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Matching distributions algorithms based on the
Earth Mover’s distance for Ordinal Quantification

Alberto Castaño , Pablo González , Jaime Alonso , and Juan José del Coz

Abstract—The goal of quantization learning is to induce models capable of accurately predicting the class distribution for new bags of
unseen examples. These models only return the prevalence of each class in the bag because prediction of individual examples is
irrelevant in these tasks. A prototypical application of ordinal quantification is to predict the proportion of opinions that fall into each
category from 1 to 5 stars. Ordinal quantification has hardly been studied in the literature, in fact only one approach has been proposed
so far. This paper presents a comprehensive study of ordinal quantification, analyzing the applicability of the most important algorithms
devised for multiclass quantification and proposing three new methods that are based on matching distributions using Earth Movement
Distance (EMD). Empirical experiments compare 14 algorithms on synthetic and benchmark data. To statistically analyze the obtained
results, we further introduce an EMD-based scoring function. The main conclusion is that methods using a criterion somehow related
to EMD, including two of our proposals, obtain significantly better results.

Index Terms—Machine Learning, Quantification Learning, Prevalence Estimation, Earth Mover’s Distance, Ordinal Quantification

© This work is copyrighted by IEEE.
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1 INTRODUCTION

QUANTIFICATION [1] is the learning task aimed at ob-
taining models to estimate the proportion of a group

of classes given a set of unlabeled examples. It has several
applications, for instance, estimating the prevalence of dif-
ferent types of incidents in a customer service center, quan-
tifying the proportion of positive and negative comments
about a product, predicting prevalences of flying insects,
and estimating causes of death from verbal autopsies. See
[2] for a survey including more applications.

From a theoretical perspective, the main characteristic
of quantification is that it deals with data distribution shift
between the time when the model is learned using training
data, D, and when that model is deployed to make pre-
dictions over new unseen sets, T . In symbols, PD(x, y) ̸=
PT (x, y). This has two consequences: 1) quantification must
not be solved using off-the-shelf classifiers designed under
the i.i.d. assumption, and 2) suitable quantification meth-
ods must have some kind of mechanism to deal with the
distribution shift and obtain more accurate predictions. The
design of most quantification algorithms assumes that the
prior class probabilities change, PD(y) ̸= PT (y), otherwise
the problem would be trivial, but the class-conditional fea-
ture distributions remain constant, PD(x|y) = PT (x|y).

In the recent years, work on quantification has focused
mainly on binary quantification. As in supervised classifica-
tion, solving the binary case is considered as the cornerstone
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to develop the field and then tackling more complex prob-
lems, such as multiclass quantification or ordinal quantifica-
tion. Some of the proposed binary quantification algorithms
can be directly applied to these problems. However, this
topic has barely been studied in the literature despite the
fact that ordinal quantification has several potential appli-
cations, for instance most problems dealing with product
reviews. Humans find it easier to express their opinions
on ordinal scales and this information is a crucial asset for
many companies offering services or products to consumers.
The application of ordinal quantification methods may help
to better exploit this information.

The main goal of this paper is to present a kind of
seminal work on ordinal quantification which can serve as a
starting point for the development of future ordinal quanti-
fiers. For that purpose, the paper analyzes those binary and
multiclass methods that can be extended or adapted to the
ordinal case. Among them, we are particularly interested
in methods based on the matching distribution framework
[3]. Combining such a framework and the Earth Mover’s
Distance (EMD) [4], the paper introduces three new ordinal
quantification methods. These new algorithms are theo-
retically well-founded because they are Fisher consistent,
meaning that their quantification errors tends to zero as the
size of the test bags increases. The performed experiments
conclude that two of the existing multiclass quantifiers
based on the Energy distance perform as well as two of our
proposals and better than the rest of the methods.

The contribution of this work is threefold: 1) an analysis
of the only ordinal quantification method proposed so far,
giving a new interpretation of it and pointing out its draw-
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Fig. 1: Comparing to the true prevalences in the left, the
set of prevalences in the center has a lower EMD loss but a
higher MAE than the set of prevalences in the right side

backs, 2) the introduction of three new algorithms that are
specially devised for ordinal quantification, and 3) the defi-
nition of a new EMD-based scoring metric that facilitates the
statistical analysis of the performance of ordinal quantifiers.

The rest of the paper is organized as follows. Section 2
formally describes ordinal quantification. The next three
sections discuss some multiclass quantifiers that can be used
for ordinal tasks (Section 3), the only ordinal quantifier in
the literature (Section 4) and proposed new methods (Sec-
tion 5). The paper ends reporting the experimental results in
Section 6 and drawing some conclusions in Section 7.

2 ORDINAL QUANTIFICATION

In ordinal quantification tasks, we start with a training set,
D = {(xi, yi)}ni=1, where each xi is the representation of an
example using the input space X , and yi ∈ Y = {c1, . . . , ck}
is its true class. As in supervised classification, the difference
between ordinal quantification and multiclass quantification
is that: 1) in the former case the output space Y is endowed
with an ordering relationship, c1 ≺ c2 ≺ . . . ≺ ck, and
2) this fact must be taken into account when selecting the
loss function to assess the goodness of a model. The goal of
ordinal quantification is to induce a model that given a set of
unlabeled examples, T = {xj}mj=1, predicts the prevalence,
p̂l, of each class cl, obeying that 0 ≤ p̂l ≤ 1 and

∑k
l=1 p̂l = 1.

The predicted class for an individual example xj is irrele-
vant because only the aggregated predictions are required
in quantification. For instance, if k = 3, a valid prediction
for T could be the probability distribution [0.2, 0.7, 0.1]. The
difference with respect to label distribution learning (LDL)
[5] is that the predicted distribution is over a set of examples,
T , whereas LDL models return the probability with which
each class (or label) describes a given instance xj .

A key ingredient in any learning task is the loss function
used to evaluate the goodness of the candidate models.
According to [6], [7], we believe that a good choice is to
adopt the EMD. Considering that ordinal quantification
requires comparing two probability distributions, the true
prevalences set, p, and the predicted one, p̂, EMD can be
efficiently computed as:

EMD(p, p̂) =
k−1∑
l=1

∣∣∣ l∑
a=1

pa −
l∑

a=1

p̂a

∣∣∣. (1)

The EMD computes the probability mass that must be
shifted to convert one distribution to the other and ranges
from 0 to k − 1 in this configuration.

An alternative to EMD is the Mean Absolute Error
(MAE), calculated as MAE(p, p̂) = 1

k

∑k
l=1 |pl − p̂l|. But

in our opinion, EMD captures much better the similarity
when the classes have an order relation. For instance, Fig-
ure 1 compares the actual prevalences (left) [0.2, 0.2, 0.6]
with two probability distributions: [0.2, 0.7, 0.1] (center) and
[0.5, 0.2, 0.3] (right), resulting that the former has a lower
EMD loss, 0.5 (vs. 0.6), but a higher MAE, 0.33 (vs. 0.2). The
probability distribution of the graph in the center is closer to
the true one (left) because the mass of c3 moves to c2 instead
of c1, as in the distribution in the right.

3 SOLVING ORDINAL QUANTIFICATION USING
MULTICLASS QUANTIFIERS

The simplest option for implementing an ordinal quantifier
is to use any method devised for multiclass quantification.
Several of these multiclass quantifiers train an underlying
multiclass classifier. In order to use these algorithms for
ordinal quantification in our experiments, such a multiclass
classifier will be replaced by an ordinal classifier that takes
into account the ordering relationships between classes. See
[8] for an experimental study on ordinal classification.

3.1 Classify & Count and Adjusted Count Algorithms

The first of these methods is the so-called Classify & Count
(CC) approach. It is a very intuitive quantifier, specially
for those familiar with classification. The idea is to train a
classifier, h, with the training data D and apply h to classify
the examples in T , by counting the number of predicted
examples for each class. The CC approach can be formally
described as follows: 1) train h : X −→ {c1, . . . , ck} using D
with your favorite ordinal classification algorithm, 2) apply
h to predict the class of each example in T , and 3) count
the number of predicted examples for each class. The final
prevalence for each class is

p̂l =
1

m

∑
xj∈T

[[h(xj) = cl]], (2)

where [[q]] is the indicator function. CC performs poorly
when the probability class distribution changes significantly
between the training and testing sets, see [9].

Forman proposed the AC (Adjusted Count) algorithm
for binary quantification [10] to solve the CC prob-
lems when the distribution changes. Despite the fact that
PD(x, y) ̸= PT (x, y), AC , like other algorithms to be ex-
plained later, makes the learning assumption that P (x|y)
remains constant. This implies that some characteristics of
the classifier h do not change, for instance its true positive
rate, tpr = P (h(x) = +1|y = +1), and false positive rate,
fpr = P (h(x) = +1|y = −1). This allows AC to adjust the
prediction for the positive class made by CC, pCC

+1 , because
it can be written in terms of the actual prevalence of the pos-
itive class, p+1, tpr and fpr: pCC

+1 = tpr ·p+1+fpr ·(1−p+1).
Solving for p+1, AC estimates the prevalence of the positive
class by means of pAC

+1 = (pCC
+1 − fpr)/(tpr − fpr).
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The AC method can be easily extended to multiclass
quantification [11], [12] by estimating the complete confu-
sion matrix of the classifier h. Given h and a test set T , the
probability of predicting that a random example x belongs
to class ca can be written as:

PT (h(x) = ca) =
k∑

l=1

P (h(x) = ca|y = cl)PT (cl), (3)

where PT (cl) is the true prevalence of class cl in T , pl, and
P (h(x) = ca|y = cl) is the probability that h predicts ca
when the actual class of x is cl. The latter probability can
be estimated from the training set using many-fold cross-
validation. PT (h(x) = ca) is obtained by simply applying
h over T . Writing this same expression for all classes we
obtain a system of k equations with k unknowns, the values
of p̂l. For instance, for k = 3 and shortening P (h(x) =
ca|y = cl) as P (ca|cl):
P (c1|c1) P (c1|c2) P (c1|c3)
P (c2|c1) P (c2|c2) P (c2|c3)
P (c3|c1) P (c3|c2) P (c3|c3)

∗


p̂1

p̂2

p̂3

=


PT (h(x)=c1)

PT (h(x)=c2)

PT (h(x)=c3)

. (4)

This system does not have an exact solution in some cases,
especially when k is large. How to deal with these situa-
tions was not described in [11], [12]. Our implementation,
denoted as ACl2, returns the values for [p̂1, p̂2, p̂3] that
minimize the L2-norm between the left-hand and right-hand
side of (4), obeying the constraints 0 ≤ p̂l and

∑k
l=1 p̂l = 1.

Both, CC and AC , have their probabilistic counter-
parts. They require a probabilistic classifier that returns
the probability that a given example belongs to each class,
h : X × {c1, . . . , ck} −→ [0, 1]. In the case of PCC
(Probabilistic CC), the prevalence of each class is simply the
average of the probabilities of that class over the examples
in T :

p̂l =
1

m

∑
xj∈T

h(xj , cl). (5)

PCC suffers from the same problems as CC when the dis-
tribution changes. They can be partially overcome by using
PAC (Probabilistic AC) which solves a system conceptually
equivalent to (4) but based on the computation of posterior
probabilities averaged over D (again using many-fold CV)
and T :

h
xi∈D
yi=c1

(xi, c1) h
xi∈D
yi=c2

(xi, c1) h
xi∈D
yi=c3

(xi, c1)

h
xi∈D
yi=c1

(xi, c2) h
xi∈D
yi=c2

(xi, c2) h
xi∈D
yi=c3

(xi, c2)

h
xi∈D
yi=c1

(xi, c3) h
xi∈D
yi=c2

(xi, c3) h
xi∈D
yi=c3

(xi, c3)


∗


p̂1

p̂2

p̂3

=



h
xj∈T

(xj , c1)

h
xj∈T

(xj , c2)

h
xj∈T

(xj , c3)


. (6)

As is the case for AC , this system does not always have
an exact solution. Thus, again our implementation, PACl2,
returns the values for [p̂1, p̂2, p̂3] that minimize the L2-norm.

3.2 Methods Based on Matching Distributions
Other multiclass quantification methods that can be applied
to ordinal tasks are those based on matching the training
distribution and the testing distribution, estimated from
D and T respectively. The main idea is to modify the

Dc1
Dc2
Dc3

%

T

%

Fig. 2: The quantification methods based on matching distri-
bution represent somehow the distributions of (a) the exam-
ples of each class in D: Dc1 , . . . , Dck , and (b) the examples
of T . These methods approximates the distribution of T
using a mixture of Dc1 , . . . Dck applying (7)

training distribution using a mixture (denoted as D′) of the
distributions of each class, Dcl , weighted by their respective
estimated prevalence:

D′ = Dc1 · p̂1 +Dc2 · p̂2 + . . .+Dck · p̂k. (7)

The goal is to approximate this mixture distribution to the
distribution of T (denoted also as T by abuse of notation).
This idea is illustrated in Figure 2: the left side shows the
distributions of each class in the training set: Dc1 , . . . , Dck ,
while the figure on the right depicts the distribution of T .
Assuming that P (x|y) is constant, the distributions Dcl will
change uniformly as a function of the prevalences p̂l. The
aim is to minimize the distance, ∆, between D′ and T :

argmin
p̂1,...,p̂k

∆(D′, T ) = argmin
p̂1,...,p̂k

∆
(∑k

l=1
Dcl p̂l , T

)
. (8)

Observing Figure 2, the prevalence of c1 in T is larger than
the observed in D, while for c2 the opposite is true. Thus,
to match both distributions, p̂1 must increase and p̂2 must
decrease with respect to their prevalences in D.

According to the description above, quantification algo-
rithms based on matching distributions have the following
elements: 1) a method to estimate data distributions, 2) a
similarity measure ∆ and 3) an optimization method to
solve (8). There are two main options for estimating the
distributions: using the attributes that define the input space
(X-methods), or using the predictions given by a classifier
(y-methods). Note that y in this case does not refer to the
actual class of the examples in D but to the predictions,
usually a probability or a score, given by a classifier (ŷ might
be more correct).

González-Castro et al. [13] propose two distribution
matching algorithms that employ the Hellinger distance
(HD) as the similarity measure and use histograms (PDFs) to
represent the distributions. These methods differ only in the
way the histograms are computed: HDX uses the attributes
of the input space, while HDy employs the predictions
provided by a classifier. Both algorithms can be derived
from the definition of the HD for the multivariate case and
applying (7) to represent D′, which results in the following
optimization problem:

min
p̂1,...,p̂k

1

d

d∑
s=1

√√√√√ b∑
r=1

(√
|Tr,s|
m

−

√√√√ k∑
l=1

|Dcl
r,s|

ncl
p̂l

)2

, (9)
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where b is the number of bins for the histograms, Dcl is the
subset of D consisting only of the examples of class cl, ncl

is the size of such subset, |Dcl |, and |Tr,s| /m and |Dcl
r,s|/ncl

are the proportion of examples in T and Dcl belonging to
the r-th bin in the s-th dimension. As for the value of d,
it depends on the method: it is the dimension of the input
space in the case of HDX , and for HDy it is the size of the
predictions of the underlying classifier. Since we will use
probabilistic classifiers that return the probability of each
class, d is equal to the number of classes, k. The solution
of (9) can be found analytically taking into account the
equivalence between HD and the Bhattacharyya coefficient,
HD(T,D′) =

√
1−BC(T,D′) [3].

The other kind of quantifiers based on matching dis-
tributions was proposed for domain adaptation tasks. The
idea of domain adaptation [14] is to transfer knowledge
from a source domain, D in our notation, to a target domain,
T . The goal is to learn a model that performs well on T
using labeled and unlabeled examples from both domains.
The difficulty is that D and T come from different data
distributions, but sometimes the difference between them is
just that the class distribution changes. Under the latter as-
sumption, there are some domain adaptation methods [15],
[16], [17] that estimate the probability class distribution of T
to adjust the classifier trained with labeled examples of D
without the need of retraining it. Notice that, as byproduct,
these algorithms can also be applied in quantification tasks
because they estimate the class distribution of T .

Among all these methods, [17] is particularly interesting
because it outperforms the other approaches and is com-
putationally more efficient. It follows the same framework
as HDX defined by (8), that is: to reweight D, using
(7), to resemble T . However there are two differences: 1)
the sets D and T themselves are employed to represent
each distribution, so no histograms are needed, and 2) the
similarity measure ∆ is the Energy distance (ED). Formally,
the algorithm, called EDX , minimizes the ED between the
mixture distribution, D′, and T with respect to p̂:

min
p̂1,...,p̂k

2 · Exi∽D′,xj∽T δ(xi,xj) (10)

−Exi,x′
i∽D′ δ(xi,x

′
i)− Exj ,x′

j∽T δ(xj ,x
′
j).

where δ is a distance function. Dropping the last term,
because it does not depend on p̂, and developing the rest:

min
p̂1,...,p̂k

2
k∑

l=1

p̂l Exi∽Dcl ,xj∽T δ(xi,xj) (11)

−
k∑

l=1

k∑
l′=1

p̂l p̂l′ Exi∽Dcl ,x′
i∽Dc

l′ δ(xi,x
′
i).

This same problem can be expressed in matrix form as:

min
p̂

2 p̂⊺s− p̂⊺A p̂, (12)

where s, a k-dimensional vector, and A, a k × k symmetric
matrix, contain all the expectations. In practice, these expec-

tations can be approximated using D and T , so the values
of s and A can be computed as:

scl = E
xi∽Dcl

xj∽T

δ(xi,xj) ≈
1

ncl m

∑
xi∈Dcl

∑
xj∈T

δ(xi,xj), (13)

Acl,cl′ = E
xi∽Dcl

xi′∽Dc
l′

δ(xi,xi′) ≈
1

ncl ncl′

∑
xi∈Dcl

∑
xi′∈Dc

l′

δ(xi,xi′).(14)

Instead of solving (12) directly, it is better to minimize:

min
p̂′

p̂′⊺B p̂′ − 2 p̂′⊺t+ C, (15)

where p̂′ = p̂1, . . . , p̂k−1, p̂k = 1−
∑k−1

l=1 p̂l, C is a constant,
B is a (k−1)× (k−1) symmetric matrix, and t is a (k−1)-
dimensional vector. B and t are defined as:

Bcl,cl′ = −Acl,cl′ +Acl,ck +Ack,cl′ −Ack,ck , (16)
tcl = −scl +Acl,ck + sck +Ack,ck . (17)

The EDX method uses the L2-norm as δ and, for such
a case, problem (15) is strongly convex as demonstrated in
[17]. As for the efficiency, notice that the matrices A and B
can be precomputed before T arrives, so EDX only needs
to compute t in prediction time before solving (15).

The authors in [18] propose two variants of EDX . The
first is called EDy and is motivated by the results in [13]
showing that HDy behaves better than HDX . Thus, instead
of using the attributes of X , EDy employs the predictions of
a classifier h to represent the distributions. The formulation
of EDy is exactly the same as that of EDX explained
above, except that the distance function δ works with the
predictions provided by h. Then, s and A are computed as
follows:

scl =
1

ncl m

∑
xi∈Dcl

∑
xj∈T

δ(h(xi), h(xj)), (18)

Acl,cl′ =
1

ncl ncl′

∑
xi∈Dcl

∑
xi′∈Dc

l′

δ(h(xi), h(xi′)). (19)

Thus, the difference between two examples for EDy is
the distance between their predictions. In [18] just binary
quantization is discussed and in the experiments the authors
use probabilistic classifiers, being δ the Manhattan distance.

The second proposal in [18] tries to extend the type of
metrics used to compare distributions. Several metrics and
divergences have been considered in the literature, includ-
ing HD, Kullback-Leibler Divergence (KLD) and Pearson
divergence, to name a few. The authors propose a metric
based on rankings, namely the Cramér-von Mises (CvM)
criterion. The quantification method, named as CvMy, em-
ploys the approach discussed in [19]. CvMy has two main
steps: 1) compute the joint ranking of h(x) for the examples
in Dc1 , . . . , Dck , and T , and 2) compare the distributions
using the ED. Basically, CvMy is similar to EDy, but
CvMy computes the distance between the rankings of the
predictions, rather than using the predictions themselves.
That is, the expression δ(h(xj)−h(xi)) in (18) is replaced by
δ(r(h(xj)) − r(h(xi))) where r(h(x)) returns the position
of h(x) in the ranking of the examples in D and T . The
idea of using CvMy for ordinal quantification is appealing
because it is based on rankings and rankings have a strong
connection to ordinal tasks.
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Fig. 3: An example of an Ordinal Quantification Tree, k = 5

4 ORDINAL QUANTIFICATION TREES

The first and only ordinal quantification method was in-
troduced in [7]. Its name is Ordinal Quantification Trees
(OQT ) and it is based on the so-called Frank & Hall (FH)
decomposition [20]. FH is a decomposition method in which
the original ordinal classification problem is decomposed
into k − 1 binary classifiers, namely: h1: 1 vs 2-3- . . . -k, h2:
1-2 vs 3- . . . -k, . . ., and hk−1: 1-2- . . . -k−1 vs k.

During the training phase, OQT trains this group of
binary classifiers using an algorithm that learns probabilistic
classifiers. OQT then arranges these classifiers into a binary
tree in which each node contains a probabilistic binary
classifier and there are as many leaves as classes. Figure 3
depicts an example of an OQT model for k = 5. The key
ingredient of OQT is the way the classifiers are arranged.
The criterion used is to select, at each node, the probabilistic
classifier that obtains the best quantification performance for
its corresponding binary quantification problem among the
remaining possible ones. OQT measures the quantification
accuracy by applying the PCC method (5) and the KLD
as the performance metric. For instance, in Figure 3 the
model h2: 1-2 vs 3-4-5 is selected at the root node because its
KLD score is the best one. For the subtree on the left, which
deals with classes 1 and 2, only one remaining classifier (h1:
1 vs 2-3-4-5) can be used, so that is the one that is selected.
However, for the subtree on the right there are two possible
classifiers (h3 and h4) and h4: 1-2-3-4 vs 5 is the one selected
because, again, its quantification accuracy is better than that
of h3: 1-2-3 vs 4-5.

In the prediction phase, the binary tree is used to com-
pute the posterior probability of each class given an example
xj , P (cl|xj). This probability is computed as the product of
the probabilities returned by the classifiers along the path
from the root to the leaf corresponding to the class cl. For
instance, assuming that each model hl: 1- . . . -l vs l+1- . . . - k
is a probabilistic classifier, hl : X → [0, 1] that returns the
probability that an example belongs to the set of classes
{c1, . . . , cl}, thus, hl(xj) = P (yj = {c1, . . . , cl}|xj), the
posterior probability of class c3 in Figure 3 is the product
of 1−h2(xj) = P (yj = {c3, c4, c5}|xj), h4(xj) = P (yj =
{c1, c2, c3, c4}|xj) and h3(xj)=P (yj ={c1, c2, c3}|xj). No-
tice that this procedure guarantees that

∑k
l=1 P (cl|xj) = 1.

Finally, OQT applies the PCC method (5) to compute
the prevalence of each class. This is clearly its major weak-
ness. It is well-documented in the literature, see for instance

[9], that CC and PCC perform worse as the distribution
shift increases. Although the authors in [7] do not discuss
this issue, all quantification algorithms using an underlying
classifier, e.g. AC , HDy and EDy, could be applied instead
of PCC . This aspect will be analyzed in the experiments
because some of them are theoretically better than PCC .

Due to the above reasoning, OQT can be interpreted
differently. Removing the application of PCC , OQT is
a method to compute class posterior probabilities given
the classifiers of the FH decomposition. As we will dis-
cuss later, the original FH method [20] does not provide
a correct set of posterior probabilities because in general∑k

l=1 P (cl|xj) ̸= 1. But OQT does, thus it is rather inter-
esting for this reason. In Appendix A we propose another
alternative to compute posterior probabilities from the FH
decomposition that seems to perform even better.

5 PROPOSED ORDINAL QUANTIFIERS

The ordinal quantification methods proposed in this paper
are based on two basic principles. The first is that they must
be Fisher consistent. As discussed by [21], an estimator is
Fisher consistent if it would obtain the true value of the
estimated parameter when the estimator is computed using
the entire population. Applying this to quantification, it
means that the quantification error of a Fisher consistent
quantifier tends to zero as the size of D and T increases.
Examples of Fisher consistent quantifiers are AC , PAC, and
all methods based on matching distributions (Section 3.2),
see [18], [22]. In contrast, CC, PCC and OQT are not Fisher
consistent. The second principle is that the loss function
used by these new methods should be the EMD because
it seems the most appropriate for comparing distributions
of ordered classes.

The straightforward idea for designing these algorithms
is to somehow adapt the methods based on the matching
distribution framework (8), mainly HDy and EDy because
they outperform HDX and EDX for binary quantification
[18]. The adaptation of EDy is simple. The probabilistic
prediction for an example returned by an ordinal classifier is
a probability distribution over the set of classes. Therefore,
we can compute the distance between the probabilistic
predictions of any pair of examples using EMD as δ function
in (18) and (19). We will denote this method as EDyemd.

The adaptation of HDy is a bit more intriguing. First,
[18] points out that HDy may perform poorly for multi-
class quantification because it treats the histograms of each
class independently. Looking at (9), for HDy we have k
histograms with b bins because d = k. Each value of a
probabilistic prediction for a given example, P (cl|xj), maps
into the corresponding l-th bin, but the relationship between
those probabilities is lost. Notice that this does not occur, for
instance, with EDy. In the case of multiclass quantification
one potential way to solve this is to construct other types
of histograms for multivariate spaces, e.g. hypercubes, but
this representation is much sparser, requires more examples,
and the resulting algorithm will converge more slowly. For-
tunately, in ordinal problems the classes are endowed with
an ordering relationship, which simplifies how to obtain a
suitable representation.
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The first solution is to use a scoring classifier that returns
a single score for a given example that can be interpreted as
a ranking value. Notice that in this setting the thresholds for
separating the classes are meaningless. The other solution is
to employ a probabilistic classifier that returns P (cl|xj), l =
1, . . . , k, converting these probabilities into a ranking value
using a score function, for instance the one proposed in [23]:

S(xj) =
k∑

l=1

T (l) · P (cl|xj), (20)

where T (l) is some monotone function of the relevance
level l. We follow this second solution using T (l) = l, thus
the scoring function ranges between 1 and k, because this
allows us to make a fairer comparison with OQT which is
based on probabilistic classifiers.

The problem is how to solve the minimization problem
(8) being ∆ the EMD and using the representation just
described above. Notice that the resulting algorithm extends
the binary ORD/SORD quantifiers [24] to the ordinal case.
ORD and SORD use histograms (PDFs), like HDy, but
their metric ∆ is EMD instead of HD. ORD has a limited
number of bins and in SORD b → ∞. The problem is that
both algorithms are rather slow to quantify a testing bag.
However we can speed up this process by applying this
lemma:

Lemma 1. The EMD between two PDFs matches the L1 norm of
the corresponding CDFs.

Proof. The original expression of EMD using PDFs in (1) can
be expressed as:

b−1∑
r=1

∣∣∣∣∣
r∑

s=1

|Ts|
m︸ ︷︷ ︸

r-th bin of CDF(T )

−
r∑

s=1

k∑
l=1

|Dcl
s |

ncl
p̂l︸ ︷︷ ︸

r-th bin of CDF(D′)

∣∣∣∣∣. (21)

and this is the L1 norm of the corresponding CDFs.

This method will be referred to as PDFemd from now on.
Notice that the idea of PDFemd is related to linear subspace
ranking hashing (LSRH) [25], [26]. LSRH learns ranking-
based hash functions by exploiting the ranking correlation
structures of X . In this case the ranking correlation structure
is obtained using probabilistic classifiers and (20).

Finally, the popular AC method can also be adapted
to ordinal quantification. When the system in (4) does not
have an exact solution, we can use a metric to minimize
the distance between the left side and the right side. Both
sides contain a probability distribution over the classes, thus
we can apply the EMD (ACemd). Notice that PAC method
cannot be adapted in the same way.

6 EXPERIMENTAL RESULTS

6.1 Experimental setup

The goal of the experiments was to compare all the methods
discussed throughout the paper. A total of 14 algorithms
were compared. Namely, CC, ACl2, PCC and PACl2

(Section 3.1), HDX , HDy, EDX and EDy, denoted as
EDyl2 because it uses the L2-norm, (Section 3.2), CvMy,
OQT (Section 4) and the methods introduced in the paper,

Fig. 4: Normal distributions used to generate the synthetic
datasets. Left: easier task, µ∆ = 6, right: harder task, µ∆ = 3

ACemd, EDyemd and PDFemd (Section 5). For complete-
ness, we also included another version of PDFemd, denoted
as PDFl2, that minimizes the L2-norm instead of EMD.

Most of these methods require a classifier that provides
predictions for individual examples. There are many alter-
natives but, considering that we are dealing with ordinal
quantification, it is preferable to employ an ordinal classifier
that takes into account the ordinal relationship between
classes. First, we selected the tree-based probabilistic clas-
sifier used by OQT , denoted as FH Tree classifier hereafter.
This choice was motivated by several reasons: i) it allowed
us to make a fair comparison with OQT , the only existing
ordinal quantifier, ii) the performance of FH decomposition,
on which FH Tree is based, is very competitive (see [8] for
an experimental study on ordinal classification algorithms)
and iii) it scales well in the number of classes and trains
faster than other probabilistic ordinal classifiers. But in
addition to this classifier, we wanted to use another one,
also based in the FH strategy if possible, to test the goodness
of posterior probabilities returned by FH Tree classifier.
Appendix A presents FH Monotonic classifier that is also
based on FH decomposition. These two classifiers were used
in all experiments and it seems that the FH Monotonic
classifier provides better probabilities (see the comparison
between PCC in Table 2 and OQT in Table 4) and trains
faster because it does not need to estimate the quantification
accuracy of the binary classifiers.

All quantifiers that need a classifier were trained by
ensuring that all employ exactly the same classifier. This
implies that the predictions used to represent the distribu-
tions are exactly equal and no differences in the results are
due to the classifier but to the quantifier, which is the aspect
that we wanted to analyze.

We perfomed two groups of experiments using: i) syn-
thetic data, and ii) benchmark datasets. The following
sections discuss the obtained results. Due to space con-
straints, only the most important results are included in
the paper. The rest can be found in the Supplementary
Material. In order to ensure data availability and research
reproducibility, the datasets and source code are available at
http://github.com/bertocast/ordinal quantification.

6.2 Experiments with synthetic data

The idea was to generate a synthetic ordinal quantification
problem that obey that P (x|y) is constant, the main learning
assumption in quantification learning. Thus, we created
a problem with k = 5 classes and a single attribute in
which the training and testing examples for each class, cl,
were generated using the following normal distribution,

http://github.com/bertocast/ordinal_quantification
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Fig. 5: EMD results varying the number of bins

N (µl, σ
2), where µl = 3+(l−1)∗µ∆ and σ = 1.5. The value

of µ∆ is a parameter to control the overlap between classes
and the difficulty of the ordinal quantification problem. We
generated two different problems: the easiest (µ∆ = 6) and
the hardest one (µ∆ = 3), see Figure 4.

In each problem, we first generated different training
data sets by varying the number of examples of each class,
ncl ∈ {50, 100, 200, 500, 1000, 2000}. Next the testing set
was formed by 2000 examples of each class. To properly
test the quantifiers over a wide and uniform range of class
prevalences, 300 testing bags were generated for this test
dataset. The entire process was repeated 10 times, so each
score in this section corresponds to 3000 quantification
tasks. The procedure to create each testing bag was as fol-
lows: i) a new probability class distribution was generated
using the method proposed by Kraemer [27] to guarantee a
uniform distribution of prevalences in the range [5%−95%],
ii) the examples from each class for the new test bag were
chosen using random sampling with replacement to hold
P (x|y) constant.

Here we report only the EMD results using the FH
Monotonic classifier (results using the FH Tree classifier can
be found in the Supplementary Material). The underlying
base classifier was Logistic regression (LR) because it is able
to induce a nearly Bayes optimal classifier for these synthetic
experiments when applied in combination with the FH
decomposition. This aspect is important because most of the
compared methods depend on the use of a reliable classifier.
To select the regularization parameter, C , a grid search
was carried out on C ∈ {10−3, . . . , 103} by optimizing the
geometric mean using a 3-fold cross-validation (CV). All
methods that need to estimate the Dcl and T distributions,
or matrices (4) and (6) in the case of ACl2 and PACl2,
employ a 20-fold CV following [10].

Only HDX , HDy, PDFl2 and PDFemd have a hyper-
parameter, which is the number of bins per class, b. The rest
of the approaches have none. First, we studied the behavior
of these four methods by varying b in {4, 8, 16, 32, 64}.
Figure 5 shows the aggregated results, varying ncl . HDX
obtains the best results when b is between 8 and 32, while its
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Fig. 7: Prediction times in the experiment with synthetic data

scores are worse when the value of b is 4 and 64, especially
in the first case. The performance of HDy and PDFl2 de-
creases as b increases, but HDy obtains the best result in the
hardest problem (µ∆ = 3) when b = 8. PDFemd is the most
stable method: its results are similar regardless of the value
of b but they seem to be slightly better as the number of bins
increases. This behavior was expected because cumulative
distributed functions can be better approximated.

The next experiment compares the performance of all
methods. To benefit HDX , HDy and PDFl2 we took the
best value for b in each problem, that is, 16, 4 (µ∆ = 6) or
8 (µ∆ = 3), and 4 respectively. For PDFemd we selected
b = 32 because the results are quite similar at any value.
Figure 6 shows the EMD results, excluding CC and PCC
because they do not converge (see Supplementary Material).
The most important conclusion is that the rest of algorithms
converge as the number of training examples increases. This
behavior is expected because they are Fisher consistent [18],
[21], [22]. Overall, the best methods are HDX and PDFemd:
they obtain the best results and converge faster (they per-
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TABLE 1: Benchmark datasets. The last two columns con-
tain the prevalence of the minority class, min(p), and the
prevalence of the majority class, max(p).

Dataset Examples Features Classes min(p) max(p)

SWD (Social Workers Decisions) 1000 10 4 3.20% 39.90%
ESL (Employee Selection) 488 4 5 10.66% 27.66%
LEV (Lecture Evaluation) 1000 4 5 2.70% 40.30%
cement-strength 998 8 5 9.62% 31.06%
stock 950 9 5 9.05% 28.63%
boston-housing 506 13 5 6.13% 47.23%
california-housing 20640 8 6 6.68% 33.16%
winequality-red 1359 11 6 0.74% 42.46%
winequality-white 3961 11 6 0.50% 45.14%
auto-data 392 7 7 8.42% 20.15%
skill 3337 18 7 1.05% 24.30%
skillCraft1-7classes 3340 18 7 1.05% 24.28%
kinematics 8192 8 8 12.50% 12.50%
skillCraft1-8classes 3395 15 8 1.03% 23.89%
ERA (Employee Rejection/Acceptance) 1000 4 9 1.80% 18.10%
ailerons 7154 39 9 7.16% 14.40%
abalone 4177 10 10 0.86% 31.67%

form better when ncl is small). However, the differences
with the other methods are minimal.

Finally, we recorded the time (in seconds) taken by each
method to predict a testing bag. The results are shown in
Figure 7. Most of the methods are quite fast with predic-
tion times below 0.35 seconds in all cases. The algorithms
based in the Energy Distance are the worst methods in this
respect because they must compute a matrix of distances
between the examples in D and T . Thus, their prediction
time increases as ncl grows. But there are some differences
between them. CvMy is clearly the slowest because it needs
to compute also the ranking of the instances. Its prediction
time increases linearly with ncl . The behavior of EDyemd

is much better due to a clever matrix implementation to
compute the EMD distances being its increments rather
flat. Notice that our proposal PDFemd is fast enough with
prediction times similar to AC for instance.

In terms of training times, the fastest methods are HDX
and EDX because they do not need to learn a classifier. The
computational complexity of the rest of the methods is the
same because it is dominated by learning the underlying
ordinal classifier. Notice that such a process includes also
two CVs, one to select the hyperparameters of the ordinal
classifier and another to improve the estimation of the con-
fusion matrices in (4) and (6) or the Dcl and T histograms
for those methods based on PDFs. The rest of the training
time is spent to compute such statistics depending on the
method, but it is negligible compared to the time consumed
for training the classifier.

6.3 Experiments with benchmark datasets

The second group of experiments was performed us-
ing a benchmark of ordinal datasets that were donated
or collected by Arie Ben-David1, Wei Chu2 and Marek
Gagolewski3. Their main characteristics are in Table 1.

The settings used were virtually the same as those for
the experiments with synthetic data. There are only two
differences: 1) the data was split into 70% for training
data and 30% for testing (with 10 repetitions and also
generating 300 testing bags with the testing set following

1. https://www.cs.waikato.ac.nz/ml/weka/datasets.html
2. http://www.gatsby.ucl.ac.uk/∼chuwei/ordinalregression.html
3. https://www.gagolewski.com/data.html
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the procedure described before), and 2) the binary clas-
sifier employed by the FH Monotonic/FH Tree classifiers
was Random Forest (RF) with probabilistic output to ob-
tain non linear models. As for the RF hyperparameters,
we carried out a grid search in which the depth parame-
ter varied in [1, 5, 10, 15, 20, 25, 30], the number of trees in
[10, 20, 40, 70, 100, 200, 250, 500], and the minimum number
of examples for the leaf nodes in [1, 2, 5, 10, 20]. The search was
executed by optimizing the geometric mean using a 3-fold
CV to obtain suitable classifiers even when the classes were
unbalanced. The value of the number of bins was 32 for
PDFemd, 4 for PDFl2 and 8 for HDX and HDy (this
selection is in agreement with previous studies, see [28],
[29]). We performed an experiment using the 11 smallest
datasets by varying b ∈ {4, 8, 16, 32, 64} to select the best
values of b. The results are in Figure 8. The behavior is
similar to that of the synthetic data.

To better analyze this experiment statistically, we will
limit ourselves to reporting the results of EMDscore, a new
scoring metric introduced here based on EMD. Given a set
of true prevalences, p, and a set of predicted prevalences,
p̂, EMDscore returns the percentage of the probability mass
that must not be moved for turning p̂ into p. It is computed
as:

EMDscore(p, p̂) =
MAXEMD(p)− EMD(p, p̂)

MAXEMD(p)
, (22)

in which MAXEMD(p) is the maximum between
EMD(p,{1, 0, . . . , 0}) and EMD(p,{0, . . . , 0, 1}). That is, the
maximum loss of EMD for p is obtained when the total mass
is in one of the extremes. Table 2 contains the EMDscore
using the FH Monotonic classifier. The EMD and EMDscore
results are obviously related, for instance, in these exper-
iments the best method for a given dataset is always the
same for both metrics. Supplementary Material contains the
results using EMD as the performance measure and also the
results using the FH Tree classifier with both metrics.

First, analyzing the performance of multiclass quantifiers
in these ordinal quantification problems, we can state that
the best methods are EDyl2 (5 wins) and CvMy (1 win).
Both perform consistently quite well. HDy and PAC are
the runners-up, but the other methods perform much worse,
which shows that it is not a good approach to apply any
multiclass quantifier to ordinal tasks.

Comparing the results of the methods using EMD as a
loss function with their counterparts, we can observe that
the differences between ACl2 and ACemd are rather small.
Recall that the loss function used for AC , L2 or EMD

https://www.cs.waikato.ac.nz/ml/weka/datasets.html
http://www.gatsby.ucl.ac.uk/~chuwei/ordinalregression.html
https://www.gagolewski.com/data.html
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TABLE 2: EMDscore results for benchmark datasets using FH Monotonic classifier

dataset CC ACl2 ACemd PCC PACl2 EDX CvMy EDyl2 EDyemd HDX HDy PDFl2 PDFemd

SWD 0.8298 0.8681 0.8677 0.8301 0.8807 0.8581 0.8943 0.9001 0.8893 0.8655 0.8639 0.8427 0.8649
ESL 0.9254 0.9121 0.9133 0.9200 0.9328 0.9326 0.9367 0.9406 0.9430 0.9157 0.9308 0.9286 0.9439
LEV 0.8756 0.8492 0.8530 0.8726 0.8738 0.8569 0.8709 0.8870 0.8835 0.8727 0.8584 0.8633 0.8923
cement-strength 0.9407 0.9440 0.9448 0.9048 0.9475 0.8782 0.9434 0.9509 0.9506 0.8736 0.9496 0.9460 0.9486
stock 0.9712 0.9747 0.9748 0.9572 0.9778 0.9570 0.9652 0.9780 0.9783 0.9615 0.9690 0.9654 0.9789
boston-housing 0.9163 0.9239 0.9240 0.8876 0.9313 0.8888 0.9163 0.9360 0.9366 0.8911 0.9171 0.9250 0.9320
california-housing 0.9020 0.9714 0.9715 0.8986 0.9788 0.9418 0.9798 0.9830 0.9817 0.9444 0.9831 0.9773 0.9782
winequality-red 0.7263 0.7353 0.7505 0.7926 0.7696 0.8019 0.7947 0.8003 0.8114 0.7662 0.7931 0.7915 0.7978
winequality-white 0.8263 0.8143 0.8181 0.8187 0.8268 0.8452 0.8424 0.8543 0.8541 0.7915 0.8316 0.7928 0.8079
auto-data 0.9129 0.8892 0.8885 0.9177 0.9064 0.8961 0.9080 0.9119 0.9168 0.8932 0.9032 0.8971 0.9099
skill 0.8274 0.8750 0.8754 0.8778 0.8737 0.8797 0.9046 0.9027 0.9117 0.8794 0.8943 0.8949 0.9108
skillCraft1-7classes 0.8173 0.8813 0.8779 0.8755 0.8725 0.8814 0.9044 0.8994 0.9060 0.8779 0.8823 0.8996 0.9041
kinematics 0.9098 0.9303 0.9285 0.8864 0.9267 0.9003 0.9448 0.9493 0.9490 0.9029 0.9463 0.9341 0.9379
skillCraft1-8classes 0.8564 0.8784 0.8796 0.8959 0.8912 0.8959 0.9106 0.9132 0.9162 0.8833 0.8959 0.9071 0.9150
ERA 0.7935 0.8000 0.7944 0.8549 0.8243 0.8539 0.8588 0.8567 0.8561 0.8542 0.8433 0.8329 0.8462
ailerons 0.8370 0.9161 0.9152 0.8817 0.9276 0.9106 0.9428 0.9467 0.9441 0.9069 0.9414 0.9354 0.9358
abalone 0.8694 0.8751 0.8718 0.8847 0.8862 0.8744 0.8976 0.9015 0.9091 0.8533 0.8934 0.8880 0.9008

average 0.8669 0.8846 0.8852 0.8798 0.8957 0.8855 0.9068 0.9124 0.9140 0.8784 0.8998 0.8954 0.9062

TABLE 3: Pairwise comparisons using Bayesian tests

m1 m2 p(m1) p(rope) p(m2)

EDyemd CC, ACl2, ACemd,
HDX , EDX , PCC 1 0 0
PACl2 0.99725 0.00275 0
PDFl2 0.9925 0.0075 0
HDy 0.97675 0.02325 0
PDFemd 0.134 0.86575 0.00025
CvMy 0.05725 0.94275 0
EDyl2 0 1 0

EDyl2 CC, ACl2, ACemd,
HDX , EDX 1 0 0
PCC 0.99975 0 0.00025
PACl2 0.99525 0.00475 0
PDFl2 0.90675 0.09325 0
HDy 0.8495 0.1505 0
PDFemd 0.13075 0.86625 0.003
CvMy 0.00875 0.99125 0
EDyemd 0 1 0

CvMy CC 1 0 0
ACl2 1 0 0
ACemd 1 0 0
HDX 1 0 0
PCC 0.99975 0 0.00025
EDX 0.9995 0 0.0005
PACl2 0.843 0.1555 0.0015
PDFl2 0.47775 0.5215 0.00075
HDy 0.157 0.84275 0.00025
PDFemd 0.04825 0.90525 0.04
EDyemd 0 0.94275 0.05725
EDyl2 0 0.99125 0.00875

PDFemd CC, ACemd 1 0 0
ACl2 0.99975 0 0.00025
HDX 0.99975 0 0.00025
PCC 0.999 0 0.001
EDX 0.999 0.00025 0.00075
PACl2 0.80475 0.1915 0.00375
PDFl2 0.6415 0.3585 0
HDy 0.31 0.6855 0.0045
CvMy 0.04 0.90525 0.04825
EDyl2 0.003 0.86625 0.13075
EDyemd 0.00025 0.86575 0.134

in this comparison, only plays a role when the system (4)
does not have an exact solution, that is, when the confusion
matrix is not invertible [30]. It seems that the number of such
cases is not large enough to allow finding some important
differences between the two loss functions. There is also
no appreciable difference between EDyemd and EDyl2, but
there are in the comparison between PDFemd and PDFl2 in
favor of the former. As we have seen in the experiments with
synthetic datasets, PDFemd attains a better performance.

Overall, the best approaches are EDyl2, EDyemd, CvMy
and PDFemd. They are the winners in 15 out of 17 cases
and their superiority is also confirmed by the Bayesian
hypothesis test used to statistically analyze the results [31].
In this type of analysis, a preliminary step is necessary,
which consists in the definition of the Region Of Practical
Equivalence (ROPE). Two methods are considered practically
equivalent if their mean differences according to a given
metric is less than a predefined threshold. In our particular
case, we considered two quantifiers to be equivalent if their
difference in terms of EMDscore was less than 1%. In fact
this was the main reason for introducing this scoring metric.
Once the value of rope has been fixed, it is possible to
accomplish the statistical analysis for the whole benchmark
using a hierarchical test. For each pair of quantifiers, we can
compute the probabilities that the differences between their
scores for any dataset are larger than rope value in favor
of each of the methods or lie in the rope area. Each row in
Table 3 summarizes these results. According to these tests
we can establish a ranking of the methods from worst to
best. First, the worst methods are CC, PCC , ACl2, ACemd,
HDX and EDX . All of them are significantly worse than
the best method with a probability of 1 or very close to 1.
The next method is PACl2 which is significantly worse than
EDyemd and EDyl2 but there is no significant difference
with respect to CvMy and PDFemd. Then come PDFl2

and HDy; they are only significantly worse than EDyemd.
The best methods are EDyemd, EDyl2, CvMy and PDFemd

with no differences among them, but notice that EDyemd is
the method that significantly outperforms more approaches.

In addition to the numerical values of the test, it is
also important to analyze the shape of these distributions.
This can be analyzed using simplex plots. The distributions
when comparing the best four methods among them are in
Figure 9. As can be seen, most of the points are in the rope
zone, but EDyemd and EDyl2 tend to perform better than
CvMy and PDFemd in a small number of cases.

Finally, Table 4 reports the results comparing OQT with
the best methods. The base classifier used was the FH Tree
classifier proposed in [7] because OQT is designed for this
classifier. OQT is clearly outperformed and the differences
are quite large in most cases. Our explanation for this result
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Fig. 9: Pairwise simplex graphs between the best methods

TABLE 4: EMDscores results using FH Tree classifier

dataset OQT EDyemd EDyl2 CvMy PDFemd

SWD 0.8368 0.8824 0.8975 0.8977 0.8637
ESL 0.9233 0.9433 0.9418 0.9396 0.9436
LEV 0.8615 0.8889 0.8886 0.8808 0.8918
cement-strength 0.8777 0.9465 0.9497 0.9431 0.9425
stock 0.9551 0.9782 0.9778 0.9673 0.9787
boston-housing 0.8567 0.9289 0.9308 0.9230 0.9210
california-housing 0.8765 0.9791 0.9819 0.9801 0.9765
winequality-red 0.7807 0.8168 0.8086 0.8120 0.7905
winequality-white 0.7777 0.8599 0.8539 0.8505 0.8355
auto-data 0.9137 0.9139 0.9115 0.9147 0.9085
skill 0.8688 0.9086 0.9043 0.9092 0.9100
skillCraft1-7clases 0.8699 0.9027 0.9009 0.9081 0.9057
kinematics 0.7930 0.9456 0.9495 0.9485 0.9320
skillCraft1-8clases 0.8820 0.9151 0.9156 0.9121 0.9139
ERA 0.8484 0.7990 0.7954 0.7846 0.7815
ailerons 0.8678 0.9400 0.9457 0.9432 0.9336
abalone 0.7995 0.9135 0.9184 0.9126 0.8971

average 0.8582 0.9095 0.9101 0.9075 0.9015

is based on the analysis in Section 4: OQT is just an instance
of PCC in which the base classifier is FH Tree classifier
and it is well-known that PCC is usually outperformed by
more sophisticated quantification algorithms, for instance
those based on matching distributions (Section 3.2). These
algorithms are Fisher consistent while PCC is not.

7 CONCLUSIONS

This paper presents an exhaustive study of ordinal quan-
tification. First, the only method devised so far is analyzed,
pointing out its drawbacks. Based on this fact, the paper
studies two alternatives. First, the applicability of multiclass
quantifiers based on matching distributions to the ordinal
setting. Second, the introduction of new algorithms spe-
cially designed for ordinal quantification. These methods
are based on: 1) using the matching distributions approach
because it has good theoretical properties (Fisher consis-
tency), and 2) applying EMD in this context because it is the
measure that makes the more sense for ordinal problems.
The main conclusion of this study is that EDy seems the
best multiclass quantifier for ordinal tasks but two of our
proposals are rather competitive despite do not outperform
EDy. This suggests that there is room for improvement on
this kind of ordinal quantifiers.

We plan two lines of research as future work. First, the
design of better methods for estimating and representing
distributions, which is the key element of the distributions
matching algorithms. Different approaches can be consid-
ered, including taking ideas from other problems, such a
multi-instance learning [32], and applying learning algo-
rithms, for instance, neural networks, capable of directly

inducing such representations. The second future work is to
apply these algorithms to other learning problems that need
to estimate and match distributions, for instance zero-shot
learning [33].

APPENDIX A
FRANK AND HALL MONOTONIC CLASSIFIER

The original Frank & Hall method does not compute true
probabilities and they are required by several of the quan-
tifiers in this paper. Assuming that each model of the FH
decomposition, hl: 1- . . . -l vs l+1- . . . -k, is a probabilistic
classifier that returns hl(xj) = P (yj = {c1, . . . , cl}|xj), the
original rule proposed in [20] to compute the posteriors is:

P (yj = c1|xj) = h1(xj),

P (yj = cl|xj) = (1−hl−1(xj))× hl(xj), 1 < l < k,

P (yj = ck|xj) = 1−hk−1(xj).

But this rule implies that
∑k

l=1 P (cl|xj) ̸=1. For instance, if
k = 4 and h1(xj) = 0.3, h2(xj) = 0.5 and h3(xj) = 0.6, the
posterior for each class would be: 0.3, 0.35, 0.3 and 0.4. The
original FH method was designed as a crisp classifier and
these probabilities are only used to predict the class with the
highest probability (c4 in the example).

Our goal is to define a different method able to compute
the posterior probabilities ensuring that P (yj = cl|xj) ≥
0,∀cl and

∑k
l=1 P (cl|xj) = 1. In the ideal case, the prob-

abilities returned by the binary models should obey that
hl(xj) ≤ hl+1(xj), 1 ≤ l < k − 1, like in the previous
example. In such case, the simplest rule is to subtract the
consecutive probabilities, that is:

P (yj = c1|xj) = h1(xj), (23)
P (yj = cl|xj) = hl(xj)−hl−1(xj), 1 < l < k,

P (yj = ck|xj) = 1−hk−1(xj).

The posteriors in the example above would be: 0.3, 0.2, 0.1,
0.4, that sounds reasonable considering the probabilities re-
turned by the binary classifiers. Unfortunately this method
does not always work in practice. Sometimes occurs that
hl(xj) > hl+1(xj) for some l because each binary model is
learned independently from the rest without any constraint
to guarantee monotonicity. In such cases, our proposal is
based on the method described in [34] to compute the lower
and the upper bound of the cumulative probabilities given
by the models hl (see Algorithm 1) and then applying the
subtract rule (23) over the average of those values.

Two examples: If {hl(xj)}k−1
l=1 = {0.3, 0.7, 0.6}, the

upper, {hl}k−1
l=1 , and the lower, {hl}k−1

l=1 , cumulative prob-
abilities are {0.3, 0.7, 0.7} and {0.3, 0.6, 0.6} respectively
and the averages, {h′

l}
k−1
l=1 = {0.3, 0.65, 0.65}. Applying

(23) the posteriors are: {0.3, 0.35, 0, 0.35}. If {hl(xj)}k−1
l=1 =

{0.4, 0.3, 0.6}, then {hl}k−1
l=1 = {0.4, 0.4, 0.6}, {hl}k−1

l=1 =

{0.3, 0.3, 0.6}, {h′
l}

k−1
l=1 = {0.35, 0.35, 0.6} and the posteri-

ors are {0.35, 0, 0.25, 0.4}.
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Algorithm 1 Correction of the cumulative probabilities

Input: {h1(xj), . . . , hk−1(xj)}
Output: {h′

1, . . . h
′
k−1}

1: h1 = h1(xj) ▷ Upper cumulative probabilities
2: for l = [2 : 1 : k − 1] do
3: hl = max(hl(xj), hl−1)

4: hk−1 = hk−1(xj) ▷ Lower cumulative probabilities
5: for l = [k − 2 : −1 : 1] do
6: hl = min(hl(xj), hl+1)

7: for l = [1 : 1 : k − 1] do ▷ Avg cumulative probabilities
8: h′

l = (hl + hl)/2
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