
Vol.:(0123456789)

Operational Research (2022) 22:4585–4605
https://doi.org/10.1007/s12351-021-00684-9

1 3

ORIGINAL PAPER

Scheduling in parallel machines with two objectives: 
analysis of factors that influence the Pareto frontier

Julio Mar‑Ortiz1 · Alex J. Ruiz Torres2 · Belarmino Adenso‑Díaz3

Received: 11 February 2021 / Revised: 13 December 2021 / Accepted: 17 December 2021 /  
Published online: 10 January 2022 
© The Author(s) 2022

Abstract
This paper explores the characteristics of solutions when scheduling jobs in a shop 
with parallel machines. Three classical objective functions were considered: makes-
pan, total completion time, and total tardiness. These three criteria were combined 
in pairs, resulting in three bi-objective formulations. These formulations were solved 
using the ε-constraint method to obtain a Pareto frontier for each pair. The objective 
of the research is to evaluate the Pareto set of efficient schedules to characterize the 
solution sets. The characterization of the solutions sets is based on two performance 
metrics: the span of the objective functions’ values for the points in the frontier and 
their closeness to the ideal point. Results that consider four experimental factors 
indicate that when the makespan is one of the objective functions, the range of the 
processing times among jobs has a significant influence on the characteristics of the 
Pareto frontier. Simultaneously, the slack of due dates is the most relevant factor 
when total tardiness is considered.
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1  Introduction

Research in the scheduling of parallel machines has received extensive atten-
tion, given that it represents a wide diversity of real-world operational systems. 
Research in the scheduling of parallel resources has been related to manufactur-
ing, healthcare, and logistics type operations (Bitar et al., 2016; Guo et al., 2018; 
Kusoncum et al. 2021). Surveys related to the extensive body of work related to 
scheduling in parallel machines include Mokotoff (2001), Mönch et  al. (2011), 
Tsai & Rodrigues (2013), and Behnamian and Ghomi (2016).

Parallel resource scheduling research has considered a wide variety of cri-
teria, given the different types of environments it represents. Among the most 
researched measures of schedule performance are the maximum completion time 
(e.g., Ghalami and Grosu 2018; Thevenin et  al. 2017) and the total sum of the 
completion times (e.g., Sitters 2017; Epstein et  al. 2017), which are measures 
related to the effective utilisation of the machines and the cost of the schedule. 
A second set of performance measures relates to meeting due dates, thus consid-
ering the system’s customers. Due date related measures include total tardiness 
(e.g., Cheng & Huang 2017; Lee 2018), and the number of late jobs (e.g., Pérez 
et al. 2018; Ruiz-Torres et al. 2018; Lin and Yin, 2021; Della Croce et al. 2021).

These performance measures suggest several objectives that can be used to 
formulate scheduling problems. In classic single-objective functions’ schedul-
ing problems, the standard objective function is to minimise makespan (Mousavi 
et al. 2018). This is because the makespan is a measure that is closely related to 
the utilisation of the machines, a priority in many industrial accounting systems. 
On the other hand, scheduling problems focused on customer service consider 
performance measures related to the delivery time and penalize measures such as 
tardiness.

Unfortunately, these goals are in conflict. For example, it is much easier to 
complete jobs on time if resource utilisation is low. Therefore, in practice, man-
agers must schedule their operations, striking a favourable balance among these 
conflicting objectives.

Research in the scheduling of parallel resources that considers multiple cri-
teria is vast (see surveys from Nagar et  al. 1995; Pfund et  al. 2004; Lei 2009). 
However, giving consideration to multiple criteria increases the complexity of the 
problem as the criteria may conflict with one another in some resource-limited 
situations.

To account for this inconvenience, the model can adopt either a hierarchical 
approach or a simultaneous approach. Under a hierarchical approach, criteria have 
various levels of importance. Therefore, one criterion is first optimised, and then 
the second criterion is optimised, subject to maintaining the optimal value for 
the first (or to set a value). Examples of hierarchical models in parallel machines 
include Gupta and Ruiz-Torres (2000), Lin and Liao (2004), and Su (2009).

There are two main approaches for the simultaneous optimisation of two or 
more objectives. The first consists of constructing a single objective function, 
for example, by forming a linear combination of the various criteria; this single 
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function is then optimised. Examples include Gurel and Akturk (2007), Eren 
(2009), and Kayvanfar et al. (2014). The second approach to simultaneously opti-
mise multiple criteria in parallel machines is to consider the trade-offs between 
the criteria aiming to generate the efficient (Pareto) set of schedules. Research 
that generates the Pareto set of schedules in parallel machines includes Erenay 
et al. (2010), Lin et al. (2013), Ruiz-Torres et al. (2019) and Yepes et al. (2021).

In this paper, we explore the characteristics of the solutions when scheduling jobs 
in a shop with parallel machines, with the aim to simultaneously optimise two of 
the mentioned objective functions in order to obtain the Pareto solution set. This 
research will analyse both the characteristics of the Pareto solution set generated and 
how shop factors may affect this set.

The most analysed factors when considering parallel machines are the number of 
machines available to process the jobs and the number of jobs to be scheduled (e.g., 
Yeh et  al. 2015; Arroyo et  al. 2017 and Ding et  al. 2019), where, in general, the 
greater the number of machines and jobs, the greater the complexity. A third com-
mon factor is the range of the process times (Arroyo et al. 2017; Ding et al. 2019; 
Mecler et al. 2021), as in general, the greater the range, the greater the complexity, 
although this is specific to the analyzed problem.

These three factors (number of machines, number of jobs, processing time 
ranges) are typically related to problems concerned with minimising the maximum 
and the total completion times of jobs. When the criteria under consideration relates 
to meeting customer due dates (delivery times), the effect of due date tightness (also 
called slack) is considered (e.g., Biskup et  al. 2008; Schaller and Valente 2018). 
Greater due date tightness, meaning the difference between the job’s process time 
and their due date is small, results in larger tardiness and more late jobs. In general, 
greater due date tightness makes the problem more complex, although this is par-
ticular to the specific problem.

This research considers the scheduling of parallel machines where the objective is 
to evaluate the Pareto set of efficient schedules. This research is not concerned with 
the generation of the Pareto solution set, but instead, it aims to analyse the charac-
teristics of the Pareto solution set. As mentioned, three measures of performance 
are considered: the maximum completion time (makespan), total completion time, 
and total tardiness. These three objectives are paired; thus, a total of three bi-criteria 
problems are considered. Schedules that simultaneously consider two criteria at a 
time are generated using CPLEX, where the ε-constrained method is used to gen-
erate the Pareto set. It is relevant to note that this method does not guarantee that 
all the Pareto solutions for a problem instance have been generated, but analyse the 
characteristics of the Pareto frontier, knowing a discrete number of points is suffi-
cient to draw general conclusions.

Exploring the characteristics of the frontier requires a methodology to compare 
Pareto frontiers for different instances. In our case, each Pareto set is evaluated 
based on two measures: the distance between the extreme points of the Pareto fron-
tier, and the area of the frontier when considering the “ideal” point (minimum value 
obtained for each criterion for the total set of solutions). The effect of changes to the 
number of machines, number of jobs, processing time ranges, and the due date tight-
ness on these two measures of the Pareto set is analysed, and their effects assessed. 



4588	 J. Mar‑Ortiz et al.

1 3

By analysing the two metrics for each instance in the experimental framework, this 
research aims to understand how the experimental factors result in larger or smaller 
frontiers (in other words, more options for schedulers) and whether they offer solu-
tions close to the ideal point or not.

The paper is organised as follows. In Sect. 2 the bi-objective models and the pro-
posed solution methodology are presented, Sect. 3 presents the experimental frame-
work, while Sect. 4 reports the results. Section 5 provides a discussion of the results, 
and in Sect. 6, the summary and conclusions of this study are presented.

2 � Scheduling problem description

There are n independent non-divisible jobs N = {1,…,j,…n} that must be processed 
in one machine. All jobs are available for processing at time zero and pre-emption 
is not allowed. There are m parallel machines M = {1,…,k,…m}, and each machine 
can process one job at a time and cannot stand idle until the last job assigned to it is 
completed. The processing time of job j on machine k is pjk and each job has a due 
date dj. There are h = 1…n possible positions in each machine to process. Let’s call 
G the set of positions (in fact, it is G = N).

To illustrate the effect of the position of the machines, let’s consider the following 
example: suppose there are N = 5 jobs to be scheduled in M = 2 identical machines. 
If all jobs are processed in just one machine, the first job in the sequence will occupy 
the first position in the machine, the second job position number two, and so on. 
Therefore, there would be G = 5 = N potential positions in each machine because in 
theory, we have not decided which machine will process each job.

This research considers three well-known criteria for the parallel-machine sched-
uling problem: (z1) minimise the Makespan; (z2) minimise the Total Completion 
Times; and (z3) minimise the Total Tardiness.

A general mathematical formulation for this problem could be defined using the 
following decision variables:

•	 xjkh, j ∈ N, k ∈ M, h ∈ G, is a binary variable that is equal to 1 if job j is assigned 
to machine k in position h, 0 otherwise. For the reasons mentioned below, it will 
not be allowed that for some k, h and j xjkh = 1, and xj’,k,h+1 = 0 ∀j’ (that is, posi-
tions are filled starting from the end): all the assignments will be made starting 
from the last position.

•	 wkh, k ∈ M, h ∈ G, is a binary variable that is equal to 1 if no job is assigned to 
machine k in position h; 0 otherwise.

•	 Ckh, k ∈ M, h ∈ G, is a continuous variable that computes the time in which the 
job in position h in machine k, finishes its operation (and therefore it is ready to 
deliver to the client). If no job is assigned to that position, we will force Ckh = 0. 
Then it is Cmax = maxk,h {Ckh}.

•	 vkh, k ∈ M, h ∈ G, is a continuous variable that computes the difference 
between the completion time Ci and due date di of the job i which is assigned 
to machine k in position h. That is vkh = Ckh-∑j∈N dj × xjkh. This variable would 
be: (i) negative if that job is ahead of schedule, (ii) positive if the job is late, 
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and (iii) 0 if the job is on time, or that machine-position has not been assigned 
a job. As vkh is free, we are going to consider as usually vkh = vkh

+–vkh
− with 

the new two variables non-negative (i.e., vkh
+ > 0 means the job in that posi-

tion is delayed).
•	 tkh, k ∈ M, h ∈ G, is a continuous variable that represents the tardiness of 

the job assigned to machine k in position h. It is, tkh = max{0; vkh}, that is, 
tkh = vkh

+. Therefore we could omit the variables vkh
+ and instead take tkh–

v−
kh = Ckh–∑j∈N dj × xjkh.

•	 ukh, k ∈ M, h ∈ G, is a binary variable that is equal to 1 if the job assigned to 
machine k in position h is late (i.e., tkh > 0), 0 otherwise.

Then, our formulation of the scheduling problem with parallel machines is 
given by:

subject to:

(all the other variables, non-negative)
Equations  (1–3) are the objective functions. Equation  (4) states that at most 

one job can be assigned to each position in each machine. Equation (5) guaran-
tees continuous assignments (if position h-1 is not empty in a machine, all sub-
sequent positions will not be empty either). This will guarantee that all the jobs 

(1)Minimise Makespan ∶ z1 = Cmax

(2)Minimise Total Completion Times ∶ z2 =
∑

h∈G,k∈M Ckh

(3)Minimise Total Tardiness ∶ z3 =
∑

h∈G,k∈M
tkh

(4)
∑

j∈N xjkh + wkh ≤ 1 ∀h ∈ G, k ∈ M

(5)wk,(h+1) ≤ wkh ∀h ∈ G, k ∈ M

(6)
∑

h∈G,k∈M

xjkh = 1 ∀j ∈ N

(7)Ckh =
∑

j∈N,l=1..h

pjk × xjkl ∀k ∈ M, h ∈ G

(8)Cmax ≥ Ckh ∀k ∈ M, h ∈ G

(9)tkh − v−
kh
= Ckh−

∑

j∈N

dj × xjkh ∀k ∈ M, h ∈ G

(10)xjkh ∈ {0, 1};wkh ∈ {0, 1} ∀j ∈ N, k ∈ M, h ∈ G
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are assigned starting from the last position, avoiding symmetries in the branch-
and-bound tree, and improving the formulation of the mathematical model. Equa-
tion (6) states that each job must be assigned to a single position in any machine 
(and therefore, each job is only assigned to one machine). Equation  (7) deter-
mines the completion time of the job assigned to machine k at position h, where if 
no job is assigned to this position, the completion time is 0 (because the ultimate 
goal is to minimise Chk in all cases). Equation  (8) establishes the makespan of 
the schedule (noting this is one relevant if criteria z1 is being considered). Equa-
tion  (9) establishes the difference between the completion time and due date of 
the job assigned to machine k at position h. If there is a job and it was completed 
before its due date, the value of vkh

− is positive, while if it is delayed, the value of 
tkh will be positive. Equation (10) sets up the binary variables.

For the single objective function versions, the models would include the equa-
tions as follows:

•	 Makespan is: (1), (4–8), (10);
•	 Total Completion Times is: (2), (4–7), (10);
•	 Total Tardiness is: (3), (4–7), (9–10).

2.1 � Preliminary analysis

We perform a preliminary analysis to evaluate the behaviour of our proposed 
model. The analysis considers the maximum limit that our model can solve with 
one objective, and the differences in running times between the different objec-
tives for four instance sizes (see Table 1).

In a few instances the three objective functions perform similarly regarding 
running times, however, as the instance size increases, the running times between 
the three objective functions disperses The formulation for the makespan crite-
rion is easier to solve, while the formulation for the total tardiness criterion is 
the most difficult to solve. However, the difference in running times also depends 
on the congestion ratio, and therefore this factor is considered in the following 
experimental framework, to evaluate its impact.

Table 1   Running times for the preliminary analysis

Instance size Makespan Total completion Total tardiness

machines (m) Jobs (n) objective Running time 
(s)

objective Running time 
(s)

objective Running time 
(s)

4 12 132.43 6.13 1010.70 8.01 68.48 6.56
5 20 268.60 7.08 3631.90 24.52 370.27 8.12
8 24 125.61 7.79 1988.95 215.46 109.89 257.13
10 50 255.48 82.87 6994.74 323.82 412.36 23,432.92
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3 � Experimental framework

The Pareto set of solutions for each bi–objective formulation is generated using the 
ε-constraint method (Ehrgott & Ruzika 2008), a procedure used in multiple applica-
tions from logistics (Rath et  al. 2016) to engineering (Kieffer et  al. 2019). In this 
procedure, one of the objective functions is selected as the primary objective, and 
the secondary objective function is considered in the formulation as a constraint 
(zi ≤ εk). The process imposes successively decreasing bounds εk on the constraint, 
therefore generating a sample of Pareto optimal solutions.

To obtain the P points that conform the Pareto frontier for a pair of objectives 
⟨

zi, zj
⟩

 , two extreme points (see C and D in Fig. 1) plus (P – 2) intermediate points 
need to be computed. Point D (resp. C) is obtained by minimising exclusively zi 
(resp. zj). If zj is the primary objective and we call z∗

i
= min zi and zi = max zi , the 

remaining P – 2 points of the Pareto frontier are obtained by bounding the corre-
sponding second objective function by �k = zi − k ⋅ Δ , ∀k = 1...P − 2 , until the min-
imum value of z∗

j
 is reached, being Δ =

(

zi − z∗
i

)

∕(P − 1) . According to previous 
results in the literature (Palacio et al. 2018), the process aims to generate a set of 
P = 22 points on each occasion.

Note that in a bi-objective problem {min zi; min zj}, considering one objective 
function or the other as the primary objective could create a different set of points in 
the Pareto frontier. To be able to provide a complete sample of solutions, each pair 
of objective functions will be solved twice: first with one as the primary objective, 

Min zi Max zi

Min zj

Max zj

M1
M2

zi

zj

II

II’’

CC

DD

Fig. 1   An illustrative example to compute metrics given a Pareto frontier. I and I’ are the ideal and anti-
ideal points (resp.)
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and again with the other as the primary objective. The final Pareto frontier will be 
the union of all the points generated by both formulations. Therefore, given that for 
the three single objective functions considered, there are three possible bi-objective 
problems, for each instance, the ε-constraint method will be applied six times.

3.1 � Evaluation measures

Following the methodology described by Palacio et al. (2018) two metrics are used 
to evaluate the Pareto frontiers. These metrics are called M1 and M2 and described 
next.

•	 M1: This measure aims to characterise the range of Pareto optimal solutions. 
This measure is the distance between the extreme solutions (obtained when each 
objective is optimised by its own, see points C and D in Fig. 1). To normalise 
this metric, the percentage increase for each objective will be computed as (Max 
zi ― Min zi) / Min zi. This metric will represent the length of the hypotenuse of 
the triangle that has as base and height those two percentage increments. Close 
extreme solutions points mean that the solutions found regarding the values of 
the objective functions are not very different, while distant points indicate the 
existence of solutions with quite different values in the objective functions.

•	 M2: This measure aims to characterise how close the Pareto optimal solutions 
to the ideal point are. This measure evaluates the fraction of the area under the 
Pareto front determined by the rectangles defined by each pair of consecutive 
Pareto points, regarding the total area of the rectangle determined by the ideal 
and anti-ideal points (see Fig. 1). Note that M2 has a range from 0 to 1. For val-
ues close to 0, it means that the frontier is close to the segments IC and ID (see 
Fig. 1), i.e., to the ideal point I, while higher values of that fraction mean a fron-
tier far from I. Note that this metric is the dual value of the bi-objective case of 
the hypervolume of Zitzler et al. (2003), but in our case consideration is given to 
the area below the front instead of above the front.

3.2 � Experimental factors

Four experimental factors are considered and are presented in Table 2. The first two 
factors refer to the instance size. Experimental factor F1 is the number of parallel 
machines m available, while experimental factor F2 is the average number of jobs 

Table 2   Factors levels considered

Factor Factor level 1 (low) Factor level 2 (high)

Number of parallel machines (F1) m = 5 m = 10
Average number of jobs per machine (F2) r = 5 r = 10
Range of processing times (F3) pjk ~ U(40; 60) pjk ~ U(10; 99)
Congestion ratio (F4) CR = 0.5 CR = 1.5
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that would be processed on each machine: r = n/m (where n is the number of jobs 
that must be processed). The third experimental factor, F3, characterises the range of 
processing times. Finally, experimental factor F4 considers the congestion ratio 
(CR), which drives the degree of due date tightness. The due date of each job j is 
computed as: dj = mink

{

pjk
}

+ U
[

0,D
j
max

]

 , where Dj
max = Averagek

(

pjk
)

× r∕CR . 
Two levels are considered for all the experimental factors and their values presented 
in Table 2.

Note that when F1 and F2 are at their low level it results in small instances with 
5 machines and 25 jobs. Alternatively, when both factors are high, it results in 
instances with 10 machines and 100 jobs. This provides a relatively wide range of 
problem sizes. From a managerial point of view, measures F3 and F4 capture rel-
evant characteristics of the production environment: the variability of the time to 
complete jobs and the due date’s tightness, which relates to the relationship between 
production and marketing.

Regarding the complexity of the experiment, for each of the 24 factor level treat-
ments, 10 random instances were generated, which makes a total of 160 problem 
instances. A Pareto frontier is found for each of the 6 pairs of objectives (960 fron-
tiers) for each instance. Considering that for each frontier 22 points are computed as 
previously explained, a total of 960 × 22 = 21,120 LP models had to be solved. At 
the end, for each of the 160 problem instances there is a consolidated Pareto frontier 
for each of the three bi-criteria problem, therefore a total of 160 × 3 = 480 consoli-
dated frontiers.

All experiments were performed on an HP Z800 Workstation with 16 GB RAM 
and a X5647 2.93  GHz processor. It is noted that some problem instances could 
not be solved in a reasonable amount of time given their computational complexity. 
The running times ranged from 6 to 283 min. In 75% of the instances the 22 points 
of the Pareto frontier were found in less than 1.5 h. On the other hand, 13 instances 
required more than 6 h to approximate the Pareto frontier. Furthermore, for some 
pairs of objectives, not all the instances resulted in a Pareto frontier as there was 
only one optimal solution. Therefore, for some pairs of bi-objective problems, less 
than 160 instances were considered. As a result, unbalanced factorial designs were 
considered.

Figure 2 shows an example of the 3 Pareto frontiers for a particular instance. As 
can be seen, for some pairs of objectives, more points are found in their Pareto fron-
tiers than for other pairs of objectives. Moreover, some points identified when one of 
the criteria was considered the primary objective were not found when this criterion 
becomes the secondary (and is modelled as a constraint).

4 � Results

In this section we present the results of the experimental design aimed to test which 
factors influence both of the Pareto frontier metrics (e.g. M1 and M2) of the bi-
objective parallel-machine scheduling problems. The aim is to draw conclusions on 
how these two metrics vary according to the characteristics (factors) of the instances.
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Metric M1 measures the variation between extreme solutions. When M1 > 1 it 
means that the base and height of the triangle did not grow proportionally. Moreo-
ver, as it uses percentage changes, in some cases when a point in the Pareto frontier 
includes zero (which is only a possibility in the case of total tardiness), then M1 
tends to be very high. Metric M2 measures the fraction of the area under the front, 
regarding the total area of the rectangle determined by the ideal and anti-ideal point. 
Therefore, metric M2 is related to the shape of the Pareto frontier. Metric M2 is used 
to measure how far the Pareto frontier is from the ideal point (the point where both 
objective functions are minimised).

To examine each of the response variables individually, an ANOVA was per-
formed to evaluate the effects of the four factors and their interactions on each of the 
two Pareto frontier metrics. As only the main effects and some two-way interactions 
were significant, a reduced model is exhibited.

ANOVA requires checking of three main assumptions (normality, homogeneity 
of variance, and independence of residuals). These assumptions were checked with-
out finding any reason to question their validity.

4.1 � Pair Makespan versus total completion times

The ANOVA in Table 3 shows the effects of the four factors on metric M1. These 
results (R2 = 66.97%) show that factor F3 (range of processing times) has the main 
responsibility for the resulting value of metric M1, explaining 54.14% of the vari-
ance of this metric in the Pareto frontier. Also, F1 (number of machines), F2 (aver-
age number of jobs per machine) and the interactions F1 × F3 have significant influ-
ences as well. All these factors explain 65.52% of the observed variability of metric 
M1. A detailed analysis shows that F3 and F1 have a positive effect on metric M1, 
while F2 has a negative effect on metric M1 (see Fig. 3). Therefore, when the pro-
cessing times (F3) are very dissimilar or there are more machines (F1) in the shop, 
the variation between extreme solutions increases, while as there are more jobs 
per machine, the variation between the extreme solutions decreases, that is, fewer 
(Pareto-optimal) alternatives are available for the production planners.

Regarding metric M2 the ANOVA in Table 4 shows the effects of the four fac-
tors. In this case (R2 = 31.42%) factors F3 (range of processing times), F2 (number 
of jobs per machine), F1 (number of machines), and the interaction F1 × F3 have the 
main influence on the resulting value of metric M2. All exhibit a negative influence 
on metric M2 (see Fig.  4). This implies that when there is a greater range of the 
processing times and/or more parallel machines are available, or as the number of 
jobs per machine increases, the fraction of the area under the front decreases and the 
Pareto frontier is closer to the ideal point (i.e., there are potentially good solutions 
for both objective functions at the same time).

Fig. 2   Set of Pareto frontiers for an instance of type ⟨F1 = 1, F2 = 1, F3 = 1, F4 = 2⟩ for the 3 pairs 
of objectives. Points are labeled depending on the order of the objective functions used in their identifica-
tion (who is considered the primary and the secondary objective)

▸
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4.2 � Pair Makespan versus total tardiness

The ANOVA results in Table 5 (R2 = 40.94%) indicate that factor F4 (due dates 
congestion ratio) and to a lower degree F3 (range of processing times), as well 
as their interaction F3 × F4, are the main factors responsible for the variability 
in metric M1. Together, these factors explain 28.47% of the observed variabil-
ity. F3 and the interaction F3 × F4 exhibit a positive effect on this metric, while 
F4 shows a negative effect (see Fig.  5). This means that the variation between 

Table 3   ANOVA for M1 when bi-objective Makespan versus total completion times is used to compute 
the Pareto frontier

S = 0.04777, R2 = 0.6697 (adjusted R2 = 0.6553)

Source Df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F3 1 0.51634 0.51634 0.0000 54.14 54.14
F1 1 0.03958 0.03958 0.0010 4.15 58.29
F1*F3 1 0.03669 0.03669 0.0000 3.85 62.14
F2 1 0.03222 0.03222 0.0010 3.38 65.52
F2*F3 1 0.01140 0.01140 0.0270 1.20 66.71
F1*F2 1 0.00245 0.00245 0.3590 0.26 66.97
Error 138 0.31502 0.00228 33.03 100.00
Total 144 0.95369
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Fig. 3   Normal plot of standardized effects on metric M1 when bi-objective Makespan versus total com-
pletion times is used to compute the Pareto frontier
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extreme solutions increases when the range of processing times among jobs is 
larger; but as the due dates’ tightness increases, the distance between the extreme 
solutions decreases.

For the case of metric M2, the ANOVA results in Table 6 (R2 = 30.92%) show 
that factors F4 (due date tightness) and F3 (range of processing times) are the 
main factors responsible for its resulting values. Together, both factors explain 
29.15% of the observed variability. Factor F3 shows a positive effect on M2 and 
therefore the fraction of the area under the front increases when the range of the 

Table 4   ANOVA for M2 when bi-objective Makespan versus total completion times is used to compute 
the Pareto frontier

S = 0.21565, R2 = 0.3142 (adjusted R2 = 0.2844)

Source Df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F3 1 1.32441 1.32441 0.0000 14.15 14.15
F1*F3 1 0.69178 0.69178 0.0000 7.39 21.54
F2 1 0.32926 0.32926 0.0050 3.52 25.06
F1 1 0.30983 0.30983 0.0080 3.31 28.37
F1*F2 1 0.25252 0.25252 0.0220 2.70 31.07
F2*F3 1 0.03289 0.03289 0.4020 0.35 31.42
Error 138 6.4179 0.04651 68.58 100.00
Total 144 9.35859
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Fig. 4   Normal plot of standardized effects on metric M2 when bi-objective Makespan versus total com-
pletion Time is used to compute the Pareto frontier
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Table 5   ANOVA for M1 when bi-objective Makespan versus total tardiness is used to compute the 
Pareto frontier

S = 8.69620, R2 = 0.4094 (adjusted R2 = 0.3407)

Source df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F4 1 2345.50 2345.50 0.0010 21.30 21.30
F3 1 442.20 442.20 0.0040 4.02 25.32
F3*F4 1 346.70 346.70 0.0350 3.15 28.47
F2 1 327.30 327.30 0.0530 2.97 31.44
F1*F3 1 297.80 297.80 0.0580 2.70 34.14
F1*F4 1 273.30 273.30 0.0740 2.48 36.62
F2*F3 1 138.10 138.10 0.1030 1.25 37.88
F2*F4 1 120.80 120.80 0.2120 1.10 38.98
F1*F2 1 111.10 111.10 0.2800 1.01 39.98
F1 1 104.90 104.90 0.4170 0.95 40.94
Error 86 6503.70 75.62 59.06 100.00
Total 96 11,011.2
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Fig. 5   Normal plot of standardized effects on metric M1 when bi-objective Makespan versus total tardi-
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Table 6   ANOVA for M2 when bi-objective Makespan versus total tardiness is used to compute the 
Pareto frontier

S = 0.29869, R2 = 0.3092 (adjusted R2 = 0.2288)

Source Df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F4 1 3.0313 3.0313 0.0000 27.29 27.29
F3 1 0.2061 0.2061 0.0160 1.86 29.15
F1*F2 1 0.0850 0.085 0.2320 0.77 29.91
F1*F4 1 0.0398 0.0398 0.3760 0.36 30.27
F2*F4 1 0.0444 0.0444 0.4830 0.40 30.67
F1 1 0.0085 0.0085 0.5790 0.08 30.75
F2 1 0.0014 0.0014 0.7380 0.01 30.76
F2*F3 1 0.0102 0.0102 0.7950 0.09 30.85
F1*F3 1 0.0071 0.0071 0.8320 0.06 30.92
F3*F4 1 0.0002 0.0002 0.9670 0.00 30.92
Error 86 7.6729 0.0892 69.08 100.00
Total 96 11.1069

Table 7   ANOVA for M1 when bi-objective Total Completion Time versus total tardiness is used to com-
pute the Pareto frontier

S = 138.542, R2 = 0.6442 (adjusted R2 = 0.6182)

Source df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F3*F4 1 1,221,407 1,221,407 0.0000 16.53 16.53
F4 1 984,674 984,674 0.0000 13.32 29.85
F2 1 878,927 878,927 0.0000 11.89 41.74
F2*F4 1 506,946 506,946 0.0000 6.86 48.60
F3 1 382,545 382,545 0.0000 5.18 53.78
F2*F3 1 302,927 302,927 0.0000 4.10 57.88
F1 1 281,061 281,061 0.0000 3.80 61.68
F1*F2 1 135,596 135,596 0.0210 1.83 63.52
F1*F4 1 40,795 40,795 0.1090 0.55 64.07
F1*F3 1 26,012 26,012 0.2880 0.35 64.42
Error 137 2,629,572 19,193.95 35.58 100.00
Total 147 7,390,462
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jobs’ processing times increases. However, as the due date tightness is bigger, M2 
is smaller and therefore there are solutions closer to the ideal point.

4.3 � Pair total completion time versus total tardiness

The ANOVA in Table  7 shows that all factors and almost all their interactions 
are significant for metric M1 (R2 = 64.42%). Factors F1 and F2 exhibit a posi-
tive effect on metric M1, while F3 and F4 exhibit a negative effect on M1. That 
is, when the size of the instance (related to F1 and F2) increases, the variation 
between extreme solutions increases. But when the range of processing times (F3) 
or the due dates’ congestion ratio (F4) increases, the variation between extreme 
solutions decreases.

Finally, the ANOVA in Table 8 shows that the interaction F1 × F2 and factor 
F3 are the most significant with a positive effect on metric M2, although factors 
F1 and the interaction F3 × F4 are also significant with a negative effect on M2 
(R2 = 24.54%). Therefore, when the number of jobs increases and/or there is a 
higher range of the processing times, the area under the front increases and the 
Pareto frontier is further from the ideal point. Alternatively, when the number of 
parallel machines increases, the fraction of the area under the front decreases and 
the Pareto frontier is closer to the ideal point.

Table 8   ANOVA for M2 when bi-objective Total Completion Time versus total tardiness is used to com-
pute the Pareto frontier

S = 0.18059, R2 = 0.2454 (adjusted R2 = 0.1903)

Source df Sum of squares Mean square p value Contribution (%) Cumulative 
contribution 
(%)

F1*F2 1 0.41818 0.41818 0.0000 7.06 7.06
F3 1 0.40460 0.40460 0.0010 6.83 13.90
F1 1 0.22778 0.22778 0.0060 3.85 17.74
F3*F4 1 0.19020 0.19020 0.0170 3.21 20.95
F2 1 0.08007 0.08007 0.0600 1.35 22.31
F4 1 0.06101 0.06101 0.0930 1.03 23.34
F1*F3 1 0.04277 0.04277 0.2200 0.72 24.06
F2*F3 1 0.02067 0.02067 0.3080 0.35 24.41
F1*F4 1 0.00761 0.00761 0.6330 0.13 24.54
F2*F4 1 0.00001 0.00001 0.9200 0.00 24.54
Error 137 4.46821 0.03261 75.46 100.00
Total 147 5.92111 100.00
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5 � Discussion and managerial insights

Table 9 shows a summary of the factors and their effect on the two metrics. When 
the objective is to finish the entire backlog as soon as possible and avoid a long 
delay of the WIP of the shop (e.g. min Cmax and min ΣCk), the factor with the 
most influence is F3 (range of the processing times). As the jobs’ processing 
times vary to a larger extent, the potential efficient solutions are more diverse, 
with a bigger difference among them regarding the values of the objective func-
tions, and with solutions closer to the ideal point. Many scheduling alternatives 
are then available to production planners, and it becomes relevant to determine 
the best trade-off level for that set of jobs to be scheduled. This effect increases as 
the number of machines increases (F1). However, as the average number of jobs 
per machine increases, most of the solutions are similar and are closer to the ideal 
point.

If the objective is to finish the complete set of jobs as soon as possible and mini-
mise the total delivery tardiness (min Cmax and min ΣTk), as could be expected, 
the most influential factor is F4 (due date congestion ratio): when the due dates are 
tighter, the potential optimum solutions are less diverse and get closer to the ideal 
point. The dissimilarity of processing times (F3) produces the opposite effect: when 
the dispersion of processing times increases, the potential optimal solutions are 
more diverse and get further away from the ideal point. However, the size of the 
problem (number of machines and jobs) does not seem to have a significant effect on 
the Pareto frontier shape.

Finally, when the objective is to avoid a long stay of the WIP in the shop and 
minimise the delivery tardiness (min ΣCk and min ΣTk), more factors influence the 
quality of the Pareto set of solutions. Again, when the due dates are tighter (high 
level of the congestion ratio) less diverse frontiers are produced (but not with solu-
tions close to the ideal point). Also, factors F1 and F2, both related to the size of the 
instance, have a significant influence leading to more diverse solutions. However, 

Table 9   Summary of the 
influence of the factors on 
the metrics for each pair of 
bi-objective problems (z1: 
Makespan; z2: total completion 
time; z3: total tardiness)

F1 (number of parallel machines), F2 (average number of jobs per 
machine),
F3 (range of processing times), and F4 (due dates congestion ratio)

M1- distance extreme points M2-closeness to ideal 
point

Factors z1-z2 z1-z3 z2-z3 z1-z2 z1-z3 z2-z3

F1 ↑ ↑ ↓ ↓

F2 ↓ ↑↑ ↓
F3 ↑↑↑ ↑ ↓ ↓↓ ↑ ↑

F4 ↓↓ ↓↓ ↓↓

F1 × F2 ↑ ↑ ↑

F1 × F3 ↑ ↓

F2 × F4 ↓

F3 × F4 ↑ ↑↑ ↓
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the interaction of high due date tightness and a higher range in the processing times 
(F3 × F4) makes the Pareto frontier become more diverse and closer to the ideal 
point.

From the previous analysis, we conclude that (a) basically all factors and their 
corresponding two-way interactions are statistically significant for one or more of 
the three objective functions; (b) the range of the processing times seems to be the 
most relevant overall factor as it significantly influences both metrics for all pairs 
of the objective functions; (c) the due date congestion ratio influences both metrics 
(leading to less diverse and closer to the ideal point solutions) when one is the mini-
misation of the tardiness; (d) the number of parallel machines positively influences 
the variation between extreme solutions (metric M1) and approaches solutions to the 
ideal point (metric M2).

Accordingly, the following managerial insights are derived:

•	 Our proposed formulation of the parallel machines scheduling problem is easy 
to implement in any general-purpose optimiser, and speeds-up the solution time, 
making it valuable to use in practice.

•	 The makespan and total completion times are two objectives of considerable 
interest in many industries. Minimising makespan can ensure the right balance 
of the load among the machines and minimising the total completion times can 
minimise the inventory holding costs. It is quite common that the manufactur-
ers wish to minimise both objectives. In this regard, production planners will 
find that dissimilar processing times will produce a larger number of alternative 
schedules and a larger number of alternative schedules closer to the ideal point 
(i.e., alternative schedules where both objective functions provide good solutions 
at the same time). In the same way, as the number of parallel machines increases 
in the shop, the alternative schedules will be closer to the ideal point.

•	 Minimising the total tardiness is one objective that has received less attention 
in the literature. However, in many situations, we face conditions where missed 
due dates lead to cancellation of orders by the clients. Therefore, in these situ-
ations, we must consider a scheduling problem that minimises the total tardi-
ness. On the other hand, the minimisation of the total completion time of all the 
jobs is commonly applied in scheduling problems by researchers. Decreasing the 
completion times is an effective method to reduce work-in-process inventories, 
minimise irregularities and reduce inordinate shop flow crowding due to uncom-
pleted jobs. Therefore, minimising completion times is one of the most impor-
tant criteria for manufacturing and service organisations. In this regard, produc-
tion planners seeking to minimise both objectives should consider that dissimilar 
processing times and tight due dates will result in a few alternative schedules far 
from the ideal point. On the other hand, a larger number of parallel machines 
will produce alternative schedules close to the ideal point.

•	 When the production planner is jointly minimising the makespan and the total 
tardiness dissimilar processing times will produce many alternative schedules 
far from the ideal point. However, tight due dates will produce few alternative 
schedules closer to the ideal point.
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6 � Conclusions

This paper considers the bi-criteria formulation and optimisation of three classical 
objective functions: makespan, total completion, and total tardiness for the identical 
parallel machine problem. The Pareto frontier characteristics of the three bi-criteria 
problems are analysed based on two metrics, M1 and M2, the first related to the 
distance between the extreme solutions (thus diversity of solutions) and the second 
related to how close the Pareto optimal solutions are to the ideal point.

We present an alternative formulation of the classical parallel machine scheduling 
problem, where the assignment of jobs starts from the last position in the sequence. 
This alternative formulation speeds-up the solution time as the similarities in the 
branch-and-bound tree are eliminated.

Experiments were conducted that analysed four factors typically considered in 
the literature: number of machines, number of jobs per machine, range of processing 
times, and the congestion ratio, which drives due date tightness. The experiments 
established various types of relationships between the experimental factors and two 
measures that evaluate the Pareto frontier: the variability of potential optimal solu-
tions (M1) and the closeness to the ideal point (M2). These results provide insights 
into what can be expected when solving parallel machine scheduling problems in 
terms of the diversity of possible solutions and the relative quality of the solutions 
in reference to the ideal point. These results are relevant as similar relationships and 
characteristics could be expected in related real-world production planning where 
parallel resources are used.
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