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Abstract— This work presents an approach to enhance the
quality of high-resolution images obtained by means of systems
relying on synthetic aperture radar (SAR). For this purpose, a
deep learning method called conditional generative adversarial
networks (cGAN) is applied to the imager outcome when it is
prone to suffer artifacts. This is specially the case of novel systems
pushing the limits of SAR (e.g., irregular sampling, multilayered
media, etc.) resulting in very chaotic clutter and image artifacts
that cannot be easily removed with conventional approaches. The
cGAN can be trained to detect high-level characteristic features in
the image (e.g., parts of a scissor blade) so another output based
on these detected features can be tailored. In other words, it can
translate features contaminated by artifacts into clean features,
effectively improving the quality of SAR images. Unlike other
deep learning approaches, the training of the involved neural
networks tends to be stable thanks to the structure based on
two competing subsystems. The proposed approach is illustrated
using simulated and measurement data in the context of two ad-
vanced near-field SAR systems considering: i) cylindrical multi-
layered media, and ii) freehand acquisitions. Results show that
cGANs clearly outperform conventional approaches removing
most of the artifacts, enabling to produce a clean output image.

Index Terms—mmWave imaging, synthetic aperture radar,
stratified media imaging, freehand, deep learning, generative
adversarial net, clutter.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is able to generate
electromagnetic images enabling the capability to ‘see’

through some visually opaque elements (clouds, fog, paper,
etc.). This technique became firstly popular in the remote
sensing field in order to obtain aerial images [1]. However,
in the recent years, SAR has also become a very powerful
technique at closer ranges, which are typically in the near-
field of the synthetic aperture, and using higher frequencies to
generate high-resolution images. Thanks to its characteristics,
SAR has become the cornerstone of instrumentation for people
screening [2], [3], nondestructive evaluation [4], [5] or medical
imaging [6].
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Synthetic aperture imaging has been traditionally applied
under the hypotheses of free-space propagation and regular
sampling in the space domain (e.g., [7], [8], [9]). However, last
advances have shown that the SAR paradigm can be extended
to deal with stratified media as well as nonregular sampling. In
the first case, approaches to deal with planar- and cylindrical-
mulilayered media have been recently demonstrated [10],
[11], [12] enabling the detection of anomalies (flaws, voids,
corrosion, etc.) for nondestructive evaluation. In the second
case, UAV and freehand imaging have brought a new horizon
of possibilities for detecting landmines with GPR [13] or
turning cellphones into handheld scanners [14] at the expense
of relying on nonregular sampling [15], [16].

This kind of approaches, though able to provide very
insightful information, are pushing the limits of the imaging
capabilities. This effort together with some of the limitations
inherent to conventional synthetic aperture imaging result in
systems which are prone to suffer from unwanted effects in
terms of artifacts and clutter.

In order to mitigate the aforementioned effects, conventional
deterministic techniques have been usually applied. The most
straightforward approach is the use of a low pass filter, as
artifacts are usually included by means of fast spatial variations
in the image. Although this generic approach mitigates many
of the artifacts, it is usually not enough to increase the contrast
of the targets with respect to the background and, moreover,
it reduces the resolution of the image.

Another technique to mitigate the artifacts is the use of
singular value decomposition (SVD) in order to remove the
contributions from some interfaces (e.g., ground-air in land-
mine detection or wall in the context of through-the-wall-
imaging) as they are one of the main contributors to unwanted
effects [17], [13]. A similar approach has also been proposed
using the principal component analysis to filter out artifacts
[18].

The previous approaches can be applied to a broad number
of problems, achieving a good performance. However, specific
approaches, tailored for specific problems, are expected to
provide a better performance. In the last years, deep learning
has shown a great potential for image processing. For example,
the use of regional convolutional neural network (R-CNN)
has shown the ability to detect and classify clutter from radar
images [19], [20], though it is usually limited to tag rectangular
regions. Other deep learning approaches are the conditional
generative adversarial networks (cGANs) [21], which have
shown an excellent performance in translating images with
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some (deep or abstract) features into new images showing
other (or potentially similar) features.

In the last years, the usage of cGANs has been vast, includ-
ing a large number of applications related to systems based
on SAR. For example, cGANs have been used to generate
aerial SAR images from optical images [22], [23], [24], [25]
to generate realistic colored images from SAR images [26] or
to detect targets from aerial images [27]. Although not based
on synthetic aperture techniques, it is worthy to note that this
deep learning approach has also been used to translate low
resolution images acquired by a small mmWave radar into high
resolution depth images [28]. This is performed by training
the system to translate those radar images into high resolution
images coming from a light detection and ranging (LiDAR)
instrument.

Thus, cGANs exhibit a great potential to tailor the pro-
cessing of SAR images so that cleaner images can be gen-
erated from those ones contaminated with artifacts caused
by complex imaging scenarios (e.g., multilayered scenarios),
the additional challenges from some novel advanced SAR
systems (e.g., irregular sampling), and some of the inherent
limitations of SAR processing. To the best authors knowledge,
although some deep learning approaches have been applied to
the classification of targets in conventional radar approaches
[29], [30] and to reduce the sea clutter [31], their application to
clean high-resolution images coming from modern inspection
systems based on near-field SAR has not been studied. In this
paper, cGANs are adapted to improve the quality of near-field
SAR images prone to artifacts. In particular, their impact in
the images obtained by two very demanding imaging systems
(SAR applied to stratified media and freehand measurements)
is investigated, showing that this tool can provide a significant
boost to the quality of the results.

The remainder of this paper is structured as follows. Section
II provides a short-summary of near-field SAR imaging in
order to emphasize the approximations behind each step that
yield some of the main artifacts in SAR images. Next section
presents the concept of cGANs and how they can be used
to reduce the amount of clutter in SAR images. After that, in
Section IV results illustrating the performance of the proposed
approach are presented. Specifically, the case of cylindrically-
multilayered media, e.g., a pipe, as well as sparse problems,
e.g., when performing freehand scanning with a radar-on-chip,
are discussed. Finally, the conclusions and future research lines
are drawn in Section V. In addition, the training data images
and target models are released so the results can be reproduced
[32].

II. ARTIFACT SOURCES IN ADVANCED NEAR-FIELD
IMAGING

SAR techniques, when applied to close targets, can achieve
excellent resolution though they are not free of artifacts.
In this section, we will consider some advanced imaging
techniques based on SAR in order to understand the reason
for these undesired effects. For the sake of simplicity, we will
consider a monostatic formulation, though the same ideas can
be applied to multistatic measurements, i.e., multiple input

multiple output (MIMO) systems. This section provides an
insight on the sources of the undesired effects which appear
in SAR images due to approximations in the formulation.
In addition to those imperfections, which are referred to
as artifacts, other undersired effects could rise due to the
hardware implementation of the imagers, as it can differ from
the ideal models of transmitters and receivers, increasing the
unwanted artifacts (e.g., radiation pattern changes [33] or
element deviation [34]).
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Fig. 1. Different SAR approaches: (a) imaging of cylindrically-layered media;
(b) planar freehand imaging. Black dots denote acquisition positions.

SAR imaging is based on acquiring the field scattered by
the scene from a set of positions, which are usually equally-
spaced on a canonical surface such as a cylinder or a plane
(see Fig. 1). If the scene has a number of targets, described
by a reflectivity function Γ(~r′), then it is usual to model the
received field S(~r, f) as:

S(~r, f) ≈
∫
r′

Γ(~r′)Grt (~r, ~r′, f) d~r′, (1)

wherein f is the acquisition frequency, ~r is the observation
point where the transmitter/receiver is placed and Grt (~r, ~r′, f)
is the roundtrip Green’s function [10]. Synthetic aperture
imaging pursues to retrieve an approximation of the reflectivity
Γ(~r′), which represents the image.

It is important to note that (1) takes into account the reflec-
tions corresponding to the media modeled by the Green’s func-
tion (e.g, multilayered problems). Nevertheless, it is important
to note that (1) does not take into account multiple reflections
between the targets. Consequently, multipath is only partially
considered so it can yield some undesired artifacts. Moreover,
this propagation model does not account for depolarization
concerns, which can be also a source of artifacts.

In homogeneous media or under some special conditions
based on the background medium and acquisition surface, (1)
can be expressed as a convolution in terms of the surface coor-
dinates, which will be denoted as u and v. Consequently, the
reflectivity Γ(~r′) can be retrieved by means of a deconvolution.
However, it is well-known that, in general, convolution cannot
be perfectly inverted. Some possibilities are the use of Wiener
deconvolution (e.g., [10]) or a matched filter [35]. The latter
results in the following approximation:

Γf (u′, v′, w′, f) ≈ F
{
S(u, v, f)G̃∗rt (ku, kv, w

′, f)
}
, (2)
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wherein F{·} denotes Fourier transform, G̃∗rt is the complex
conjugate of the Fourier transform of the round trip Green’s
function evaluated at the spatial frequencies ku and kv , and
w denotes the third spatial coordinate to designate a point
in space. For example, if cylindrically-stratified media is
considered, then u = ϕ, v = z and w = ρ.

Eq. (2) again includes some approximations, as the deconvo-
lution is not perfectly accomplished, resulting in an additional
source of artifacts. It is interesting to remark that, under free-
space conditions and considering a XY planar acquisition, this
matched filter approach, after neglecting amplitude constants,
yields the very well-known formulation [7], [2]:

Γf (x′, y′, z′, f) =∫
x,y

S(x, y, f)ej
4πf
c

√
(x−x′)2+(y−y′)2(z−z0)2dxdy, (3)

being c the speed of light in free space and z0 the z coordinate
of the acquisition plane.

In practice, the measurements S(~r, f) cannot be done for a
continuum of points with infinite length, so this truncation also
introduces some extra artifacts. Moreover, some techniques,
such as freehand imaging [15], require some flexibility of
the sampling criteria as they cannot acquire equally-spaced
samples. Although freehand imaging pursues to keep a global
balance of the sampling, undesired contributions cannot be
completely filtered out.

Finally, it is interesting to note that, if multiple frequencies
are available, the previous results can be coherently integrated
to improve the quality of the image:

Γ(u′, v′, w′) =

∫
f

Γf (u′, v′, w′, f)df. (4)

Thus, the approximations done in some SAR-based formula-
tions yield to imperfect results.

III. SAR IMAGE TRANSLATION BY CGANS

Generative adversarial nets (GANs) are generative systems,
which can produce an output according to a certain distribution
learned by the system. A popular example is the synthesis
of new face images [36]. In contrast to other approaches
such as a pure neural network, GANs employ a training
system consisting of two adversarial networks competing with
each other in a minmax game. The first net is referred to
as generator (G) and it generates an output according to
a target distribution. The input of the generator is typically
chosen from a latent space, which has a stochastic nature in
many cases. The second net is known as discriminator (D)
and it has a binary output that determines if the output of
the generator follows the desired distribution or not. Both
networks are usually implemented by means of convolutional
neural networks (CNNs).

A special case of GANs are the conditional GANs. In
this case, the output of the generator is conditioned by a
particular input. Although their uses are multiple, one of
the most successful is their application to image to image
translation so that the input condition is the input image. Some
examples are night to day picture or satellite to street view map

translation [37] as well as precipitation maps generation from
multispectral data [38], image deraining [39], restoring ancient
handwriting [40], and replacing conventional deconvolution
for astronomical image enhancement [41].

In order to describe the system, let us consider the different
kind of images that will be involved throughout the remainder
of this work (see Fig. 2):
• Real images: they will be referred to as Iref . They consist

of a representation of the scene to be reconstructed (i.e.,
the ideal output of the imaging system). They are only
available during the training phase of the system as the
scene is unknown during the conventional operation.

• SAR images with artifacts: they will be referred to as Iin.
These images correspond to the output of conventional
imaging systems if no further processing is applied. These
images are used during the training as well as during
the conventional operation. It should be noted that due
to the high amount of required images for the training,
it is usually needed to resort to synthesized images (e.g.,
from simulations), as the generation of a complete dataset
from measurements may not be feasible. Nonetheless, as
it will be shown in Section IV, a cGAN trained with
synthetic data is also able to clean SAR images obtained
from measurement data. Depending on the available data,
the input image can have one or two channels. In general,
the input image will consist of two channels with the real
and imaginary part of the reflectivity. However, it is usual
that the phase information of this image is not available
as it requires a reliable calibration. In those cases, a single
channel is used as input.

• Corrected images: they are generated by the cGAN from
Iin and correspond to the output of the aforementioned
generator G and, therefore, they are denoted by G(Iin).
Thus, they try to provide a result similar to the real scene.
They are used during the training as well as during the
normal operation.

Once the involved images have been detailed, let us focused on
the different CNNs comprising the system. First, the discrim-
inator will be described. This CNN is only used during the
training stage and it should be able to determine if an image
has been (artificially) generated from a given input or not.
Thus, the input of the discriminator are two images. On the one
hand, the image with artifacts, Iin. On the other hand, a second
image which will be classified by the discrimator as artificial
or real. According to the goal of the discriminator, if this
second argument is a real image Iref , then the output should be
D (Iin, Iref) = 1. On the other hand, if the second argument is a
generated (i.e., fake) image G (Iin), then D (Iin, G (Iin)) = 0.
Consequently, the discriminator can be trained according to
the following loss function [36] so that it provides images as
close as possible to real scenes:

L{G} = max
D

(EIref [logD (Iin, Iref)] +

EIin [log (1−D (Iin, G (Iin)))]) , (5)

where E denotes mathematical expectation.
The second CNN involved in the cGAN is the generator,

whose goal, as previously introduced, is to fool the discrim-
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inator. A proper training of the generator should pursue the
minimization of the previous loss function and, therefore, the
cGAN optimization follows the minmax problem described by:

min
G

(
max
D

(EIref [logD (Iin, Iref)] +

+EIin [log (1−D (Iin, G (Iin)))])) . (6)

In contrast to other conventional CNN training, typically
based on minimizing some kind of distance, this minmax
game involves a discriminator evolving during the training and,
therefore, it forces the generator to also improve. In general,
it has been observed that this approach results in more natural
images.

SAR image
with artifacts

Real
object shape

Generator

Discriminator

Reconstructed
image

Discriminator

Fig. 2. Overall view of the training of a cGAN for cleaning artifacts in
near-field SAR images. After training, only the generator net is used.

In order to train the system, pairs of images comprising the
real targets and their corresponding SAR image must be used.
After that, the generator and discriminator are optimized ac-
cording to (6). Once the training is finished, the discriminator
is not used anymore. Instead, the imperfect images are used as
input to the generator, which is expected to generate images
resembling real scenes (i.e., cleaned SAR images) so a trained
discriminator cannot tell if they are synthetic or not.

The architecture of the two networks is selected according
to pix2pix [37] and, in particular, the Matlab port [42].
This architecture is depicted in Fig. 3. The overall idea of
the generator architecture is to move information from a
pixel encoding to a feature encoding, which is completely
approached at the intermediate stages. After that, the inverse
process is performed so from some generic features, specific
features are built until creating a conventional pixel image
(without artifacts). The first layers of the down blocks are
expected to detect low-level features (e.g., edges) whereas
deeper layers, fed by the previous features, can detect more
complex shapes like the handles of the scissors, though more
abstract shapes are usually tailored. In the first down block,
the batch normalization layer is not included as the input

images are already normalized. On the other hand, the up
blocks perform transposed convolutions (i.e., conventional
convolutions with a modified feature input) in order to upscale
the image until generating the final output image G (Iin). Skip
connections are also enabled between the down and up blocks
so that input feature information is also directly available
during the upscaling stage. This output image is expected to
be a clean image of the target, though not a pixel by pixel copy
of the original one as small features of the original target will
be lost.
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Fig. 3. Generator architecture.

The discriminator has the same layer architecture of the
generator down blocks with two main differences. The input
layer has a number of channels corresponding to the total
number of channels (i.e., input plus output channels) so
both images feed the discriminator. In addition, the output
layer, which is located after the last up block, consists of a
convolutional layer with a single filter of size 1 × 1 in order
to classify the generated image as either real or fake.

IV. RESULTS

In order to validate the capabilities of cGANs, two different
SAR problems prone to artifacts are considered. The first
one involves a cylindrically-layered media, which is prone
to undesired effects due to the complexity of the underlying
deconvolution. The second example consists of a freehand
SAR approach, in which the source of artifacts is mainly
the sparse and non-uniform data acquisition. In the first case,
synthetic data is used to assess the capacity of the cGAN to
exploit reliable amplitude and phase information whereas the
second case only uses the amplitude of the reflectivity image
obtained from measurements.

The cGAN implementation used in this work is based on the
pix2pix port available for Matlab [42]. Unless otherwise stated,
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the parameters used for the cGANs are the ones summarized
in Table I. In addition, the training set images are flipped
horizontally and vertically to increase the available dataset.

The number of filters at each layer follows the original
pix2pix sizes [37]. Thus, the number of layers of the generator
is set to 8 with the default size 64, 128, 256, 512, 512, 512,
512 and 512. In a similar fashion, the discriminator consists
of 4 down blocks using also the default sizes: 64, 128, 256
and 512.

Unless otherwise stated, the reported CPU times have been
measured in a laptop equipped with a CPU Intel Core I7 at
2.6GHz, 32GB of RAM and a GPU Nvidia Geforce RTX
2060. In order to execute the code, Matlab 2020a has been
used.

Regarding the processing time, it is important to remark that
the cGANs, as most of machine learning approaches, involve
two different stages: training and production. Training time
depends on the architecture of the networks as well as the
number of training pairs. In addition, if it is necessary to
resort to synthetic data for the training, the time required to
generate this data can also be significant (depending on the
solver and number of simulations). Although the training can
be time consuming, it only needs to be done once so the most
insightful time regarding the use of the cGAN is the evaluation
time once they are in production (i.e., the time required by the
cGAN to produce an output based on an input image), which
will be described for the different examples.

Table I
CGANS PARAMETERS.

Input/output size Leaky ReLU scale Filter size Stride

256× 256 0.2 4× 4 2× 2

In order to quantify the error, the L1-norm between the real
images and the images cleaned by the cGAN will be shown.
This norm is defined as:

L1{I, Iref} = 〈|I − Iref |〉

wherein 〈·〉 denotes the mean value along all the dimensions
and channels of the image.

A. SAR for cylindrically-layered media

SAR for cylindrically-layered media, depicted in Fig. 1a, is
a challenging problem because the SAR techniques, though
able to focus the reflectivity energy around the targets, are
prone to artifacts around them, complicating their detection.

In this example, a pipe-like geometry with three different
layers surrounded by air is simulated to analyze the perfor-
mance of cGAN. The radii of the different layers are 12, 10
and 5 cm and the corresponding relative permittivity constants
are 2, 3 and 1 in order to simulate a hollow pipe.

The pipe is scanned with a monostatic setup measuring at
a distance of 25 cm from the center. The number of equally-
spaced angles is set to 420. In this setup, only XY slices are
considered and, therefore, the samples are acquired at a single

z plane. The scanning frequencies are set to 51 covering the
X band (8.2 GHz-12.4 GHz).

In this example, the targets are considered to be electrically
small so they can be modeled as point-like targets. Therefore
the field simulated at each position (ρ, φ) is given by:

S(ρ, φ, f) =

N∑
n=1

Gz (ρ, ρ′n, φ− φ′n, f) , (7)

wherein Gz (ρ, ρ′n, φ− φ′n, f) denotes the z-component of the
Green’s function for a target at a position (ρ′n, φ

′
n) and an

observation point (ρ, φ), and N is the total number of targets.
The targets are supposed to be at the same z plane as the
scanning plane. In order to compute the SAR images for this
stratified problem, equations (2) and (4) are used.

In order to train the cGAN, images for several random
targets are used. In particular, three blocks of 80 simulations
are used consisting of problems with 1, 2 and 3 point-like
targets, respectively. Consequently, the dataset consists of 240
images, which was augmented to 960 by flipping around the
horizontal and vertical axes. SAR images are generated using
(2) and (4), resulting in a two channel image encoding the real
and imaginary parts of the reflectivity.

Regarding the output image, since the layer radii are sup-
posed to be known, only the target positions are the real
unknowns. Consequently, a single channel output image would
be enough. Nevertheless, in order to include a more complex
setup, a three channel output image is considered. Thus, it is
also possible to use colors to label the different areas of the
output image. In particular, the background media color is set
to white, whereas the targets are shown in black with a radius
of 5 mm. Finally, the pipe layers are colored in red, green and
blue from the outer to the inner layer, respectively.

The L1-norm for the training images along the different
iterations of the training is shown in Fig. 4 revealing that the
training yields stable results, with a fast convergence rate.

Fig. 5 depicts some intermediate results for different pairs of
the training set. The results are in agreement with the overall
results of the L1-norm pipe so, after 481 iterations, although
the results are relevant, they are still blurred. A significant
improvement is found after additional iterations.

After analyzing the training of the cGAN, several test
results are shown in Fig. 6a for arbitrary target positions.
SAR images show that the imaging technique is able to detect
most of the targets but their position is not always clear with
images populated by artifacts. Moreover, these artifacts are
very dependent on the ρ coordinate.

Starting from the top, the first SAR image provides a fair
resolution enabling an easy detection of the targets even for
the human eye. In the next two cases (i.e., second and third
rows), the target close to the center has a low contribution in
the SAR image, which is dominated by the other two targets.
Nevertheless, the cGAN is able to detect all of them correctly
in both cases. In the fourth case, two very close targets are
considered as well as an additional target. Although the SAR
imaging technique is able to identify a high reflectivity level,
it is clear that the SAR image is not enough to identify if
there is more than one target. In this case, the cGAN is able
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Fig. 5. Output at intermediate stages of the training for several training pairs
for the cylindrically-layered media example.

to detect at least two targets with an accurate positioning
but it fails to identify all of them. Finally, the last case is
similar to the previous one with two very close targets and an
additional separated target. In this case, the cGAN provides
an intermediate result, enabling the detection of all the targets,
including the two close to each other, though one of them is
shown slightly smaller.

In order to compare the previous results with conventional
approaches to clean the image, the SVD filtering and R-CNN
approaches are used [17]. The former one is well-known in
subsurface imaging. In this approach, the time domain signals
(i.e., after an inverse Fourier transform) are arranged into a
matrix. After that, a SVD is performed and the highest singular
values are removed, as they are typically due to medium
interface reflections. Moreover, the lowest singular values are
also set to zero as they are due to noisy reflections. After that,

the imaging algorithm is applied [13]. In this research, it was
found that filtering the highest singular values did not result in
an improvement of the result as they seem to contain relevant
information about the targets. Thus, only the lowest singular
values have been filtered out. Columns 4 to 6 of Fig. 6b depicts
the results using the SVD approach using a gray scale together
with an overlay of the different media. In this plot, NSV D

refers to the number of maximum singular values which are
kept. As it is shown, this technique does not improve the
results in this complex problem with high interface interactions
as some targets are still significantly blurred, which prevents
from identifying close targets and the accurate estimation of
their position.

In the case of the R-CNN approach, the same CNN structure
as in the faster R-CNN presented in [19] was used except that
the input images have two channels. The underlying CNN was
trained by using 32x32 pieces of the cGAN training images
tagged as target or clutter depending on if they contain one or
more targets or not. The total number of training images was
47040. In order to provide a continuous output, rather than
a rectangular tagged output, the CNN is moved along 32x32
regions, which are overlapped, so they are classified as target
or clutter. If a pixel is estimated as target for several overlapped
subimages, then its score is accumulated. The normalized
results in the rightmost column of Fig. 6 show that the targets
and their positions are correctly identified in most of cases but
with a resolution far from the one achieved with cGAN.

Regarding the time increment due to the different ap-
proaches, the cGAN postprocessing of the images requires
117.5 ms whereas the SVD preprocessing entails an average
time of 5.2 ms. Though the time required to apply the SVD
filtering is lower than that required by the cGAN processing,
it should be remarked that it is sufficiently low to enable the
use of this method in real-time applications. In the case of
the R-CNN, the classification of each 32x32 subimage takes
2.8 ms but the application to overlapped subimages increases
the total time to 32.12 s.

B. Mm-wave freehand SAR

The freehand problem shown in Fig. 1b is considered in this
section. Although freehand scanning can provide very accurate
imaging results on real-time, intermediate results with partial
acquisition data are expected to be noisy due to the sparse
samples. Consequently, the use of cGAN to enhance the partial
images is very convenient.

The core of the freehand setup is the FMCW MIMO radar
topology exploited in [43]. This topology entails 2 transmitters
and 4 receivers sweeping from 57 GHz to 63 GHz. It is
important to remark that FMCW radars provide raw data,
which differs from the raw data from a stepped-frequency
radar like the one supposed in (1). Nevertheless, the imaging
technique used in [43] is equivalent to the one described in
(3)-(4) as shown in [44].

The entire setup used for the freehand imaging is shown
in Fig. 7 and it comprises the aforementioned MIMO radar,
whose position is tracked by means of a motion capture system
with four infrared cameras and infrared markers attached to
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Fig. 6. Imaging of several targets in cylindrically-layered media using the proposed method (third column), SVD filtering (columns 4 to 6), and R-CNN
(column 7). The original SAR image and the ground truth are shown in colums 1 and 2, respectively .

the radar case. The radar module is connected by means of a
USB cable to a laptop which gathers and processes the pairs
of raw FMCW data and the corresponding position.

Fig. 7. Setup for the freehand measurements.

In this case, the cGAN is optimized to detect the shape of
scissors. For this purpose, the three scissors models shown
in Fig. 8 are used. These models were built by tracing public
pictures. Each blade was independently traced so that different
blade openings can be automatically generated to build a

significant dataset. In particular, aperture angles from 0 to 60
degrees were considered. In addition, eight different rotations
of the entire scissors were considered together with images
flipped along the x- and y-axis. The total number of con-
sidered geometries was 800. Although this is a very reduced
representation of general scissors models, it is expected to
provide a fair distribution so the cGAN can learn to clean the
artifacts from the scissors shape.

0 cm 3 6 93

Fig. 8. Three scissors models used during the training. Images are shown for
a specific opening and rotation angles.

In order to generate the training dataset, one could consider
to artificially introduce artifacts in the image by contaminating
the real images without considering the real electromagnetic
nature of the problem. Although that approach would be very
efficient, as it does not require computationally expensive
electromagnetic simulations, it is uncertain if it would properly
model the artifacts due to the problems described in section
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II. Thus, the flowchart given in Fig. 9, which relies on real
electromagnetic modeling, is used. The first step is to pick-
up a model from the database of considered geometries.
After that, random acquisition positions are calculated. These
positions are initially equally spaced on an XY plane of size
20 cm× 20 cm at a distance of 5 cm from the target plane. In
order to mimic the effect of freehand scanning, the samples
are randomly moved by a 3D offset with a standard deviation
of 1 mm for each spatial coordinate. In addition, a random
rotation up to 5 degrees is considered for roll, pitch and yaw
angles. Next, the acquisition plane is divided into cells of size
2.5 mm × 2.5 mm so a maximum of two samples per cell is
considered in order to avoid oversampled areas. Finally, a 50%
of the samples is dropped off to increase the sparseness.

Random
positions

PO solver

Noise
addition

SAR imaging

Output set 
image

Input set 
image

Select model 
dataset

Fig. 9. Scheme for generating the dataset to train the cGAN for the freehand
imaging example.

Once the geometry from the dataset and the acquisition
positions are available, the problem is simulated using Feko
[45] by means of physical optics (PO). Some relevant consid-
erations about this simulation setup are: 1) taking into account
the distances, the object is in the near-field of the (synthetic)
array, 2) the object points are in the far-field of each separate
element so the transmitters can be modeled by means of their
far-field pattern even if the application is near-field imaging,
3) the object is electrically large so it is relevant to split it
into small pieces (i.e., basis functions) to guarantee that the
far-field model of the receiver is also correct.

In order to alleviate the computational burden, the scattered
field is only calculated at the central frequency (60 GHz).
Once the scattered data is available, additive Gaussian noise
is added so that the signal to noise ratio is set to 20 dB. Next,
positioning errors are added to model the tracking errors. The
standard deviation of the error for the XY plane and z-axis
are 0.5 mm and 0.2 mm, respectively. In addition, a random
error with a standard deviation of 1 degree is also added to
the roll, pitch and yaw angles.

Taking into account the noisy scattered field and positioning
data, the SAR image is calculated in the target plane. Since the
previous errors as well as any calibration error regarding real

measurements can have a strong impact in the image phase,
only the amplitude of the SAR image is considered for the
input dataset. The dynamic range of the SAR images is set to
20 dB.

Fig. 10 depicts the L1-norm and, analogously to the previ-
ous case, as the training converges, the quality of the resulting
images is improved with a stable convergence. Some interme-
diate results are shown in Fig. 11 for different iterations.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iteration

0

0.1

0.2

0.3

0.4
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0.6
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1
-n
or
m

Fig. 10. L1-norm for the training set for the freehand SAR example.

In order to quantify the quality of the images the target-to-
clutter ratio is used:

TCR = 10 log

(
Nc

∑
(x′,y′)∈At |Γ(x′, y′)|2

Nt

∑
(x′,y′)∈Ac |Γ(x′, y′)|2

)
, (8)

wherein At is the target region, Ac is the clutter region (i.e., the
complementary region to At), and Nt and Nc are the number
of pixels in each region.

Firstly, the system is tested for two simulated models, which
were not used in the training. These simulation models as well
as the corresponding SAR and cGAN images are shown in Fig.
12. The TCRs for both SAR images are 8.07 dB and 11.46 dB
(Fig. 12a and Fig. 12d, respectively). Once the images are
enhanced by means of the cGAN, the TCRs raise up to 22.5 dB
and 23.48 dB (Fig. 12b and Fig. 12e, respectively).

In order to further validate the approach, several measure-
ments were conducted. In particular, two scissors models, each
in two different positions and openings (see upper row pictures
in Fig. 13), were scanned with the prototype presented in [43].
None of these shapes were used during the training, where
only synthetic data was considered. The retrieved SAR images
and those obtained with the cGAN are depicted in the second
and last row of Fig. 13, respectively. As it can be seen, the
cGAN is able to remove most of the artifacts in the SAR
images at the expense of losing some information in the small
details, typically in the handles of the scissors.

For the sake of completeness, the method is compared with
two additional methods. First, conventional low-pass filtering
techniques are considered. In particular, a median filter with
size 3x3 is firstly applied to reduce the speckles. After that, a
Gaussian filter with standard deviation of 0.75 is applied and,
finally, a threshold in the range of 58-70% is used so pixels
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Iteration #201 Iteration #801SAR image

Fig. 11. Output at intermediate stages of the training for several training pairs in the freehand SAR example.

(a)

60 cm3 93

(b) (c)

(d)

3 0 cm 3 6 9

(e) (f)

Fig. 12. Results for different simulations of scissors. For the simulation model
#1, the images are: (a) the SAR result, (b) the cGAN result and (c) the ground-
truth. For the simulation model #2, the images are: (d) the SAR result, (e)
the cGAN result and (f) the ground-truth.

are classified as belonging to the target or not. Although this
approach contributes to clean the SAR image, in general it is
less effective than the cGAN, and it results in shapes much
less natural than the ones from the cGAN approach (see row
#3 of Fig. 13). Second, the R-CNN is employed by using the
same architecture as in the previous example (using only 1
input channel). The training images were generated following
the same strategy, resulting in 39200 images. The R-CNN
output was roughly following the shape of the target but with
a very low resolution. Hence, an extra step was accomplished
by using the R-CNN output as a mask for the original result.
Although it enables the removal of some of the clutter, it also
clips significant regions of the image around the handles (see
images of row#4 of Fig. 13).

For the sake of completeness, the results are quantified by
means of the TCR in Table II. The cGAN approach clearly
outperforms the raw SAR images. Also, after the described
low pass filtering is applied, the SAR images are improved
but the cGAN provides better results except for model #2,

wherein the performance is very close for both techniques.
Regarding the R-CNN, as it filters most of the the clutter
(but also relevant features such as the handles) the TCR
is significantly improved with respect to the the raw SAR
images. Nevertheless, the cGAN outperforms R-CNN except
for the second model, wherein the TCR is similar with both
techniques.

Model #1 Model #2 Model #3 Model #4

SAR image

cGAN

Real
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R-CNN

Low pass
filtering

Fig. 13. Results for different measurements of models of scissors using
raw SAR results, low pass filtering techniques, R-CNN and cGAN. The
corresponding real images are shown on top.

Table II
MEASUREMENT RESULTS COMPARING THE TARGET-TO-CLUTTER RATIO

FOR DIFFERENT TARGETS.

Meas. model #1 #2 #3 #4

SAR 14.97 17.10 14.73 14.55
Low pass filt. 16.50 20.65 18.03 14.89
R-CNN 20.46 20.37 19.55 18.30
cGAN 22.06 20.30 20.22 21.66

Regarding the computational burden, the translation of the
images by means of the cGAN and low pass filtering takes
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an average time of 107 ms and 108 ms, respectively. Although
these times are very dependent on the implementation and
supporting hardware (e.g., GPU), it is clear that the cGAN
approach does not entail a significant time penalty. In the case
of the R-CNN, the subimage and image evaluation takes the
same time as in the previous example.

V. CONCLUSIONS

Synthetic aperture imaging is a very powerful technique but,
if pushed to its limits, it can exhibit some artifacts in the output
images. Generative adversarial nets can detect deep features in
the image and associate them to clean features learned during
the training stage to enhance the quality of these SAR images.

In the case of complex systems, such as those for multilay-
ered media, which suffer from spread and position-dependent
point spread function, it has been proved that the cGAN is
able to learn the corresponding distribution. Thus, cGANs are
suitable to improve the quality of SAR images. The system
shows robustness even if multiple responses are combined or
if some of them are weak, enabling a clear detection of the
targets.

Results have also been studied for the case of freehand
approaches, which can suffer from significant artifacts during
the intermediate stages due to the sparseness of the sampling
and the tracking errors. In this case, good results have been
observed for both simulated and measured SAR images in
the case of detecting specific targets (scissors). Although the
cGAN was able to provide a clean output with minor artifacts,
some of the small features (e.g., some parts of the handles)
were lost, suggesting that the detection prioritizes large areas.
It is also relevant to note that the used cGAN architectures do
not incur in a significant time penalty so they are compatible
with the real-time performance of the freehand imaging.

Whereas cGANs exhibit clear advantages when dealing with
SAR images, they also exhibit some drawbacks. One of the
most limiting is that they require a large and representative
dataset, which is inherent to machine learning approaches.
In this paper, this dataset was generated from electromag-
netic simulations reproducing measurement conditions as it
is usually not feasible to perform hundreds of measurements
to obtain the training pairs (i.e., contaminated and clean
image pairs). However, even for this scenario, simulations
can become quickly prohibitive due to the computational
complexity and, therefore, the generation of training data
remains as one of the main challenges. Another drawback
that could be found in some problems is that if the number
of possible targets becomes very large, the object distribution
could become very fuzzy. Consequently, the CNNs would not
be effective in detecting and generating features. Thus, it is
prudent to avoid abstract or not well-defined problems when
dealing with cGANs as the training and detection capabilities
could be compromised.
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