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A B S T R A C T

The edge computing model is an approach to Internet of Things (IoT) architectures based on the redistribution
of services and infrastructure from centralized clouds to locations closer to IoT devices. The Web of Things
(WoT) is another important IoT trend, currently led by the W3C, which aims at solving the IoT interoperability
problem by adopting proven technologies and patterns from the Web. The design and validation of IoT
deployments based on these paradigms is a complex task that involves multiple services, heterogeneous
hardware and diverse communication technologies. Testing such projects in real world conditions usually
requires a significant investment of resources. There are simulation tools that can assist in this process
with much lower barriers of entry, however, they involve the designer making modelling assumptions that
are not always representative of the real systems. This work presents an emulation tool for IoT projects
based on the edge computing model that is able to seamlessly scale horizontally by leveraging container
orchestration (Docker swarm mode). Furthermore, the W3C WoT model is included as a first-class citizen,
enabling the designer to model all actors in the system as Things. The tool can run the real production code
with minimal modifications and provides meaningful insights into the behaviour of the proposed architecture.
This knowledge serves to rapidly iterate the optimization process, simplifying design issues and the detection
of bottlenecks before committing to a real deployment in the field. A real-world scenario is also emulated in
order to demonstrate its capabilities and validate its contribution.
1. Introduction

The concept of fog computing was first introduced by Flavio Bonomi
et al. [1] as a platform which exposes services that had previously been
considered native to the cloud (i.e. networking, computing, storage)
in any layer between the IoT data sources and the core data centres.
The distinction between edge computing and fog computing is sometimes
vague. Fog computing can be considered as the prime example and
even an evolution of the more general edge computing concept [2]. It
implements the core idea of edge computing, that is, the redistribution
of resources from the cloud to locations adjacent to the IoT end devices.
However, it is not constrained to the edge and can exist in the upper
layers that are closer to the cloud. In this work, we refer to edge
computing as a more general term, which includes fog computing.

Adoption of the edge computing architectural model can provide
solutions to transmission, computation and storage requirements [3]
that the cloud computing model is unable to handle. Examples include
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adapting to computational loads that evolve due to the geographic
mobility of end devices [4], and ensuring consistently low latency [5].

The rapid growth of the IoT has led to a high degree of hetero-
geneity. Many different systems and platforms can be found, providing
different implementations for similar challenges [6]. This can cause
interoperability problems and data silos: isolated datasets that may be-
come costly barriers for integration into other systems or applications.
The Web of Things is a reasonably recent paradigm [7] which aims
to meet the IoT interoperability challenge by adopting proven patterns
and technologies from the Web.

In one of the earliest works on the WoT [8], Guinard et al. proposed
the integration of physical Things into the Web by exposing an HTTP
API based on the REST architectural model. This work is one of the
foundations of the W3C WoT, which is currently the leading implemen-
tation of the WoT paradigm. The W3C WoT reference architecture [9]
revolves around the concept of the Thing—any virtual or physical
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Table 1
Summary of related simulation and emulation tools.

Tool Highlights Real code Horizontal scalability

CloudSim [18] Widely extended cloud computing simulator. No Not applicable
ContainerCloudSim [19] CloudSim extension that enables simulation of containers. No Not applicable
iFogSim [20] CloudSim-based IoT fog computing simulator. No Not applicable
CloudSim Plus [21] CloudSim fork with additional features and a focus on software

engineering best practices.
No Not applicable

YAFS [22] Edge computing simulator able to dynamically react to events during the
simulation.

No Not applicable

Mininet [23] Network emulator for the creation of network testbeds consisting of virtual
hosts, switches and links.

Yes No

MaxiNet [24] Enables Mininet to run across multiple hosts and adds Docker-based
virtual hosts.

Yes Manual container placement in non-trivial cases.

Containernet [25] Mininet fork that adds Docker-based virtual hosts. Yes No

EmuFog [26] Tool to optimize edge computing architectures (in the form of MaxiNet
experiments) based on a series of constraints.

Yes Same limitations as MaxiNet

Fogbed [27] Emulation of edge computing topologies based on Containernet and
MaxiNet.

Yes Same limitations as MaxiNet
entity that is described by a Thing Description (TD) [10]. A TD is a
machine-readable document commonly serialized in JSON-LD [11] that
contains Thing metadata. All functionalities exposed by the Thing are
modelled in the TD as one of three types of interactions: properties,
actions and events, as defined by the WoT Interaction model. High-level
interactions are then mapped to specific platforms by WoT Binding
Templates [12], e.g. a template could map property write operations
to HTTP POST requests. Finally, the Scripting API specification [13]
is an optional but important building block that defines the public
programming interface exposed by compatible WoT runtimes. This API
enables developers to quickly expose, consume and discover Things
while abstracting from the implementation details.

Containers are a ubiquitous presence in the cloud computing space.
This technology leverages Linux kernel primitives (e.g. cgroups) to
enable isolated, portable execution of processes. Docker [14] is the
most relevant container product, providing an entire stack of compo-
nents including container runtimes and image repositories. It should be
noted, however, that there are alternatives to individual pieces in the
Docker ecosystem, for example Red Hat crun [15] is an alternative con-
tainer runtime to runc. Moreover, container orchestration tools, such
as Kubernetes [16] or Docker Swarm mode, enable the management of
container-based applications across multiple hosts. Given the dynamic
nature of edge computing and the similarities with cloud computing,
container technologies can be of benefit for deployment, development
and maintenance tasks [17].

1.1. Background

This section describes a set of relevant simulation and emulation
tools in the context of cloud computing and the Internet of Things.
Table 1 contains a summary of references to the tools. The tools have
been categorized depending on their ability to run real code and scale
horizontally. More specifically, horizontal scalability is the ability of a
system to increase its performance and capacity by adding more nodes
to the system. Vertical scaling is based on upgrading the components
of each node (i.e. CPU, GPU, memory, storage). Horizontal scalability
tends to be a more optimal strategy in this context, as vertical scaling
has significant cost barriers in the majority of cases. Furthermore, con-
tainer orchestration tools contribute significantly to achieving seamless
horizontal scalability, which is one of the main rationales for using
container orchestration as the foundation of WoTemu.

CloudSim [18] is a widely referenced software framework that
allows for the modelling of systems based on cloud computing entities,
e.g. datacenters, virtual machines, using a programmatic interface.
These systems can be used to represent a wide variety of cloud com-
puting scenarios and simulated in a repeatable fashion. Container-
CloudSim [19] is a built-in module that augments CloudSim to include
2

the concept of application containers, enabling researchers to define
strategies for container allocation on virtual machines and model cloud
architectures in terms of Containers as a Service (CaaS).

CloudSim is the cornerstone for a range of simulation tools that pro-
vide extended functionality for other domains. The iFogSim project [20]
is one of the most relevant examples in this group. IoT applications in
iFogSim are represented as directed graphs based on the Distributed
Dataflow (DDF) model [28]. Vertices in these graphs correspond to
three distinct types of entities: sensors, which generate messages follow-
ing a predefined transmission distribution (e.g. deterministic, normal);
actuators, which act as the receiving end of messages; and modules, a
class meant to symbolize any algorithm or stage in an IoT processing
pipeline (e.g. a classification algorithm). Messages exchanged by the
previous entities are modelled as edges, and are parameterized by their
computation and network costs. Application loops represent the flow of
messages in the IoT application graph and must be explicitly initialized
to indicate the graph paths to monitor. Modules are then allocated on
fog devices, which are described in terms of CPU resources, available
memory and power usage. Users have the option of setting the module
placement or using an automated strategy.

The authors in [21] introduce CloudSim Plus as an alternative
fork of CloudSim with the aim of improving code quality, adopting
software engineering best practices and including exclusive features.
These efforts have provided several advantages, such as a simplified
programming interface that requires less code for comparable CloudSim
examples; an updated hierarchy of classes that improves extensibility
and facilitates the implementation of ad hoc algorithms; and the abil-
ity to define vertical and horizontal autoscaling strategies for virtual
machines.

Unlike the previous references, YAFS [22] is an edge computing
simulator built from the ground up, outside of the CloudSim ecosystem.
It is, however, fairly similar to iFogSim in its modelling approach—
applications are represented as DDF graphs, and nodes are charac-
terized in terms of computation, memory and cost. One of its most
significant contributions is its ability to define ad-hoc algorithms that
run in parallel with the simulation. This enables the designer to dynam-
ically update the system in response to simulation events, for example
to deploy new actuators.

Mininet [23] is a relevant project in the Software-Defined Networks
(SDN) field that is closely related to edge computing emulation. It
leverages features native to Linux, such as network namespaces, to
build a framework that is capable of emulating networks with hundreds
of entities (e.g. virtual hosts, switches and links) in a single host. One
of its main limitations – scaling to multiple hosts – is addressed by
MaxiNet [24]. To this end, MaxiNet uses an ad-hoc cluster manager
and the Generic Routing Encapsulation (GRE) protocol to build IP-

in-IP tunnels that interconnect Mininet workers. In addition, it has
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support for Docker containers. However, complex scenarios tend to
require manual container placement, as the automated placement al-
gorithm is rather limited. In a related note, Docker support can also
be enabled for Mininet experiments thanks to the contribution of the
Containernet [25] fork.

Building upon MaxiNet, EmuFog [26] provides capabilities for ef-
ficient design of edge computing topologies. It enables users to define
a set of end clients (device nodes) and a catalogue of edge computing
devices (fog nodes) in terms of CPU, memory and latency cost. As input
this tool uses a network topology in BRITE [29] format. It then performs
an optimization process to arrive at a MaxiNet experiment comprised
of a fog node selection from the previous catalogue that fulfils the
user constraints. Although it offers support for the execution of Docker
containers, it is based on MaxiNet, and thus shares its limitations.

In a similar fashion to EmuFog, Fogbed [27] leverages Containernet
and MaxiNet to offer both local (i.e. Mininet) and distributed (i.e. Max-
iNet) emulations of Docker-based edge computing network topologies.
An interesting feature of Fogbed is its ability to dynamically update the
topology of a running experiment, for example to add a new host.

All of the software utilities described above have proved to be
of great help in the design process of IoT applications. For instance,
the authors in [30] present an optimized remote pain monitoring IoT
architecture based on the simulation results provided by iFogSim.

To date, research on design tools for edge and cloud computing
architectures has mostly focused on a more theoretical and high-level
view. Users are required to settle on a set of parameters and models
to characterize their scenarios as accurately as possible. This entails
significant difficulties and compromises during the design process. It is
reasonable to argue that lowering the barrier of entry may drive the
adoption of design tools in this domain. This would in turn serve to
optimize resources and avoid costly deployment issues that could have
been detected in an earlier stage.

To the best of our knowledge, all of the studied tools, which
aim at emulating real code, struggle to some degree with horizontal
scaling. Furthermore, they abstract from the full scope of application
monitoring, leaving significant time-consuming responsibilities, such as
identifying the flow of traffic between services, to the user.

1.2. Motivation

Considering these limitations, this work proposes an application-
centric emulation framework based on container orchestration to help
in the design of IoT/WoT systems that follow the edge computing
architectural model. The motivation is detailed in the following list.

• To bridge the gap between developers, who may be more inclined
to test IoT architectures using real production code, and the field
of theoretical simulation tools.

• To provide, in addition to high-level host measurements, per-
formance metrics that are focused on the application itself and
therefore more meaningful to developers. For instance, network
traffic for each application component broken down by protocol
would be of great use.

• To lever the capabilities of a modern container orchestration
utility, such as Docker swarm mode, for emulation of IoT archi-
tectures with seamless horizontal scalability. This approach offers
a sensible compromise between the realism of hardware testbeds
and the experiment scale that is achievable with theoretical sim-
ulators.

• To make the WoT paradigm a first-class citizen in the emulation
scenarios by enabling users to represent all actors in the system
as WoT Things.
3

2. Design

This section presents the architecture of experiments in WoTemu
and explains the rationale behind the design choices. The main types
of entities in WoTemu are identified and defined, and extended sub-
sections for the most relevant modules in the framework are also
included.

A fully functional implementation of WoTemu is publicly available
in both Zenodo [31] and GitHub1 under the MIT licence. The minimum
requirements of this implementation are Python 3.6, Docker Compose
1.27.0 and Docker Engine 20.10.0.

WoTemu is based on Docker swarm mode, a container orchestra-
tion tool included in the Docker ecosystem. It should be noted that
Kubernetes, which is arguably the most popular orchestration tool, was
also considered. However, the following reasons led to the adoption of
containers in general and swarm mode in particular as the foundation
of WoTemu.

• Docker is a widely extended containerization platform that is easy
to install and is readily available in multiple platforms. Swarm
mode is the default built-in orchestration tool in Docker. It is also
easy to configure, taking a few minutes at most to setup a cluster
with multiple machines.

• Orchestration tools are characterized by straightforward hori-
zontal scalability, which is a basic requirement to enable the
emulation of experiments with a high number of entities, but
which is lacking in tools in the current state of the art.

• Emulation of constrained platforms is reasonably simple using
containers. Resources such as CPU and memory can be configured
on a container-by-container basis.

• The life cycle of experiments is simplified by using containers. Ex-
isting resources (e.g. volumes, networks) can be simply removed
from the hosts without leaving traces.

• The default overlay network stack implementation included in
swarm mode is a great fit to represent isolated networks and
connections between entities in an edge computing scenario.

Therefore, WoTemu is intrinsically linked to Docker swarm mode
concepts. Throughout this paper there are references to swarm services,
tasks and networks; these concepts are clarified below.

• A swarm task is linked to a specific container and is the atomic
execution unit in a swarm (i.e. there is a container for each
task). If a task fails for any reason (i.e. the container exits with
a non-zero code) the swarm manager will attempt to reload it to
maintain the desired swarm state.

• A swarm service is a template for tasks, describing, for example,
the base image or the connected networks. A service may have
multiple replicas, each one being a different task. Requests going
into a service are balanced between all the replicas.

• A swarm network interconnects different services. Services in the
same network are able to communicate with each other. It is
important to note that a network is not limited to services in a sin-
gle physical swarm node—Docker provides the overlay network
driver to enable distributed networks.

Fig. 1 shows a general view of the WoTemu architectural model,
including the different types of containers, which are described in more
detail in the following paragraphs.

Node Node containers, also referenced to as applications, represent
programs that must be monitored during the execution of an ex-
periment to be analysed later. From a development standpoint,
the application executed by a node takes the form of a Python

1 https://github.com/agmangas/wotemu.

https://github.com/agmangas/wotemu
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Fig. 1. Architectural model in WoTemu.

file exposing an asynchronous function, which takes the WoT
runtime entrypoint, configuration and event loop instance as
arguments. WoTemu is tailored for WoT applications, that is,
programs that use the WoT runtime provided in WoTPy [32] to
perform their operations in terms of exposing and consuming
Things. However, WoTemu has no restrictions on what is ex-
ecuted in the application function, except that programs must
follow the asynchronous I/O programming model of asyncio.
Therefore, applications can act as emulated IoT devices, con-
trol programs for real IoT devices, processing pipelines, or any
other element required in the scenario. Furthermore, WoTemu
includes a series of built-in apps. These are configurable appli-
cations which can serve as mocks and placeholders for testing
purposes.

Gateway There is one gateway container for each network in the
experiment. These containers are created automatically and in-
jected transparently into the communications of node contain-
ers, acting as middlemen to emulate real world network condi-
tions. See Section 2.1 for further information.

Service This type of container represents any service or dependency
that may be required by an application. Possible examples in-
clude databases, message queues or identity and access man-
agement. There are two main differences from other types of
containers. The first is that no background monitoring processes
run in service containers. Secondly, that services exist in their
own isolated networks, and node containers must declare an
explicit service link in order to communicate with them.

Broker Unlike the other Protocol Binding implementations that can
operate in a self-contained fashion, the MQTT implementation
requires an external MQTT broker component. Therefore, broker
containers are treated as first-class citizens in WoTemu experi-
ments, including the usage of background monitoring processes.
The implementation is based on the widely-used, open-source
Eclipse Mosquitto [33].

There are also two central services in all WoTemu experiments
which are connected to all the networks in the topology:
4

Fig. 2. Typical workflow for an experiment in WoTemu.

Docker API proxy This container is an instance of the tecnativa/
docker-socket-proxy [34] image. It serves as a gateway for other
containers in the experiment to access the Docker API of the
swarm through the internal overlay networks. The Docker API
is a program interface to manage all entities in a Docker environ-
ment. This elevated access is required to provide containers with
introspection capabilities so they can self-configure indepen-
dently from the others. Section 2.1 contains further discussion
on this design decision.

Redis This is an open-source, in-memory key–value data store. It is
used to save historical data and measurements necessary to
characterize and analyse the behaviour of the experiment. Using
Redis [35] as opposed to a relational database results in lower
latencies for read/write operations at the cost of an increased
memory footprint. It is especially indicated for this case, as
it ensures that the background monitor processes running on
all containers have a small performance impact. Section 2.2
contains more information on the data that is persisted in the
Redis central service.

One configuration of the entities describe above is known as a topol-
ogy. An experiment is an execution of a topology. Topologies are defined
in Python using the programmatic interface of WoTemu which are then
converted into Docker Compose files with the WoTemu Command Line
Interface (CLI). This workflow is shown in Fig. 2.

One of the main advantages of the WoTemu design is that users are
not limited to built-in emulated IoT devices. WoTemu runs real code in
real-time. In practice, any Python application can be integrated, which
enables users to communicate with the majority of real IoT devices. For
example, an application could be designed to communicate over MQTT
with a real wireless sensor board, or even through a serial port in one
of the swarm nodes. However, this would require defining placement
constraints so the application is always deployed in the swarm node
that the board is connected to.

2.1. Routing module

Real life networks, especially those used in the context of IoT
deployments, must deal with packet loss, bandwidth and data transfer
limitations. These issues must be factored into architecture designs to
ensure an adequate implementation. The routing module in WoTemu
enables users to emulate the behaviour of real networks transparently.
To this end, WoTemu leverages the iproute2 [36] Linux package and
the iptables [37] packet filtering tool. The traffic control utility of
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Fig. 3. Traffic shaping strategy in WoTemu.

iproute2 (tc), and particularly the Network Emulator (NetEm) and
Token Bucket Filter (TBF) modules, provide an interface to impose
arbitrary restrictions on the quality of network connections.

All node and broker containers are automatically configured on
startup by the WoTemu entrypoint with the appropriate routing rules
to enable network emulation. These rules are detailed below.

• There is a set of iptables rules that match the ports of the
application-layer protocols on the WoT runtime Protocol Bind-
ing implementations (i.e. HTTP, Websockets, CoAP and MQTT).
These rules are located in the mangle table and appended to the
OUTPUT chain to add an internal kernel mark to the matching
packets.

• There is a rule in the routing policy database that causes all
packets with the kernel mark stamped by iptables to use the
WoTemu routing table.

• The WoTemu routing table contains entries to force all matching
Protocol Binding packets or datagrams to go through the gateway
container of the current Docker overlay network.

Gateway containers run a set of TC processes that shape the traffic
passing through the container to emulate the latency, bandwidth and
loss conditions of any given network. There is a single gateway con-
tainer for each network where all traffic from the different containers
in the network is aggregated. This leads to a more realistic emulation
of the bandwidth of a network, as opposed to imposing bandwidth
constraints in each container.

Fig. 3 shows a routing configuration where a subset of network com-
munications are redirected through a gateway container that shapes
traffic according to predefined rules.

The approach here is to ensure that each individual node is able
to configure its own network stack without the intervention of a
proactive centralized component. This fulfils one of the main objectives
of WoTemu by increasing scalability, at the cost of decreased container
isolation. The loss in isolation is because containers have access to
the Docker API proxy service in order to retrieve information on the
Docker swarm stack configuration. Examples of centralized information
required by containers include:

• the swarm task identifier of the current container.
• WoTemu network identifiers currently attached to the container.
• the swarm task identifier of the gateway container for all WoTemu

networks.
5

Fig. 4. Monitor processes transparently included in containers.

• all the currently existing container replicas of any given swarm
service.

The main downside of the loss in isolation is that it leads to
decreased security. It could be argued, however, that WoTemu exper-
iments are not meant to be publicly exposed in a production environ-
ment and are ephemereal in nature. This position significantly eases
concerns about security.

2.2. Monitoring module

The monitoring module provides visibility to the performance and
operation of the experiment, capturing the relevant metrics during its
execution. Captured data points are stored in the central Redis service
to be used during the construction of the final report.

There are four distinct monitor processes that are injected into
containers during the experiment. This is a transparent operation from
the user’s point of view, that is, the user-provided application is au-
tomatically augmented by the WoTemu entrypoint with the monitor
processes. Fig. 4 shows an overview of the monitor processes, which
are described in more detail in the following paragraphs.

Packet monitor Based on the TShark [38] network sniffer, this mon-
itoring module runs a background process configured with a
set of filters that match the ports of the Protocol Binding im-
plementations. The PyShark [39] Python package is used to
interface with TShark. All matching packets are pre-processed
and stored in Redis to extract meaningful information related to
the network footprint of the application.

Node information Runs only once on container startup and collects
metadata about the current container that is necessary to iden-
tify the application during the generation of the final report.
Examples of metadata captured by this process include the
CPU model, extended information about network interfaces, the
virtual IP addresses for the current swarm service and a snapshot
of the environment variables.

System monitor Periodically retrieves the memory and CPU resource
usage of the application. These metrics are read by cgget, a
command line utility to read parameters of Linux control groups
(cgroups). This is necessary to ensure that the measurements
reflect the resources used by the current container instead of the
system as a whole.
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WoT interaction monitor The user-provided application function re-
ceives an argument that is a decorated version of the WoTPy
entrypoint modified to capture and log all WoT interactions.
These data points enable a higher-level, WoT-focused analysis of
the behaviour of the experiment that cannot be obtained from
low-level metrics such as CPU usage.

Furthermore, users can explicitly write ad-hoc application metrics.
These are namespaced by the hostname of the container (task), and an
arbitrary metric key provided by the user. They are then stored in Redis
alongside the other data points generated by the monitor processes.

2.3. Benchmarking module

Memory and CPU constraints can be easily configured in containers.
This can be leveraged to approximately emulate the behaviour of any
given application in a constrained environment without the need of
actually running it in a real platform. Memory limits are expressed as
size, while CPU limits are expressed as a quota on the CPU Completely
Fair Scheduler (CFS).

Memory limits retain their significance when applied to different
host machines in the swarm cluster, regardless of the total amount
of installed memory; for example, a limit of 100 MB means the same
on all machines. However, the same does not hold for limits on the
CPU CFS quota. The same quota can represent wildly different levels
of computational power on different CPU models. There is a significant
difference between full usage of a single core in a low power ARM
processor and in a core in a modern desktop CPU.

WoTemu proposes a solution to the portability of processor con-
straints by using sysbench [40] synthetic CPU benchmark scores to
represent the desired level of computational power in the container.
The rationale behind using Sysbench is that it is a versatile, actively
maintained, widely available and proven performance benchmark tool
with multiple modules. Its popularity, especially in the context of
database benchmarking [41], is reflected in the 3.9k stars and 771 forks
in GitHub at the time of writing this paper.

The following list describes the strategy used in all swarm nodes to
update the CPU quotas of the containers that require CPU constraints.
Fig. 5 shows a diagram with a simplified view of this process.

1. The WoTemu entrypoint first checks the existence of an en-
vironment variable in the container indicating the target CPU
performance score. If the variable is defined, the entrypoint uses
the WoTemu CLI to update the CPU quota to match the desired
computational power.

2. The first container in the swarm node that needs to update the
CPU quota creates a new key in Redis and then runs a series of
CPU benchmarks. This key is namespaced by the swarm node
ID and is the same for all containers in the swarm node. Thus,
all containers in the swarm node that reach at this step later are
aware that a CPU benchmark is already in process.

3. The CPU benchmarking process consists in running multiple
sysbench CPU benchmarks consecutively. Sysbench processes
are executed inside ephemereal containers that are constrained
with increasing levels of CPU quotas (up to 100% usage of a
single core). The aim here is to obtain the coefficients of a fitted
polynomial to characterize the performance of a core in the
current CPU.

4. The rest of containers in the swarm node are simply waiting
for the CPU performance coefficients to be set in Redis. This
ensures that the CPU is not overloaded with multiple parallel
benchmarks.

5. When the process ends, all containers update their own CPU
quotas by solving the CPU performance polynomial for the target
performance score. The target score is initially defined in the
swarm service as an environment variable.
6

Fig. 5. Processor benchmarking stage in WoTemu.

Although it would be preferable in terms of computational re-
sources to reuse the performance polynomial for multiple experiments,
WoTemu places more importance on being stateless and leaving mini-
mal traces on swarm nodes after an experiment.

2.4. Reporting module

As discussed in Section 2.2, many performance metrics and data
items are collected and stored in Redis during an experiment. This is,
however, an intermediary state, as the format in which data is kept in
Redis cannot be read by human users.

The reporting module transforms captured metrics into user-friendly
representations. WoTemu supports two distinct report formats:

• Reports can be rendered as static webpages. To this end, the
reporting module relies heavily on different charts provided by
the Plotly Python Open Source Graphing Library [42]. An exam-
ple of a WoTemu static webpage report is available online for
demonstration purposes.2

• The user may need to apply additional processing or use the
output of WoTemu as an input for another tool or script. For
these cases, WoTemu supports rendering the report as a machine-
readable JSON [43] document.

The following list provides a description of views and charts in-
cluded in a WoTemu report.

Service traffic Total volume of network traffic grouped by task and
service for data coming into the service and data coming out of
the service. It is especially useful to detect at a glance the services
with the highest activity from a network traffic standpoint.

Network traffic Timeseries of the evolution of network traffic grouped
by network.

Resource usage rankings Distribution of the memory and CPU usage
samples captured during the experiment for all tasks. This pro-
vides insight into the variance of the resource consumption of
tasks.

Timeline of tasks Timeline of the creation and stop of all the tasks
in the experiment. This is a convenient way of reviewing the
frequency and occurrence of task failures.

2 https://agmangas.github.io/demo-wotemu-report/.

https://agmangas.github.io/demo-wotemu-report/
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Task resource usage Timeseries of the evolution of memory and CPU
usage for a given task. Two different baselines are used in this
case for comparison: the host machine (i.e. swarm node) and
any resource constraints imposed on the container.

Task data transfer Timeseries of the volume of network traffic in a
task grouped by network interface or protocol. Protocol names
are identified by the TShark capturing process in the packet
monitor.

Task interactions A WoT-focused view that provides insight into the
performance of WoT applications deployed in node containers.
This includes the distribution of latencies for interaction request
verbs, the total count of successful and failed interaction verbs
and the timeline of event verb occurrences.

For further clarity, the following list describes the structure of a
WoTemu output report serialized in JSON format. Each element of the
list represents a key in the JSON document; key names containing dots
represent nested objects. In addition, as the reporting module makes
heavy use of Pandas [44], some of the values in the document are
JSON-serialized Pandas DataFrames (DF):

app_metrics An array of ad-hoc application metrics as defined by the
user. The array items are objects that contain the metric key, the
task where the metric was generated and an array of data points.

service_traffic.inbound DF that contains the total volume of
network traffic grouped by source task and destination service.
This allows the traffic coming into any given service to be
analysed.

ervice_traffic.outbound DF that contains the total volume
of network traffic grouped by source service and destination task.
This allows the traffic coming out of any given service to be
analysed.

napshot DF that contains the status of all swarm tasks for all services
at the time the emulation process is stopped. This includes the
service ID, the most recent log entries, the date of creation and
the container ID.

asks.<task>.info An object with miscellaneous information
about the given task, including network interfaces, memory
limits, virtual IP addresses for each network and environment
variables.

asks.<task>.interaction DF that contains the time series of
WoT interactions for both consumed and exposed WoT Things
for the given task. This includes the payload of WoT events and
the latency of consumed WoT actions.

asks.<task>.packet DF that contains the detailed time series of
network packets sent or received by the WoT runtime protocol
binding implementations for the given task. This includes the
packet size, the swarm network name and the protocol.

asks.<task>.system DF that contains the time series of system
utilization metrics (i.e. CPU and memory) for the given task.

A sample of a WoTemu output report in JSON format is available
7

nline [45] for further details.
3. Experimental results

3.1. Introduction

This section presents a real-world edge computing scenario and
demonstrates how WoTemu topologies can be utilized to analyse the
behaviour of IoT architecture proposals. The scenario in question is
an approximation of the Intelligent Surveillance application discussed in
iFogSim [20,46]. The rationale for selecting this particular scenario was
the following:

• It highlights the differences between WoTemu and comparable
simulation tools.

• It is complex enough and serves to demonstrate the flexibility of
WoTemu topologies. The experiment integrates different services
and techniques such as deep learning algorithms and NoSQL data
stores.

The Intelligent Surveillance scenario is approximately emulated by a
set of smart cameras with motion detection capabilities. In the event
of motion detection, video streams from the cameras are forwarded to
intelligent object detection modules. The output of the object detection
modules is then used to update the Pan Tilt Zoom (PTZ) camera
configuration. Finally, there is an interface for the users to check the
activity of the system.

A large part of the value of WoTemu lies in the insight obtained
from quickly iterating with intermediate versions of the topology. To
illustrate this idea, Section 3.2 presents an initial architecture proposal
that evolves to a more optimal version based on edge computing in
Section 3.3.

The source code of the framework implementation and the experi-
ment described in this section is publicly available [31] and the dataset
containing the full experimental results is also published online [45].
All experiments were run on a swarm with 2 nodes with the following
specifications:

• Intel Core i7-6770HQ CPU @ 2.60 GHz (4 cores, 8 threads),
• 32 GB of DDR4 2133 MHz (2 × 16 GB in dual channel configura-

tion).
• 480 GB SATA3 SSD.

3.2. Cloud topology

A topology intended to fulfil the requirements of the Intelligent
urveillance scenario is shown in Fig. 6. The diagram includes the
ifferent nodes, the connections between them, the networks attached
o each node and the typical flow of communications. This topology is
ased on a simple cloud computing approach where the sensor layer is
irectly connected to the cloud layer.

There are two sets of cameras that represent two geographical
ocations where surveillance cameras are deployed. All cameras are con-
ected to a detector in the cloud through a MQTT broker. The detector,
n turn, is monitored by a cloud node in the same LAN that maintains a
istory of the detector state. The cloud node is the only stateful element
n the topology. Finally, a set of user nodes communicate with the cloud
ervices.

The four types of node applications used in this topology are further
escribed below:

amera These nodes are instances of the camera built-in app, an appli-
cation based on OpenCV [47] that aims at emulating a simple
video camera. To this end, the application reads a test H.264-
encoded local video file [48] in an infinite loop, performing
naive motion detection in the process. Movement in the video
is detected when the motion score goes over a threshold. The
motion score is the mean of the differential of the most recent
frames. Whenever motion is detected, the corresponding frame
is converted to JPG, encoded in Base64 and emitted as an event

interaction.
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Fig. 6. Surveillance application topology (cloud version).

Fig. 7. Surveillance application topology (edge version).

Detector A detector subscribes to the JPG frame events of a set of
cameras and then processes all received frames to perform face
recognition. This process is based on the face-recognition Python
package [49], which is publicly available in the Python Package
Index. The face-recognition package in turn leverages the deep
learning capabilities of dlib [50]. Two read-only properties are
exposed by a detector. First, the latestDetections property contains
the most recent in-memory video frame and detection result
for each camera. Second, the cameras property contains the
configuration, including the camera URLs. The PTZ adjustment
action of a camera is invoked by the detector on each positive
8

Table 2
Details of the networks in the application topologies.

Network name Constraint profile Latency Jitter Bandwidth

edge_2g_loc1 GPRS 700 ms 100 ms 50 kb
edge_3g_loc2 REGULAR_3G 300 ms 150 ms 1500 kb
field_loc1 WIFI 25 ms 5 ms 50 mb
field_loc2 WIFI 25 ms 5 ms 50 mb
cloud_user CABLE 5 ms 5 ms 100 mb
cloud CABLE 5 ms 5 ms 100 mb

Table 3
Node resource limits in the application topologies.

Node application Memory CPU score

Camera 256 MB 200
Detector (only in edge version) 1 GB 600

detection (i.e. a human face was detected in the video stream)
as long as the previous invocation for said camera has already
completed. The detector application is carefully designed to
optimize resource usage: video frames are stored in a buffer
queue in memory and processed asynchronously. The processing
order of the frames is determined by their priority, which is a
function of the age of the frame (in seconds) and the number of
frames that have already been processed for that camera.

Cloud There is a single cloud node in the topology. The cloud node
is an instance of the historian built-in app. Connected to a
MongoDB service, it acts as an aggregator, data store and HTTP
API for clients to retrieve the detection data from the different
locations. A historian reads the properties of arbitrary WoT
Things passed as arguments, writing the collected samples in
MongoDB. In the particular instance of the cloud topology, the
cloud node reads a single detector node that is located in the
same LAN.

User The user nodes, which check the video frames and face detection
results, represent the clients of the architecture. The cloud node
serves as an entry point for these clients, exposing data in an
aggregated fashion through HTTP. User nodes are instances of
the caller built-in app, which continuously invokes the actions
of an arbitrary WoT Thing passed as argument. The invocations
follow a Poisson process in an attempt to model the behaviour of
a group of real users. The request rate 𝜆 (1/s) of this process can
be passed as an argument. However, it cannot grow indefinitely,
as there are limitations imposed by using a single core. To
overcome this limitation, the user service can be easily scaled up
to generate a higher load by changing the number of replicas.
In this particular experiment, both 𝜆 and the number of replicas
are set to 5, which generates a significant volume of requests
(approximately 25 requests per second).

It is important to highlight that although this particular experiment
only uses built-in apps, that is, applications that are already included
in WoTemu for convenience, any Python program that conforms to the
asyncio asynchronous I/O programming model can be integrated into
a WoTemu topology.

Table 2 details all the networks, including available bandwidth,
latency and jitter. Networks edge_2g_loc1 and edge_2g_loc2
represent a cellular network backhaul, which is a common occurrence
in IoT sensor deployments. Networks cloud and cloud_user are
effectively unconstrained, with the former representing the LAN inter-
connecting cloud resources, and the latter the WAN connection between
users and cloud resources.

Generally, devices in the sensors layer tend to be more constrained
in terms of resources (i.e. memory, computation, storage) than devices
in the edge layer, which, in turn, tend to be less capable than devices
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Fig. 8. PTZ latency (cloud version).

in the cloud layer. This is a consequence of multiple factors, such as
the energy constraints that are usually present in the sensors layer, and
the number of devices in each layer. To incorporate these differences
into the topology, Table 3 describes the memory and CPU resource
constraints imposed on nodes. To represent a processor with very low
capabilities, similar to those that could be found in a low-cost camera,
the target CPU score of the camera nodes is set to 200. For comparison,
the value for one thread in a fourth generation mobile Intel Core i7 is
approximately 1000.

Please note that Tables 2 and 3 include additional elements, which
are explained in Section 3.3.

Two ad-hoc application metrics (see Section 2.2) are defined for the
Intelligent Surveillance scenario. These ad-hoc metrics are in addition to
the performance metrics that are automatically captured by the monitor
processes.

Detection latency Detection latency originates in the detector nodes
and is divided into two metrics. The first one is the time in
seconds from the moment a video frame is captured in a camera
to the moment the frame is enqueued in the detector. The second
one is the time from the moment the frame enters the queue
to the moment the face detection process for that frame is
completed.

PTZ latency This application metric originates in the camera nodes
and contains the time between the timestamp in which a video
frame is captured, and the timestamp when the PTZ adjustment
invocation for said video frame is received. Note that a video
frame must be processed by a detector before the PTZ adjustment
action is invoked, and that not all video frames result in a
PTZ adjustment action invocation. Moreover, the previously
described detection latency is fully contained within the PTZ
latency.

In the following figures, task names contain an apparently arbitrary
alphanumeric suffix, separated by a dot. This is part of an alphanumeric
ID that is automatically assigned by Docker swarm mode to uniquely
identify each task. The number before said alphanumeric ID is the
replica number (indexed from 1). Only the most representative and
interesting figures are shown here for clarity. Section 2.4 gives a more
detailed view of all the reports produced by a WoTemu experiment.

The PTZ latency and detection latency application metrics for the
cloud scenario are shown in Figs. 8 and 9 respectively. The PTZ latency
distribution is in the order of hundreds of seconds, which is totally inad-
equate. This is mostly due to network congestion caused by all cameras
9

Fig. 9. Detection latency (cloud version).

Fig. 10. Evolution of frame latency in the detector (cloud version).

accessing the edge network concurrently to publish the video frame
events. The low bandwidth, high packet delay and jitter (see Table 2)
exhibited by the networks degrade the quality of the connection and
result in issues such as excessive TCP retransmissions.

Latency issues are exacerbated by the message queueing feature
of the MQTT binding. That is, messages are enqueued in the broker
and delivered sequentially to the detector, which causes delays to
accumulate.

Fig. 10 shows how the latencies of video frames from the cameras
grow to the point where all frames are rejected by their respective
detectors due to an excessive delay. This effect is significantly more pro-
nounced for the first set of cameras due to the 2G network constraints
imposed on the edge network edge_2g_loc1.

3.3. Edge topology

The results discussed in Section 3.2 prove that an arguably naive
cloud computing approach is unfeasible for the requirements of this
instance of the Intelligent Surveillance scenario. In this case, adopting
the edge computing paradigm is a viable solution, as discussed below.

Fig. 7 shows the edge version of the topology, an alternative pro-
posal that leverages the edge computing paradigm. The following list
describes in more detail the differences with respect to the cloud
version:

• Unlike the cloud version, a detector is locally placed at the edge
of each set of cameras in an attempt to optimize latency and data
transfer volume. That is, cameras are not directly connected to the
WAN and are in the same LAN as their detector.
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Fig. 11. PTZ latency (edge version).

Fig. 12. Detection latency (edge version).

• The cloud node reads two detector nodes through a MQTT broker
over mobile connections, as opposed to being connected to a
single detector in the same LAN.

• Resource limits are imposed on detector nodes (see Table 3).
A benchmark score of 600 is an approximation of the results
reported by the ARM processor in a Raspberry Pi Model 3B, which
is a popular single-board computer that may be commonly found
in the edge layer. The camera constraints are the same in the edge
and cloud versions.

• Networks field_loc1 and field_loc2 only appear in the
edge version, acting as a local WLAN connection between the edge
detector and the cameras (see Table 2).

• There are no differences in the behaviour and configuration of the
node applications (i.e. camera, detector, cloud and user). There-
fore, the detection latency and PTZ latency application metrics
have the same interpretation as before. See Section 3.2 for a
detailed description of applications and metrics.

The edge computing paradigm proves to be a good fit for the
Intelligent Surveillance scenario, as demonstrated by the observed PTZ
latency (Fig. 11) and detection latency (Fig. 12). Median PTZ latency is
under 8 s for all cameras, which is a reasonable performance, especially
when considering the limited resources of the camera and detector
nodes. Placing the detector nodes at the edge of the camera locations
contributes to achieving a median latency from video frame capture
to arrival in under 1 s. On the other hand, as expected, latency from
arrival to detection shows no differences with respect to the cloud
version of the topology, this is a purely local process.
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Fig. 13. Traffic for the most significant services (edge version).

Fig. 13 shows a heatmap of the network traffic between tasks and
services in both inbound and outbound directions. Section 2 shows
details of the differences between Docker swarm tasks and services. A
service is a template from which one or more tasks are created, and
each task is a container. In this case, for example, the user service
includes all five user tasks. A subset of only the most significant services
and tasks are presented for clarity.

As could be expected, a majority of the network traffic occurs from
cameras to detectors, and bidirectionally between users and cloud, while
traffic from and to the MQTT broker is markedly lower.

Fig. 14 shows the distribution of CPU and memory usage samples for
all containers. The X axis of the memory subplot shows the percentage
of use over the container memory limit rather than the absolute mem-
ory. This is because the former provides more information about how
close the container is to the point where it runs out of memory. The
memory limit of unconstrained containers (broker, user and cloud) is
the size of the entire host memory pool (32 GB), whereas constrained
containers (detector and camera) have a predefined hard upper limit
(see Table 3). The interpretation of the X axis of the CPU subplot varies
depending on whether the container is constrained or unconstrained.
Unconstrained containers are allowed to use more than one core, and
as such can go over 100%—a value of 100% represents full usage of one
core. On the other hand, constrained containers are limited to a specific
quota in one core, thus, 100% represents full usage of the allocated CPU
quota (see Table 3).

Memory constraints imposed on camera nodes are adequate for
this topology, although these nodes are close to the limit and would
benefit from a larger memory pool. This conclusion also applies to the
detector node in the second location, unlike the detector in the first
location, which has the capacity to scale up to handle more cameras.
The cloud node, although unconstrained, shows a reasonably small
memory footprint (the median memory consumption is approximately
1.3 GB, that is, 4% of a total of 32 GB). The detector nodes are CPU-
bound. Furthermore, the logs indicate that a significant percentage of
the video frames are dropped due to the internal buffer queue being full
(i.e. the detector is not able to keep up with the rate at which frames
arrive). Therefore, detectors would require a processor with a higher
capacity to achieve optimal performance. The cloud node is also CPU-
bound, as could be expected from a HTTP server handling a significant
volume of requests.

It can be seen in Fig. 15 that detectors struggle to serve read requests
for their properties (see Section 3.1 for a detailed description of the
properties). This is a result of the combination of multiple factors,
including the size of the video frames contained in the latestDetections
property, the performance of the cellular (i.e. 2G and 3G) networks
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Fig. 14. CPU and memory usage distributions (edge version).
Fig. 15. Interaction latencies for task cloud (edge version).

that interconnect the detectors with the cloud, latencies inherent to
the MQTT binding and the resource constraints imposed on detectors.
The experiment shows that the edge topology would be adequate for
cases where a reasonably high average latency for video frames with
face detection data is acceptable for clients. Otherwise, more resources
(i.e. network, computation) would be required by detectors.

Finally, Fig. 16 shows a representative example of performance
metrics in a camera node. All the other cameras have similar behaviour.
These nodes operate close to the limit, as could be expected, due to
the severe resource constraints imposed on them. Respecting these con-
straints is necessary to keep costs to a reasonable limit. It is important
to note that, although the majority of the network traffic in the camera
nodes is transported over the HTTP binding, TShark reports most of the
packets as json (the serialization format of the body in HTTP requests)
or tcp (the underlying HTTP transport protocol) rather than http.

4. Conclusions

Emulation tools are of great importance for IoT architectures. These
systems are characterized by a large number of interconnected nodes
with multiple communication flows, especially in the context of the
11
Fig. 16. Performance of a camera node (edge version).

edge computing paradigm. Therefore, validating the performance of an
architecture design is a complex but important issue. Adoption of an
emulation tool such as WoTemu leads to a decrease in deployment and
testing costs. Unlike other tools, WoTemu scalably runs real application
code with minimal modifications. It enables users to test real applica-
tions and avoid costly errors by quickly detecting flaws in proposed
designs before committing to a deployment in the real world.

WoTemu leverages the repeatability and horizontal scalability capa-
bilities of Docker swarm mode, a modern container orchestration tool,
to provide a solution for this validation issue. Furthermore, WoTemu
gives detailed insight into the behaviour of IoT applications in multiple
domains, including the application layer, network layer and hardware
infrastructure. Finally, the W3C WoT specifications, which are a proven
solution for the IoT interoperability problem, are considered as first

class citizens to ensure a future-proof approach.
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A complex real world scenario was used to validate a full-featured
experimental implementation. In this scenario, WoTemu was instru-
mental in detecting bottlenecks, obtaining meaningful application per-
formance metrics, optimizing hardware resources and discarding prob-
lematic designs.

Future work will focus on optimizing resource usage for very large
experiments, that is, experiments with hundreds of containers or of
considerable duration (in the order of several hours or even days).
This is likely to entail the evaluation and adoption of Redis cluster
in the data storage layer, and also updates to the reporting module to
avoid processing large amounts of data in a naive non-distributed way.
Another interesting addition would be to include a recommendations
module to provide optimization suggestions for the topology, such as
automatically detecting bottlenecks in network links.
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