both on the topological theories
under scrutiny, and on string theory and holography by analyzing how they reproduce their
properties. Chern-Simons theories have been engineered in string theory early on, see for
instance [2–4] for the non-abelian theories. These set-ups have nevertheless a certain degree
of supersymmetry, which makes this description not optimal for pure Chern-Simons theory,
even in the vacua where supersymmetry is believed to be broken [5].

We will be interested in a particular property of non-abelian pure Chern-Simons theories,
which is level/rank duality [6–9]. This property was instrumental in understanding some
features of the ABJ(M) duality [10, 11] (see also [12, 13]), however again in a set-up with
supersymmetry and hence extra matter fields coupled to the Chern-Simons theories. A
set-up to study pure Chern-Simons theories was devised in [14], using the same trick that
allows one to consider holographic duals to pure Yang-Mills theory in three dimensions (as
well as in four dimensions [15]). The starting point is a compactification on a circle S1 in
AdS5 of the basic duality between N = 4 Super-Yang Mills and Type-IIB string theory on
AdS5 × S5 with N units of five-form flux [16, 17]. The level of the Chern-Simons theory is
provided by k probe D7-branes wrapped on S5 and located at a specific point in the bulk,
thus not adding matter to the boundary theory. In the IR, the theory is gapped and we
have then a holographic realization of pure Chern-Simons theory.
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In [14], it was remarked that holography implements level/rank duality through the
duality between the theory that we are supposed to describe at the boundary, with rank
related to N and level given by k, and the theory that lives on the compactified world-volume
of the D7-branes, which has rank related to k, and level arising from the flux on S5 and
hence given by N . The aim of the present note is to flesh out this proposal, in light of the
precise rules of level/rank duality that have been spelled out in [9]. In particular, since
level/rank duality in its simplest incarnation is between SU and U groups, this will involve
some non-trivial considerations in holography to distinguish between the two cases, both at
the boundary and on the bulk probe branes.

We will analyze the theories by focusing on the couplings to the background fields
for their global symmetries, both U(1) zero-form and discrete one-form symmetries. The
background field for the continuous symmetry turns out to be (the boundary value of)
a component of the RR two-form potential or, crucially, of its dual six-form potential.
Going from one formulation to the other involves a bulk electric/magnetic duality, which is
holographically interpreted as an S operation on the three-dimensional theory, namely as
the gauging of the zero-form global symmetry [18]. We will also see how to recover the full
SL(2,Z) group action on the theories, and as a consequence the holographic realization of
an infinite sequence of level/rank dual theories.

In section 2 we review level/rank duality from a purely quantum field theoretic point
of view. In section 3 we introduce and then investigate the holographic realization of the
duality. We end with a discussion in section 4.

2 Quantum field theory perspective

In this section, we provide a review of some properties of the Chern-Simons (CS) theories
and the associated level/rank dualities that are worth recalling in view of the discussion of
section 3, where they will be investigated using a holographic approach.

2.1 U(1) Chern-Simons theories

The simplest example of Chern-Simons theory is that with gauge group U(1). Its action
reads

S = k

4π

∫
a ∧ da , (2.1)

where the level k has to be integer so as to make the theory gauge invariant. We use the
standard notation U(1)k to label this theory. It features a monopole U(1) zero-form global
symmetry with current

∗ J = da
2π , d ∗ J = 0 . (2.2)

We can couple a background gauge field A to this current,

S(A) = k

4π

∫
a ∧ da+ 1

2π

∫
A ∧ da . (2.3)

This is the action that describes the fractional quantum Hall effect when A is the background
electromagnetic field and a the emergent dynamical gauge field. A simple way to find that
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the level gets fractional is to compute the equation of motion for a,

kda = −dA , (2.4)

and use it to compute the topological Hall current,

∗ J = δS

δA
= 1

2πda = − 1
2πkdA . (2.5)

We obtained the topological Hall current by integrating out the dynamical gauge field a. In
fact, it is not possible to describe the fractional statistics only in terms of the background
field A. Indeed, in general it is not possible to solve (2.4) while respecting the Dirac
quantization condition. However, the derivation of the Hall current involves only local
properties, thus the equation of motion provides the correct result (see e.g. [19]).

Actually, going one step further one can write an effective action for the background
field A which reproduces the topological current,

Seff(A) = − 1
4πk

∫
A ∧ dA . (2.6)

Notice that to the Lagrangian in (2.3) we could add a Chern-Simons term of the form
nA ∧ dA/4π with n ∈ Z. Such a contact term would shift the current (2.5) by a ndA/2π
term. In fact, the choice of n can be considered as part of the definition of the theory [18].
However, the observables only depend on the fractional part of the Chern-Simons level [20].

Finally, it is worth mentioning that besides the topological U(1) zero-form symmetry,
the theory also exhibits a Zk one-form symmetry acting on Wilson lines.

2.2 U(N) and SU(N) Chern-Simons theories

Let us consider the case where the gauge group is U(N). The U(1) and the SU(N) factors
might admit different levels; we introduce the notation1

U(N)k,k+Nk′ =
SU(N)k ×U(1)N(k+Nk′)

ZN
, U(N)k = U(N)k,k . (2.7)

The theory exhibits a U(1) monopole zero-form global symmetry. Indeed, calling b the
U(N) connection, the current

∗ J = dTrb
2π (2.8)

is identically conserved. We can therefore couple J to a U(1) background connection C and
write the action

S(C) = k

4π

∫
Tr
(
b ∧ db− 2i

3 b
3
)

+ k′

4π

∫
Trb ∧ dTrb+ 1

2π

∫
C ∧ dTrb . (2.9)

SU(N)k Chern-Simons theory can be defined, introducing a SU(N) connection b̂, by

S = k

4π

∫
Tr
(
b̂ ∧ db̂− 2i

3 b̂
3
)
. (2.10)

1The Chern-Simons level depends on the regularization scheme that one adopts. Two commonly used
schemes are the Yang-Mills and the dimensional ones. In this paper, we will always adopt the Yang-Mills
regularization scheme as in [9]. See [21] for a detailed discussion on this point.
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SU(N) gauge theories are expected to admit baryonic configurations with N external
quarks [22]. It is then useful to allow for the possibility of coupling a U(1) background
to the baryon current. This can be achieved by working with a U(N) connection b and
imposing the constraint

Trb = −C̃ , (2.11)

where C̃ is a U(1) background gauge field [9]. To make this explicit, let us consider a
fermion ψ coupled to the U(N) gauge field b,

S = i

∫
d3xψ /Dbψ . (2.12)

Decomposing
b = b̂+ 1

N
Trb 1 (2.13)

and using the constraint (2.11) we see that we obtain the coupling

SC̃ =
∫
d3xJµBC̃µ , (2.14)

where JµB = 1
Nψγ

µψ is the baryonic current.
The constraint (2.11) can be imposed by introducing an auxiliary U(1) connection c

that enters the action as
Sc = 1

2π

∫
c ∧ d(Trb+ C̃) , (2.15)

and over which we integrate in the path integral. Indeed, given a generic three-dimensional
manifold M3 and two U(1) connections α and β, the following result holds [18]:

I(β) =
∫
Dα exp

(
i

2π

∫
M3

α ∧ dβ
)

= δ(β) . (2.16)

Here, δ(β) means that β vanishes up to gauge transformations. Besides enforcing the
vanishing of the curvature dβ, the sum over all the U(1) bundles annihilates all the
holonomies of β. As a result, introducing the action term (2.15), the integration over c
enforces the constraint (2.11).

Hence, we will write the SU(N) Chern-Simons action as2 [9]

S(C̃) = k

4π

∫
Tr
(
b ∧ db− 2i

3 b
3
)

+ 1
2π

∫
c ∧ d(Trb+ C̃) . (2.17)

The one-form symmetry of the SU(N)k theory is ZN . On the other hand, recalling (2.7)
and the fact that the one-form symmetry of U(1)N(k+Nk′) is ZN(k+Nk′) we see that the
U(N)k,k+Nk′ theory displays a Zk+Nk′ one-form symmetry.

2In fact, if one needs to be careful of the fact that SU(N)k is a non-spin theory while U(N)k is such only
for even values of k, one has to include the following term in the action,

εk
4π

∫
Trb ∧ dTrb , εk =


+1 if k is odd and positive
−1 if k is odd and negative
0 if k is even

.

In the present paper, we are not sensitive to this detail and therefore we will henceforth set effectively εk = 0.
In the same vein, we are not going to keep track of terms related to the framing anomaly [1].
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The SU(N)k Chern-Simons theory is obtained from the U(N)k theory by gauging the
monopole zero-form symmetry. In the language of [18], this is the S operation. We can
represent it by substituting the background gauge field C with a dynamical one c and
coupling the topological current of the latter to a new background field C̃, namely

S(C)→ S(c) + 1
2π

∫
c ∧ dC̃ . (2.18)

In three dimensions, after gauging the U(1) zero-form global symmetry of a theory we find
another theory with a U(1) zero-form global symmetry. In our example, we started with
the U(N)k theory and we gauged its monopole symmetry in order to obtain the SU(N)k.
This latter theory exhibits a baryon zero-form global symmetry, with current

∗ J = dTrc
2π . (2.19)

Similarly, applying S to the SU(N)k theory one finds the U(N)k. Besides the S operation,
another operation, called T , is defined by adding a contact term for the background gauge
field coupled to the U(1) zero-form global symmetry,

S(C)→ S(C) + 1
4π

∫
C ∧ dC . (2.20)

As we mentioned in section 2.1, the addition of such a contact term for the background
gauge field is in itself a trivial operation since it does not affect the theory’s observables.
However, it is not entirely trivial because it does not commute with the S operation. Indeed,
one can easily show that S and T generate the SL(2,Z) group [18].

2.3 Level/rank dualities

The theories that we have introduced so far are not inequivalent. Indeed, they are related
by known (exact) level/rank dualities [6–9]. Let us write the simplest ones,

SU(N)k ↔ U(k)−N , (2.21a)
U(N)k,k±N ↔ U(k)−N,−N∓k . (2.21b)

We will not review the proof of these dualities. Rather, we show that the topological (Hall)
currents match between the two sides of these dualities. This is the observable that we will
be able to compute within the holographic context and will allow us to identify the involved
Chern-Simons theories.

Let us start with the SU(N)k theory (2.17). Let us separate the terms involving Trb
from the remaining ones,

S(C̃) = Straceless + k

4πN

∫
Trb ∧ dTrb+ 1

2π

∫
c ∧ dTrb+ 1

2π

∫
C̃ ∧ dc . (2.22)

Taking the equations of motion for Trb and c, we find

k

N
dTrb = −dc , (2.23a)

dTrb = −dC̃ . (2.23b)
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The topological current is then

∗ J = δS

δC̃
= 1

2πdc = k

2πN dC̃ . (2.24)

The effective action reproducing the topological current (2.24) is

Seff(C̃) = k

4πN

∫
C̃ ∧ dC̃ . (2.25)

Let us perform the same computation starting from the U(N)k,k+Nk′ theory. After
separating the trace part from the other components, the action (2.9) reads

S(C) = Straceless + k +Nk′

4πN

∫
Trb ∧ dTrb+ 1

2π

∫
C ∧ dTrb . (2.26)

The equation of motion for Trb is

k +Nk′

N
dTrb = −dC , (2.27)

so that the topological current reads

∗ J = δS

δC
= 1

2πdTrb = − N

2π(k +Nk′)dC . (2.28)

The case k′ = 0 gives the U(N)k theory. Again, we can write an effective action for C also
in this case. It reads

Seff(C) = − N

4πk

∫
C ∧ dC . (2.29)

Confronting the above expression with (2.25), we see that the topological current of the
U(k)−N theory coincides with that of the SU(N)k theory, as expected from the level/rank
duality (2.21a). On the other hand, it is important to notice that the effective action for C
for generic N and k is different depending on whether we are considering an SU(N)k or a
U(N)k CS theory.

For k′ = ±1 we have the U(N)k,k±N theory, with current

∗ J = δS

δC
= 1

2πdTrb = − N

2π(k ±N)dC . (2.30)

As we wrote in (2.21b), this theory is known to be level/rank dual to the U(k)−N,−N∓k
one [9]. Let us show that the currents indeed match. Following the same steps as before,
we write its action as

S(C) = Straceless −
N ± k
4πk

∫
Trb ∧ dTrb+ 1

2π

∫
C ∧ dTrb . (2.31)

The equations of motion read
N ± k
k

dTrb = dC , (2.32)
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and therefore the current is

∗ J = δS

δC
= 1

2πdTrb = ± k

2π(k ±N)dC . (2.33)

We see that the two currents match up to ±dC/2π. As we mentioned at the end of
section 2.1, such a contribution comes from a contact term in the Lagrangian, which does
not affect the observables of the theory. Thus, the level/rank duality (2.21b) is an example
in which there is a non-trivial map between contact terms.

A last observation is the following. If in three dimensions a duality between two theories
with a U(1) zero-form symmetry is established, it is clear that acting on both sides with the
same SL(2,Z) operation, one finds another duality. Indeed, it is possible to show [9] that
the level/rank dualities (2.21b) are obtained by acting on the pair (2.21a) with T±1 and
then with S, on both sides. Taking different combinations of T and S one then finds an
infinite set of level/rank dualities relating Chern-Simons theories, although in some cases
the latter can be defined only formally [23].

3 Holographic level/rank dualities

In this section, we describe how holography reproduces the level/rank dualities for the
cases discussed in section 2. We start by introducing the holographic model and then we
investigate the different cases.

3.1 Holographic set-up: the cast of characters

We start by recalling the holographic set-up of [14]. It aims at finding the (top-down) gravity
dual of a three-dimensional pure SU(N) or U(N) gauge theory with a level k Chern-Simons
term. The construction is the following.

Let us consider a stack of N coincident D3-branes which wrap an S1 of length L with
antiperiodic (periodic) boundary conditions for fermions (bosons), so as to explicitly break
supersymmetry. In this way, adjoint fermions and scalars take masses and at distances
greater than L we are left with 2 + 1d gauge fields. The theory on the D3-branes admits a
coupling with the axion field C0,

SC0 = µ3
2

∫
R1,2×S1

C0Tr (2πf ∧ 2πf) = 1
4π

∫
R1,2×S1

C0dTr
(
a ∧ da− 2i

3 a
3
)
. (3.1)

Here, f is the field strength of the U(N) connection a and

µp = 1
(2π)p , (3.2)

where we take units where ls = 1.
Let us take an axion field of the form

C0(x3) = kx3
L

, (3.3)
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where x3 is the coordinate along S1. In this way3

SC0 = k

4π

∫
R1,2

Tr
(
a ∧ da− 2i

3 a
3
)
. (3.4)

As a result, we find a 2 + 1d Yang-Mills theory with gauge group U(N) and a level k
Chern-Simons term, that is the theory U(N)k. At low energies the Yang-Mills term (coming
from the Dirac-Born-Infeld piece of the D-brane action, that we do not write) is irrelevant
so that the theory flows into pure U(N)k Chern-Simons theory.4 Let us mention that since
we will take k to be finite and N to be large, we will be in the regime where N/k � 1 and
so the Yang-Mills-Chern-Simons theory is strongly coupled. The theory is gapped, with
gap proportional to N , but does not confine. Hence the (topologically non-trivial) theory
below the gap can be safely described by the pure Chern-Simons theory.

Note that, until now, we are considering the theory on the D3-branes as U(N) and not
SU(N). It is customary in holography to discard the overall U(1) since at the Yang-Mills
Lagrangian level, it decouples completely from the rest of the dynamics. It is associated to
the center-of-mass of the stack of D3-branes, whose location is arbitrary in the configuration
one starts with. However, in the present set-up where we crucially have a Chern-Simons
level, such decoupling is no longer granted, in the sense that the presence or not of the
overall U(1) gauge factor affects the topological theory at low energies. We will thus have
to be careful in building the correct holographic theory for SU(N)k. As we will see, we can
use U(N)k as a starting point.

The U(N) theory features an identically conserved U(1) current,

∗ J = dTra
2π . (3.5)

This current is coupled to the RR two-form C2 through the Wess-Zumino coupling. Fixing
the Kalb-Ramond field B2 = 0, we have

SC2 = µ3

∫
R1,2×S1

C2 ∧ 2πTrf . (3.6)

Taking the ansatz
C2 = 2πC ∧ dx3/L (3.7)

3We take the volume form to be ordered according to dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dr ∧ ω5. Equivalently, we
take ε0123rθ1...θ5 = +1. In particular, when performing the integral over dx3, we bring the differential to the
right of dx0 ∧ dx1 ∧ dx2. This fixes the sign of SC0 .

4In order to obtain the low-energy theory, we have integrated out the adjoint fermions. In principle, one
could expect a shift of the Chern-Simons level due to this integration. This is not the case. Indeed, let us
take one of the 4d Weyl fermions and let us compactify it on the circle S1,

ψ(xµ, x3) =
∑
n

ψn(xµ)e2πinx3/L , n = ±1/2,±3/2 . . . ,

where the condition on n comes from the antiperiodicity of the fermion. A 4d Weyl fermion ψ gives a tower
of 3d Dirac fermions ψn with mass m ∝ n/L. We thus see that there are no zero modes; moreover, massive
Dirac fermions come in pairs with the same mass but opposite sign. As a result, there is no shift in the
Chern-Simons level.
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and integrating over S1, we find

SC2 = 1
2π

∫
R1,2

C ∧ dTr a , (3.8)

which is the coupling of the U(1) current J with a classical background field C in 2 + 1d.
We have thus learned that a signature of the fact that we are describing a U(N) gauge

theory is that we can see the coupling of its topological U(1) current to a background field,
which is a particular component of the RR field C2. This observation is the key to being
able to describe also an SU(N) gauge theory. Indeed, as reviewed in section 2, in 3d one
obtains the SU(N) gauge theory from the U(N) by gauging its topological symmetry. In
holography, gauging a global symmetry amounts to going to the alternative quantization for
the bulk gauge field dual to the global current. This in turn is achieved in the simplest way
by dualizing the bulk gauge field. For us, it will amount to formulate the bulk dynamics in
terms of the C6 RR potential instead of C2.

However first let us consider the backreaction of the present configuration, in other
words the holographic dual theory. In the absence of a CS level, the near-horizon limit of
the D3-branes geometry reads

ds2 = r2

R2

(
dxµdx

µ + f(r)dx2
3

)
+ R2

r2
dr2

f(r) +R2dΩ5 , (3.9a)

with

eφ = gs , f(r) = 1− r4
0
r4 , (3.9b)

F5 = dC4 = −(2π)4N(ω5 + ∗ω5) , R4 = 4πgsNl4s , (3.9c)

where ω5 is the S5 (unit) volume form.5 The topology of the cigar-shaped (x3, r) subspace
is that of the disk D2, whose boundary at r = r∞ is S1 with coordinate x3.

Contrarily to the initial situation, where the S1 described a cylinder and thus the
axion winding could be purely topological, after backreaction the (x3, r) subspace is simply-
connected and therefore in order to have a C0 which is multi-valued along S1 there must
be a defect. Indeed, according to the holographic prescription where the D3-branes can
be thought to live at the boundary of the asymptotically AdS spacetime, we need to
recover (3.3) at r = r∞. Calling F1 = dC0, this entails6∫

S1
F1 = −

∫
D2

dF1 = k . (3.10)

5The sign of the expression for F5 is consistent with the sign of the D3-brane action (3.1), in the
conventions that we will detail below.

6The choice of order in the volume form implies sometimes a minus signs in the Stokes theorem. Indeed,
taking for simplicity a form A that only depends on r, we have∫

D2

dA =
∫
D2

∂rAx3 dr ∧ dx3 ∝ −
∫
S1
A|S1 .

The minus sign comes from the fact that according to ε0123rθ1...θ5 = +1, we have to order the differentials as
dx3 ∧ dr before performing the integral.
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A defect is therefore needed in order to violate the Bianchi identity for F1. Such a defect
is provided by k D7-branes wrapped on S5 and pointlike in the (x3, r) subspace, i.e. they
can be thought as being located at the origin of the disk D2. Being localized at the tip
of the cigar, i.e. in the deep bulk, they do not alter the matter content of the UV theory.
Note that (3.3), thought as valid for any value of r (except r0 where x3 is not well-defined),
solves the equation of motion for C0. As long as we keep k fixed in the large-N limit, C0
does not backreact on the geometry, and consistently also the D7-branes will be considered
as non-backreacting probes.

Since we have now established that the gravity dual of the gauge theory with non-
trivial CS level has to incorporate probe D7-branes, we have to take into account their
world-volume action when considering the bulk equations of motion.

Before writing the latter, recall that as much as the closed string modes on the cigar
are known to be gapped, the fluctuations of the D7-branes are also gapped. Indeed, calling
b the U(k) connection of the D7-brane theory and F its field strength, we have from a piece
of the Wess-Zumino action7

µ7
2

∫
R1,2×S5

C4 ∧ Tr (2πF ∧ 2πF) = −N4π

∫
R1,2

Tr
(
b ∧ db− 2i

3 b
3
)
, (3.11)

where we used that F5 = dC4 satisfies∫
S5
F5 = −(2π)4N . (3.12)

This Chern-Simons term controls the physics at low energies (in particular, the Yang-
Mills term from the DBI piece of the action becomes irrelevant) and as a result, in the
world-volume of the D7-brane lives a three-dimensional topological quantum field theory.

The bulk holographic solution thus provides us naturally with a U(k)−N Chern-Simons
theory. Note that here the fact that we are in the regime N/k � 1 means that this
Yang-Mills-Chern-Simons theory is weakly coupled, it becomes topologically gapped while
still in the perturbative regime. Again, the U(1) gauge factor related to the center-of-mass
of the D7-branes does not decouple straightforwardly.

In this respect, another term in the D7-brane Wess-Zumino action is important. The
U(k) gauge theory on the D7-branes features a topological symmetry with current

∗ J̃ = TrF
2π . (3.13)

Such a current couples to the C6 Ramond-Ramond field,

SC6 = 2πµ7

∫
R1,2×S5

C6 ∧ TrF . (3.14)

If we use the ansatz
C6 = (2π)5C̃ ∧ ω5 , (3.15)

we find the three-dimensional coupling to the external gauge field C̃,

SC6 = 1
2π

∫
R1,2

C̃ ∧ TrF . (3.16)

7Again, the sign of the following action is fixed by the sign of the expressions (3.10).
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We thus learn that the coupling of the topological symmetry current of the U(k) theory
can be naturally written when the C6 RR potential is used to describe the bulk dynamics,
i.e. in the dual formulation with respect to (3.8).

Note that (3.16) is best understood as being evaluated at r = r0, where the D7-branes
lie. The complete action of the D7-branes’ theory is therefore

SD7 = −N4π

∫
R1,2

Tr
(
b ∧ db− 2i

3 b
3
)

+ 1
2π

∫
R1,2

C̃ ∧ TrF . (3.17)

Integrating over b (with the caution advocated in section 2.1) we can write the corresponding
effective action

SD7 = k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r0

. (3.18)

For later convenience, we explicitly wrote that here C̃ is evaluated at r = r0.
It is important to notice that the background fields C and C̃ are not identified. They

are however related in that they are particular components of C2 and C6, respectively,
which in turn are dual RR potentials in Type-IIB supergravity. This relation is crucial for
our arguments in the following.

To summarize, we started with a flat spacetime in which N D3-branes are wrapped
on a cylinder with k units of non-trivial C0 monodromy, i.e. F1 flux on the S1. After
backreaction, we ended up with a curved spacetime, including an S5 with N units of F5 flux
and a cigar-shaped factor with k D7-branes at the tip. In both situations at low energies
we have a three-dimensional topological Chern-Simons theory, and we are going to argue
that it is a level/rank dual pair.

3.2 Effective action for the background field

We are now going to use the equations of motion of the bulk supergravity fields, coupled to
the probe D7-brane action, in order to recover an effective action for the background fields
C or C̃. This will be a way to reproduce holographically the results of section 2.3, and to
see more precisely how the level/rank dual pairs (2.21) are achieved.

The action of Type-IIB supergravity reads

SIIB = SNS + SRR + SCS , (3.19)

where

SNS = 1
2κ2

10

∫
d10x
√
−Ge−2φ

(
R+ 4∂Mφ∂Mφ−

1
2 |H3|2

)
, (3.20a)

SRR = − 1
4κ2

10

∫
d10x
√
−G

(
|F1|2 + |F̃3|2 + 1

2 |F̃5|2
)
, (3.20b)

SCS = − 1
4κ2

10

∫
B2 ∧ F3 ∧ F5 . (3.20c)

Here, 2κ2
10 = (2π)7, we defined

F̃3 = F3 − C0H3 , (3.21a)

F̃5 = F5 + 1
2B2 ∧ F3 −

1
2C2 ∧H3 , (3.21b)
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and it is understood that F̃5 = ∗F̃5 is imposed after the equations of motion have been
derived from the above action.8

A central role is played by the topological term of the action, which dominates for
large values of the holographic coordinate. It comes from SCS and from the |F̃3|2 and |F̃5|2

contributions to SRR. Using the ansätze (3.7) and (3.15), it reads

Stop = − 1
(2π)2

∫
R1,2×r

(
NB2 ∧ dC − kB2 ∧ dC̃

)
. (3.22)

Note that we are using above a mixed notation where both C and C̃ are present. Of course
we have to keep in mind that they are not independent but one the dual of the other. As
we will discuss, this term plays an important role when imposing the boundary conditions
on the RR fields.

To the supergravity action for the bulk fields, we must add the following action for the
probe D7-branes:

SD7 = µ7
∑
q

∫
R1,2×S5

Cq ∧ Tr exp (2πF −B2) , (3.23)

where we have neglected the DBI part of the action. We remind that B2, Cq are actually the
pullback on the D7-brane world-volume of these quantities. For our purposes, the relevant
terms of the action will be the following:

SD7 = µ7

∫ [
k C8 + C6 ∧ Tr(2πF −B2) + 1

2C4 ∧ Tr(2πF −B2)2
]
∧ δ2 , (3.24)

where we have also taken the opportunity to write the action as an integral over all spacetime,
localized at the tip of the cigar/center of the disk D2 by the (closed) two-form δ2, which
can thus be seen as the delta-function source for the D7-branes.9

We will consider a fixed background where the metric, dilaton and F5 are given by (3.9).
On top of this, we will consider a non-backreacting F1 flux, and fluctuations of C2/C6
and F . Crucially, we also consider the equations of motion for B2, though we consistently
set the profile of B2 eventually to zero in all the equations.

The equations of motion (or Bianchi identities) that we get are the following. For
C0/C8, we have

d ∗ F1 = 0 , dF1 = −kδ2 . (3.25)

The Bianchi identity translates the fact that there are k D7-branes in the bulk, more
specifically the source is given by the first term in (3.24). For C2/C6, we have

d ∗ F3 = 0 , dF3 = −2πTrF ∧ δ2 . (3.26)
8According to our conventions,∫

d10x
√
−G|Fp|2 = 1

p!

∫
d10x

√
|G|Fµ1...µpF

µ1...µp =
∫
Fp ∧ ∗Fp .

9Consistenly with our conventions, the volume form of the disk D2 is defined with the sign such that
δ2 ∝ dx3 ∧ dr.
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Again, the Bianchi identity (or equation of motion for F7 = ∗F3) has a non-trivial source
due to the second term in (3.24).

The equation of motion for B2 imposes the following constraint:

dC0 ∧ ∗F3 + C0 ∧ d ∗ F3 + F3 ∧ F5 = −(k C6 + C4 ∧ 2πTrF) ∧ δ2 . (3.27)

Using the equations of motion for F3, the above expression can be simplified to

F1 ∧ F7 + F3 ∧ F5 = −(k C6 + C4 ∧ 2πTrF) ∧ δ2 . (3.28)

Finally, the equations of motion for the gauge field b on the D7-branes are(
F7 + 2π

k
F5 ∧ TrF

)
∧ δ2 = 0 . (3.29)

In particular, from this equation we derive a simple relation between the pullback of the
curvature of C̃ and the gauge field on the D7-branes,

dC̃
∣∣∣
r=r0

= N

k
TrF . (3.30)

We solve the Bianchi identity for C0 by taking

F1 = k
dx3

L
, (3.31)

and recall that (omitting its self-dual part along R1,2 ×D2)

F5 = −(2π)4Nω5 . (3.32)

For r > r0, (3.28) reads then

k
dx3

L
∧ F7 = (2π)4NF3 ∧ ω5 , (3.33)

which in turn implies

dC̃|r>r0 = N

k
dC|r>r0 . (3.34)

Moreover, integrating the equations (3.28) over D2 × S5 we find

C|r=r0 = Trb , (3.35)

so that using (3.30) we also have

dC̃|r=r0 = N

k
dC|r=r0 , (3.36)

i.e. the on-shell relation between C and C̃ is valid everywhere.
We now want to evaluate the bulk action on-shell. Actually, our aim is to find an

effective action for either C or C̃. However, part of the bulk solution consists of the
D7-branes, with the world-volume action for the dynamical field b. We have already seen
that such action yields a U(k)−N Chern-Simons theory with a coupling to the C̃ component
of C6. As we write in (3.18), this results in an effective action for C̃, though it would be
localized at the tip of the cigar r = r0, which is inconvenient for holography, where source
fields are supposed to be ‘measured’ at the boundary r = r∞. Nevertheless, let us see if the
bulk supergravity action allows us to extract an effective action for C or C̃. We will do this
by imposing different boundary conditions on the RR fields.

– 13 –



J
H
E
P
0
8
(
2
0
2
2
)
0
9
7

3.2.1 SU(N)k theory
As we have just mentioned, the on-shell D7-brane action is formulated naturally in terms of
C̃. We thus start by imposing Dirichlet boundary conditions on C6, that is on C̃, so that
the whole on-shell action should depend on it.

As we anticipated, the topological term (3.22) in the supergravity action plays a crucial
role. Indeed, since we fix the boundary value of C̃, we cannot at the same time fix the
boundary value of C. As a result, from the first term in (3.22) we read that B2 has to be a
holonomy taking values in ZN , so the dual quantum field theory displays a ZN one-form
symmetry. (For these arguments, see [24–26] and in particular [27] for a very similar
situation.) As we mentioned in section 2.2, this is the one-form symmetry of the SU(N)k
theory. We now show that holography consistently yields the effective action of the SU(N)k
theory.

Since we want to impose Dirichlet boundary conditions on C6, it is convenient to
dualize the Type-IIB supergravity action to write it in terms of C6 rather than C2. The
only relevant part of the supergravity action is the one with F3, that we rewrite

SIIB = − 1
4κ2

10

∫
R1,2×D2×S5

F7 ∧ ∗F7 . (3.37)

Since d∗F3 = dF7 = 0 everywhere, we can write F7 = dC6 in the above action and integrate
by parts. We obtain

SIIB = − 1
4κ2

10

∫
R1,2×S1×S5

C6 ∧ F3 + 1
4κ2

10

∫
R1,2×D2×S5

C6 ∧ dF3 . (3.38)

We now consider the ansatz (3.15) and the equation (3.26), to get

SIIB = −(2π)5

4κ2
10

∫
R1,2×S1×S5

C̃ ∧ ω5 ∧ F3 −
(2π)6

4κ2
10

∫
R1,2

C̃ ∧ TrF , (3.39)

where in the second term we have performed the integral over D2 × S5. Note that the first
term is at the boundary, namely r = r∞, while the second term is at r = r0. For the first
term we use (3.33) and the ansatz (3.15) for C6 to write

SIIB = k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r∞

− 1
4π

∫
R1,2

C̃ ∧ TrF
∣∣∣∣
r=r0

. (3.40)

The last step is then obtained by using the equations of motion for b, namely (3.30), so
that we finally get

SIIB = k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r∞

− k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r0

. (3.41)

The on-shell supergravity action exhibits two terms, one evaluated at the spacetime
boundary as customary in holography, and one evaluated at the center of the disk D2 where
the D7-branes lie. The holographic prescriptions demand the latter to be canceled in the
final result. Indeed, taking into account also the on-shell D7-brane action (3.18), we find
such cancellation:

SIIB + SD7 = k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r∞

. (3.42)
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We have thus found an effective action for C̃, with the latter acting as background gauge
field at the boundary of the holographic spacetime. Recalling (2.25), we recognize (3.42)
to be the effective action of the SU(N)k Chern-Simons theory. The computation confirms
that the bulk theory supplemented with Dirichlet boundary conditions for C̃ is dual to the
SU(N)k theory, as anticipated at the beginning of this subsection by the argument based
on the one-form symmetry.

Furthermore, in section 3.1, the theory on the D7-branes was precisely identified
with the U(k)−N Chern-Simons one. We therefore find that imposing Dirichlet boundary
conditions on C̃, the holographic duality precisely reproduces the SU(N)k ↔ U(k)−N
level/rank duality. In the following, we will impose different boundary conditions in order
to find other level/rank dualities.

3.2.2 U(N)k theory

Another simple case is that in which we impose Dirichlet boundary conditions on C2, i.e. on
C. This is equivalent to imposing Neumann boundary conditions on C6 (i.e. on C̃). It
means that the boundary value of C6 is now free to fluctuate, so it acts as a dynamical field
rather than a background one. In other words, we are gauging the symmetry to which C6
was coupled.

We are thus gauging the baryonic zero-form symmetry of the SU(N)k theory. As we
discussed in section 2.2, this produces a U(1) zero-form symmetry, now of a monopole
kind. As a result, in the present subsection we expect to find the holographic dual of the
U(N)k theory.

The appearance of the U(N)k theory is corroborated also by the symmetry argument
made at the beginning of subsection 3.2.1. Let us look again at the topological action (3.22).
Since we fix the boundary value of C, from the second term in (3.22) we read that B2
has to be a holonomy taking values in Zk, so the dual quantum field theory displays a Zk
one-form symmetry. As we mentioned in section 2.2, this is the one-form symmetry of the
U(N)k theory.

Since we are imposing Dirichlet boundary conditions on the RR field C2, in this
subsection it is convenient to work with the latter. The relevant action term is

SIIB = − 1
4κ2

10

∫
R1,2×D2×S5

F3 ∧ ∗F3 . (3.43)

Since F3 is exact everywhere but at r = r0, let us write

F3 = dC2 − 2πTrb ∧ δ2 , (3.44)

which solves (3.26). We then have

SIIB = − 1
4κ2

10

∫
R1,2×S1×S5

C2 ∧ ∗F3 + 2π
4κ2

10

∫
R1,2×D2×S5

Trb ∧ δ2 ∧ ∗F3 . (3.45)

Using the ansatz (3.7) for C2 and the equation (3.33) in the first term, we find

SIIB = − N

4πk

∫
R1,2

C ∧ dC + 2π
4κ2

10

∫
R1,2×D2×S5

Trb ∧ ∗F3 ∧ δ2 . (3.46)
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Again, the on-shell supergravity action displays both a boundary term and a term evaluated
at the center of the disk, that is at the location of the D7-branes. Looking at the boundary
term and recalling (2.29), we are already able to state that the holographic theory obtained
by imposing Dirichlet boundary condition on C2 is dual to the U(N)k Chern-Simons, thus
confirming the expectation claimed at the beginning of the present subsection. For this to
be entirely true, the second (bulk) term in (3.46) needs to disappear from the final result of
the holographic computation. From the discussion in subsection 3.2.1, we expect it to be
canceled by the on-shell D7-branes’ action. Using (3.30) and (3.36), we find

SIIB = − N

4πk

∫
R1,2

C ∧ dC
∣∣∣∣
r=r∞

+ N

4πk

∫
R1,2

C ∧ dC
∣∣∣∣
r=r0

. (3.47)

However, the D7-brane action (3.18) is written in terms of C̃. Hence, we might as well
use again the relation (3.36) between the value of C and C̃ at the tip of the cigar to
rewrite (3.47) equivalently as

SIIB = − N

4πk

∫
R1,2

C ∧ dC
∣∣∣∣
r=r∞

+ k

4πN

∫
R1,2

C̃ ∧ dC̃
∣∣∣∣
r=r0

. (3.48)

The sign of the second term may appear as problematic since it seems to prevent the
expected cancellation with the D7-branes’ effective action (3.18). However, the holographic
theory of this subsection is dual to the U(N)k theory, which is not level/rank dual to
the U(k)−N one, so we do not expect a cancellation with (3.18). On the contrary, the
holographic prescription imposes upon us the cancellation of the bulk term, namely

SIIB + S′D7 = − N

4πk

∫
R1,2

C ∧ dC
∣∣∣∣
r=r∞

, (3.49)

and therefore demands the theory on the D7-branes to be

S′D7 = − N

4πk

∫
R1,2

C ∧ dC
∣∣∣∣
r=r0

, (3.50)

which means a SU(k)−N CS theory. To wit, if we change the conditions on the RR fields at
r = r∞, thus performing an SL(2,Z) operation on the boundary theory, holography instructs
us that the same operation has to be applied to the D7-theory that involves the values of the
RR fields at r = r0. Indeed, the SU(k)−N CS theory with effective action (3.50) is obtained
by performing the S operation on the U(k)−N theory displaying effective action (3.18).
Keeping in mind the caveat mentioned in section 2.1, we can show this by applying the
S operation already at the level of the effective action. We thus take (3.18), replace the
background C̃ with a new dynamical field c and couple the topological symmetry of the
latter to a new background field C. Hence, we write

S′D7 = k

4πN

∫
R1,2

c ∧ dc
∣∣∣∣
r=r0

− 1
2π

∫
R1,2

C ∧ dc
∣∣∣∣
r=r0

. (3.51)

The equation of motion for c reads

k

N
dc = dC . (3.52)
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Plugging it into the effective action, we indeed find (3.50). We also see that on shell, c is
really the same field as C̃, as holography suggests us.

Above, we have hopped between the C2 and the C6 formulations of Type-IIB super-
gravity without explicitly writing how we perform the electric/magnetic duality. Let us
spend some words on this in order to see once again how the theories at the boundary and
at the tip are connected. When we want to pass from the supergravity formulation in terms
of C6 to that in terms of C2 (and vice-versa), as an intermediate step, we enlarge the theory
by considering both C2 and C6 as independent fields. To do this, we need to add to the
action the following term:

Sdual = − 1
2κ2

10

∫
R1,2×D2×S5

F3 ∧ F7 . (3.53)

Hence, if we want to work with the theory with C2 (C6) we integrate over C6 (C2). Following
the same steps as above, namely recalling (3.44) and using the ansatz (3.15), we have

Sdual = − 1
2π

∫
R1,2

C ∧ dC̃
∣∣∣∣
r=r∞

+ 1
2π

∫
R1,2

Trb ∧ dC̃
∣∣∣∣
r=r0

. (3.54)

Finally, using (3.35), we find

Sdual = − 1
2π

∫
R1,2

C ∧ dC̃
∣∣∣∣
r=r∞

+ 1
2π

∫
R1,2

C ∧ dC̃
∣∣∣∣
r=r0

. (3.55)

We see that the supergravity Lagrangian term that implements the electric/magnetic duality
displays a boundary contribution as well as a contribution from the location of the D7-branes.
The former is the action term to add to the SU(N)k effective action at the boundary to
find the U(N)k action after integrating over C̃. The latter is instead a bulk contribution
and therefore has to be canceled according to the holographic prescriptions. Indeed, we
have shown that we need to add the second term in (3.51) to the D7-brane action (3.18) in
order to obtain (3.50) after integration over c ≡ C̃.

To summarize, in this subsection we imposed Neumann boundary conditions on C6
and we found that the holographic theory is dual to the U(N)k CS theory. Starting from
the SU(N) theory studied in subsection 3.2.1, turning to Neumann boundary conditions
for C6 corresponds to performing the S operation on the holographic theory. On the other
hand, in subsection 3.2.1 it was shown that holography reproduces the equivalence between
the SU(N)k CS theory and the U(k)−N one, the latter being the theory on the D7-branes
in the holographic set-up. In this subsection, we showed that for consistency holography
imposes the S operation to be applied to the theory of the D7-branes as well. As a result,
even after changing the condition on the fields imposed at the holographic boundary, we
find a level/rank duality.

The duality we found in this subsection is U(N)k ↔ SU(k)−N . From a quantum field
theory point of view, this is the same kind of duality found in subsection 3.2.1 since one is
obtained from the other by exchanging N and k (and performing a parity transformation).
However, since in the holographic context we take N � k, the two cases are different because
the first one establishes the level/rank duality between the strongly-coupled SU(N)k theory
and the weakly-coupled U(k)−N one, whereas the second case does the same for the
strongly-coupled U(N)k theory and the weakly-coupled SU(k)−N one.
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Since we learned that holography imposes the same SL(2,Z) operation at the boundary
and on the D7-branes, we are now motivated to look for different boundary conditions
leading to the U(N)k,k+Nk′ theories at the boundary in order to holographically find
level/rank dualities such as (2.21b).

3.2.3 U(N)k,k+Nk′ theory

We would like to now propose how to describe holographically level/rank dualities involving
the theories denoted as U(N)k,k+Nk′ . Such theories are characterized by a one-form
symmetry which is Zk+Nk′ . We can see how such a one-form symmetry can arise from (3.22).
We can simply redefine

C = C ′ − k′C̃ , (3.56)

so that the topological term coupling to B2 reads

Stop = − 1
(2π)2

∫
R1,2×r

(
NB2 ∧ dC ′ − (k +Nk′)B2 ∧ dC̃

)
, (3.57)

and upon fixing C ′ at the boundary, makes it valued in Zk+Nk′ .
Since we are still fixing a piece of C2, we start from the Type-IIB bulk action formulated

in terms of the latter, as in (3.43) but now with C2 = 2π(C ′ − k′C̃) ∧ dx3/L.
Focusing for the moment only on the term at the boundary r = r∞, we get

SIIB,boundary = − 1
4π

∫
R1,2

C ′ ∧ dC̃ + k′

4π

∫
R1,2

C̃ ∧ dC̃ . (3.58)

The relation between C and C̃ implies that NC ′ = (k +Nk′)C̃ so that we can rewrite the
above as

SIIB,boundary = − N

4π(k +Nk′)

∫
R1,2

C ′ ∧ dC ′ − k′

4π

∫
R1,2×r

dC̃ ∧ dC̃ . (3.59)

The first term is exactly what we expect for a U(N)k,k+Nk′ theory, i.e. leading to (2.28).
The second term has been rewritten as an integer θ-term, however in terms of C̃. At face
value, this term should not be even considered, had we kept the bulk IIB supergravity
in terms of C6. But we see that it acquires a physical impact if we then revert to the
formulation in terms of C2. This is a well known fact, that electric/magnetic duality in the
bulk does not commute with integer shifts of the θ angle, but rather forms the full SL(2,Z)
group out of the combination [28]. Its holographic interpretation is precisely in terms of
the T and S operations on 3d field theories [18]. Indeed, one can obtain the U(N)k,k+Nk′

theory by performing k′ times the T operation and then the S operation, starting from
the SU(N)k theory. This is exactly what appears to be needed above: start with the C6
formulation appropriate to the SU(N)k theory, shift the θ angle by 2πk′ and then go to the
C2 formulation.

Now a word about what happens at the tip r = r0, i.e. on the D7-branes. As we found
out in subsection 3.2.2, the same operations will have to be applied to the U(k)−N theory
that lives there to begin with. When k′ = ±1, we end up with the U(k)−N,−N∓k theories,
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which are indeed level/rank dual to U(N)k,k±N [9]. For |k′| > 1, we do not have a simple
description of these theories, but they can still be formally defined (see [23]).

We have thus provided a holographic description of this infinite series of level/rank dual
theories, where the set-up and the branes involved are still the same, but different boundary
conditions are imposed on the RR fields, which, in turn, enforce similar operations on the
brane probes at the tip of the bulk geometry.

4 Discussion

A summary of our results is the following. We have provided a detailed description of how
holography describes level/rank duality, paying attention to the SU or U nature of the
gauge groups involved. Such nature must be ascertained on both sides of the duality. At the
boundary, this is determined both investigating (holographically) the one-form symmetry,
and determining the form of the effective action giving rise to the Hall current. At the
other side of the duality, which in our set-up means on the world-volume of the D7-branes
at the tip of the cigar, we also determine precisely the nature of the gauge group by the
effective action that is required to cancel the contribution from the bulk action. We find
perfect agreement with the field theory expectations discussed in subsection 2.3.

Besides corroborating the exact form of the known level/rank dualities, we believe that
the most interesting aspect of our results lies in elucidating the role of the bulk p-form
gauge fields as background fields for symmetry currents. This role is well-known as far as
boundary analysis is concerned. What we have shown above is that the same role is assigned
to the same fields when probe branes are present in the bulk. In particular, the cancellation
between the brane and the bulk contributions at the tip of the cigar can be pictorially
interpreted as the bulk transferring the effective action in terms of the background fields
from the branes at the tip to the boundary, implementing level/rank and holographic duality
at the same time.

Possible extensions of our analysis are to set-ups where flavors are present, which are
implemented holographically through probe D5-branes [29] or D7-branes [30, 31]. It would
be interesting to investigate how the dualization of the RR two-form into a six-form and
vice-versa affects the couplings in the world-volume of the flavor branes. Another avenue is
to investigate non-trivial topologies of the 3d spacetime for which the framing anomaly is
relevant, and see how it matches with analogous couplings on the brane actions (similarly
as in [32]) and in the bulk. Finally, it would be interesting to find a more satisfying
understanding of the holographic dual of the T operation, namely a 10d interpretation of
the operation of turning on an integer θ term for C̃, as discussed below (3.59) (see [33] for
a discussion of a similar problem in 11d supergravity).
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