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a b s t r a c t   

Industrial plants commonly generate gas emissions that are not caused intentionally. These emissions are 
known as fugitive emissions. Early detection of fugitive emissions helps to find points of failure in the 
different processes and avoid sources of pollution, helping to reduce danger to the environment and to 
respect legislation. Despite the importance of the problem, there are no published solutions in the spe
cialized literature about the location and automated detection of fugitive emissions in industrial plants. 
Therefore, this article proposes an effective approach based on convolutional neural networks for semantic 
segmentation. The proposed solution takes advantage of existing surveillance cameras to apply state-of- 
the-art image segmentation methods, in particular, the semantic segmentation network DeeplabV3 + . This 
work explores aspects such as the ability to differentiate gases like water vapor and clouds from fugitive 
emissions, the possibility of reusing models in different industrial plants, the differences between multi- 
class and binary classification, the importance of proportions in the number of images in each class, the use 
of weights to balance classes, the comparison of a standard size test versus a real use case test, and the 
feasibility of an area-based alarm system to warn of emissions. This paper describes a methodology to 
configure the proposed solution for a specific industrial facility. 

© 2022 Published by Elsevier B.V. 
CC_BY_4.0   

1. Introduction 

Fugitive emissions (Laconde, 2018) are greenhouse gas emissions 
that are not intentionally produced by a stack or vent. This type of 
emissions are much more complex, as they do not follow a stack 
trace, but are scattered, resulting in areas of low opacity and gaps. 
They are usually caused in industrial plants by the production, 
processing, transmission, storage and use of fuels. Other causes of 
fugitive emissions are uncontrolled elements such as wind stirring 
up accumulated dust or improperly stored products. In some cases, 
emissions accumulate and escape to the outside through openings 
other than chimneys. There are many causes of fugitive emissions, so 
detecting and locating these emissions is essential to finding the 
problem and correcting it. 

Pollution prevention (Johnson, 1992; Freeman et al., 1992) is a 
priority if the environment is to be preserved. Fugitive emissions 
pollute the air, endangering the lives of people and animals living 

nearby. In addition, depending on the composition of the emissions, 
they can contribute to the greenhouse effect. For example, methane 
emissions from oil and gas industries have an impact 25 times 
greater than that of carbon dioxide (Solomon et al., 2007). 

As pollution regulation laws become more strict (Lee, 2021; 
Condren and Dunning, 2021), companies need to find new and in
novative ways to control and prevent pollution in the most cost- 
effective manner in order to remain competitive. 

Some of the most common low-cost air pollution sensors in
clude: .  

• Electrochemical sensors (Bakker and Telting-Diaz, 2002): are 
based on a chemical reaction between gases in the air and the 
electrode in a liquid. These sensors are very sensitive to tem
perature and humidity variations.  

• Photoionization detectors (Davenport and Adlard, 1984): ionize 
volatile organic compounds and measure the resulting electric 
current. Such sensors are more expensive and do not distinguish 
between gases.  

• Optical particle counters (Liu et al., 1974): measure particulate 
matter by detecting the light scattered by the particles. 
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• Optical sensors (Bogue, 2015): can detect gas by measuring the 
absorption of infrared light. 

The use of non-optical emission detection devices (Williams 
et al., 2014), have notorious disadvantages. These include the need to 
install sensors throughout the industrial plant, modifying the ex
isting infrastructure. In addition, the sensors must be in close 
proximity to emissions in order to detect them. There may be high 
pollution levels in one area, and a few meters away, very low con
centrations. Thus, the results depend to a large extent on where 
sensors are installed: if they are not installed in the right locations, 
their results will not be representative. Non-optical sensors can be 
highly sensitive to weather conditions, such as wind speed, tem
perature and humidity. Surveillance cameras do not have these 
drawbacks, however they depend on daylight making them useless 
at night. One way to use cameras at night is by using infrared sen
sors. For example, optical gas imaging cameras use different infrared 
spectral ranges to visualize and detect different types of gas emis
sion, such as methane or ethylene (Naranjo et al., 2010). 

The use of surveillance cameras for vision-based detection is an 
appropriate and low-cost approach when compared to other sen
sors, especially because the emissions to be detected are in the 
visible spectrum. For this reason, this work studies the possibility of 
using video surveillance cameras and adapting the existing infra
structure of the industrial plants themselves. One of the dis
advantages of the proposed method is that the chemicals found in 
the emissions cannot be recognized. Thus, it is not possible to ana
lyze the concentration of different chemical compounds, only their 
location and the area they occupy. This method is able to detect 
emissions based on examples of previous emissions. If a new type of 
emission were to occur, it would probably not be detected properly 
and the network would have to be retrained. 

Surveillance cameras are often low resolution, low quality de
vices (Rofeim, 2019), badly focused on irrelevant locations. They 
must be evaluated on an individual basis to determine their use
fulness for emission detection. Cleaning and maintenance may be 
required. 

Video surveillance cameras typically cover the majority of in
dustrial plant areas, with coverage of almost 100 % in many cases. 
For this reason, they are much less intrusive than the installation of 
sensors, especially for areas such as the air space directly above the 
industrial plant. Although surveillance cameras cannot detect the 
chemical composition of emissions, they may be able to detect their 
location and size. 

There are deep learning approaches to detect smoke in RGB 
imagery (Park and Song, 2019), some of which use ultraviolet (Osorio 
et al., 2017; Wang et al., 2020) or infrared (Wang et al., 2022) ima
gery. However, to the best of the authors’ knowledge, there is no 
existing research about image segmentation for fugitive emission 
detection in industrial plants. This may be because companies are 
reluctant to make data showing levels of contamination public. In 
addition, private research may not be shared in order to have an 
advantage over competitors. 

Creating a dataset for this purpose is complex as it might inter
fere with the normal operation of the company, labeling the images 
is costly and the images may be of a sensitive nature. The only da
taset found that could be of use is a dataset from Project RISE (Hsu 
et al., 2020), which obtains its data from outside an industrial plant 
rather than using existing infrastructure from the plant. Further
more, the dataset is not labeled for semantic segmentation. 

At present, there is no research in this field and certainly none 
with state-of-the-art technologies based on fully convolutional 
neural networks for semantic segmentation. This paper focuses on 
fugitive emissions, using a solution based on state-of-the-art image 
segmentation methods. The use of surveillance cameras is proposed 

to gather these complex images with low opacity emissions 
and gaps. 

From this proposal several questions arise:  

1. The use of pixel-wise segmentation to obtain a mask detailing 
the location of the emission;  

2. The distinction of fugitive emission from other gases such as 
water vapor and/or clouds despite not being able to obtain their 
composition;  

3. The evaluation of the difference between a binary classification 
and a multi-class classification and its effects on the fugitive 
emission class;  

4. The execution of trained models on a dataset with realistic 
emission/non-emission proportions in order to test their effec
tiveness if put into production;  

5. The feasibility of transferring already trained models with images 
from an industrial plant for application in images from other 
industrial plants;  

6. The study of the minimum number of images necessary for the 
training of a model.  

7. The transfer of models from other industrial plants to reduce the 
number of images needed to train.  

8. The use of detections as an alarm to warn of emissions. 

These questions are addressed in Section 3. To answer these 
questions, three different datasets have been developed, each fo
cusing on a single industrial plant. Each dataset is composed of 1000 
images with emission and up to 11,500 images without emission. 
The non-emission images are simpler to obtain for binary classifi
cation because they do not require the creation of a ground 
truth mask. 

As a predictor tool, the semantic segmentation network known 
as DeepLabV3 + (Chen et al., 2018) is used. This network, developed 
by Google for Tensorflow, is the state of the art in this field of re
search, but has never been used for fugitive emissions localization. It 
obtains excellent results in other areas such as autonomous driving 
(Sgibnev et al., 2020), land cover classification (Pedrayes et al., 2021), 
or brain tumor detection (Choudhury et al., 2018) among other fields 
for pixel-wise segmentation. To obtain the best possible results with 
this network, a thorough hyper-parametric tuning process is ne
cessary. In this paper, the most important aspects to fine-tune the 
network for these specific datasets are detailed. 

2. Methods and materials 

2.1. Datasets 

This paper shows images from three different industrial plants 
(Plant1, Plant2 and Plant3). Each industrial plant provides images 
from a single camera. These cameras were already existing surveil
lance cameras to monitor buildings with risk of fugitive emission. 
However, the monitoring process was manual. In the figures of this 
paper, the regions corresponding to the buildings are colored with 
the red corresponding to the building class. For the images of in
dustrial plants 1 and 2, a crop is applied to avoid showing the sil
houette of the building. This is to protect the anonymity of the 
company that provides this information. However, all experi
mentation has been done with the original images. 

A dataset for each industrial plant is generated. Training and test 
sets are divided in 75 % and 25 % respectively. All the images are 
taken at random times on four different days, excluding night-time 
since the cameras do not have enough visibility. The minimum time 
separation between two images is 5 s. The cameras have a 4 K/8MP 
sensor, a framerate of 30fps and a horizontal angle of 95–10 degrees. 
Quality is degraded because zoom levels are adjusted to frame the 
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images to the corresponding buildings. The lens of video surveillance 
cameras are designed to have a larger field of view in order to cover 
as much ground as possible. The area of interest is only a specific 
area of the image itself. In addition, they are low cost and low 
maintenance cameras because they are located in inaccessible 
places, so it is common that there is blurring due to dirt on the 
lenses. All the images consist of the red, green, and blue (RGB) bands 
and have a resolution of 2048 × 1536 pixels or 1024 × 768 pixels. To 
alleviate the amount of memory needed in VRAM and to keep all 
image sizes constant, all images are scaled to 512 × 384 pixels using 
the bicubic interpolation. 

A real use case has a proportion of 1:34 emission to non-emission 
images. During a normal day on average, only one image with fu
gitive emissions was captured for every 34 images with no emission. 
To test how models trained with different proportions performed in 
a real environment, a test set of 250 fugitive emission images, and 
8500 non-fugitive emission images was created and evaluated. This 
real test is generated for Plant1 and Plant2. 

To study the importance of the proportion used to train a model 
that will normally be used under other proportions (realistic pro
portions), multiple variations are designed for each dataset. Each 
variation uses a different number of non-emission images. In Table 1, 
the different proportions for the datasets for Plants 1 and 2 along 
with the number of images that correspond to emissions and non- 
emissions for training and test sets are shown. The fugitive emission 
images are maintained throughout all the variations to improve 
comparability. The dataset from Plant 3 has only the proportion 2:1 
since it does not have enough images. 

Plant1 has the following classes: building, cloud, sky, fire, water 
vapor chimneys, and fugitive emission. Plant2 has: building, cloud, 
sky, water vapor chimneys, and fugitive emission. Plant3 has: 
building, cloud, sky, and fugitive emission. The labeling was carried 
out by experts using software tools and then reviewed by the op
erators of the industrial plants. 

Classes in the ground truth masks have the following colors as
sociated: .  

• Building  

• Water vapor chimney  

• Cloud  

• Fire  

• Fugitive emission  

• Sky 

Fugitive emissions are the target class for this evaluation study. 
This is the only class of interest, therefore, a comparison between 
multi-class classification and binary classification and its effects on 
the target class can be studied. 

2.2. Network architecture 

DeepLabv3 + (Chen et al., 2018) is the most recent version of 
DeepLab (Chen et al., 2014;Chen et al., 2017a;Chen et al., 2017b), a 
convolutional neural network architecture for semantic segmenta
tion developed by Google. The architecture of this network is based 
on an encoder-decoder structure with an Atrous Spatial Pyramid 
Pooling (ASPP) module in the encoder part. This evaluation study 

uses the official implementation from Google’s Github, which can be 
accessed with the following link: https://github.com/tensorflow/ 
models/tree/master/research/deeplab. This implementation is 
based on TensorFlow. A diagram of the DeepLabV3 + architecture can 
be seen in Fig. 1. 

2.3. Metrics 

One of the most common metrics to determine the quality of a 
prediction in semantic segmentation is the F1-Score. As seen in Eq. 
(1), it is calculated as a combination of both Precision and Recall and 
is equivalent to the Dice Coefficient with two classes. 

= × ×
+

F
P R

P R
2

1 (1)  

Precision is calculated using Eq. (2), as the correctly classified 
pixels from the total predicted pixels. Recall is calculated using Eq. 
(3), as the pixels classified correctly from the pixels that correspond 
to that particular class in ground truth. If both metrics are very 
different (unbalanced) it usually means that the predictions will 
tend to over classify pixels from that particular class (low Precision 
and high Recall), or that it will only predict pixels that are too ob
vious (high Precision and low Recall). 
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Intersection-Over-Union or IoU is equivalent to the Jaccard Index 
and is used to measure the area of similarity of a prediction to its 
ground truth. This metric is common for measuring the quality of 
prediction in the context of image segmentation. It is calculated 
using Eq. (4), as the ratio between the true positives and the sum of 
all the pixels that are not true negatives. 

= =
+ +
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TP
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2.4. Training 

To get the best possible results, hyper-parameters must be tuned 
accordingly for the dataset used. Optimal hyper-parameters were 
studied for the three datasets separately. As they are similar, the 
optimal hyper-parameters coincide. 

The following hyper-parameters were tuned to improve predic
tions: different input sizes (2048 × 1536, 1024 × 768, 512 × 384, and 
256 × 192) and their effect on batch size; number of classes using 
multi-class and binary predictions; class weighting comparing the 
Median Frequency Weighting (MFW) (Eigen and Fergus, 2015) 
method against custom weights; learning rate and epochs; output 
strides of 8, 16, and 32; different backbone networks (Resnet50, 
Xception45, Xception65, Xception71, MobileNetV2, Mobile
NetV3Small, MobileNetV3Large); L2 regularization; and solver al
gorithms such as Adam or Stochastic Gradient Descent with 
Momentum (SGDM). 

Data augmentation was used to obtain more training data in 
order to reduce overfitting, and to improve predictions. The aug
mentation process consists of zooms of the images with varying 
zoom values ranging from 0.5 to 2.0 at intervals of 0.25. The dataset 
was shuffled for epoch to prevent overfitting. 

As testing all possible combinations of hyper-parameters with a 
single computer would be too time consuming, each hyper-para
meter was adjusted individually. Batch size was re-evaluated for 
every change that involves VRAM usage. Architecture changes, such 

Table 1 
Proportions for the different datasets. (emission:non-emission).     

Proportion Train Test  

2:1 750:375 250:125 
1:1 750:750 250:250 
1:2 750:1500 250:500 
1:4 750:3000 250:1000 
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as the backbone network, can reduce VRAM usage, allowing for 
larger batch sizes. 

The best configuration found for binary classification for all three 
datasets can be seen in Table 2. As the three datasets are similar, the 
best configurations are the same, except for the value of the custom 
class weights, which may vary slightly. For multi-class classifica
tions, hyperparameters are the same except for class number, and 
class weighting. In the multi-class classification no custom class 
weighting was performed, only MFW weighting was used. This is 
due to the added difficulty of the compound effect of the different 
classes affecting each other. Obtaining a configuration of custom 
weighting values would be too time consuming. 

Models were trained using an NVIDIA RTX 2080 Ti GPU with 
11 GB of VRAM. Training the DeepLabV3 + network from scratch can 
take weeks, mainly due to the backbone network. For this reason, 
pretrained models with the ImageNet dataset (Deng et al., 2009) are 
used for each of the backbone networks. From these pretrained 
models only the backbone network part of the architecture is loaded. 
The pretrained models are provided by Google in its original GitHub 
for DeepLab. 

3. Results and discussions 

3.1. Multi-class experimentation 

First, to determine if an image segmentation of fugitive emissions 
in industrial plants can be obtained from surveillance camera 
images, multi-class experiments were carried out. This section 

shows the results for experiments using DeepLabV3 + for multi-class 
segmentation. These experiments use the MFW method for class 
weighting balancing. 

Metrics from Table 3 show high F1-Score values, surpassing the 
80% barrier in every class for all three datasets proving that a 
functional prediction mask can be obtained. This solves question (1) 
from the “Introduction” in Section 1. Fugitive emission is one of the 
classes with the lowest F1-Scores and its metrics are usually sightly 
biased towards Recall over Precision. These metrics are to be ex
pected since the fugitive emission class is much harder to see and 
has greater variability in both area and color than other classes. This 
makes both the network and the ground truth prone to error. In the 
same way, since it is hard to distinguish between them, classes Cloud 
and Sky might increase their metrics by being merged into the same 
class. 

From these results it can be established that it is possible to 
differentiate clouds, water vapor chimneys, and fugitive emissions, 
solving question (2). 

Visualization for the experiments of Table 3 can be seen for 
Plant1 in Fig. 2, for Plant2 in Fig. 3, and Plant3 in Fig. 4. The first 
column of the three figures shows the input image; the second 
column, the original multi-class ground truth mask; the third 
column, the multi-class classification prediction from the model; the 
fourth column, a superposition of the ground truth mask with the 
input image; and the fifth column, the superposition of the predicted 
multi-class mask from the model over the input image. 

Results for Plant1 (Fig. 2) are very good visually. Most predictions 
are indistinguishable from the ground truth, except the fourth image 

Fig. 1. DeepLabv3 + architecture.  
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which detects fire even when the ground truth shows none. In this 
case, it appears that the ground truth may be labeled incorrectly, as a 
small transparent fire can be seen in the original input image. This 
means that the model, for this particular case, is outperforming the 
ground truth. Obviously, this is impossible to detect just by looking 
at the metrics, but it does mean that the model may be performing 
better than the numbers show. Results from Plant2 (Fig. 3) are also 
visually excellent. Most predictions are indistinguishable from the 
ground truth, except the second image, which detects fugitive 
emissions when the ground truth does not. Finally, results from 
Plant3 (Fig. 4) are also very good visually. However, the second 
image shows that the emission is not fully detected. 

3.2. Binary experimentation 

Although multi-class segmentation can successfully localize fu
gitive emissions in industrial plants, in order to reduce the com
plexity of the ground truth masks, binary segmentation is evaluated 
and compared with multi-class segmentation. Binary segmentation 
has great advantages over multi-class segmentation. It is much 
cheaper and easier to build ground truth masks with a single class 
rather than multiple classes that require several different regions per 
image. In addition, the process required to adjust the network is 
much simpler, since parameters such as class weighting are easier to 
set. This is because there are only two classes, so modifying one only 
affects the other rather than affecting multiple classes at the same 

time. This allows for an in-depth study of class weighting for class 
balancing. Table 4 only show results for the emission class. The “non- 
emission" class is not detailed since it is not needed. 

Results from the MFW class weighting experiments for binary 
segmentation shown in Table 4 are comparable to those of the multi- 
class experiment from Table 3. These experiments are more biased 
towards Recall, obtaining very high Recall but lower Precision. Even 
though there is a disparity between Recall and Precision, F1-Score 
values are not far from those in the multi-class experiments (see  
Table 3). Using binary classification instead of multi-class makes the 
imbalance between Recall and Precision bigger, lowering the quality 
of the segmentations. Plant3 is the exception because multi-class 
and binary results are practically the same. This indicates that these 
differences are highly dependant on the dataset used and its com
plexity, given that Plant3 has no elements such as water vapor 
chimneys or fire. In answer to question (3) from the “Introduction” 
in Section 1, merging all non-target classes into a single class causes 
that class to be more unbalanced than the target class than when 
they are separated. In other words, the difference in the number of 
pixels between the two classes increases, causing Recall to remain 
high, but Precision to decrease. 

3.3. Class weighting experimentation 

The results of the binary segmentation experiments show that 
their metrics are biased towards Recall over Precision. This clearly 
limits the quality of the prediction: Recall and Precision must be 
balanced. Class weighting has a great impact on the training process 
of the model. Standard methods for class weighting, such as Inverse 
Frequency Weighting (IFW) (Cui et al., 2019) and Median Frequency 
Weighting (MFW) are often used. However, as there is a problem 
balancing Recall and Precision, custom weights are studied in order 
to reach a balance. Plant3 is not included in this study as its Precision 
and Recall are already acceptably balanced. Binary segmentation 
benefits from the fact that only the best weights for two classes need 
be found. This greatly simplifies the study of how class weighting 
affects the results obtained. 

In Table 5 multiple values for class weighting are tested to study 
the behavior of the network under different weightings. To make the 
class weighting experimentation easier, all values are normalized 
between 0 and 1. In this way, if a value of 0.60 is used for the target 
class, is it assumed that the remaining 0.40 is used for the non-target 
class. 

Metrics from Table 5 show that custom weights for binary clas
sification can balance Recall and Precision and improve overall ac
curacy, increasing its F1-Score. Values from the custom weights for 
binary classification achieve even better results than those of multi- 
class classification with MFW. Balancing both Recall and Precision 
has a great impact on the quality of the model. After balancing the 
Recall and Precision correctly, there is no benefit to adding classes 
other than the target classes to segment. In this case, only the fu
gitive emission class is of value. For this reason, and because of the 
advantages mentioned above, the rest of the study will be focused on 
binary segmentation for the fugitive emission class. 

Visualization for the experiments with the highest F1-Scores in  
Table 5 can be seen for Plant1 in Fig. 5, for Plant2 in Fig. 6, and Plant3 
(from Table 4) in Fig. 7. The three figures show: in the first column, 
the input image; in the second column, the original multi-class 
ground truth mask; In the third column, the binary classification 
prediction from the model; in the fourth column, a superposition of 
the ground truth mask with the input image; and in the fifth column, 
the superposition of the predicted binary mask from the model over 
the input image. 

Table 2 
Training parameters for DeepLabV3 + .    

Training parameters  

Input size 512 × 384 × 3 
Classes 2 
Backbone Xception65 
Output stride 16 
Padding Yes 
Solver Adam 
Epochs 80 
Batch size 6 
Learning rate 0.00005 
Class weighting Non-Target: ~ 0.40 - Target: ~ 0.60 
Gradient clipping No 
L2 regularization 0.0004 
Data augmentation Scale 0.5–2.0 with 0.25 steps 
Shuffle Yes 

Table 3 
Metrics for the multi-class classification experiments.        

Dataset Class Precision Recall IoU F1  

Plant1 Building  0.995  0.997  0.992  0.996  
Vapor  0.915  0.900  0.831  0.907  
Clouds  0.955  0.834  0.802  0.890  
Fire  0.794  0.837  0.688  0.815  
Emission  0.836  0.832  0.715  0.834  
Sky  0.926  0.951  0.884  0.938 

Plant2 Building  0.997  0.988  0.985  0.992  
Vapor  0.744  0.934  0.707  0.847  
Clouds  0.800  0.931  0.755  0.861  
Emission  0.767  0.895  0.704  0.826  
Sky  0.984  0.935  0.921  0.959 

Plant3 Building  0.992  0.994  0.986  0.993  
Clouds  0.779  0.710  0.591  0.743  
Emission  0.881  0.939  0.833  0.909  
Sky  0.954  0.936  0.895  0.945    
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The results for Plant 1, 2 and 3 are visually very good, as can be 
seen in (Fig. 5, 6, and 7). In Plant1 most predictions are indis
tinguishable from the ground truth, except the second image, which 
detects fewer fugitive emissions than the ground truth. In Plant2 
most predictions are also indistinguishable from the ground truth, 
except the second image, which detects fugitive emissions when the 
ground truth does not. Finally, Plant3 has nearly perfect visual re
sults. 

3.4. Training with different class proportions and a real test 

Binary segmentation with custom class weighting has robust 
results. To further validate these results, a larger test set is evaluated. 
This test set aims to replicate the proportions in which images ex
hibit fugitive emissions over a full day. In this case, for every 34 
images without emission, one image with emission is produced. For 
the sake of simplicity, this is referred to as a 1:34 proportion. 

Fig. 2. Plant1 multi-class classification test visualization.  
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In the case of Plant3 there are not enough images to create this 
kind of test set. For Plant1 and Plant2, 250 images with emission and 
8500 non-emission images are used. 

When a network trained with a set of 2:1 proportion is tested 
with the real proportion of 1:34, Precision is greatly reduced due to 
new False Positives (see Table 6). However, the Recall remains the 
same since no new images with fugitive emission were added to the 

test. This effect can be seen in the first row for Plant1 and the fifth 
row for Plant2 in Table 6. In order to solve this problem, experiments 
with varying class proportions were carried out. The objective was to 
determine if a change in proportions during training affects the 
Precision of the predictions when adjusting the class weighting of 
the classes to balance Recall and Precision. Table 6 shows the best 
custom class weighting experiment for each proportion. 

Fig. 3. Plant2 multi-class classification test visualization.  
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In Table 6 it is observed that a proportion of one emission image 
per two non-emission images (1:2) is the optimal proportion in both 
datasets. 

A higher non-emission proportion gives the model far more 
stability and fewer false positives. This discovery is vital since the 
standard training tests do obtain excellent results. To answer ques
tion (4), if no real test were done, the erroneous assumption that the 

Fig. 4. Plant3 multi-class classification test visualization.  

Table 4 
Metrics for the binary classification experiments.       

Dataset Precision Recall IoU F1  

Plant1  0.634  0.958  0.617  0.763 
Plant2  0.648  0.965  0.633  0.775 
Plant3  0.885  0.938  0.836  0.911 
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models could generalize as well as the 2:1 test in a real scenario 
could be made. Training using a realistic proportion of 1:34 is im
practical, as the time required to set up and train such a model 
would be too time consuming; the number of images required is 
beyond the scope of this research. For this same reason, no experi
ments are performed with proportions higher than 1:4, even though 
such experiments would be interesting to confirm this statement or 
to find an upper limit. 

Table 5 
Metrics for the binary classification with custom class weighting experiments.        

Dataset Weight Precision Recall IoU F1  

Plant1 (MFW) 0.88  0.634  0.958  0.617  0.763 
Plant1 0.70  0.765  0.884  0.695  0.820 
Plant1 0.60  0.826  0.841  0.715  0.833 
Plant2 (MFW) 0.923  0.648  0.965  0.633  0.775 
Plant2 0.80  0.779  0.891  0.711  0.831 
Plant2 0.70  0.842  0.842  0.727  0.842 
Plant2 0.60  0.866  0.779  0.695  0.820 

Fig. 5. Plant1 binary classification test visualization.  
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3.5. Generalization between datasets 

Since a large amount of parameter configuration is required, it is 
reasonable to try to take advantage of models trained in one in
dustrial plant to be used in another. Experiments using a model 
trained with images from one industrial plant and testing with 
images from another are carried out and their results are presented 
in Table 7. 

Metrics from Table 7 show that testing with different datasets 
does not produce good quality predictions. To answer question (5), 
models are not directly transferable between datasets. Clearly, 
models cannot be used indistinctly in different industrial plants. 

3.6. Reduced training 

As it is not possible to reuse a model already trained in another 
industrial plant, it is interesting to study the minimum number of 
images needed to train a model and obtain metrics similar to using a 
large dataset. This could greatly reduce time and costs. Experiments 
with fewer images for Plant2 and Plant3 are evaluated in Table 8. For 
these experiments, a proportion of 2:1 is maintained to facilitate 
comparisons. Testing sets are not modified to make results directly 
comparable. 

To answer question (6), the reduced training shows that using 
only 100 images is enough to obtain acceptable results, as shown in  

Fig. 6. Plant2 binary classification test visualization.  

O.D. Pedrayes, D.G. Lema, R. Usamentiaga et al. Computers in Industry 142 (2022) 103731 

10 



Fig. 7. Plant3 binary classification test visualization.  

Table 6 
Metrics for the proportion experiments.             

Parameters Tests with train proportions Tests with real proportions (1:34) 

Dataset Train prop. Weight Precision Recall IoU F1 Precision Recall IoU F1  

Plant1 2:1  0.60  0.826  0.841  0.715  0.833  0.585  0.841  0.527  0.690 
Plant1 1:1  0.51  0.831  0.787  0.678  0.808  0.678  0.787  0.573  0.728 
Plant1 1:2  0.60  0.833  0.815  0.700  0.824  0.819  0.815  0.691  0.817 
Plant1 1:4  0.50  0.783  0.850  0.688  0.815  0.540  0.850  0.493  0.660 
Plant2 2:1  0.70  0.842  0.842  0.727  0.842  0.365  0.842  0.342  0.509 
Plant2 1:1  0.55  0.852  0.826  0.723  0.839  0.786  0.826  0.675  0.806 
Plant2 1:2  0.635  0.849  0.816  0.713  0.832  0.835  0.816  0.702  0.825 
Plant2 1:4  0.57  0.843  0.823  0.714  0.833  0.815  0.823  0.694  0.819 
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Table 8. These metrics are almost 5 % lower than the experiments 
from Table 4, which use 1125 images. However, a 5 % reduction using 
a dataset ten times smaller may be acceptable when time and cost 
restraints exist. 

3.7. Transfer learning 

Since at least 100 images are needed to achieve robust training, it 
is interesting to study whether this number can be further reduced 
by reusing a model already trained in another industrial plant. Even 
if it cannot be used directly, perhaps another model can serve as a 
checkpoint to reduce training time on other datasets. In this section, 
experiments are carried out to observe if a model trained for one 
industrial plant can be used as a base for training with a new dataset 
for another industrial plant (i.e., transfer learning). This would mean 
training with fewer images. In both cases, “Transfer learning” and 
“Reduced training” are trained with the exact same images to allow 
for comparisons. 

Transfer learning results from Table 9 show an improvement of 
3% in the F1-Score for Plant2 when compared to the reduced training 
of 100 images from Table 8. However, in the case of Plant3 this does 
not improve its metrics, and even reduces its F1-Score by 2 % in the 
100-image experiment. This shows that the models might be too 
dependant on the dataset used and cannot be generalized for the 
application of emission segmentation. Since it is already possible to 
train with only 100 images, transfer learning may not be necessary. 
Thus, in answer to question (7), transfer learning cannot be used to 
reduce the number of images needed. 

3.8. Emission detection 

Once a robust model for fugitive emission segmentation has been 
obtained, it seems reasonable to use these segmentations to detect 
fugitive emissions. To raise an alarm when a fugitive emission is 
detected it is necessary to apply semantic segmentation to each 
frame of the video feed. This alarm is used to indicate whether or not 
there are fugitive emissions in the image (i.e., it is a binary alarm). In 
this way, the predictions are used for image classification. The rea
listic test set is used to study its behavior. 

In order to avoid raising the alarm for false positives consisting of 
extremely small regions, an area threshold for the segmented areas 
is needed. This threshold is measured as the minimum percentage of 
pixels with emission out of the total pixels of the image. In this 
section, the optimal area thresholds are calculated using the models 
from the realistic test from Plant1 and Plant2. 

For each threshold evaluated, using steps of 0.01 %, the images of 
the dataset that will be considered as true emissions are determined. 
Then the predicted images with and without emission are analyzed 
as a function of the threshold used, obtaining the metrics of Recall, 
Precision and F1-Score. These metrics are represented in Figs. 8(a) 
and 8(b). It should be noted that although the metrics used are the 
same, in this case they are calculated per image and not per pixel. 

Plant1 has an optimal threshold of 1.56 % of the area of the total 
image (Fig. 8(a)). Plant2 has an optimal threshold of 0.5 % of the area 
of the total image (Fig. 8(b)). 

Metrics from Table 10 show that over 85 % and almost 93 % F1- 
Score values are achieved for Plant1 and Plant2 respectively. These 
experiments demonstrate that this method can be successfully used 
for image classification, answering question (8). In addition, the 
detected segmentation regions can be used to determine different 
levels of severity based on area or shape. For example, a fugitive 
emission severity level from 1 to 10 could be declared using 10% area 

Table 7 
Metrics for the dataset cross testing experiments.       

Dataset Precision Recall IoU F1  

Plant1 → Plant2  0.728  0.380  0.333  0.499 
Plant1 → Plant3  0.446  0.129  0.111  0.200 

Table 8 
Metrics for reduced training set.        

Dataset Images Precision Recall IoU F1  

Plant2  100  0.668  0.834  0.590  0.742 
Plant2  250  0.697  0.837  0.614  0.761 
Plant3  100  0.847  0.895  0.770  0.870 
Plant3  250  0.862  0.890  0.779  0.876 

Table 9 
Metrics for transfer learning experiments.        

Dataset Images Precision Recall IoU F1  

Plant1 → Plant2  10  0.698  0.620  0.489  0.657 
Plant1 → Plant2  50  0.777  0.683  0.571  0.727 
Plant1 → Plant2  100  0.788  0.757  0.629  0.772 
Plant1 → Plant2  250  0.729  0.815  0.625  0.770 
Plant1 → Plant3  10  0.801  0.801  0.668  0.801 
Plant1 → Plant3  50  0.808  0.927  0.760  0.863 
Plant1 → Plant3  100  0.837  0.871  0.745  0.854 
Plant1 → Plant3  250  0.841  0.916  0.781  0.877 

Fig. 8. Threshold study.  
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increments of the emissions. In other words, a severity level of 3 
could be 30 % of the sky area occupied by emissions. 

4. Conclusion 

The method proposed in this paper to segment and detect fugi
tive emissions in images taken from surveillance cameras in in
dustrial plants, reaches results above 80 % F1-Score. Clouds, water 
vapor chimneys, and fugitive emissions can be distinguished with no 
problem. These results are achieved despite the low resolution and 
quality of the surveillance cameras used to acquire the images, some 
of which include images with dirt on the lenses. This means that the 
location and detection of fugitive emissions using surveillance 
cameras is possible. Overcoming other traditional methods such as 
sensors that measure volume concentrations or chemical com
pounds in the air, as these sensors require to be placed in areas 
where a large flow of emissions is expected, i.e. planned emissions 
such as emissions produced by stacks. This is a great advantage since 
a much larger area can be covered than with such sensors. Another 
advantage over non-optical sensors is that the result of the detection 
is a new 2D image with classification at pixel level. This type of 
image is very easy to interpret and verify visually. 

Surveillance cameras are a type of optical sensor. These cameras 
only detect the visible spectrum. If another optical sensor were used 
that could detect a wider spectral range, results would most likely 
improve. However, this would also increase the cost dramatically. 
One of the advantages of this method is that surveillance cameras 
are low cost sensors, and they usually already exist in the industrial 
plant. 

It is observed that there is no need to add more classes to the 
training process, since there is no significant improvement over 
using only the target classes, as long as the Precision and Recall are 
balanced. This can save labeling time and is far more cost efficient 
when creating new datasets. 

This is relevant since a model trained for a particular camera of a 
particular industrial plant does not generalize well enough to be 
used for another industrial plant with the same type of fugitive 
emissions. The differences between datasets are far too great for the 
model to produce good results. Furthermore, transfer learning does 
not provide any improvement over training from a pre-trained 
model from Imagenet. Transfer learning between different industrial 
plants is highly dependant on the similarity of the datasets and 
cannot be used in a generalized manner. However, transfer learning 
is not needed since with only 100 training images results are close to 
a full training with a dataset over ten times larger. 

It is common to use metrics obtained from a test with fewer 
images than the training set. It is usually a test that does not follow 
the class proportions of a real use case, as it commonly focuses on 
training the target classes. This paper confirms that, whenever 
possible, a test with as many images as possible, using a realistic 
proportion, should be used to ensure that the results of a model are 
fully validated. 

Different class proportions during training have a significant ef
fect in real tests even when class weighting is used. Regardless of the 
class weighting strategy used, the class proportion is of much 
greater importance. A proportion that is closer to the real scenario 
works better than training with all the classes in the same propor
tion. However, custom class weighting is still essential to balance 
Recall and Precision even if more realistic image proportions are 

used. Results from the best model, in a real test, obtain over 80 % F1- 
Score, with balanced Precision and Recall. 

Finally, when applying an area threshold to the predictions and 
used as an image classification approach to serve as an alarm 
method for emission detection, the F1-Score can be as high as 90 %. 
This proves that this method can be used to detect fugitive emissions 
and thus help to control pollution in industrial plants. 

Given the great importance of pollution control in industrial 
plants to preserve the environment, the need to continue this re
search into new ways of detecting and locating fugitive emissions is 
essential. It becomes apparent that the approach of using semantic 
segmentation as a basis for further analysis is appropriate, especially 
considering the speed at which this field is improving. The main 
contribution of this paper is the study of different possibilities for 
detecting and locating fugitive emissions with the new state-of-the- 
art semantic segmentation technologies and their possible uses for 
emission alerts. 
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