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Abstract 

 Due to the brittle nature of the glass, to study the response of glass elements subjected to 

dynamics loadings is of great interest, mainly when human injury resulting from glass breakage 

may occur. Laminated glass consists of two or more layers of monolithic glass and one or more 

viscoelastic interlayers. In this paper, a technique to predict the dynamic response (deflections and 

stresses) of laminated glass elements using a linear elastic monolithic model is proposed and 

validated. In a first step, the modal parameters and the dynamic response of a monolithic model 

are calculated using the modal superposition technique. Then, the modal parameters and the modal 

coordinates of the laminated glass element are estimated using the equations derived in this paper. 

Finally, the stresses in time and frequency domain are estimated using an effective stress Young’s 

modulus. 
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1. Introduction 

 Laminated glass elements are nowadays used in many structural applications (floor glazing, 

facades, security glass, blast resistant glass, ballistic resistant glass, etc.).  Laminated glass beams 

and plates consist of two or more layers of monolithic glass and one or more interlayers (usually 

of a polymeric material), which exhibit a viscoelastic behaviour1, the mechanical properties being 



  

time and temperature dependent2,3. The flexural stiffness provided by the interlayers are usually 

neglected but they provide shear stresses constraining the relative sliding of the glass plies4, which 

contributes to the bending stiffness of laminated glass elements5. 

 Laminated glass elements are subject to static and dynamic loadings and they have to be 

designed under safety conditions. The calculations of these elements are very high time consuming 

when a dynamic or a static full viscoelastic analysis is performed, because the response is time-

dependent and fine meshes are required. The thickness of the interlayers is usually very small 

compared with the other dimensions of the element, and numerical models must be meshed with 

many small 3D elements.  

 In order to simplify the calculations in laminated glass elements, some authors have proposed 

to consider the polymeric interlayers as linear elastic materials,6–8, neglecting the “memory effect” 

of viscoelasticity. Another relevant simplification in the static calculations is the concept of 

effective thickness proposed by Bennisson et al.6,7, which consists of considering of a monolithic 

beam with the same bending stiffness as that of the laminated beam. Galuppi and Royer-Carfagni8 

developed a model to calculate the static deflection and the stresses of laminated glass beams 

composed of two glass layers and one polymeric interlayer. Later, this model was extended to 

multilayered glass beams and to laminated glass plates9. On the other hand, several models were 

derived to predict the modal parameters of sandwich beams with viscoelastic core10–14, which have 

been recently particularized for laminated glass elements15,16, as well as to estimate stresses in 

frequency domain17. 

 In this paper, a technique to predict the dynamic response (deflection and stresses) of laminated 

glass elements using a linear elastic monolithic model is proposed. Firstly, the modal parameters 

(natural frequencies, damping ratios and mode shapes) of the linear elastic monolithic model are 



  

calculated. Secondly, the dynamic response of the monolithic model subject to the dynamic 

loading is determined using the modal superposition technique18. Finally, the modal parameters 

and the modal coordinates of the laminated glass element are estimated using the equations derived 

in this paper.  Moreover, an effective stress Young’s modulus, constant for each mode, has been 

derived, which can be used for calculating dynamic stresses in both time and frequency domain. 

The methodology has been validated by numerical simulations and experimental tests subjecting 

a laminated glass beam to dynamic loadings. 

 

Figure 1. Cross-section of a laminated glass beam 

2. Theory     

Static and dynamic stiffness 

 Galuppi and Royer-Carfagni8 derived an analytical expression for the static deflection of a 

laminated glass beam composed of two glass layers and one polymeric interlayer, where the 

stiffness EI can be expressed as: 

𝐸𝐼 = 𝐸𝐼𝑇 (1 +
𝑌

1+
𝐸𝐻1𝑡𝐻2

𝐺𝑡(𝐻1+𝐻2)
𝜓𝐵

)        (1) 

where E is the Young’s modulus of the glass layers, Gt is the shear modulus of the polymeric 

interlayer, H1 and H2 are the thicknesses of the glass layers, t is the thickness of the polymeric 

interlayer and ψB is a parameter dependent on the boundary conditions. The expressions of EIT 

(stiffness of the glass layers) and Y (geometric parameter), are shown in the nomenclature. 



  

 Equating Eq. (1) to the stiffness of a monolithic model with constant thickness HTOT = H1 + t + 

H2, that is, 

𝐸𝐼 =
𝐸𝑒𝑓𝑓𝑏𝐻𝑇𝑂𝑇

3

12
     (2) 

the following expression for the static effective Young’s modulus is obtained16: 

𝐸𝑒𝑓𝑓 =
𝐸

1+𝑌
(1 +

𝑌

1+
𝐸𝐻1𝑡𝐻2

𝐺𝑡(𝐻1+𝐻2)

)        (3) 

 Aenlle and Pelayo16, based on the model of Ross, Kerwin and Ungar10,11, derived and expression 

for the effective complex flexural stiffness of a three-layered beam, which is given by: 

𝐸𝐼∗(𝜔, 𝑇) = 𝐸𝐼𝑇 (1 +
𝑌

1+
𝐸𝐻1𝑡𝐻2𝑘𝐼

2(𝜔,𝑇)

𝐺𝑡
∗(𝜔,𝑇)(𝐻1+𝐻2)

)       (4) 

where 𝐺𝑡
∗(𝜔, 𝑇) is the complex shear modulus of the interlayer and 𝑘𝐼(𝜔, 𝑇) is the wavenumber. 

From Eq. (4), the following expression for the dynamic effective Young’s modulus is derived: 

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇) =

𝐸

1+𝑌
(1 +

𝑌

1+
𝐸𝐻1𝑡𝐻2𝑘𝐼

2(𝜔,𝑇)

𝐺𝑡
∗(𝜔,𝑇)(𝐻1+𝐻2)

)       (5) 

Stresses in frequency domain 

 Aenlle et al.17 derived an expression for estimating stresses in the glass layers of a three-layered 

laminated glass beam (see Figure 1) in the frequency domain. The stresses at the top of layer 1 can 

be calculated by means of the expression: 

𝜎1(𝑥, 𝜔, 𝑇) = 𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇)
𝐻1

2
𝑤′′(𝑥, 𝜔, 𝑇)       (6) 

where 𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇) is the dynamic stress effective Young’s modulus for layer 1, given by: 

𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝐸 [
1

𝑌
(

𝐸𝐼∗(𝜔,𝑇)

𝐸𝐼𝑇
− 1)

𝐻2𝐻12

𝐻1+𝐻2

2

𝐻2
+ 1]      (7) 



  

where H12 is the distance between the medium planes of glass layers (see nomenclature). On the 

other hand, the stresses at the bottom of layer 2 can be obtained by means of the equation: 

𝜎2(𝑥, 𝜔, 𝑇) = 𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇)
𝐻2

2
𝑤′′(𝑥, 𝜔, 𝑇)       (8) 

where 𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇) is the dynamic stress effective Young’s modulus for layer 2, that is, 

𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝐸 [
1

𝑌
(

𝐸𝐼∗(𝜔,𝑇)

𝐸𝐼𝑇
− 1)

𝐻1𝐻12

𝐻1+𝐻2

2

𝐻2
+ 1]      (9) 

If H1 = H2, then 𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇) = 𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇) 

3. Using monolithic models 

 The modal parameters of a laminated glass beam can be determined using a monolithic model 

of constant thickness HTOT and a frequency and temperature dependent effective Young’s modulus 

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇)15.  Although this effective Young’s modulus can be used in analytical equations, this 

mechanical behavior is difficult to reproduce in a finite element program because it cannot be 

modelled as a viscoelastic material, the reason being that the effective Young’s modulus 

𝐸𝑒𝑓𝑓
∗ (𝜔, 𝑇)cannot be estimated as the Fourier transform of the static effective Young’s modulus 

𝐸𝑒𝑓𝑓(𝑡, 𝑇). A way to overcome this drawback consists of assembling a linear-elastic monolithic 

model with constant stiffness  and masss per unit length mmon = ρmonHTOT, from 

which the natural frequencies ωmon and mass normalized mode shapes 𝜙𝑚𝑜𝑛 can be calculated. 

 From the equation of motion of a continuous system18 without damping or with proportional 

damping, the following expression to calculate the natural frequencies of a linear-elastic 

monolithic beam is derived: 

𝜔𝑚𝑜𝑛
2 = 𝑘𝐼

4 𝐸𝐼𝑚𝑜𝑛

𝑚𝑚𝑜𝑛
         (10) 



  

where the wavenumber 𝑘𝐼  is constant for each mode. On the other hand, the natural frequencies 

and loss factors of a laminated glass beam with the same geometry and boundary conditions can 

be obtained by15,16: 

𝜔2(1 + 𝑗𝜂) = (𝑘𝑅 + 𝑗𝑘𝐼)4 𝐸𝑒𝑓𝑓
∗ (𝜔,𝑇)𝐻𝑇𝑂𝑇

3

12𝜌𝑏𝐻𝑇𝑂𝑇
       (11) 

where ρ is the apparent mass density of the laminated glass beam and 𝜂 the loss factor. 

 If we assume that wavenumbers 𝑘𝐼  for both the monolithic and the laminated glass beams are 

equal, and 𝑘𝐼  is isolated in Eq. (10) and substituted in Eq. (11), the later results in: 

𝜔2(1 + 𝑗𝜂) = (𝑘𝑅 + 𝑗 (
𝜔𝑚𝑜𝑛

2 𝑚𝑚𝑜𝑛

𝐸𝐼𝑚𝑜𝑛
)

1/4

)
4

𝐸𝑒𝑓𝑓
∗ (𝜔,𝑇)𝐻𝑇𝑂𝑇

3

12𝜌𝑏𝐻𝑇𝑂𝑇
      (12) 

 Values for 𝑘𝑅  are not tabulated in the literature and no simple equations to calculate this 

parameter have been proposed. They can be obtained solving the 6th order differential equation 

developed by Mead and Markus13, but the calculations are not easy and must be programmed for 

each boundary condition. Assuming 𝑘𝑅  = 0 in Eq. (12) it simplifies to: 

𝜔2(1 + 𝑗𝜂) = 𝜔𝑚𝑜𝑛
𝜌𝑚𝑜𝑛

𝜌

𝐸𝑒𝑓𝑓(𝜔,𝑇)

𝐸
        (13) 

 With respect to the mode shapes, it has been experimentally demonstrated by the authors19 that 

there are not discrepancies between the mode shapes of a monolithic and a laminated glass beam 

with the same geometry and boundary conditions, i.e., it can be assumed that: 

𝜓𝑚𝑜𝑛 ≅ 𝜓           (14) 

where ψmon and ψ are the unscaled mode shapes of the monolithic and the laminated models, 

respectively. However, due to the fact that the mass of each beam (monolithic and laminated) is 

different, the mass normalized mode shapes are related by: 

𝜙𝑚𝑜𝑛√𝑚𝑚𝑜𝑛 ≅ 𝜙√𝑚      (15) 

where m is the modal mass of the laminated beam. Moreover, the modal masses are related by: 



  

𝑚 = 𝑚𝑚𝑜𝑛
𝜌

𝜌𝑚𝑜𝑛
     (16) 

and Eq. (15) can be rewritten as: 

𝜙 ≅ 𝜙𝑚𝑜𝑛√
𝜌𝑚𝑜𝑛

𝜌
     (17) 

4. Displacements and stresses in frequency-domain 

 The response of a laminated glass beam can be expressed in terms of mode shapes by18: 

𝑤(𝑥, 𝜔, 𝑇) = ∑ 𝜙𝑖(𝑥)𝑞𝑖(𝜔, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1     (18) 

where  𝜙𝑖(𝑥)nd qi(ω,T) are the i-th mode shape and the i-th modal coordinate, respectively. If Eq. 

(18) is substituted in Eqs. (6) and (7), the stresses in frequency-domain can be estimated by: 

𝜎1(𝑥, 𝜔, 𝑇) = 𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇)
𝐻1

2
∑ 𝜙𝑖

′′(𝑥)𝑞𝑖(𝜔, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1      (19) 

𝜎2(𝑥, 𝜔, 𝑇) = 𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇)
𝐻2

2
∑ 𝜙𝑖

′′(𝑥)𝑞𝑖(𝜔, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1       (20) 

where 𝜙𝑖
′′(𝑥) indicates strain mode shape (second derivative of the mode shape). The mode shape 

𝜙𝑖(𝑥) needed in Eqs. (18-20) can be obtained from a linear elastic monolithic model by means of 

Eq. (17). With respect to the frequency-domain modal coordinates, they can be estimated by18: 

𝑞𝑖(𝜔, 𝑇) =
∫ 𝜙𝑖(𝑥)𝑝(𝑥,𝜔)𝑑𝑥

𝐿
0

𝑚𝑖(𝜔𝑖
2(𝑇)−𝜔2+𝑗𝜂𝑖(𝑇)𝜔𝑖

2(𝑇))
     (21) 

where ωi,ηi and mi are the natural frequency, loss factor and modal mass of the i-th mode, 

respectively,  and p(x,ω) is the force exciting the system. 

 The modal parameters ωi and ηi needed in Eq. (21) can be obtained with two different techniques: 

1. To use a monolithic model (analytical or numerical) and calculate the modal parameters ωi 

and ηi with Eq. (13) and the modal masses mi with Eq. (16). With respect to the mode shapes 

ψi of the laminated glass beam, they can be considered equal to those of the monolithic 

model15-17. 



  

2. To use the experimental modal parameters of the laminated glass beam estimated with 

modal analysis. 

 Eq. (21) can be avoided if the experimental modal parameters and the experimental responses 

𝑤(𝑥, 𝜔, 𝑇) of the beam are known, because the experimental modal coordinates can be estimated 

from Eq. (18). 

 If a discrete model is used, Eq. (21) becomes: 

 𝑞𝑖(𝜔, 𝑇) =
𝜙𝑖

𝑇𝑝(𝜔)

𝑚𝑖(𝜔𝑖
2(𝑇)−𝜔2+𝑗𝜂𝑖(𝑇)𝜔𝑖

2(𝑇))
     (22) 

 An alternative to Eq. (22) consists of using the dynamic response of a monolithic model with 

the same geometry and boundary conditions. The modal coordinates 𝑞𝑖𝑚𝑜𝑛(𝜔, 𝑇) of a linear elastic 

monolithic model subject to the same force p(x,ω), can be obtained from the equations: 

𝑞𝑖𝑚𝑜𝑛
(𝜔, 𝑇) =

∫ 𝜙𝑖𝑚𝑜𝑛
(𝑥)𝑝(𝑥,𝜔)𝑑𝑥

𝐿
0

𝑚𝑖𝑚𝑜𝑛(𝜔𝑖
2

𝑚𝑜𝑛
−𝜔2+𝑗2𝜔𝜉𝑖𝑚𝑜𝑛𝜔𝑖𝑚𝑜𝑛)

      (23) 

If equal mode shapes are assumed for both the laminated and the monolithic beam19, the 

following equation is fulfilled: 

∫ 𝜓𝑖(𝑥)𝑝(𝑥, 𝜔)𝑑𝑥 = ∫ 𝜓𝑖𝑚𝑜𝑛
(𝑥)𝑝(𝑥, 𝜔)𝑑𝑥

𝐿

0

𝐿

0
    (24) 

from which the following relationship between the modal coordinates qi(ω,T) and qimon(ω,T) is 

derived: 

𝑞𝑖(𝜔, 𝑇) = 𝑞𝑖𝑚𝑜𝑛
(𝜔)

𝑚𝑖𝑚𝑜𝑛

3/2
(𝜔𝑖

2
𝑚𝑜𝑛

−𝜔2+𝑗2𝜔𝜉𝑖𝑚𝑜𝑛𝜔𝑖𝑚𝑜𝑛)

𝑚
𝑖
3/2

(𝜔𝑖
2(𝑇)−𝜔2+𝑗𝜂𝑖(𝑇)𝜔𝑖(𝑇)2)

     (25) 

If Eq. (25) is substituted in Eqs. (19) and (20), the stresses in the glass layers of a laminated glass 

beam can be estimated using the response of a monolithic model. 



  

An important simplification can be made in Eqs. (19) and (20) if the effective Young’s modulus 

𝐸1𝜎𝑒𝑓𝑓(𝜔, 𝑇) and 𝐸2𝜎𝑒𝑓𝑓(𝜔, 𝑇)are constant for each mode. In this paper, it is proposed to consider 

for the i-th mode the effective Young’s modulus given by: 

𝐸1𝜎𝑖
(𝑇) = 𝐸1𝜎𝑒𝑓𝑓

(𝜔𝑖, 𝑇)         (26) 

𝐸2𝜎𝑖
(𝑇) = 𝐸2𝜎𝑒𝑓𝑓

(𝜔𝑖, 𝑇)         (27) 

 Since the effective Young’s modulus E1σi(T) and E2σi(T) are not frequency dependent, they can 

be used in both time and frequency domain, i.e., they can be considered stress effective Young’s 

modulus for layers 1 and 2, respectively, for both time and frequency domains. 

5. Stresses in time-domain 

 With the assumptions considered in Eqs. (26) and (27), the stresses in the frequency domain at 

the top of layer 1, and at the bottom of layer 2, can be obtained with the expressions: 

𝜎1(𝑥, 𝜔, 𝑇) ≅
𝐻1

2
∑ 𝐸1𝜎𝑖(𝑇)𝜙𝑖

′′(𝑥)𝑞𝑖(𝜔, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1      (28) 

𝜎2(𝑥, 𝜔, 𝑇) ≅
𝐻2

2
∑ 𝐸2𝜎𝑖(𝑇)𝜙𝑖

′′(𝑥)𝑞𝑖(𝜔, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1      (29) 

 Due to the fact that 𝐸1𝜎𝑖(𝑇) and 𝐸2𝜎𝑖(𝑇) are not time-dependent, the stresses in time-domain 

can be estimated by modal superposition avoiding the convolution of the responses. 

 On the other hand, if the inverse Fourier transform is applied to Eqs. (28) and (29), they become: 

𝜎1(𝑥, 𝑡, 𝑇) ≅
𝐻1

2
∑ 𝐸1𝜎𝑖(𝑇)𝜙𝑖

′′(𝑥)𝑞𝑖(𝑡, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1      (30) 

𝜎2(𝑥, 𝑡, 𝑇) ≅
𝐻2

2
∑ 𝐸2𝜎𝑖(𝑇)𝜙𝑖

′′(𝑥)𝑞𝑖(𝑡, 𝑇)
𝑁𝑚𝑜𝑑𝑒𝑠
𝑖=1      (31) 

 The time domain modal coordinates 𝑞𝑖(𝑡, 𝑇) can be retrieved by inverse Fourier transformation 

of Eq. (25). 



  

6. Validation of the methodology: numerical model 

 In order to validate the technique proposed in this paper, the modal parameters and the 

displacement and stress responses of a simply supported laminated glass beam, made of annealed 

glass layers, PVB core and with the following geometrical data: L = 1 m, H1 = 4 mm, t = 0.76 mm, 

H2 = 4 mm, b = 0.1 m, were predicted at different temperatures using Eqs.(30) to (31), and validated 

with a numerical model assembled in ABAQUS22. 

Finite element models 

 Two Finite Element (FE) models were assembled: 

 A simply supported monolithic glass model with thickness 𝐻𝑇𝑂𝑇 = 𝐻1 + 𝑡 + 𝐻2 =

 8.76 𝑚𝑚 . The mechanical properties presented in Table 1 were considered in the 

simulations. The beam was meshed using quadratic hexahedral elements (20 nodes per 

element) with an approximate size of 4 mm. The model is shown in Figure 2. 

 A layered model (see Figure 2) with glass layers modelled as linear elastic and the PVB 

interlayer model as linear viscoelastic23, 24, was also meshed using 3 quadratic hexahedral 

elements through the beam thickness (one element for each material layer). The mechanical 

properties presented in Table 1, together with the parameters of the Prony series presented 

in Table A1, were considered in the simulations. The effect of temperature in the PVB was 

considered by means of the Williams-Landel-Ferry (WLF) equation25 using constants C1 

and C2 . 

The natural frequencies ωmon, mode shapes ψmon and modal masses mmon, corresponding to the first 

four bending modes of the monolithic model, were obtained solving the eigenvalue problem, and 

the results are presented in Tables 2, 3 and 4, for the temperatures of 20, 25 and 30oC, respectively. 

The wavenumbers kI  were estimated from the monolithic model using eq. (10). 



  

Table 1. Mechanical properties of glass and PVB24 (E: Young’s Modulus, ν: Poisson’s ratio, ρ: 

density, G0: instantaneous shear modulus, K: bulk modulus, C1 and C2: Williams-Landel-Ferry 

constants at Tref = 20o C).  

Glass  PVB 

E ν ρ  𝐺0 K ν ρ 𝐶1 𝐶2 

[GPa] [-] [kg/m3]  [GPa] [GPa] [-] [kg/m3] [-] [-] 

70 0.22 2500  0.3696 2 0.40 1046 12.60 74.46 

 

 With respect to the layered model, a steady-state dynamic analysis (linear perturbation 

procedure) in the frequency domain was carried out, exciting the beam with two harmonic 

concentrated loads (see Figure 2) in the frequency range 0-400 Hz (frequency sweep). 

 The natural frequencies and the corresponding loss factors were estimated from the frequency 

response function (FRF), which was isolated around the peaks of resonance and taken to the time 

domain using the Inverse Discrete Fourier Transform (IDFT). The resonance frequency is obtained 

by determining the zero crossing times, and the damping by the logarithmic decrement of the 

corresponding free decay. The predicted natural frequencies and loss factors at 20, 25 and 30ºC 

are shown in Tables 2, 3 and 4, respectively. 

 The modal parameters of the laminated glass beam were also estimated using Eqs. (13) and (16). 

From Tables 2, 3 and 4 it is concluded that the modal parameters have been predicted with a good 

accuracy. Although damping estimation in laminated glass panels using Eq. (13) are not accurate, 

in this particular case (simply supported beam) kR = 0 for all the modes (which is the assumption 

considered for deriving Eq. (14)), which explains the large precision of the predictions. 

 



  

Table 2. Modal parameters at 20º C. 

Mode 

Monolithic glass beam  Laminated glass beam 

Nat. freq Modal mass  Nat. freq [Hz]  Loss factor  Modal mass [kg] 

[Hz] [kg]  Eq. (14) FEM Visco  Eq. (14) FEM Visco  Eq. (17) FEM 

1 21.31 1.091  21.71 21.718  0.0069 0.0070  1.0365 1.036 

2 85.24 1.081  85.91 86.00  0.0157 0.0162  1.0270 1.0265 

3 191.72 1.065  190.27 190.40  0.0219 0.0220  1.0117 1.0133 

4 340.48 1.047  331.60 330.20  0.0309 0.03182  0.9947 1.0004 

 

Table 3. Modal parameters at 25º C. 

Mode 

Monolithic glass beam  Laminated glass beam 

Nat. freq Modal mass  Nat. freq [Hz]  Loss factor  Modal mass [kg] 

[Hz] [kg]  Eq. (14) FEM Visco  Eq. (14) FEM Visco  Eq. (17) FEM 

1 21.31 1.091  21.60 21.62  0.0154 0.0157  1.0365 1.036 

2 85.24 1.081  85.86 84.95  0.0305 0.0306  1.0270 1.0265 

3 191.72 1.065  186.49 186.81  0.0497 0.0488  1.0117 1.0133 

4 340.48 1.047  323.81 324.50  0.0683 0.0715  0.9947 1.0004 

 

 The stresses at point A (mid-point of the beam) and at point B (see Figure 2) estimated with Eqs. 

(28) and (29) at different temperatures T = 20 ,25 and 30oC are presented in Figure 3. From the 

results shown in Figure 3, it can be observed that the stresses have been predicted with a good 

accuracy (see Table 5) using Eqs. (28) and (29), the error being less than 8 %, which demonstrates 

that the methodology proposed in this paper can be used to predict accurately the stresses in 

laminated glass beams. 



  

Table 4. Modal parameters at 30º C. 

Mode 

Monolithic glass beam  Laminated glass beam 

Nat. freq Modal mass  Nat. freq [Hz]  Loss factor  Modal mass [kg] 

[Hz] [kg]  Eq. (14) FEM Visco  Eq. (14) FEM Visco  Eq. (17) FEM 

1 21.31 1.091  21.44 21.46  0.0356 0.0363  1.0365 1.036 

2 85.24 1.081  85.09 83.48  0.0606 0.0612  1.0270 1.0265 

3 191.72 1.065  180.92 182.25  0.0907 0.0923  1.0117 1.0133 

4 340.48 1.047  310.53 315.40  0.1095 0.1173  0.9947 1.0004 

 

 

Figure 2. Mesh of the finite element models considered in the simulations for both cases: 

monolithic and laminated, and harmonic loadings used in the simulations. 

 

7. Validation of the methodology: experimental model 

 In order to validate by experiments the methodology proposed in this work, the stresses of a 

laminated glass beam with the following geometrical data: L = 1 m, H1 = 3 mm, t = 0.38 mm, H2 

= 3 mm, b = 0.1 m, were predicted using Eqs. (30) to (31) and compared with those measured with 

Monolithic 
model 

Laminated 
model 

L /2 
L /3 

B A 

1 1 



  

two strain gages. The beam, in simply-supported boundary conditions (distance between supports 

of 0.85 m) was tested at temperatures of 19 and 28o C, respectively, as shown in Figure 4. 

 

 

Figure 3. Magnitude of the stresses estimated at the bottom of layer 2 in points A (above) and B 

(below) for different temperatures (left) and zoomed region for the first mode (right). 

Table 5. Stresses obtained with the analytical and the numerical models. 

Point T Mode Numerical model  

[Pa] 

Analytical Eqs. (32) and (33) Error 

[º C] [Pa] [%] 

A 

25 1 1.85 x 107 1.94 x 107 4.64 

3 3.72 x 105 3.75 x 105 0.80 

30 1 8.5 x 106 8.4 x 106 1.19 

3 2.05 x 105 2.1 x 105 2.38 

B 

25 1 1.685 x 107 1.68 x 107 0.298 

2 1.01 x 106 9.81 x 105 2.96 

30 1 7.34 x 106 7.25 x 106 1.24 

2 5.3 x 105 4.9 x 105 8.16 

 



  

Operational modal analysis 

 Operational Modal Analysis (OMA) was used to estimate the modal parameters20. Small hits 

applied with an impact hammer, random in time and space, were utilized to excite the beam. The 

experimental responses were measured with seven uniformly distributed accelerometers 

(sensitivity of 100 mV/g), the test setup being shown in Figure 4. The responses were recorded for 

approximately 3 minutes, using a sampling frequency of 2132 Hz. The spectral densities were 

calculated using 1024 frequency lines and an overlap of 70%. The modal parameters were 

estimated with the Frequency Domain Decomposition (FDD) technique20. In order to reduce the 

effect of leakage, a proper order of decimation was considered for each mode. The estimated 

natural frequencies and loss factors are shown in Table 6. The modal analysis provides the damping 

ratios for each mode, and it has been assumed that η = 2ζ, where ζ is the damping ratio. 

 

Figure 4. Test setup used in the experiments. 

Table 6. Experimental modal parameters for the simply-supported laminated glass beam. 

Mode 
Temperature 19º C  Temperature 28º C 

Frequency Loss factor  Frequency Loss factor 

[Hz] [%]  [Hz] [%] 

1 30.16 4.28  29.00 6.04 

2 92.70 1.73  88.93 3.19 

3 186.50 2.35  182.14 3.98 

4 313.42 2.76  303.92 4.15 

5 465.53 2.89  450.34 4.65 

 



  

Monolithic model 

 A monolithic finite element model with the same geometry and boundary conditions as the 

experimental one was assembled in ABAQUS22.The beam was meshed with 7960 quadratic 

hexahedral elements C3D20R and the material was modelled as linear-elastic. In order to take into 

account the effect the rubbery at the supports, the finite element model was updated25 to achieve a 

good correlation in natural frequencies and mode shapes. The numerical natural frequencies and 

mode shapes were obtained by solving the standard eigenvalue problem. 

 In this paper, the experimental mode shapes were expanded to the un-measured DOF’s using 

the mode shapes of the finite monolithic element model. According to the structural dynamic 

modification theory26, the experimental mode shapes can be expressed as a linear combination of 

the numerical mode shapes27,28, i.e.: 

[𝜙𝑥] = [𝜙𝐹𝐸][𝑇]     (32) 

where subscripts ‘x’ and ‘FE’ indicate experimental and numerical mode shapes, respectively, and 

[T] is a transformation matrix estimated using the active DOF’s, i.e.: 

[𝑇] = [𝜙𝐹𝐸
𝑎 ][𝜙𝑒𝑥

𝑎 ]     (33) 

where the superscripts a indicates active or measured DOF’s. Finally, the expanded experimental 

mode shapes can be estimated with Eq. (32).  

Impact tests 

 The accuracy of the methodology presented in this paper was studied predicting the stresses in 

the same laminated glass beam when it is subjected to impact loadings. The same test setup 

(distribution and number of sensors, recording time, sampling frequency, etc.), as that used in the 

OMA tests, were used to measure the experimental response of the structure. Moreover, two strain 



  

gages HBM LY11-350 were attached at points 1 (not located just in the middle of the span) and 2 

(see Figure 4), in order to measure the experimental strains. 

 The experimental acceleration modal coordinates were estimated with the expression: 

{𝑞𝑥(𝑡, 𝑇)} = [𝜙𝑥(𝑥)]+{𝑤𝑥(𝑡, 𝑇)}     (34) 

where the superscript + indicates pseudo-inverse. Then, the experimental displacement modal 

coordinates were obtained by double integration in the frequency domain. 

 Due to the fact that the experimental modal coordinates are estimated from the experimental 

responses, they were used in Eqs. (30) and (31), avoiding the use of Eq. (25). 

Stress estimation 

 The stresses at points 1 and 2 of layer 2 (see Figure 4) were estimated in frequency domain using 

Eqs. (19) and (20), and in time domain using Eqs. 30) and 31). The mechanical properties shown 

in Table 1 were used in the calculations. The constant effective Young’s modulus, 𝐸1𝜎(𝑇)  =

 𝐸2𝜎(𝑇) , obtained with Eqs. (26) and (27), are shown in Table 7 for the different tested 

temperatures. 

 

Table 7. Effective Young’s modulus E1σi(T) used in time-domain the calculations. 

Mode Effective Young’s Modulus 𝐸1𝜎𝑖
× 1011 [GPa] 

T = 19º C T = 28º C 

1 152.3 151.0 

2 151.3 148.8 

3 149.9 146.3 

4 148.2 143.2 

5 146.5 140.1 

Discussion 

 The experimental stresses (time history and spectral density) measured with the strain gauge 

located at the midpoint of the beam (point 1 in Figure 4) and those predicted with Eqs. (19) and 



  

(20) at 19 and 28o C, respectively, are presented in Figure 5. A small peak (83 Hz) can be observed 

to the left of the second mode peak, which corresponds to one of the steel frame modes. The 

stresses were firstly calculated in frequency domain with Eqs. (19) and (20) and the inverse Fourier 

transform28 was utilized to obtain the solution in time domain. Since the strain gauge is not located 

just in the middle of the span, all the modes contribute to the stress. This fact is in agreement with 

the stresses recorded with the strain gauge (see Figure 5). 

 The errors between the estimated and the experimental stress power spectral densities at the first 

natural frequency are presented in Table 8.  

 

Figure 5. Predicted Eq. (19) and experimental stresses at 19 and 28oC in point 1: time histories 

(left), detail of the time histories (center) and power spectral densities (right). 

 

 With respect to the contribution of each mode to the total stress (see Figure 7), the first mode is 

the one which contributes the most, whereas the contribution of the higher modes decreases with 

increasing temperature. The stresses obtained mode by mode are very similar for the time domain 

and frequency domain calculations, which demonstrates that the discrepancies between both 

techniques are small. Thus ,the concept of constant stress effective Young’s modulus Eiσeff(T) can 



  

be used to predict with a reasonable accuracy the stresses in laminated glass elements in both time 

and frequency domain. 

 

 

Figure 6. Estimated stresses at point 1 at 19 and 28o C in time domain (Eqs. (30) and (31)) and in 

frequency domain (Eqs. (19) and (20)) + Inverse Fourier Transform (IFT). 

Table 8. Errors at points 1 and 2 between the predicted and the experimental stress spectral 

densities for the first mode. 

Frequency Temperature Error [%] 

 [Hz] [º C] Point 1 Point 2 

30.16 19 6.26 7.82 

29.00 28 8.80 9.11 

 

8. Conclusions 

 In this paper, a methodology to predict the dynamic response of laminated glass elements 

using a linear-elastic monolithic model, has been proposed and validated. The methodology 

can be applied in both frequency and time domains. 

 The methodology was firstly validated comparing the stresses estimated on a simply supported 

laminated glass using the analytical model proposed in this paper, and those obtained from a 

numerical model assembled in ABAQUS. The errors between the two models are less than 

o 

Eq. (31) time domain 
  
  

Eq. (20) freq. domain + IFT 



  

8%, which demonstrates that the technique can be used to predict with a good accuracy the 

dynamic response of laminated glass elements. 

 The methodology was also validated by experimental tests carried out on a laminated glass 

beam simply supported in a steel testing frame at 19 and 28o C. The stresses were estimated in 

time domain being the discrepancies between the experimental and the predicted values less 

than 8% at 19o C and less that 10% at 28o C for the first mode. 

 The stiffness of laminated glass beams decreases with increasing temperature whereas the 

damping increases. The global effect is that the magnitude of the stresses decreases with 

increasing temperature. 

 

Figure 7. Contribution of the different modes to the total stress at 19 and 28o C in time domain 

(Eqs. (30) and (31)) and in frequency domain (Eqs. (19) and (20)) + Inverse Fourier Transform 

(IFT) in point 1.  
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Nomenclature 

𝐻12 = 𝑡 + (
𝐻1 + 𝐻2

2
) 

Distance between the centerlines of the glass 

layers 

 
𝐼1 = 𝑏

𝐻1
3

12
 Moment of inertia of glass layer 1 

𝐼2 = 𝑏
𝐻2

3

12
 

Moment of inertia of glass layer 2 

 

𝐼𝑇 = 𝐼1 + 𝐼2 = 𝑏
𝐻1

3 + 𝐻2
3

12
 

Moment of inertia of the glass layers 

 

𝑌 =
𝐻0

2𝐸1𝐻1𝐸3𝐻3

𝐸𝐼𝑇(𝐸1𝐻1 + 𝐸3𝐻3)
 

Geometric parameter 

 
 

Appendix A 

The Prony series for the shear relaxation modulus Gt(t,T) is given by: 

  (38) 

where the parameters gi and τi are shown in Table A1. 

Table A1. Prony series coefficients for PVB. 

Term gi τi [s] 

1 2.342151953E-01 2.36600000000000E-07 

2 2.137793134E-01 2.26430000000000E-06 

3 1.745500419E-01 2.16668000000000E-05 

4 1.195345045E-01 2.07327300000000E-04 

5 1.362133454E-01 1.98389580000000E-03 

6 6.840656310E-02 1.89837195000000E-02 

7 4.143944180E-02 1.81653498300000E-01 

8 7.251952800E-03 1.73822593210000E+00 

9 2.825459600E-03 1.66329270788000E+01 

10 2.712854000E-04 1.59158978189400E+02 

11 4.293523000E-04 1.52297789909670E+03 

12 9.804730000E-05 1.45732380763177E+04 

13 5.274937000E-04 1.39449999999999E+05 

 


