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Abstract
The evolution of sex chromosomes and their differentiation from autosomes is a 
major event during genome evolution that happened many times in several lineages. 
The repeated evolution and lability of sex-determination mechanisms in fishes makes 
this a well-suited system to test for general patterns in evolution. According to current 
theory, differentiation is triggered by the suppression of recombination following the 
evolution of a new master sex-determining gene. However, the molecular mechanisms 
that establish recombination suppression are known from few examples, owing to 
the intrinsic difficulties of assembling sex-determining regions (SDRs). The develop-
ment of forward-genetics and long-read sequencing have generated a wealth of data 
questioning central aspects of the current theory. Here, we demonstrate that sex in 
Midas cichlids is determined by an XY system, and identify and assemble the SDR 
by combining forward-genetics, long-read sequencing and optical mapping. We show 
how long-reads aid in the detection of artefacts in genotype–phenotype mapping 
that arise from incomplete genome assemblies. The male-specific region is restricted 
to a 100-kb segment on chromosome 4 that harbours transposable elements and a 
Y-specific duplicate of the anti-Mullerian receptor 2 gene, which has evolved master 
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1  |  INTRODUC TION

Uncovering universal mechanisms that underlie genomic and pheno-
typic diversification is one of the main goals in contemporary evolu-
tionary biology (Blount et al., 2018; Lassig et al., 2017). Evolutionary 
convergence is ubiquitous (Blount et al., 2018) and there have been 
numerous suggestions that molecular parallelism in shared develop-
mental programmes play an important role in determining evolution-
ary trajectories. However, generalities remain hard to identify (Elmer 
& Meyer, 2011). Because it is a genetically tractable trait and evolved 
repeatedly in some groups of organisms (Bachtrog et al., 2014), sex 
determination is an excellent trait to study the predictability of evo-
lutionary processes and ask whether there are common mechanisms 
and routes towards the evolution of similar phenotypes. While mac-
roevolutionary patterns have typically been seen as contingent since 
Gould's influential book “Wonderful Life” (Gould, 1989), recent stud-
ies show that evolution reuses molecular routes and is predictable at 
some level (Kratochwil et al., 2019). This seems particularly so in the 
establishment of sex determination, where certain genes and molec-
ular mechanisms are repeatedly involved (Feron et al., 2020; Graves 
& Peichel, 2010).

Although sex-determining genomic regions are typically inac-
cessible due to the association with complex repeats, recent tech-
nological advances now make it possible to efficiently identify and 
dissect the sex-determining regions (SDRs) of nonmodel organisms 
(e.g., Peichel et al., 2020). The evolution of sex determination is a 
major event in genome evolution, causing large-scale changes in 
chromosome morphology and gene content. The accumulation of 
repetitive elements makes the genomic assembly of SDRs extremely 
challenging (Miga et al., 2020; Peichel et al., 2020; Sedlazeck et al., 
2018). However, the discovery and assembly of SDRs has been facili-
tated recently due to advances in long-read sequencing technologies 
(Palmer et al., 2019; Sember et al., 2021). Long-read methodologies 
are especially useful to assemble SDRs, as they generate scaffolds 
spanning complex genomic regions (Fraser et al., 2020; Nakamoto 
et al., 2021; Peichel et al., 2020; Qu et al., 2021; Tao, Xu, et al., 2021; 
Xue et al., 2021).

The classic theory of sex chromosome evolution posits that the 
expansion of the nonrecombining region, degeneration of the het-
erogametic chromosome and expansion of repetitive sequences re-
sult predictably from well-established genetic mechanisms such as 

Muller's ratchet and the Hill-Robertson effect (Charlesworth, 1991). 
The straightforward nature of the genetic mechanisms involved in 
the evolution of sex chromosomes led to the perception that het-
eromorphic chromosomes are an inevitable outcome following the 
origin of a new master sex-determining gene (Kratochvíl et al., 2021; 
Vicoso, 2019). The increase in genomic data for nonmodel species 
has challenged the perception that highly differentiated sex chro-
mosomes are inevitable (Chalopin et al., 2015; Furman et al., 2020). 
For example, sexual systems and mechanisms have evolved repeat-
edly in fish, amphibians and reptiles (Bachtrog et al., 2014; Devlin 
& Nagahama, 2002), where they undergo frequent turnovers and 
rarely achieve high levels of differentiation (Palmer et al., 2019; 
Vicoso, 2019).

Teleosts represent more than half of the extant species of verte-
brates and exhibit great diversity, and fast turnover in sex determina-
tion and differentiation mechanisms (Ashman et al., 2014; Bachtrog 
et al., 2014), including environmental as well as genetic mechanisms 
of various types (XY, ZW and multiple SD) (Kuwamura et al., 2020; 
Pennell et al., 2018). In teleosts, sex chromosomes are often homo-
morphic; that is, the region in which gene content and repetitive el-
ements differ is restricted to a small section that is undetected using 
most cytogenetic techniques (Bachtrog et al., 2014; Schartl et al., 
2016). The wide spectrum of sex-determining mechanisms found 
among closely related species (Nagahama et al., 2021) makes fishes 
well-suited models for studying the initial steps during sex chromo-
some evolution and also to test for molecular parallelism in the origin 
of master sex-determining (MSD) genes (Böhne et al., 2019; Godwin 
& Roberts, 2018). Several MSD genes have already been identified 
in teleosts, including dmrt1Y (Oryzias latipes), sox3 (Oryzias dancena), 
gsdfy (Oryzias luzonensis), amhy (Oreochromis niloticus) and amhr2Y 
(Takifugu rubripes, Perca flavecens, Percoglossus altivelis, Phyllopteryx 
taeniolatus and Syngnathoides biaculeatus) (Duan et al., 2021; Feron 
et al., 2020; Gao et al., 2020; Ieda et al., 2018; Kamiya et al., 2012; Li 
et al., 2015; Myosho et al., 2012; Nakamoto et al., 2021; Nanda et al., 
2002; Qu et al., 2021; Takehana et al., 2014). Although the variety of 
MSD genes is daunting, the repeated involvement of many of these 
suggests a large degree of molecular parallelism and that the evolu-
tion of novel sex-determiners is predictable.

Cichlids are prime examples of explosive adaptive radiations, in 
which flocks of recently diverged and phenotypically diverse spe-
cies are suitable for the genetic dissection of numerous ecologically 

sex-determining functions repeatedly. Our data suggest that amhr2Y originated by 
an interchromosomal translocation from chromosome 20 to 4 pre-dating the split of 
Midas and Flier cichlids. In the latter, it is pseudogenized and translocated to another 
chromosome. Duplication of anti-Mullerian genes is a common route to establishing 
new sex determiners, highlighting the role of molecular parallelism in the evolution of 
sex determination.

K E Y W O R D S
genetic mapping, GWAS, parallel evolution, sex chromosome evolution, XY sex determination
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    |  3NACIF et al.

relevant traits (Henning & Meyer, 2014). An array of sexual chromo-
somes and sex determination mechanisms have been described re-
cently in cichlids (Böhne et al., 2019; Gammerdinger & Kocher, 2018; 
Godwin & Roberts, 2018), but identification of sex-determining 
genes has proven elusive. More than 15 different genomic regions 
have been associated with sex determination, with numerous in-
stances of sex chromosome turnover described in this lineage (El 
Taher et al., 2020; Gammerdinger & Kocher, 2018; Lichilín et al., 
2021; Tao, Xu, et al., 2021; Vicoso, 2019). Nicaraguan Midas cich-
lids comprise an adaptive radiation of over 10  species belonging 
to the Central American genus Amphilophus, including some of the 
best-known examples of ecological sympatric divergence (Barluenga 
et al., 2006). More than 10 species of Midas cichlids have already 
been described, many of which are endemic to crater lakes (see fig-
ure 1 in Kautt et al., 2021 for a graphical summary and Table S1 in 
the present study). Crater lake species originated from source popu-
lations of Amphilophus citrinellus and A. labiatus inhabiting the Great 
Lakes Nicaragua and Masaya. Between-species genetic divergence 
is low in this system, and extensive sharing of genetic variation for 
several traits of ecological relevance across the different crater lake 
assemblages has been documented (Kautt et al., 2020). Earlier be-
havioural work proposed that sex in the Midas cichlids is socially de-
termined by agonistic social interactions based on body size (Francis 
& Barlow, 1993). However, this was later disputed and it was shown 
that the larger size in males was the result rather than the cause of 
sex determination (Oldfield, 2009).

Here we combine forward genetics (linkage and genome-wide 
association [GWA] mapping), long-read sequencing and optical map-
ping to dissect and characterize the Y-specific region of Midas cich-
lids. We show that sex is controlled by an XY system, probably due 
to a male-specific duplicate of the amhr2  gene on chromosome 4 
that evolved via interchromosomal translocation from chromosome 
20. The data suggest that the Midas cichlid sex chromosome is at 
least 20-30 million years old and has undergone little differentiation 
in this period.

2  |  MATERIAL S AND METHODS

2.1  |  Linkage mapping

To locate the SDR using cross-based linkage-mapping, a panel of 208 
F2s was established by crossing a male Amphilophus labiatus and a 
female A. astorqui, both wild-caught from Crater Lakes Masaya and 
Xiloá, respectively. From this cross, we generated an F1 population, 
from which a male and female were selected and intercrossed to 
generate the F2  generation. Due to the low level of reproductive 
isolation, interspecies crosses in Midas cichlids are readily obtained, 
providing an optimal segregation panel for genetic mapping that 
maximizes divergence in both genetic markers and phenotypic traits.

All fish were raised to maturity controlling for the social envi-
ronment (i.e., maintaining equal tank densities and male–female ra-
tios). F2s were sexed by the direct observation of pair formation and 

mating, resulting in phenotypic data for 207 F2s, of which 111 were 
females and 96 were male. double digest restriction-site associated 
DNA (ddRAD) libraries were prepared as described by Recknagel 
et al. (2013). Data was processed in stacks using the publicly avail-
able female Midas cichlid genome (NCBI accession ASM1343575v1) 
as a reference. The RAD catalogue was coded manually, in order to 
use all possible marker segregation types to build both uni- and bipa-
rental maps using joinmap version 5. These include markers that are 
homozygous for different alleles in both parentals (AAxBB) and also 
other segregation types that can be used depending on the allele 
that is transmitted by the F1s. The parental origin of the “A” allele can 
be ambiguous when parentals share an allele (AAxAB or, conversely, 
ABXBB), but these markers can be used provided that both F1s in-
herit the A allele from the heterozygous parental.

A genome-wide linkage map was constructed using the param-
eters and filters that were previously described in detail elsewhere 
(Henning et al., 2017). Trait mapping was performed using the qtl 
package in r 4.1.1 (R Core Team, 2020). To first identify linkage to sex 
on chromosome 4, we built a genome-wide F2 biparental map. We 
used F1 uniparental maps of chromosome 4 to distinguish between 
female and male heterogamety (XY or ZW) and to identify homoga-
metic and heterogametic F2s for recombinant breakpoint mapping. 
By selecting markers that were homozygous in one F1, but heterozy-
gous in the other (e.g., AAxAB or ABxBB markers), we tracked each 
copy of chromosome 4 that was transmitted to the F2s (see File S1). 
This is not possible using F2 maps using fixed differences between 
the parentals (i.e., AAxBB markers) because the expected propor-
tion of heterozygotes is the same regardless of the system being ZW 
or XY: under full association, the expected ratio is 1:1:0 and 0:1:1 for 
AA:AB:BB genotypes in males and females, respectively.

2.2  |  Long-read sequencing and optical mapping

Following the discovery of an XY system on chromosome 4, that 
the causal locus was shared among different Midas populations and 
that the female reference genome was probably lacking a Y-specific 
interval of unknown size, we generated a new reference Y chromo-
some by combining PacBio HiFi and Bionano optical maps. Whole 
blood was drawn using blood collection tubes coated with EDTA 
(Sarstedt) from the caudal vein of an F4 individual obtained from a 
cross between a golden A. citrinellus (Crater Lake Masaya) and a dark 
A. citrinellus (Great Lake Nicaragua). High-molecular-weight DNA 
was isolated using the SP Blood & Cell DNA Isolation kit (Bionano). 
The sample was labelled using a DLS Labeling kit (Bionano) and 
was run on two flow cells generating a total of 4339  Gb of cmap 
data. This individual was chosen for sequencing to maximize causal 
variant discovery and simultaneously led to the identification of the 
casual variant underlying the colour polymorphism after which these 
fish are named (Kratochwil et al., 2022).

Accurate long-read sequencing data (PacBio HiFi or CCS) were 
obtained from the same blood sample and were concomitantly used 
in Kratochwil et al. (2022). Briefly, DNA was sheared to 15–23 kb 
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4  |    NACIF et al.

and sequencing libraries were prepared using the SMRTbell Express 
Template Prep Kit 2.0, followed by size selection on the SageELF 
(SAGE Science). Sequence data were collected using a single SMRT 
cell on the PacBio Sequel II system using HiFi sequencing protocols 
and Sequencing kit V2 over 30 h. Raw PacBio sequences were pro-
cessed in the ccs software to generate ~20 Gb of HiFi reads. Bionano 
and PacBio data were collected at Praxis Genomics LLC.

2.3  |  Assembly of the Midas male-specific region

HiFi reads were de novo assembled using the recently developed 
haplotype-aware assembler hifiasm (Cheng et al., 2021). All optical 
mapping analyses was performed in bionano access (version 1.6.1) 
using the bionano solve software (version 3.6) through “compute on 
demand,” apart from the isolation of Y and X contigs, which was done 
by manually editing the cmap files. Optical maps were assembled 
de novo using both the haplotypic and nonhaplotypic pipelines and 
using the primary HiFi assembly as reference. The de novo assembly 
pipeline implemented in bionano solve is not reference-guided, but 
including it allows for the straightforward identification through a 
table of correspondence between optical and sequence data sup-
plied by the software. We identified the de novo assembled Bionano 
cmaps that corresponded to the male-specific region by supplying a 
reference that contained the primary assembly supplemented with 
a 300-kb contig that included the y-specific interval. Therefore, we 
could readily obtain the cmaps that corresponded to both the X and 
Y scaffolds. We then manually retrieved the corresponding cmaps 
and performed hybrid-scaffolding separately for the two sets cor-
responding to the Y and X haplotypes.

To generate a chromosome 4 assembly that included the Y-
specific region (YSR), hybrid-scaffolding was performed on a subset 
of data containing only those optical maps and contigs that cor-
responded to chromosome 4 and the YSR. As haplotypic hybrid-
scaffolding is currently unsupported in bionano access, we screened 
the primary contigs for sequences originating from chromosome 4, 
as well as the alternative contigs (i.e., haplotigs) and sequences orig-
inating from the X and Y chromosomes. To generate the remaining 
23 chromosomes of the reference male genome used for associa-
tion mapping and variant screening, we used the primary contigs 
generated by hifiasm, which were then scaffolded with a haplotype-
unaware de novo assembly of optical maps using the assembly 
and HS pipelines in bionano access (allowing us to cut both contig 
sequences and optical maps). The chromosome 4 assembly that 
resulted from this whole genome approach corresponds to the X 
chromosome, which was replaced with the Y chromosome for GWA 
and copy number variation (CNV) detection. Super-scaffolds were 
filtered by size based on the N99  value. We used ragtag (Alonge 
et al., 2019) without query editing to place and orientate the super-
scaffolds on chromosomes based on the A. citrinellus reference ge-
nome (Kautt et al., 2020). We evaluated the quality of the genome 
assembly using the genomeqc online server (Manchanda et al., 2020). 
Finally, we named the male haplotig assembly chromosomes based 

on the results of whole-genome alignment to the A. citrinellus ref-
erence assembly (GenBank accession no.: ASM1343575v1) using 
minimap2 (Li, 2018).

2.4  |  GWA and CNV detection

To fine-map and screen for causal variants, we used the recently 
published short read data covering all Midas cichlid species and 
ecomorphs (Kautt et al., 2020) mapped against our newly assem-
bled male genome. Roughly 200 of the samples from Kautt et al. 
(2020) were phenotyped for external sexual morphology during 
sampling and could be used to test for genotype–phenotype asso-
ciations (n = 197, 113 males and 87 females). Variants and genotype 
calling was performed with freebayes. Mapping coverage was esti-
mated by samtools depth (Li et al., 2009) and the mapping result visu-
ally inspected with integrative genomics viewer version 2.3.68 (IGV) 
(Robinson et al., 2011) for regions of interest. Read mapping, variant 
and genotyping calling were conducted using the scripts made pub-
licly available by Kautt et al. (2020) (https://github.com/alexn​ater/
midas​-genomics). Phenotype–genotype associations were tested 
using the dominant generalized linear model (GLM) implemented in 
plink2 (Chang et al., 2015), using marker data that had a minimum 
genotyping frequency of 80% and minor allele frequencies above 
5%. We filtered the association result for the 1000 most-significant 
p-values for each chromosome and plotted using the manhattan 
function of the qqman R package (Turner, 2018). These analyses were 
also performed with the same pipeline against the female reference 
genome.

Regions with significant peaks of association, as defined by in-
specting the distribution of p-values with a quantile–quantile plot 
(R/qqman), were subject to further analysis. We screened for differ-
ences in depth of coverage between males and females in these re-
gions using generate_regions.py in freebayes (Garrison & Marth, 2012) 
and samtools depth (Li et al., 2009), extracting the depth of mapping 
coverage every 1 kb, with the minimum quality (MAPQ) for mapped 
base and read of 20 and 30, respectively. Mapping results were visu-
ally examined using igv (Robinson et al., 2011).

2.5  |  Annotation of the YSR and candidate gene 
identification

Annotation of the Midas cichlid YSR was performed using blastx 
and blat in GenBank and ENSEMBL, respectively. Transposable el-
ements (TEs) were annotated using the tools available in FishDB 
(Yang et al., 2020). Following the haplotypic assembly of the Midas 
cichlid Y-chromosome, we performed blastx searches across the 
300-kb section containing the YSR and neighbouring highly diver-
gent sequences. Maximum likelihood gene-trees were used to iden-
tify the causal gene and conserved synteny was used to annotate 
the surrounding region. Because initial blastx searches matched the 
Bmpr2-like protein, we conducted a broad analysis including the 
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closest members of this gene family (amhr2 and bmpr2) according to 
the literature (Adolfi et al., 2019; Massagué et al., 1994).

Following the identification of our candidate as an anti-Mullerian 
receptor 2 gene (amhr2), we retrieved further sequences in order to 
phylogenetically place the duplication events, which included cases 
in which amhr2 duplications are known, as well as the closest related 
available complete genome, the Flier cichlid (Archocentrus centrarchus) 
(Rhie et al., 2021; Xiong et al., 2021). Sequences from representative 
fish and vertebrate groups were retrieved from EMSEMBL version 104 
and GenBank. Besides the protein sequences from Midas and Flier 
cichlids, we also added sequences of the MSD gene from T. rubripes 
and P. flavescens (Table S1). Initial searches on annotated sequences 
failed to locate an amhr2Y homologue in the Ar. centrarchus genome, 
which prompted us to perform a local blastn search using the entire 
Midas cichlid coding sequence (CDS) as query.

Protein sequences were aligned using mafft (Katoh & Standley, 
2013) with the mafft-linsi setting and were trimmed using trimal 
(Capella-Gutiérrez et al., 2009) using -gt 0.6 -st 0.005. jmodeltest2 
(Darriba et al., 2012) was used to select the substitution model 
(JTT+I+G4). Phylogenetic inference with 10,000 bootstrap repli-
cates was performed in iqtree2 (Minh et al., 2020).

2.6  |  Comparative genomics

Large genomic sections and entire assemblies were aligned using 
minimap2, and visualized through dotplots using the D-genies web 
interface (Cabanettes & Klopp, 2018). To determine the extent of 
the region that originally translocated from chromosome 20 to 4, 
we extracted 2 Mb up- and downstream of amhr2 and amhr2Y from 
the Midas cichlid and other teleost fish species: Ar. centrarchus, Nile 
tilapia (Oreochromis niloticus), southern platyfish (Xiphophorus macu-
latus), medaka (Oryzias latipes) and fugu (Takifugu rubripes). Synteny 
of the genomic region harbouring amhr2 genes was analysed using 
sequences from the same taxa listed above. Genes present in each 
extracted region were manually inspected using blastn and blastx 
searches. Orthologous genes were grouped by best reciprocal hits 
using predicted protein sequences. The accession numbers of all the 
sequences are given in Table S1.

To test whether the fragment of amhr2Y from Ar. centrarchus 
plays a sex-determining role, we screened for coverage variation 
using whole-genome sequencing (WGS) Illumina short-read data 
from 20 unsexed, wild-caught individuals available from Xiong et al. 
(2020).

3  |  RESULTS

3.1  |  Linkage mapping

Linkage mapping identified a single interval on chromosome 4 that 
segregates with the sex phenotype in the F2 panel (Figure 1a). Due 
to complete linkage of marker and phenotype data, we could narrow 

the region to 700 kb by recombinant breakpoint analysis (Figure 1b). 
Uniparental maps showed no differences in recombination fre-
quency between the male and female F1s at the SDR (Figure S1). 
Phasing of parental X and Y chromosomes based on F1 segregation 
showed that the males are the heterogametic sex (File S1).

3.2  |  Y chromosome assembly

The hifiasm primary assembly contained a large segment of chromo-
some 4 representing the X chromosome (6 Mb) and a smaller con-
tig containing the YSR (306 kb). Screening the haplotigs led to the 
identification of a 1.5-Mb contig containing the YSR and flanking 
sequence (Figure 2a). Due to the presence of large repetitive regions 
at the ends of this haplotig, it could not confidently be assembled to 
the remaining chromosome 4 contigs. Integration with optical maps 
made it possible to experimentally join this 1.5 Mb to the remaining 
chromosome 4 contigs and validate the repeat structure found in the 
haplotigs (Figure 2b).

The de novo genome based on HiFi data alone and assembled 
with hifiasm yielded a primary assembly of 950 Mb containing 1028 
contigs and a contig N50 of 2.83  Mb. Hybrid-scaffolding with 
Bionano optical maps reduced the total size to 907  Mb, compris-
ing 131  super-scaffolds (Figure S2). After this step, small super-
scaffolds were ~170  kb and were filtered out. After filtering by 
N99, 102 super-scaffolds were retained and after reference-based 
scaffolding, the 24 chromosomes were assembled, and the genome 
was reduced to 894 Mb (Table 1; Figure S3). This assembly is con-
sistent with the expected genome size of the Amphilophus citrinellus 
(ASM1343575v1) and Ar. centrarchus (GCA_007364275.2:933 Mb) 
assemblies available in GenBank.

3.3  |  GWA mapping and causal variant detection

Genome-wide short-read (WGS) data from 112  males and 87 fe-
males, from the Great Lake Nicaragua and Managua, and Crater 
Lakes As. León, As. Managua Apoyeque, Apoyo, Masaya, Tiscapa 
and Xiloá, were mapped to our male genome assembly. A total of 
5,816,655  single nucleotide polymorphisms (SNPs) were detected 
in the variant calling step, and after normalization and filter-
ing 2,600,544  high-quality SNPs were retained. A single peak of 
phenotype–genotype association was detected on chromosome 4 
(Figure 1c). Screening for causal variants led to the identification of 
a region present only in males which we refer to subsequently as the 
Midas cichlid YSR (Figure 1d).

3.4  |  Annotation of the Midas cichlid YSR

The Midas cichlid YSR and spans ~100 kb (30.67–30.78 Mb) on chromo-
some 4 (Figure S1) and has a total length of 36 Mb. The YSR contains 
a single complete coding gene (amhr2Y, see Section 3.5), a few partial 
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6  |    NACIF et al.

genes (usp43, znf72l and khlh10), and many TEs (Figure 2). The YSR is 
not located within an inversion and does not seem to be significantly 
expanded. We detected a 500-kb section upstream of the YSR that is 
composed of large tandem repeats (repeat unit size = 40 kb). Within 
each repeat unit, blastx identified a copy of the sco1 gene flanked by two 
copies of an unannotated TE in direct orientation. While we initially sus-
pected that this was a chimeric assembly artefact, it was validated using 
optical maps (Figure 2b). Mapping coverage using WGS data revealed 
considerable CNV from 0 to 6 copies in population samples which varied 
regardless of sex (Figure S4). An accumulation of LTR- and LINE-type 
transposons is located upstream of the YSR (positions 30.36–30.67 Mb).

3.5  |  Candidate-gene identification and 
comparative genomics

Annotation of the candidate genes using blastx resulted in top hits 
with members of related gene-families (e.g., bmpr2-like), indicating 
that the publicly available automatic annotations did not reflect or-
thologous relations and had to be manually curated. Phylogenetic 
trees including peptide sequences of Amhr2 and Bmpr2 resulted in 

the clear nesting of our candidate gene within the amhr2 gene tree 
(Figure S5). The duplication node clearly pre-dates the Amphilophus–
Archocentrus split (Figure 3a). The amhr2 gene is present on Midas 
cichlid chromosome 20, while amhr2Y is present on chromosome 
4. Alignments of the autosomal (amhr2) and the sex-related copy 
(amhr2Y) revealed that the gene structure (11 exons) and the open-
reading frame is conserved, but that amhr2Y has accumulated a large 
number of amino acid substitutions (Figure 3c).

A sequence orthologous to the Midas amhr2Y was found on chro-
mosome 6 of Ar. centrarchus which contains only the last two exons 
(exons 10 and 11) and, also, a premature stop codon in exon 11. 
Conserved synteny with neighbouring genes further confirmed the 
orthologous relationship of the Midas and Flier cichlid (Ar. centrarchus) 
amhr2 with other teleosts. It also indicated an absence of conserved 
synteny between the Midas and Flier cichlid amhr2Y orthologues. 
These data suggest that this copy is pseudogenized and suffered a 
secondary translocation. To test for the presence of amhr2Y and to 
confirm that this copy is nonfunctional, we mapped short reads from 
20 unsexed individuals (Xiong et al., 2021) against the region harbour-
ing the amhr2Y locus in the Midas cichlid male genome. We found that 
exons 10 and 11 were present in all the 20 individuals with the same 

F I G U R E  1  Forward-genetic mapping of sex determination in Midas cichlids. (a) Linkage mapping results in a single peak of association 
between sex and genotype on chromosome 4. (b) Recombination breakpoint analysis narrows the candidate region to a 700 kb interval on 
chromosome 4 of the Midas cichlid reference genome available from NCBI. Further analysis indicated male heterogamety (XY). (c) Marker–
phenotype association in natural populations using the newly assembled male genome confirms and fine-maps the previous interval. (d) 
Read mapping across 300 kb centred at the male-specific region. A region of ~100 kb is present only in males and absent in females, forming 
blue and red lines at 1× and 0× coverage region indicated. (e) The same region as in (d), but depicted as the difference between the mean 
fold coverage of males and females to remove noise from neighbouring repetitive regions
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    |  7NACIF et al.

copy number. If these exons had sex-determination functions, there 
would be at least some individuals lacking this copy unless our sample 
consisted exclusively of males, which is highly unlikely (Figure S6).

4  |  DISCUSSION

Here we show that sex in the Midas cichlids is determined ge-
netically based on a XY system with the probable molecular cause 
being a Y-specific duplicate of the anti-Mullerian receptor-2  gene 
(amhr2Y), a preferred route for the establishment of MSD genes in 
fishes. This gene functions as a receptor to the anti-Mullerian hor-
mone, which induces Mullerian duct regression in males. Although 
teleosts lack Mullerian ducts, the effects are similar in that expres-
sion of amh/amhr2 increases during puberty in males. The function 
of the amh/amhr2 path in teleosts is in the maintenance and prolif-
eration of germ cells (Adolfi et al., 2019).

The duplication and origin of amhr2Y pre-dates the split between 
Amphilophus and Archocentrus, where it has undergone a turnover and 
secondary rearrangement. Y-specific copies of amhr2  have emerged 
at least five times independently as the MSD gene in teleosts (Kamiya 
et al., 2012; Nakamoto et al., 2021; Qu et al., 2021; Feron et al., 2020; 
see Table S2). We successfully generated a high-contiguity haplotypic 
assembly of a male and assembled the complete YSR using a combi-
nation of PacBio HiFi and Bionano optical maps. The YSR has many 
hallmarks of SDRs, including the accumulation of repetitive elements, 
but notably lacks inversions and has persisted for a long period of time 
without significant expansion of the nonrecombining region. Finally, 
our findings highlight the power of long-read sequencing to uncover 
complex causal variants and also points to issues that arise with ge-
netic mapping based on short reads.

4.1  |  Molecular parallelism in the repeated 
evolution of MSD genes

In birds and mammals, after the Y/W chromosomes undergo exten-
sive degeneration and reach gene dosage compensation, turnover 
events become rare, which makes highly differentiated chromo-
somes a barrier to turnover (Bachtrog et al., 2014; Vicoso, 2019). 
Fish sex chromosomes, on the other hand, are often surprisingly 

F I G U R E  2  Genomic structure of the Y-specific region and 
neighbouring repeats on the Midas cichlid chromosome 4. (a) Dotplot 
of the alignment of the reference genome chromosome 4 (GenBank 
accession CM024195.1) and the Y chromosome assembled in the 
present study. (b) Hybrid-scaffolding of Bionano optical maps and HiFi 
contigs. The Y-haplotig is displayed on top. Primary assembly contigs 
from chromosome 4 are shown in the second row from the top
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short-lived and have a high frequency of turnovers (El Taher et al., 
2020; Ieda et al., 2018; Kitano & Peichel, 2012), which switches the 
master-determination role among genes in the above-mentioned 
pathways and restarts the sex chromosome differentiation cascade 
(Sember et al., 2021). The causes of sexual turnover are still debated 
and can occur through several mechanisms (Bachtrog et al., 2014; 
Blaser et al., 2013; El Taher et al., 2020; Kitano & Peichel, 2012; 
Palmer et al., 2019; Tao et al., 2021; Vicoso, 2019). Turnovers are fre-
quent in cold-blooded vertebrate lineages that have homomorphic 
sex chromosomes (El Taher et al., 2020; Palmer et al., 2019; Pennell 
et al., 2018; Tao, Xu, et al., 2021; Vicoso, 2019).

Despite the exceptional variety of sex-determining genes and 
mechanisms in fishes, there seem to be preferential routes both 

at the level of molecular mechanisms and also of the genes in-
volved. The overwhelming majority of masculinizing genes in 
teleosts belong to the transforming growth factor beta (TGF-β) 
pathway (Table S2). This includes (i) amhy, the ligand of amhr2 that 
determines sex in Nile tilapia (O. niloticus), pejerrey (Odontesthes 
bonariensis), northern pike (Esox lucius) and three-spined stick-
leback (Gasterosteus aculeatus); (ii) gdf6 in turquoise killifish 
(Nothobranchius furzeri); (iii) gsdf in sablefish (Anoplopoma fimbria); 
(iv) bmpr11b in Atlantic herring (Clupea harengus); and (v) amhr2y, 
which has evolved the MSD function in yellow perch (Perca fla-
vescens), common sea dragon (Phyllopteryx taeniolatus), alligator 
pipefish (Syngnathoides biaculeatus), ayu (Plecoglossus altivelis), and 
takifugu (Takifugu rubripes; Takifugu pardalis; Takifugu poecilonotus; 

F I G U R E  3  Identification of the putative sex-determining gene and timing of the Y-duplication. (a) Gene-tree of amhr2 conducted using 
maximum likelihood. Circles denote duplication nodes. (b) Comparison of gene-synteny in the vicinity of the amhr2 and amhr2Y. Vertical lines 
connect orthologues. (c) Alignment of Amhr2Y and Amhr2 orthologous amino acid sequences of Midas cichlid (Amphilophus citrinellus), Flier 
cichlid (Archocentrus centrarchus) and Nile tilapia (Oreochromis niloticus)
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    |  9NACIF et al.

Takifugu obscurus) (Duan et al., 2021; Feron et al., 2020; Gao et al., 
2020; Hattori et al., 2012; Herpin et al., 2021; Kamiya et al., 2012; 
Nakamoto et al., 2021; Pan et al., 2019; Peichel et al., 2020; Qu 
et al., 2021; Rafit et al., 2020; Reichwald et al., 2015).

The phylogenetic placement of duplication events (Figure 3a) clearly 
shows that amhr2 evolved MSD function through gene duplication sev-
eral times independently. Gene duplication appears to be the most fre-
quent mechanism leading to turnover of MSD genes (Pan et al., 2019; 
Qu et al., 2021). The preponderance of gene duplicates in comparison 
to allelic variants in new sex-determining genes might be explained by 
the immediate establishment of a nonrecombining region when the du-
plicate is moved to another chromosome (Pan et al., 2019).

The possible molecular mechanisms are either two-step (duplica-
tion followed by translocation) or one-step (transposition or interchro-
mosomal insertional translocation—IIT). Two-step mechanisms are 
reported in the literature (e.g., Furman et al., 2020; Pan et al., 2019). 
However, IITs are also compatible with our data and could explain the 
origin of the Midas cichlid amhr2Y more parsimoniously. Reports of 
spontaneous IITs are frequent in the human medical genetics literature 
(e.g., Nowakowska et al., 2012). While in the two-step mechanism two 
mutations are required, the one-step mechanism could automatically 
lead to a new MSD gene since an insertional translocation itself gener-
ates a duplication in F1, depending on meiotic segregation.

As with chromosomal rearrangements in general, IITs stem from 
repeat-mediated nonhomologous exchange. An IIT event generates 
two types of balanced and two types of unbalanced gametes in 
equal proportions. Those are gametes (i) bearing a single copy on the 
ancestral chromosome (i.e., “wild type”); (ii) gametes bearing a single 
copy on the rearranged chromosome; (iii) gametes lacking the gene 
altogether; and (iv) those that possess two copies, one on each chro-
mosome. In cases in which an additional copy of the translocated 
sex-related gene determines sex through dosage effects (e.g. Hattori 
et al., 2012), the fourth gamete type would be expected to develop 
as male and transmit both X and Y chromosomes in a single muta-
tional step. The preponderance of the two-step mechanism would 
predict that chromosomes harbouring potential MSD-genes (e.g., 
TGF-β genes) are predisposed to becoming sex chromosomes, which 
has received limited empirical support (Kratochvil et al., 2021). The 
mixed support suggests a role for one-step mechanisms, but could 
also reflect the sheer number of potential MSD genes. A third, and 
less-favoured, mechanism is the direct transposition through the as-
sociation to particular types of TEs. IITs seem consistent with the 
Midas cichlid case, but further work is necessary to distinguish be-
tween these three mechanisms as well as investigate the cause of 
MSD gene turnover in Ar. centrarchus.

4.2  |  The Midas cichlid YSR is small and 
suppression of recombination is localized

Our data are consistent with a scenario in which a transloca-
tion occurred between chromosomes 4 and 20 before the split of 
Amphilophus and Archocentrus. Because the current estimates of 

divergence time are disparate, we used 30 million years, based on 
the mean of several studies available in www.timet​ree.org (Kumar 
et al., 2017). The Midas YSR is rather small (roughly 100 kb) and un-
derwent limited differentiation given its age (20-30  million years). 
The absence of a wide region accumulating differentiation is consist-
ent with our uniparental linkage data, as well as the mapping cover-
age analyses. This seems at odds with theoretical expectations and 
empirical examples such as stickleback, where the effects of recom-
bination suppression led to the formation of various differentiation 
strata across a 17.5-Mb nonrecombining region (Peichel et al., 2020). 
Theory predicts the expansion of the nonrecombining region over 
time; however, counter examples such as the present one in Midas 
cichlids have accumulated recently, supporting the perception that 
current theory does not fully explain sex chromosome evolution in 
most organisms (Vicoso, 2019). For instance, in northern pikes, lim-
ited differentiation has occurred despite an ancient Y-translocation 
of amh (the ligand of amhr2) (Pan et al., 2019). As an extreme exam-
ple, it was shown that sturgeons possess an ancient female-specific 
region that is only 16 kb (Kuhl et al., 2021).

Although we found a 500-kb segment that is composed of 
tandem duplications and initially thought it would represent an 
expansion of the YSR, we found that CNVs in this region vary inde-
pendently of sex, and hence are not causally related to sex determi-
nation (Figure S5). The vicinity to such repeats might, however, help 
explain the frequent rearrangements, including the translocation 
from chromosome 20 in the Amphilophus–Archocentrus ancestor and 
then to chromosome 6 in Ar. centrarchus. Recurrent rearrangements 
were also reported in northern pikes (Pan et al., 2019). Repeats are 
known to be a cause of recurrent chromosomal rearrangements by 
promoting nonhomologous exchange.

4.3  |  The impact of long-reads on the discovery of 
ecologically meaningful SVs

It is becoming increasingly clear in many different biological sys-
tems that structural variations (SVs) are a major cause of pheno-
typic variation (Merot et al., 2020). This has already been proven 
for the Midas cichlid system, where the application of long-reads 
has resulted in the discovery of the two first causal variants in this 
system. Besides identifying the probable causal basis of sex deter-
mination in the current study, we used the same PacBio HiFi data 
to concomitantly map the probable causal genetic variant underly-
ing the dark/gold colour polymorphism. This variant, which turned 
out to be a transposon insertion, had eluded us for over a decade 
(Kratochwil et al., 2022 ). That a single long-read sequencing run 
could have such a dramatic outcome is a testament to the power 
of these methods.

The level of contiguity and congruence to the Midas ref-
erence genome (Figures S2 and S3) that we obtained in our ge-
nome assembly was surprising, given that the original intention 
of our experiment using one single run of each PacBio HiFi and 
Bionano was solely to assemble the missing YSR. The diminished 
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heterozygosity of the advanced intercross specimen that we used 
is likely to have facilitated the de novo assembly. Nearly all chro-
mosomes comprised fewer than four contigs. HiFi reads alone (or 
de novo assemblies thereof) are of sufficient size for population-
based investigations of SV frequency and distribution that are 
needed to advance the field (Merlot et al., 2020). Bionano optical 
maps were crucial (i) to scaffold Y-haplotigs into chromosome 4 
and (ii) to validate the highly complex repetitive region adjacent to 
the YSR, where the size of repeat units exceeded the 20-kb HiFi 
read length (Figure 2b). Bionano data are well suited for haplotype 
phasing and assembly, but current software tools do not support 
these methods. To circumvent this limitation, we employed a man-
ual approach to reconstruct X and Y chromosomes, which was suc-
cessful, but labour-intensive. The proprietary Bionano software 
tools ensure ease-of-use, convenient visualization of SVs and an 
overall superb functionality. However, their closed nature might 
hamper development as the community seems drawn towards 
other types of data, judging from recently published software such 
as hifiasm (Cheng et al., 2021). Given the widespread interest in 
haplotype-aware methods, we expect this to change soon.

4.4  |  Reference bias generates GWA false-positives

Filling sequence gaps in reference assemblies using long-reads is 
also consequential for the application of population-based GWA, 
as it is for the estimation of other population genetic parameters 
based on read mapping (Brandt et al., 2015; Chen et al., 2021). In a 
preliminary attempt to map sex determination, we used short-read 
data from Kautt et al. (2020) and the female reference genome to 
perform GWA analysis for sex, revealing four distinctive peaks of 
association. These included markers on chromosomes 4 and 20 
that were under complete linkage disequilibrium. The inspection 
of mapping coverage showed that these were false-positives origi-
nating from distorted genotypic frequencies in males due to par-
alogous read-mapping. Due to the absence of the YSR, YSR-reads 
mapped to similar regions elsewhere in the reference such as the 
conserved segments of the ancestral copy of amhr2 (chromosome 
20) and TEs in other regions. Since SVs appear to be common, 
this observation reinforces the need of moving beyond reference 
genomes of single individuals towards pangenomes (Chen et al., 
2021). Given the ubiquity of TEs in sex-determining regions and 
throughout the genome, caution must be exercised in the inter-
pretation of GWAS results in the absence of pangenomic and ge-
netic linkage data.

5  |  CONCLUSIONS

The unprecedented ability to generate chromosome-level assem-
blies and map complex causal variants has already led to many 
exciting discoveries in both established and nonmodel systems 
(Kratochwil et al., 2022; Merot et al., 2020). With the prospect of 

applying accurate long-read sequencing to natural populations al-
ready in sight, coupling these methods with forward-genetics and 
ecological data will rapidly move the field towards realizing the cen-
tral aim of uncovering general genetic mechanisms that govern evo-
lutionary processes in the wild.
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