
Computers & Industrial Engineering 165 (2022) 107908

Available online 24 December 2021
0360-8352/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Sequencing jobs with asymmetric costs and transition constraints in a 
finishing line: A real case study 

Nicolás Álvarez-Gil a,*, Segundo Álvarez García b, Rafael Rosillo a, David de la Fuente a 

a Business Management Department, University of Oviedo, Edificio Departamental Este, 1a planta, Campus de Gijón (33204), Gijón (Asturias), Spain 
b ArcelorMittal Global R&D Asturias, P.O. Box 90 (33400), Avilés (Asturias), Spain   

A R T I C L E  I N F O   

Keywords: 
Combinational optimization 
Steel industry 
Sequencing 
Metaheuristics 

A B S T R A C T   

Production scheduling plays a vital role in industrial manufacturing due to the potential impact on the pro
duction costs and service levels of a company. It consists in finding the best sequence in which some items should 
be produced, optimizing one or multiple performance indicators, such as the production cost or total time span. 
In this work we study the real-world problem of sequencing steel coils in a continuous galvanizing line and the 
challenges it poses. The production of new steel grades and the growing necessity or reducing the stock levels at 
the galvanizing line have brought an important increase in the number of sequencing constraints, challenging 
feasibility and the algorithms in use. We explain some issues of the current Ant Colony Optimization algorithms 
and introduce a new hybrid version, the Ant System with Interval Reconstruction (AS-IR), that notably enhances 
the feasibility performance. The new hybrid algorithm uses the Interval Reconstruction (IR), a novel constructive 
local search algorithm initially developed to solve constraint violations, and then extended to also help reduce the 
sequencing costs. All the key features of the IR and how it is used in the hybrid algorithm are explained in detail. 
The experiments conducted with 30 real instances show how the proposed AS-IR hybrid algorithm achieves 
much better results, guaranteeing feasible sequences when the set of coils is sequenceable, as well as finding 
lower-cost solutions.   

1. Introduction 

Task scheduling has numerous applications in very different busi
ness, industry and scientific domains, encompassing fields as diverse as 
logistics, maintenance, biology, robotics, aircraft design, etc. At indus
trial companies, the scheduling of production processes is an activity of 
critical importance since it directly impacts on efficiency, production 
rates, customer satisfaction and, hence, on the overall benefits of the 
company. 

The scheduling problems can be defined as “the allocation of avail
able production resources over time to best satisfy some set of criteria” 
(Graves, 1981). The production management of a company involves 
multiple decisions that differ on their scope, time and impact. These 
decisions are usually taken following a hierarchical structure: strategic, 
tactical and operational decisions (Framinan et al. 2014). 
Manufacturing scheduling are low-level operational decisions that pro
vides a detailed production plan for a particular shop floor, and usually 
are short-term complex decisions that require well-defined data, 

constraints and objectives (Verderame and Floudas 2010). Most of the 
scheduling problems, that arise from the necessity of enhancing the ef
ficiency in the use of the resources and the management of operations, 
are combinatorial optimization problems. 

Many combinatorial problems are NP-hard problems, which means 
that it does not exist any polynomial-time algorithm that can solve them, 
assuming that P ∕= NP (Garey and Johnson 1979). Examples for this type 
of problems are the Traveling Salesman Problem (Applegate et al. 2006) 
or the Job Shop Scheduling Problem (Applegate and Cook 1991). If the 
problem is NP-hard, the methods that can ensure success in finding the 
optimal solution in bounded time might need exponential computation 
time in the worst-case (Blum and Roli 2003), which is impractical for 
most of the real-world applications. This is the reason why it is more 
common to use approximate methods such as heuristic or metaheuristics 
algorithms. 

The trade-off between computation time and solution quality is very 
important in the industrial world, especially at the operational level, 
where the decisions should be made fast, being therefore acceptable to 

* Corresponding author. 
E-mail addresses: alvareznicolas@uniovi.es (N. Álvarez-Gil), segundo.alvarez-garcia@arcelormittal.com (S. Álvarez García), rosillo@uniovi.es (R. Rosillo), 

david@uniovi.es (D. de la Fuente).  

Contents lists available at ScienceDirect 

Computers & Industrial Engineering 

journal homepage: www.elsevier.com/locate/caie 

https://doi.org/10.1016/j.cie.2021.107908 
Received 22 January 2021; Received in revised form 7 December 2021; Accepted 20 December 2021   

mailto:alvareznicolas@uniovi.es
mailto:segundo.alvarez-garcia@arcelormittal.com
mailto:rosillo@uniovi.es
mailto:david@uniovi.es
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2021.107908
https://doi.org/10.1016/j.cie.2021.107908
https://doi.org/10.1016/j.cie.2021.107908
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2021.107908&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Computers & Industrial Engineering 165 (2022) 107908

2

sacrifice solution quality to reduce computation time. The approximate 
methods cannot guarantee the optimal solution, but they can provide 
reasonably good solutions in a reduced amount of time. 

Among the approximate methods we found constructive meta
heuristics (Blum & Roli 2003) a promising approach for the sequencing 
of the finishing lines. The Greedy Randomized Adaptive Search Pro
cedure (Feo & Resende 1995) and Ant Colony Optimization (ACO) 
(Dorigo 1992) are two well-known constructive methods. This type of 
metaheuristics presents advantages for the studied problems (e.g. flex
ibility to add new constraint rules) but sometimes, as it is addressed in 
this paper, the solutions provided by the constructive methods should be 
enhanced. 

As contributions of this work, we introduce the scheduling problem 
of sequencing steel coils in a continuous galvanizing line (CGL) and 
provide 30 different real instances, which can be used as new bench
mark instances for algorithm testing. We explain our implementation of 
the current ACO algorithms, the modifications that were required to use 
them for this problem, and the main issues identified that make them fail 
in finding feasible sequences in some challenging instances. In addition, 
we present a new Ant System hybrid version that solves the feasibility 
issues. It uses the Interval Reconstruction (IR), a new algorithm devel
oped for solving constraints violations, that also reduces costs and can be 
embedded in other metaheuristics. The key features of the IR and our 
implementation of the AS-IR are explained in detail, together with a 
demonstration of its performance on the real instances provided. 

The rest of the paper is structured as follows: Section 2 provides a 
literature review of existing studies related to combinatorial optimiza
tion and scheduling in the steel industry. In Section 3 we provide a 
description of the problem and the instances. The two ACO algorithms 
analyzed, the main challenges detected, and the new hybrid algorithm 
are explained in Section 4. Section 5 shows the results and analysis of the 
computational study and finally Section 5 closes the paper with the 
conclusions and future research. 

2. Literature review 

There are numerous studies on combinatorial optimization problems 
(Korte and Vygen 2003, Blum and Roli 2003) and, particularly, on 
scheduling problems (Graves 1981, Zhang et al. 2017). As a high-level 
breakdown, we can differentiate between the papers that are focused 
on theoretical problems and the ones that present or analyze real-world 
problems. These two kinds of research are closely related, and each is 
benefitted by the other. Usually, some theoretical problems are inspired 
by real-world problems, but are formulated in a more generic and ab
stract form. At the same time, the research on real cases tends to use 
ideas, insights and approaches developed for the theoretical problems. 
In this case, we found very useful some papers belonging to both types. 

Regarding the theoretical studies, we noticed that the presented 
problem shares some similarities with the following well-known state- 
of-the-art problems:  

• The Traveling Salesman Problem (TSP). The TSP states as follows: 
given a set of cities and the distance or cost of travel between each 
pair of them, find the shortest or cheapest tour that visits all the cities 
exactly once. If costs of travel between cities are not symmetric, the 
problem is called the Asymmetric TSP (ATSP). According to Apple
gate et al. (2006), the TSP is, due to its simple formulation but hard 
resolution, the most studied problem in combinatorial optimization, 
being a challenging testbed to develop algorithms. Applegate gives a 
comprehensive history of the TSP and the evolutions of TSP solvers. 
Within the wide variety of approaches developed for the TSP, we 
would like to highlight the Lin-Kernighan-Helsgaun, the most 
effective implementation of the Lin–Kernighan traveling salesman 
heuristic (Helsgaun, 2000), and the Ant Colony System (ACO) pre
sented in Dorigo and Gambardella (1997). The TSP is still the focus of 

many recent studies on new applications and solution methods 
(Nekovář et al. 2021, Twaróg et al. 2021; Pina-Pardo et al. 2021). 

For scheduling the galvanizing line, if we compare the cities with the 
coils, the distances with the transition costs, and the tours with the 
production sequences, the presented problem is almost the same that the 
ATSP, except that in the ATSP no forbidden arcs or constraints are 
considered. Arc constraints can be modelled as high costs but, some
times, it may not be the best approach for this problem as we will see in 
Section 4.  

• The Hamiltonian Cycle Problem (HCP). The HCP states as follows: 
given an unweighted graph of nodes or vertices connected by 
directed edges, determine if there is a Hamiltonian cycle (a cycle 
along the graph that visits all nodes exactly once), or prove that that 
cycle does not exists. Determining this is in practice equivalent to 
find any Hamiltonian cycle in the graph. This problem has been 
shown to be NP-complete even if limited to planar graphs (Krish
namoorthy 1975, Garey et al. 1976, Akiyama et al., 1980). One of the 
best algorithms for the HCP is the Snake and Ladders, “(…) a 
polynomial-complexity algorithm inspired by, but distinctly 
different from, the k − opt heuristics” (Baniasadi et al., 2013). 

The HCP is similar to the proposed problem in the sense that it is 
needed to find a tour or a sequence, given a graph in which not all the 
nodes are directly connected with the others. The main differences are 
that we need to find a minimum-cost Hamiltonian path, but in the HCP 
there is no cost or weight associated to each edge.  

• The Sequencing Ordering Problem (SOP). The SOP states as follows: 
given a directed graph with weighted edges and nodes subject to 
precedence constraints, where the nodes stand for the jobs and the 
arcs for the production costs, find the minimum-cost Hamiltonian 
path. The SOP was first formulated by Escudero (1988) and many 
different methods has been developed for its resolution, from simple 
heuristics to sophisticated branch & bound algorithms (B&B). To 
name a few, Ascheuer et al. (2000) presented a branch & cut (B&C) 
algorithm for solving large SOP instances in a few minutes, based on 
a Mixed Integer Linear Programming (MILP) formulation. Another 
MILP approach by Montemanni et al. (2013) proposes a decompo
sition method (DEC). The goal was to split the original problem in 
different sub-problems, solve them separately and recombine the 
solutions. Gambardella and Dorigo (2000) introduced the HAS-SOP, 
the first ACO algorithm devised for the SOP that combines a 
constructive initial phase with a “lexicographic” local search named 
“SOP-3-exchange”. Recently, the Lin-Kernighan extension by Hels
gaun for solving many types of constrained problems, the LKH3, has 
obtained the best-known solutions for almost all the SOP TSPLIB 
instances, reporting also some new best solutions (Helsgaun, 2017). 

We found the SOP the closest theoretical problem to our problem, 
since there are asymmetric costs and precedence constraints, but a slight 
difference in the nature of the constraints requires a totally different 
approach to handle them. In the SOP, if there is a constraint between 
node i and node j, it means that node i cannot be sequenced at any po
sition of the sequence before node j. Differently, in our problem, the 
same constraint means that node i cannot be produced right before node 
j, but it can be produced at any position before node j as long as they are 
not together and all the other pairwise constraints are respected (similar 
to the HCP problem). This difference makes that in our problem the 
constraints cannot be backward propagated as in the SOP. 

There are also works in the literature focused on real planning and 
scheduling solutions in the steel industry. Harjunkoski and Grossman 
(2001) presented a decomposition approach for the scheduling of the 
processes between the electric arc furnaces and the continuous caster, 
splitting the original problem into smaller subproblems that can often be 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

3

optimally solved, reducing the overall complexity of the problem. A 
combination of Lagrangian relaxation, dynamic programming and 
heuristics rules is used by Tang et al. (2002) for the scheduling of the 
steel-making process. Cowling et al (2004) used a multi-agent approach 
for the dynamic scheduling of steel milling and casting. Many other 
works focused on primary steel-making processes can be found in the 
literature (see exhaustive reviews in Lee et al. 1996, Tang et al. 2001, 
and Iglesias-Escudero et al. 2019). 

However, when it comes to the scheduling of steel finishing lines, the 
existing works are scarce. 

Okano et al (2004) present an ambitious project that involves mul
tiple processes from the cold mill onward, including the CGL. The 
project consists of several phases, such as initial clustering, the creation 
and allocation of the campaigns, time windows management and the 
final sequencing of the coils for a one-month horizon. The sequencing 
problem is modelled as a traveling salesman problem with times win
dows (TSPTW) and they use a constructive heuristic and a local search 
algorithm to solve it. They consider the sequencing constraints in the 
objective functions and in the estimation of the distances between coils, 
though they do not address in their model the common use of transition 
coils to resolve constraints in case of not finding a feasible solution. Prior 
to sequencing, they try to guarantee the sequenceability (whether or not a 
feasible solution exists) of each campaign during the clustering and 
campaign creation phases, which facilitates the sequencing task. Even
tually, the detailed coil sequences for a few days horizon are done by 
human experts who can manually fix the orderings. They manifest that 
“the CGL sequencer is regarded as the most difficult process in the fin
ishing lines in terms of sequencing, … even finding a feasible solution is 
NP-Hard”. Our paper is focused exactly on this latter phase of 
sequencing the coils, but with the objective of ensuring finding a low- 
cost feasible solution, if it exists, given fixed group of coils. 

The scheduling of a Turkish steel company CGL is studied in 
(Kapanoglu and Koc, 2006). First, the campaign is created with the coils 
that better satisfy the due dates, predefined priorities and campaign 
tonnage. Then these selected coils are sequenced with a multi-stage 
genetic algorithm (MSGA). If a feasible solution was not found by the 
MSGA, all the violated constraints are solved one by one using a heu
ristic algorithm that tries to solve them using the minimum number of 
coils from the inventory. The possibility of using inventory coils for 
solving the constraints violations facilitates the problem. In addition, 
performing this repairing method after the sequencing may not provide 
the best solutions, since the sequence is not optimized again after the 
insertions. In our problem, the human experts generate the initial se
lection of coils according to the service level and due dates, and then a 
feasible solution should be found without using additional coils. 

(Valls Verdejo et al., 2009) also studied the problem of scheduling a 
CGL. In their work, they differentiate between the campaign creation 
phase and the intra-campaign coils scheduling, being the latter the focus 
of the study. Within the same campaign, they managed three different 
types of coils depending on its surface quality requirements. The main 
challenge of their work is how to split and sequence one type of coils, so 
the existing constraints and requirements are met, for what they use a 
Tabu Search algorithm. 

Lastly, Fernández et al. (2014) presented a very similar problem to 
the one studied on this paper and how they were able to notably enhance 
the productivity and efficiency of a CGL using an Ant Colony Optimi
zation algorithm, reducing the sequencing costs by around 50% in 
average. However, in the last years, the development of new steel grades 
and the necessity of reducing the stock levels in this finishing line have 
brought an important increase in the number of sequencing constraints, 
challenging feasibility and the algorithms in use. This work provides a 
set of 30 challenging instances of the problem (some of them have 
proved to be of high difficulty for ACO), analyzes the performance on 
them of two ACO variants and introduces an alternative algorithm able 
to improve such performance. 

Finally, there exists others works focused on real planning and 

scheduling cases in other fields such as the pharmaceutical and chemical 
industry (Stürtz & Marchetti, 2020), automotive industry (Gnonia et al., 
2003) , plastic injection modelling industry (Klement et al, 2021) and 
construction industry (Ghiyasinasab, Lehouxa, Ménardb, & Cloutier, 
2020). 

3. Problem definition 

3.1. Context of the real case 

The production of steel involves several processes to transform the 
raw materials into final steel products such as coils or bars. First, the iron 
ore is converted into liquid iron in the blast furnace, and the liquid iron 
is converted into liquid steel in the converters. Then, in the continuous 
caster, the molten steel is transformed and cut into solid semi-products, 
called slabs in the production of flat products. Next, these slabs are 
rolled at the hot strip mill to obtain coils of steel with the required di
mensions. These coils are the final format provided to the client but, 
depending on final order specifications, they must go through some of 
the finishing processes such as pickling, tempering, tinning, annealing or 
galvanizing. 

This paper is focused on the scheduling a continuous galvanizing line 
(CGL) of a Spanish Steel Company, where the steel is coated with a zinc 
layer to protect it against air and moisture (Fernández et al. 2014). It is a 
complex continuous process in which coils pass through different phases 
(accumulator, furnace, zinc pot, etc.) and it is very sensitive to its 
ordering. That is why the scheduling of the CGL is a very important task 
in the steel industry. Since the process is continuous and cannot be 
interrupted, the tail of the coil being processed is welded to the next coil. 
For the line, it can be seen as an infinite strip, but its properties and 
characteristics change at some points. 

Once the coils are welded, they go towards the accumulator that 
allows to change the speed of the line without running out of coils. The 
next stage is the furnace, where the coils are heated until they reach its 
target temperature. This temperature mainly depends on the steel 
composition, thickness and width. Afterwards, the strip is immersed into 
a zinc pot, which is followed by an air knives system that provides each 
coil which the required zinc coating weight uniformly spread. 

Normally, the coils are grouped in campaigns with similar properties 
and due dates. This phase is done by the human experts before the 
scheduling process, since doing both phases together increases the 
complexity. The same campaign may last for several days, while the 
sequencing of coils to be finished is defined daily. This is the origin of the 
problem studied on this paper. Every day, the schedulers manually select 
a set of coils to be produced. They do it following their expertise and the 
coils due dates. Then, the coils have to be sequenced with minimum cost 
(i.e. minimum losses of strip meters). It is possible that, since they do the 
selections as a separated phase and there exists technical constraints, the 
set of coils is not sequenceable (i.e. there is not a Hamiltonian path that 
can visit all coils just once). Every time two sequenced coils cannot be 
produced together, an extra coil with no client should be produced in 
between to avoid the forbidden transition, being its cost huge in com
parison to the others since that whole coil may be sold as scrap at a much 
lower price. Furthermore, more than one extra coil may be required to 
solve the forbidden transition. If an infeasible sequence is processed, 
there is a risk of strip breakage and the cost would be much higher due to 
the unproductive days required to restart the line (cooling down the 
furnace, removing the broken strip, heating up again the furnace and 
resuming production). 

Hence, after the selection of the coils, the sequencing might face two 
different situations. The first situation is that the selected coils are not 
sequenceable, and then the sequencing should provide an ordering with 
the minimum number of constraints and the minimum possible cost. 
But, if the selected coils are sequenceable, the solution approach must be 
able to find a low-cost feasible solution. The latter situation is the aim of 
this work and it is not a trivial problem, it is equivalent to finding a 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

4

minimum cost Hamiltonian path, which is known to be an NP-hard 
combinatorial problem. 

3.2. Definition 

In order to provide a formal description of the problem, we can 
define the problem in a similar way to the SOP or the ATSP: given a 
directed weighted graph G = (V, A), being A the arc set and V the node 
set, find the minimum-cost Hamiltonian path (see Fig. 1). The node set V 
corresponds to the set of n coils to be sequenced (|V| = n). The arc set A 
represents the arcs that connect each pair of distinct nodes. Each arc(i, j) 
between two coils i and j has a weight cij associated, which represents the 
cost of producing those two coils together. The problem is not sym
metric: the arc cost cij may be different to cji. Depending on the coils 
properties and technical limitations of the line, an arc weight cij can 
represent a cost or an ordering constraint:  

• Cost, cij ≥ 0, cij ∈ R. In this case, cij represents the cost on processing 
coil i right before coil j. The exact value of these costs depends on 
several cost functions that take into account the coil properties and 
the impact of the transitions in the CGL process. The model used to 
obtain these costs for each pair of coils is beyond the scope of this 
paper, and thus we do not describe it in detail. Usually, these costs 
are translated into meters of strip lost because they do not meet the 
client quality requirements. As an illustrative example of what these 
costs represent, each coil requires a target temperature at the 
furnace. This temperature depends on the coil width, thickness and 
steel grade, among others. When the next coil enters the furnace, the 
temperature should change to the new target. Due to the inertia of 
the system, the higher the differences between the properties of two 
consecutive coils are, the higher the time required for reaching the 
new target temperature. Since the line does not stop, all the meters 
that passed through the furnace during the time the temperature was 
not at its target might not meet the quality requirements, and those 
meters cannot be sold. Other causes of losing strip meters are dif
ferences on the coating weight at the zinc pot or widths differences at 
the air knives systems. These costs can range from zero (i.e. the 
properties of two consecutive coils are identical) to any other cij ∈ R 

obtained by the cost model but, in any case, those transitions are 
acceptable by the line managers.  

• Constraint, cij= − 1. It means that coil i cannot be scheduled right 
before coil j (i.e. they cannot be welded together), but coil i can be 

processed at any other position before coil j. This is different to the 
ordering constraints of the SOP. Usually, there are two main reasons 
for a constraint between two coils. One reason is that certain coils or 
steel grades are not weldable. The other situation is when the dif
ference between the values of two coils properties exceeds a certain 
threshold, defined by the expert schedulers, and there exists risk of 
strip breakage. If a feasible sequence (i.e. a sequence without any 
constraint) is not found, then a coil with no client assigned must be 
produced in between, or sometimes more than one. The cost of doing 
it belongs to a different cost range to the sequencing costs, and thus 
the reduction of the number of constraints plays a much more 
important role than the reduction of the sequencing costs. Once the 
minimum number of constraints is found, then the cost should be 
reduced. 

It is difficult to know in advance if a selected group of coils is 
sequenceable or not. That is equivalent to determine if, given a graph, 
there exists a Hamiltonian path or not, what is itself a NP-hard problem. 
Normally, the line schedulers do the selection guided by the coils dues 
dates, and this may harm the sequenciability of the selected coils. If the 
selection is not sequenceable, then providing a sequence with one or 
multiple constraints may be acceptable since, if that is the minimum 
possible number of constraints, it is still the best sequence given that 
selection. If the selection is sequenceable, the algorithm must assure a 
feasible solution. But in complex selections like some of the instances 
introduced here, this is not always the case. That would not be accept
able since the cost of an unfeasible solution is much higher, and hence it 
is fundamental and the aim of this work to find an algorithm that, for 
sequenceable selections, will always provide a low-cost feasible 
solution. 

3.3. The instances 

Finding an algorithm that can guarantee to find a low-cost feasible 
solution, if it exists, in a reasonable amount of time is not a trivial task. 
For testing the algorithms, we first needed some instances of the prob
lem that we already knew to be sequenceable. We took 30 different real 
daily schedules processed in the past at the studied CGL and obtained 
their cost matrix using the same cost model. That cost matrix is the only 
input of the problem. For an instance of n coils, the cost matrix will be a 
n × n matrix where a value (i, j) represents the cost cij of sequencing coil i 
right before coil j. Each instance is named as “cgl” followed by its size n 

Fig. 1. Description of the problem and the context of the real case.  

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

5

(i.e. the total number of coils to be sequenced). The size of the instances 
ranges from 17 coils to 114 coils. All instances can be freely accessed in 
the following repository.1 

4. Algorithms 

In this section we explain the algorithms used in this study. We 
implemented two different Ant Colony Optimization (ACO) algorithms: 
an Ant System algorithm (AS) and an Ant Colony System algorithm 
(ACS). These two well-known state-of-the-art algorithms were success
fully applied to solve famous combinatorial optimizations problems 
such as the TSP (Dorigo et al. 1991, Dorigo & Gambardella, 1997) or the 
SOP (Gambardella & Dorigo 2000). Additionally, we developed a new 
hybrid algorithm to improve their performance. 

The reason for using these ACO algorithms is that they have been 
applied for the sequencing of this finishing line for the last years with 
very good results (Fernández et al, 2014). Nevertheless, mainly due to 
the development of new steel grades and the necessity of reducing the 
stock levels, the complexity of sequencing the line has remarkably 
increased, making more difficult to the current versions of the algo
rithms to find feasible sequences. It finally led us to the development of 
an enhanced AS hybrid version introduced at the end of this section, able 
to solve these feasibility issues. 

One of the advantages of constructive metaheuristics, such as the 
ACO algorithms, to schedule the finishing lines of the plant, is the fact 
that they facilitate the handling of multi-coil constraints sometimes 
encountered. Although in this particular galvanizing line only node-to- 
node or transition constraints are present for the current scheduling 
rules, in many galvanizing lines and in other finishing lines (continuous 
annealing, tinning, pickling, etc.) some constraints are related to mul
tiple nodes and/or depend on the rest of the sequence (non-strict 
grouping constraints, coil properties limited by their previous evolution, 
coils that should be scheduled between certain positions/time windows, 
etc.). This kind of constraints can be handled more easily in the 
constructive metaheuristics than in other methods, such as search al
gorithms based on k-opt moves or the non-constructive metaheuristics 
(Genetic Algorithms, Tabu Search, etc.), where time-consuming feasi
bility checks would be constantly required after each movement/ 
recombination, or special strategies should be defined for each partic
ular line. Another reason is that, from time to time, a new constraint 
should be added to the model (i.e. a new product will be produced), and 
we found it easier to add new constraints to a constructive metaheuristic 
than modifying the whole strategy to perform movements or 
recombinations. 

Algorithm 1. (ACO algorithms basic structure)  

1 Set the parameters 
2 Initialize the pheromone values 
3 while (termination criteria not met) do 
4 PerformAntsSequenceConstruction 
5 UpdatePheromoneValues 
6 end while  

ACO is a swarm intelligence metaheuristic inspired by the foraging 
behavior of the ants and how they can coordinate themselves by stig
mergy, an indirect way of communication based on modifications of the 
environment. Ants can deposit pheromone on their paths to increase the 
probability that other ants will follow the same trial, being able to 
achieve self-organization as a colony. Most of the theoretical informa
tion and formulae about ACO discussed in this section were taken from 
the complete ACO-book by Dorigo and Stützle (2004). All ACO algo
rithms share the same basic structure based on an initialization phase 
followed by a main loop with a construction phase and a pheromone 

update phase (see Algorithm 1). From that basic skeleton, many suc
cessful ACO variations have been developed and they mainly differ in 
how construction decisions are taken and how the pheromone is 
updated. 

In order to apply the ACO algorithms to the presented problem, we 
modelled it as an ATSP, assigning a high cost (higher than the rest of the 
transition costs) to the forbidden arcs. This may seem to be the most 
straightforward way. But as we will see later on, simply managing the 
constraints as normal arcs with a high cost associated sometimes gen
erates issues during the search, namely difficulties for finding feasible 
sequences. 

4.1. Ant colony system 

Due to its successful application to other combinatorial problems, we 
first implemented an ACS. It is an extension of the AS that includes three 
different features to improve its performance (Dorigo and Stützle, 
2004): a more aggressive action choice rule strongly biased by the 
accumulated experience, a pheromone evaporation/deposit only per
formed by the best-so-far ant and the update of pheromone every time 
an arc is chosen during the construction (local update). In the ACS, the 
construction of each ant is guided by the following formula: 

j =

⎧
⎨

⎩

argmaxl∈Nk
i

{
τil[ηil]

β
}
, ifq ≤ q0

J, otherwise
(2) 

where J is a random variable obtained from the probability distri
bution given by classical random proportional rule of the original AS, but 
with α = 1: 

pk
ij =

[τij]
α
[ηij]

β

∑
l∈Nk

i
[τil]

α
[ηil]

β, ifj ∈ Nk
i (3) 

Initially, a random start node or coil is assigned to each of the m ants. 
At each construction step, an ant k located at node i will choose the next 
coil j from the set of non-selected coils Nk

i (Ec.2). With probability q0 the 
selection is made greedily, since the next node would be the one with 
better product τil[ηil]

β: the choice with the highest amount of pheromone 
and heuristic information (i.e. lower cost), favoring exploitation. On the 
other hand, with probability (1 - q0) the next node would be chosen 
according to the probabilistic action choice rule (Ec.3), where τij is the 
amount of pheromone on the arc(i, j) and ηij its heuristic information. β is 
the parameter that controls the influence of the heuristic information in 
the construction process, while α controls the influence of the phero
mone (α = 1 in ACS). The heuristic information of an arc(i, j) is constant 
during the iterations and it is related to the cost of sequencing coil i right 
before coil j, ηij = 1/cij. When the arc(i, j) represents a forbidden link (cij 

= -1), we assign to that arc a high cost BC some orders of magnitude 
greater than the average transition costs obtained by the cost model. 
This makes very small the heuristic information of choosing an arc that 
represents violating a constraint, and thus makes very low probability of 
selecting it. 

In the ACS, there are two different mechanisms for updating the 
pheromone values: the global pheromone update and the local phero
mone update. The global pheromone update is performed at the end of 
each iteration (after all the ants have constructed their paths) and it is 
done only by the best-so-far ant (Ec.4). 

τij←(1 − ρ)τij + ρΔτbest
ij ,∀(i, j) ∈ Sbest (4) 

The best-so-far ant is the one that, until that moment, has found the 
best solution Sbest (i.e. the sequence with the minimum cost Cbest). This 
ant deposits to all the arcs of its sequence an amount of pheromone equal 
to ρΔτbest

ij , where ρ is a parameter that represent the pheromone evapo
ration and Δτbest

ij = 1/Cbest . At the same time, evaporation is performed 1 https://data.mendeley.com/datasets/v357z2ncbh/2 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            

https://data.mendeley.com/datasets/v357z2ncbh/2


Computers & Industrial Engineering 165 (2022) 107908

6

on Sbest arcs controlled by ρ. If a feasible solution has not been found yet, 
the best-so-far solution will be the sequence with the lower number of 
constraints, but its cost will still be very high because it will have at least 
one cost cij = BC. When this happens, the solution with the lower number 
of violated constraints Sbest will have more pheromone than the others, 
but the pheromone deposited after each iteration will be very low to 
avoid stagnation and premature convergence on an infeasible solution. 

On the other hand, the local pheromone update is performed by each 
ant every time an arc is chosen during the sequence construction: 

τij←(1 − ξ)τij + ξτ0 (5) 

where ξ is a parameter that normally equals to 0.1 and τ0 is the initial 
value of the pheromone. During the initialization phase of the algorithm, 
the same value τ0 is assigned to each arc in the pheromone matrix. A 
good option for this initial pheromone value is 1/nCnn, being n the size of 
the instance and Cnn the cost of a sequence obtained using the nearest- 
neighbor approach (Dorigo and Stützle, 2004). 

Focusing on this case study, the nearest-neighbor solution tends to 
contain one or multiple constraints, computed as penalties or high costs. 
Knowing this, for the initialization of the pheromone we use 1/nCnn*, 
where Cnn* = Cnn/nnn

c BC and nnn
c is the number of violated constraints in 

the nearest-neighbor solution. In other words, Cnn* is the cost of the 
nearest-neighbor solution without considering the high costs associated 
to the violated constraints. This generates that the initial value of the 
pheromones would probably be higher than the expected amount to be 
deposited in the first iterations. 

According to Dorigo and Stützle (2004), if the initial amount of 
pheromone is higher than the expected quantity of pheromone depos
ited in one iteration, the first iterations are not influenced by the pher
omone and the decisions of the next ants until the initial values of the 
pheromones reach the adequate levels are guided only by the heuristic 
information, losing the first iterations. In our problem, this effect is 
interesting. For example, letś assume the usual situation of a problem 
instance in which the first ants, mainly guided by the heuristic infor
mation (Ec.1), are not able to find feasible solutions. If initially the value 
of the pheromone is low (as it would be if we use 1/nCnn), then the so
lution with the smaller number of violated constraints will have more 
pheromone than the others and it exists the risk of biasing the search to 
the region of that infeasible solution and finally not finding a feasible 
one. But, on the contrary, if the initial value of pheromone is higher 
(using 1/nCnn*, Cnn* ≪ Cnn), the pheromone deposited by infeasible so
lutions during the first iterations will not have much effect on the next 
iterations and the next ants will better explore the search space. Obvi
ously, if there is not a feasible solution, we prefer a solution with only 
one constraint than other with two and, if that is the case, as the initial 
pheromone is reduced then the solution with fewer constraints will start 
to have much more pheromone than the others and probably the final 
solution will be the one with lower number of constraints. But, if there 
exists a feasible solution, we do not want an infeasible solution (even 
being the best of the iteration) to bias the search in the first iterations, 
reducing the possibility on finding the feasible one. This is the issue we 
want to avoid with our different initialization method, after first getting 
poor results with the original initialization. 

4.2. Ant system 

After some tests of the ACS showing not very good results, we 
decided to also implement an AS and compare their performance. The 
main reason was that we noticed that greedy cost construction decisions 
may difficult the task of finding feasible solutions. 

Indeed, oftentimes the selection of low-cost transitions during the 
construction can generate feasibility problems in the following steps. For 
example, letś suppose that one coil a can link to just two coils b and c, 
with cab ≪ cac. There are multiple coils that can be sequenced right 
before coil b, but the only coil that links before coil c is coil a. Once coil a 

is chosen during the construction, if the decision for the next coil is 
highly influenced by the costs, then coil b will be selected and auto
matically the sequence will contain at least one constraint (because 
there is no other coil that links to coil c). Many of the instances of the 
problem have similar but more complex relations between cost and 
feasibility, which makes the search even harder. 

The ACS, because of the aggressive action choice rule in which with 
probability q0 the option with the highest τil[ηil]

β value is selected, is 
prone to misguide the search towards low cost arcs that eventually lead 
to unfeasible solutions, especially during the first iterations where the 
influence of the pheromone is lower. But in the AS, the construction 
decisions are more open to exploration since they are always guided by 
the random proportional rule (Ec.3), less greedy, and thus there are 
more choices of avoiding situations like the one explained above. 

In the AS, differently to in the ACS, the pheromone update is per
formed by all ants after each iteration. First, all pheromone values are 
reduced according to the following equation: 

τij←(1 − ρ)τij, ∀(i, j) ∈ A (6) 

After the evaporation, all arcs belonging to the sequence constructed 
by each ant are reinforced with an amount of pheromone Δτk

ij inversely 
proportional to the cost Ck of its sequence Sk (Ec.7 and Ec.8). The arcs 
that were not chosen by any ant do not received any amount of phero
mone during that iteration. 

τij←τij +
∑m

k=1
Δτk

ij,∀(i, j) ∈ A (7)  

Δτk
ij =

⎧
⎨

⎩

1
Ck, ifarc(i, j)belongstoSk

0, otherwise
(8) 

For initializing the pheromone, we use the approach suggested by 
Dorigo and Stützle (2004) of using m/Cnn but again with Cnn* instead of 
Cnn as explained for the ACS, and for the same reasons. 

4.3. Hybrid version of the ant system 

4.3.1. Motivation 
As we will see in the results and as anticipated, the AS, with a less 

greedy construction mechanism, achieves a better performance for this 
problem in terms of finding feasible sequences compared to the ACS. 
Nevertheless, the AS still faces difficulties in finding feasibility when the 
costs distribution drives the search to shortcuts where eventually adding 
a constraint becomes unavoidable. This has been the motivation for the 
developing our Ant System - Interval Reconstruction algorithm (AS-IR). 

Let us illustrate the issues found in ACS and AS performance with two 
different examples, exaggerated and simplified to facilitate the expla
nation, but present in similar forms in some of the studied instances. 

Looking at Fig. 2, we can clearly differentiate two groups of coils. We 
refer to Nodes 0, 1, 2 and 3 as Group A, and Nodes 4, 5, 6 and 7 as Group 
B. As it can be seen from the cost matrix shown in Fig. 2, first all nodes 
from Group A should be sequenced together, and then all nodes from 
Group B. Nevertheless, with that cost distribution where going from a 
Group A node to a Group B node has cost zero, the ACS and the AS will 
probably face difficulties in finding that ordering because their con
struction decisions are strongly biased by the costs. 

For example, letś assume that Node 0 has been selected at some point 
during the construction of the sequence, and the rest of nodes [1, 2, …, 
7] are available (i.e. they have not been added to the sequence yet). In 
order to get a feasible sequence, only Node 1, 2 and 3 can be selected as 
next nodes. If any other node from Group B is selected instead, auto
matically at least one constraint will be generated: none of the nodes 
from Group B can link back to nodes from Group A. When the con
struction is at Node 0, all the nodes from Group B (i.e. wrong choice) link 
with a very low cost, while the nodes from Group A have a much higher 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

7

cost (i.e. the correct choice). Hence, a construction mechanism as the 
one used in ACS and AS, that gives more probability to the nodes with 
lower costs, has a high probability of making a wrong choice and not 
finding a feasible sequence. This effect is amplified when the algorithm 
should select nodes with higher cost many consecutives times (i.e. as in 
this case, all the nodes from Group A should be sequenced together 
before Group B nodes). 

Another interesting situation that we noticed is when, to be able to 
solve or avoid just one single constraint, many arcs should be modified 
-sometimes even the whole sequence. Let us see this in the next example. 

The sequence [1, 3, 5, 7, 2, 4, 6, 8] shown in Fig. 3 has just one 
constraint, between nodes 7 and 2. It may seem close to be feasible (in 
terms of movements) because it has just one constraint but, looking at 
the cost matrix, it can be seen how all the arcs should be changed to fix 
the constraint. The only feasible sequence for this extreme example is in 
strict growing order: [1, 2, 3, 4, 5, 6, 7, 8]. For constructive algorithms 
like the AS and the ACS, the probability of selecting any of the adjacent 
nodes is the same since all them have equal cost. If during the first it
erations the ACO algorithms do not find the correct sequence -what is 
very likely since the correct decision should be made several consecutive 
times without a cost distribution that helps the search-, pheromone will 
be deposited in unfeasible sequences like the one shown in Fig. 3, and 
the chances to explore a completely different sequence are gradually 
reduced with the iterations. 

A simple test shows that an instance with a cost matrix as described 
above and of size only 40 nodes is not resolved to feasibility by ACS nor 
by AS. 

Thus, we have seen that the ACO algorithms, specially the AS, have 

many positive aspects that make them desirable for scheduling the fin
ishing lines, but fail in extreme situations like the ones explained above. 
This is the reason why we needed to improve their performance and 
ability to find feasible sequences. Finally, we came out with a new local 
search that we named as Interval Reconstruction. 

4.3.2. The ant system with interval reconstruction 
We call Ant System with Interval Reconstruction (AS-IR) to an 

enhanced version of the AS in which we introduce a sequence 
improvement mechanism, the Interval Reconstruction (IR). The IR was 
initially developed to solve constraints, but it also can be used to reduce 
costs. It works selecting two intervals or windows of nodes from a given 
sequence, and then rearranging those nodes with the aim of improving 
the sequence. 

Algorithm 2. (Ant system with interval reconstruction)  

1 Set the ACO and IR parameters 
2 Initialize the pheromone values 
3 while (termination criteria not met) do 
4 PerformAntsSequenceConstruction 
5 PerformIntervalReconstructionLocalSearch 
6 UpdatePheromoneValues 
7 end while  

To our understanding, we have not seen a similar constructive local 
search in the literature, though in part the development of this 
improvement mechanism was inspired by the Greedy Randomized 
Adaptive Search Procedure (Feo & Resende, 1995) and the Iterated 
Greedy (Ruiz & Stützle, 2007). We refer to the IR as a local search mainly 

Node 0 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Node 0 100 100 100 100 0 0 0 0
Node 1 100 100 100 100 0 0 0 0
Node 2 100 100 100 100 0 0 0 0
Node 3 100 100 100 100 0 0 0 0
Node 4 -1 -1 -1 -1 100 100 100 100
Node 5 -1 -1 -1 -1 100 100 100 100
Node 6 -1 -1 -1 -1 100 100 100 100
Node 7 -1 -1 -1 -1 100 100 100 100

Fig. 2. Example to illustrate adverse cost distributions.  

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8

Node 1 -1 0 0 0 0 0 0 0
Node 2 -1 -1 0 0 0 0 0 0
Node 3 -1 -1 -1 0 0 0 0 0
Node 4 -1 -1 -1 -1 0 0 0 0
Node 5 -1 -1 -1 -1 -1 0 0 0
Node 6 -1 -1 -1 -1 -1 -1 0 0
Node 7 -1 -1 -1 -1 -1 -1 -1 0
Node 8 -1 -1 -1 -1 -1 -1 -1 -1

Sequence:

Node 1 Node 3 Node 5 Node 7 Node 2 Node 4 Node 6 Node 8

Fig. 3. Example to illustrate a sequence where all the arcs should be changed to fix one constraint.  

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

8

because we use it as an improvement mechanism applied to complete 
sequences constructed by the ants, and because it can be embedded in 
any other metaheuristic, but it can expand the search more than locally. 

The IR is applied at the end of each iteration, after all the ants have 
constructed their sequence and before the pheromone update (Algo
rithm 2). Although different strategies can be used (apply it only to the 
best so far ant, to some of the best ants of the iteration, etc.), we decided 
to only apply it to the best ant of the iteration due to performance 
reasons. 

The IR gets as input a complete sequence Sbest built by the best ant 
and tries to improve it several times. If no improvement is found, the 
same input sequence is returned. First of all, the IR looks for all the arcs 
of the input sequence (Sbest, Algorithm 3) that represent a constraint 
violation (forbidden arcs). At each improvement try, one such target arc 
is selected, around which one of the intervals for partial reconstruction 
will be defined. With a target arc chosen from the list of forbidden arcs in 
Sbest, the goal of the IR is to solve that constraint (or reduce the number 
of constraints at least by one). In case there are not constraints violations 
in Sbest, that is, the list is empty, we select as target arc any random arc, 
and the goal of the IR is now to reduce the cost of the sequence. 

Algorithm 3. (PerformIntervalReconstructionLocalSearch)  

1 Get the best solution Sbest of the iteration 
2 for improvement_try in range max_improvement_tries: 
3 target_arc ← SelectTargetArc 
4 Snew ← PerformReconstruction(Sbest, target_arc) 
5 if cost (Snew) < cost (Sbest) then: 
6 Sbest ← Snew 

7 break 
8 end for 
9 return Sbest  

With this approach, we are not treating the constraints as normal arcs 
with high cost, but instead we give total preference to solving the con
straints, targeting directly the forbidden arcs. In addition, to avoid the 
costs misguide the reconstruction procedure, when we are targeting a 
constraint (that is, if the list of forbidden arcs is not empty), the 
reconstruction procedure does not pay attention to the costs, it only 
looks at the adjacency. This is a key feature of the algorithm. 

Once we have chosen the target arc for a particular improvement try, 
two windows are defined. One window (W1) is defined around the target 
arc, so that the two nodes involved are selected. The other window is 
selected at any other part of the sequence, randomly chosen. Both 
windows are controlled by two length parameters, min_slice_len and 
max_slice_len, allowing us to decide how much of the sequence will be 
modified. If those parameters are set to low values, the IR will perform a 
local refinement, and if they are high, the windows reconstructed will be 
bigger, and the change in the sequence could be radical, what sometimes 
may be interesting. The length of each window is randomly generated 
between min_slice_len and max_slice_len. 

Algorithm 4. (PerformReconstruction(Sbest, target_arc))  

1 S ← Sbest  

Ś, W1, W2 ← SelectIntervals(Sbest, target_arc) 
2 for reconstruction_try in range max_reconstruction_tries: 
3 B = W1 U W2 
4 while B not empty:  

Ś, B ← InsertOneNode(Ś, B) 
5 if cost (Ś) ≤ cost (S) then: 
6 S ← Ś 
7 break 
8 end for 
9 return S  

The two windows define two subsets of nodes, W1 and W2, comprised 

Fig. 4. One reconstruction try of the Interval Reconstruction.  

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

9

between the initial (w1
i, w2

i) and end positions (w1
e, w2

e) of each 
window. Those nodes will be removed from the sequence and then 
reinserted trying to build two new windows, Ẃ1 and Ẃ2, with lower cost 
or lower number of constraint violations (see Fig. 4). 

The reinsertion procedure works by inserting one by one the nodes 
from the set B = W1 U W2. Before inserting a node, one of the two new 
windows is selected according to a given probability (p = 0.5). To decide 
the next node to be added to that window, we first look for the set of 
nodes that has not been selected yet and are adjacent to the last added 
node i (Di). If it is the first node to be added to the new window, we look 
for nodes adjacent to the node positioned at w1

i or w2
i. We say a node j is 

adjacent to node i if they can be sequenced together (cij ∕= -1). When the 
set of adjacent nodes is not empty (Di ∕= ∅), the next node j will be 
selected from Di. 

If we are targeting a forbidden arc (i.e. trying to solve one 
constraint), the next node is selected randomly form Di, having all the 
candidate nodes the same probability (Ec.9). This way, to avoid situa
tions as the ones presented in Section 4.3.1, we do not allow the decision 
be influenced by the costs, increasing the exploration and avoiding po
tential biases of the AS construction mechanism and the accumulated 
pheromone. 

pij =
1

size(Di)
, ifj ∈ Di (9) 

On the other hand, if the target arc is not a forbidden arc (i.e. the 
input sequence is already feasible), the next node is selected according 
to a probability distribution that linearly bias the selection towards the 
nodes that add lower costs (Ec.9). 

pij =

1
cij∑
l∈Di

1
cil

, ifj ∈ Di (10) 

If at some construction step the set of adjacent nodes is empty (Di =

∅), we select a random node from the set of non-adjacent nodes, directly 
adding an unavoidable violated constraint to the sequence. 

Once a node is reinserted into one of the new windows, it is removed 
from B, and the same process is repeated until all the nodes from B have 
been inserted (Algorithm 4). Finally, we compute the two closing costs, 
that are the cost of linking the last added node of each window with the 
node located at w1

e or w2
e. The reconstruction procedure is very effi

cient since we only compute partial costs (removed arcs vs added arcs), 
and only requires quick access to the cost matrix. This allow us to try 
multiple reconstructions. 

For a given W1 and W2, we allow several tries to get a better solution 
(max_reconstruction_tries). If a better solution is found, both the recon
struction tries (same target arc and windows) and the improvement tries 
(different target arcs) are interrupted, and the new solution is returned 
to the AS. To know if the new windows are better, we first compute the 

number of violated constraints and the cost of W1 and W2, and then 
those of Ẃ1 and Ẃ2 during the reconstruction. If the number of 
constraint violations is reduced, the new sequence is considered better. 
In the case of equal number of violated constraints, the new sequence is 
considered better if the cost is reduced. 

The use of two windows is, together with the dismissal of costs to 
drive the search over unfeasible sequences, another key feature of the 
algorithm, allowing a wide exploration of the search space. Using only 
one window, the interval reconstruction would be restricted to simply 
shuffle certain nodes in a part of the sequence, whereas the usual case is 
that other nodes from other parts of the sequence may be fundamental to 
resolve the constraint. With two random windows, the exploration is not 
limited anymore in this regard, allowing a much broader search. 

5. Results 

The main goal of this work was to assess the effectiveness of the 
different algorithms in finding feasible and low-cost solutions in a 
reasonable amount of time for industrial scenarios. For the assessment, 
we ran the three algorithms (ACS, AS and AS-IR) 30 times for each of the 
real instances explained in Section 3, in order to obtain representative 
results. These instances were known to be feasible in advance, so we 
could determine the success rate of the algorithms in finding feasible 
solutions. We limited the execution time to 120 s for each run, which is a 
decent amount of time for the scheduling crew to run the algorithm on 
their laptop. 

For the galvanizing line, the most important target is to get a feasible 
sequence of the coils to be produced each day, which in fact is the main 
challenge. Once a feasible sequence is obtained, then the lower the costs, 
the better. Hence, we divided the assessment in two phases: first, we 
compared the performance of the algorithms in finding feasible solu
tions, and then we analyzed their performance in reducing costs. 

For the ACO algorithms, we used the parameters setting suggested in 
Dorigo and Stützle (2004). In our implementation of the ACS we used q0 
= 0.9, β = 2, ρ = 0.1, ξ = 0.1 and m = 10, being m the number of ants. For 
the AS, we used α = 0.1, β = 2, ρ = 0.5 and m = n, being n the size of the 
instance. The parameters used for the IR in the AS-IR were: max_win
dow_len = n/3, min_window_len = 0, max_improvement_tries = 10 and 
max_reconstruction_tries = 30. 

5.1. Feasibility performance 

For the feasibility analysis, we used only the nine instances of 
Table 1. For the rest of the instances, finding feasible solutions was not 
an issue for any of the three algorithms. Some instances are harder than 
others in terms of feasibility depending on the attributes of the set of 
coils to be scheduled. Sometimes, most of the coils have similar attri
butes and they link together easily. In other cases, the set of coils to be 

Table 1 
Feasibility Analysis.  

Inst. Alg. n_unfeas Success (%) Inst. Alg. n_unfeas Success (%) 

cgl_51 AS 0 100% cgl_72 AS 1 96.7% 
AS-IR 0 100% AS-IR 0 100% 
ACS 21 30% ACS 7 76.7% 

cgl_48 AS 4 86.7% cgl_78 AS 0 100% 
AS-IR 0 100% AS-IR 0 100% 
ACS 27 10% ACS 25 16.7% 

cgl_60 AS 0 100% cgl_33 AS 27 10% 
AS-IR 0 100% AS-IR 0 100% 
ACS 26 13.4% ACS 27 10% 

cgl_26 AS 3 90% cgl_73 AS 0 100% 
AS-IR 0 100% AS-IR 0 100% 
ACS 28 0.7% ACS 5 83.4% 

cgl_44 AS 0 100%     
AS-IR 0 100%     
ACS 5 83.4%      

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

10

scheduled are very different and it is really difficult just to find a feasible 
sequence. 

Ideally, if an algorithm is run 30 different times on the same instance, 
it should find a feasible sequence all the times (if it exists). This is what 
we call success (Table 1), and this ideal situation would have a success 
rate of 100%. If the success rate of an algorithm on a particular instance 
is lower than 100%, it means that it exists a chance of the operator 
running the tool for a sequenceable set of coils and not getting a feasible 
schedule, due to stochastic nature of the studies algorithms 

As it can be seen from Table 1, the ACS with the parameter values 
adopted in Dorigo and Stutzle (2004) is the algorithm with the worst 
feasibility performance. The maximum success rate of the ACS was 
83.4% in cgl_44, and it got a success rate lower than 20% in five out of 
the nine instances. The AS obtained much better results with a success 
rate over 85% in eight out of the nine instances (a 100% in five of them). 
This result goes against other theoretical problems in the literature 
where the ACS tends to perform better than the AS, especially for larger 
instances (Dorigo and Stützle, 2004), but it is not the case in the not so 
big instances studied from this problem, where finding feasible solutions 
is crucial. 

One reason for the poor feasibility performance of the ACS in this 
problem may lay in the fact that its construction decisions are strongly 
guided by the costs, selecting with probability q0 = 0.9 the node with 
lower cost. This fact, together with the more aggressive action choice 
rule strongly biased by the accumulated experience, restricts its explo
ration capacity, and if it does not find a feasible sequence during the first 
iterations, it is unlikely that it will do it latter no matter for how long it is 
run. 

Another reason for the AS having a better performance than the ACS 
can be that the AS is more open to exploration due to its construction 
mechanism (the next node depends purely on the probability distribu
tion given by classical random proportional rule, Ec.3) and the way the 
pheromone is updated (all the ants deposit pheromone proportionally to 
the cost of its sequence, while in the ACS the pheromone deposit is done 
only by the best-so-far ant). 

Nevertheless, the AS still obtained a success rate lower than the 
100% in four instances, what means that it exists a probability of 

returning an unfeasible sequence for a set of sequenceable coils. This 
probability is extremely high for cgl_33 instance, for which both the AS 
and the ACS obtained a success rate of only 10%. 

Although it is out of the scope of this paper to go into a deep analysis 
of the cost matrices and the adjacency graphs underlying these in
stances, we can take a quick look to the cost matrix of cgl_33 to see how 
similar situations and cost distributions to the ones commented in Sec
tion 4.3.1 make this instance very hard for ACO algorithms. Just to 
highlight some details that can be easily seen from Fig. 5, among others:  

• Node 4 is a very special coil because it only links before Node 5. At 
each iteration, each ant starts at a random node. If at some point 
Node 4 is selected, and Node 5 was already added to the sequence, it 
automatically generates one constraint violation.  

• Another difficult situation that can be easily detected is related to 
Nodes 0, 1 and 2. These three nodes should be scheduled together in 
order to get a feasible sequence. If the last added node was Node 0, 
and Nodes 1 and 2 have not been selected yet, it is mandatory to 
select one of them to avoid a future constraint violation. If any other 
adjacent node is selected instead right after Node 0 (Node 3, 5, 6, 7, 
…, 12), automatically a constraint violation is generated since none 
of the rest of the nodes link before Node 1 or Node 2.  

• Letś suppose that the last added node was Node 0, and Node 1 was 
already selected. The only right choice for next node is Node 2, but is 
has a cost of 1247. On the other hand, selecting as next node Node 3 
has a cost of 383 (higher probability for ACO algorithms), but it will 
generate one constraint violation (no other available node links 
before Node 2) 

Some input instances presented in this work have cost distributions 
showing similarities with the one explained above, making likely for 
decisions guided by the costs to generate feasibility issues - as we have 
assessed in our tests. Since the ACO algorithms do not take totally greedy 
decisions (i.e. as it would do the Nearest Neighbor heuristic), they may 
at some point make the correct decision by chance, selecting a right node 
with a less cheap cost. But when such many unlikely decisions should be 
done along the construction, the ACO algorithms can eventually fail in 

Fig. 5. Cost matrix of cgl_33 instance.  

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

11

finding a feasible sequence. 
These feasibility issues of the ACO algorithms can be solved by 

adding the IR as a sequence improvement mechanism. When the IR is 
trying to solve one constraint violation (i.e. the target arc is a forbidden 
link), the reconstruction decisions are only based on adjacency, and they 
do not pay attention to the costs. This allows to increase the exploration 
capacity of the algorithm and the chances to find the correct order of 
coils. In addition, the simplicity of the IR and its time-efficiency allow to 
try multiple reconstructions to solve one constraint violation. From 
Table 1, the AS-IR obtained a 100% of success in all the 30 studies in
stances, satisfying the main objective of ensuring feasibility when it 
exists. We find the combination of the AS and the IR a very robust hybrid 
algorithm in terms of feasibility, that uses the intelligence of the classical 
AS (pheromone deposit and evaporation) and the ability of the IR to try 
several recombinations without cost bias. 

5.2. Cost performance 

Since the feasibility success is considered the most important criteria, 
we dismissed the ACS for the cost analysis, and we compared the ability 
to find low-cost sequences of the AS and the AS + IR for the 26 instances 
for which both algorithms achieved a 100% of feasibility success rate. 
With this second analysis we wanted to see if the IR also helps the AS to 
find cheaper solutions, in addition to the contributions in the search of 
feasible orderings. 

Table 2 shows the detailed results of the experiments conducted: the 
best cost (Cbest), the average cost (Cavg) and the standard deviation (Std. 
Dev). Before analyzing the results of the AS-IR, it is worth to highlight 
that, despite of the difficulties explained in the previous sections, when 
the sequencing of the daily set of coils is not very challenging in terms of 
feasibility, the AS tends to perform very well and finds low-cost 
solutions. 

The AS-IR obtained a better Cbest in 15 instances and a better Cavg in 
20 instances, while the AS outperformed the AS-IR with a lower Cbest in 4 
instances and a lower Cavg in 5 instances. Both algorithms obtained the 
same Cbest in 7 instances and the same Cavg t in just one instance. With a 
Cbest improvement in the 58% and a Cavg improvement in the 79% of the 
tested instances, the effect of adding the IR to the AS is clearly positive, 
finding lower cost solutions in the majority of the cases. 

In the AS-IR, when the IR is called to try to improve the sequence of 
the best ant of the iteration, it only returns a new solution if the sequence 
has a lower cost than the input sequence. If not, the AS continue with the 
solutions obtained by the ants until the next try of the IR. Hence, the IR 
will never worsen the AS solutions. For those instances for which the AS- 
IR obtained a worst average cost (19.2% of the tested instances), the 
reason may be that the IR does not find lower cost solutions and, since 
the maximum allowed time was of 120 s, it consumed some time that 
reduced the number of constructions of the ants in the AS. 

We noticed that the instances for which the AS-IR did not improved 
the average cost are some of the larger ones (cgl_114, cgl_107, cgl_88, 
cgl_66). We believe that this may be because the length of the IR win
dows is related to the size of the instances, and if the windows are very 
large, many nodes should be reinserted and it is more difficult to find 
better new windows due to the simple construction mechanism that just 
uses the random proportional rule (Ec.10), a simplicity that helped the 
feasibility search. A deeper study on these instances should be con
ducted and a smaller max_window_len should be set for large instances, 
but for this test we wanted to set the same value for all the instances. In 
any case, the worst Cavg improvement of the AS-IR was of − 1.68% in 
cgl_107 (i.e. the AS-IR obtained a Cavg 1.68% greater than the AS) , while 
the better improvement of the AS-IR was of 7.28% or 6.43% for in
stances cgl_37 and cgl_32, respectively (see Table 3). 

Table 2 
Results of the cost performance experiments.  

Inst. Alg. Cbest Cavg Std. Dev. Inst. Alg. Cbest Cavg Std. Dev. 

cgl_51 AS 12,677 14374.83 1042.93 cgl_28 AS 2856  2877.90  23.99 
AS-IR 12,670 14340.70 977.05 AS-IR 2833  2833.76  4.19 

cgl_60 AS 10,604 11261.43 507.19 cgl_81 AS 6984  8056.76  686.65 
AS-IR 10,409 10892.53 362.40 AS-IR 6866  7853.40  689.53 

cgl_38 AS 3887 3887 0 cgl_58 AS 3652  3661.20  8.41 
AS-IR 3887 3887 0 AS-IR 3652  3656.06  6.84 

cgl_44 AS 10,542 10690.33 156.74 cgl_70 AS 9848  11587.53  1660.33 
AS-IR 10,070 10280.10 79.52 AS-IR 9956  10912.73  681.00 

cgl_78 AS 11,282 13261.26 1089.77 cgl_114 AS 9774  10552.76  477.31 
AS-IR 10,158 13050.63 1114.47 AS-IR 9774  10622.96  466.10 

cgl_88 AS 11,020 11638.10 560.11 cgl_107 AS 5676  6396.16  364.58 
AS-IR 10,952 11735.23 858.25 AS-IR 6103  6503.66  228.16 

cgl_45 AS 8275 8817.70 263.70 cgl_47 AS 5333  6353.80  545.09 
AS-IR 8089 8436.26 187.00 AS-IR 5046  6063.23  539.69 

cgl_76 AS 10,683 12109.10 844.51 cgl_51b AS 4520  4831.16  188.20 
AS-IR 10,740 11902.06 918.38 AS-IR 4394  4761.53  197.16 

cgl_17 AS 4422 4525.56 221.39 cgl_43 AS 5372  5539.66  123.91 
AS-IR 4422 4422 0 AS-IR 5372  5510.10  118.27 

cgl_73 AS 6833 7795.03 500.62 cgl_32 AS 4211  4692.26  353.00 
AS-IR 6557 7574.03 429.04 AS-IR 4260  4390.66  89.51 

cgl_70b AS 5885 6454.16 199.34 cgl_37 AS 4883  5358.33  475.52 
AS-IR 5728 6416.33 245.35 AS-IR 4883  4968.43  135.51 

cgl_66 AS 8370 8885.26 283.46 cgl_48b AS 4528  4778.86  141.67 
AS-IR 8327 8946.13 359.86 AS-IR 4483  4623.16  105.91 

cgl_50 AS 6066 6423.13 307.90 cgl_57 AS 7999  8706.53  541.01 
AS-IR 5611 6173.23 278.84 AS-IR 7999  8728.73  527.08  

Table 3 
Cost improvement of the AS-IR vs AS.  

Inst. Cbest Cavg  Inst. Cbest Cavg 

cgl_52  0.06%  0.24%  cgl_29  0.81%  1.53% 
cgl_61  1.84%  3.28%  cgl_82  1.69%  2.52% 
cgl_39  0.00%  0.00%  cgl_59  0.00%  0.14% 
cgl_45  4.48%  3.84%  cgl_71  − 1.10%  5.82% 
cgl_79  9.96%  1.59%  cgl_115  0.00%  − 0.67% 
cgl_89  0.62%  − 0.83%  cgl_108  − 7.52%  − 1.68% 
cgl_46  2.25%  4.33%  cgl_48  5.38%  4.57% 
cgl_77  − 0.53%  1.71%  cgl_51b  2.79%  1.44% 
cgl_18  0.00%  2.29%  cgl_44  0.00%  0.53% 
cgl_74  4.04%  2.84%  cgl_33  − 1.16%  6.43% 
cgl_70b  2.67%  0.59%  cgl_38  0.00%  7.28% 
cgl_67  0.51%  − 0.69%  cgl_48b  0.99%  3.26% 
cgl_51  7.50%  3.89%  cgl_58  0.00%  − 0.25%  

N. Álvarez-Gil et al.                                                                                                                                                                                                                            



Computers & Industrial Engineering 165 (2022) 107908

12

Table 3 shows the improvement in Cbest and Cavg of the AS-IR 
compared to the original AS version. We calculated this improvement 
as (CAS – CAS-IR)/ CAS * 100. If this value is positive, it means that the AS- 
IR obtained a lower (better) cost than the AS. Considering all the tested 
instances -the ones for which the AS-IR obtained a better, lower and 
equal cost compared to the AS- the average improvement was of 1.36% 
(Cbest) and 2.08% (Cavg). If we only look at the instances for which the 
AS-IR got better results, the average improvement was 3.04% in Cbest 
and 2.91% in Cavg. These values may seem to be small improvements 
but, for this line, where the total production cost of each sequence is 
considerable, and a new sequence is produced daily, the potential sav
ings can be very important. 

After the results obtained from the cost performance analysis, and 
considering the great success of the AS-IR in the feasibility analysis, we 
can state that the addition on the IR to the AS is undoubtedly an 
important enhancement, making the AS-IR a more robust algorithm for 
this problem. 

6. Conclusions 

In this study we present the real-world problem of sequencing coils in 
a continuous galvanizing line of a steel making facility. This problem is 
similar to well-known combinatorial problems as the ATSP and the HCP, 
but in the daily activity of this line there are situations in which the set of 
coils to be produced make the sequencing really challenging, specially 
finding a feasible sequence. Due to the properties of the steel coils and 
the technical limitations of the line, some of them cannot be sequenced 
together, generating node-to-node constraints. Finding feasible se
quences is crucial for the line; only once the feasibility is guaranteed, the 
production cost should be reduced. 

The current algorithms scheduling this line, which have provided 
very good results during the last years, are lately facing difficulties in 
finding feasible sequences because of an important increase in the 
number of scheduling constraints, brought by the development of new 
steel grades and the growing necessity of reducing the stock levels. 
These algorithms are the ACS and the AS - two algorithms of the Ant 
Colony Optimization (ACO) family that have proved to be state-of-the 
art (Dorigo and Stützle, 2004) -, for which the problem is modelled as 
an ATSP. This seems to be the more straightforward approach, assigning 
a high cost to the forbidden transitions. However, sometimes the set of 
coils to be sequenced underly a cost distribution that makes finding 
feasible sequences very difficult for these algorithms, especially when 
the costs strongly influence the search and no special strategies for 
handling the constraints are used. 

We briefly explain why the ACO constructive metaheuristic is a good 
choice for the scheduling of the finishing lines, the main characteristics 
of these two ACO algorithms, and the modifications required to apply 
them to this problem (i.e. initialization and update the pheromone for 
unfeasible sequences). In addition, we show how the ACO algorithms 
can fail in finding feasible sequences in some especially hard instances 
provided by the scheduling crew, analyzing and extracting two key is
sues that the instances share. 

This increasing complexity of the sequencing instances and the 
limitations of the current algorithms led us to look for a new algorithm 
able to ensure feasibility. The new algorithm devised, the Ant System 
with Interval Reconstruction (AS-IR), embeds a novel own-developed 
local search named Interval Reconstruction (IR) into the AS, as 
explained in detail in Section 4. 

As we demonstrate with the experiments conducted, using 30 real 
instances of the galvanizing line, the AS-IR successfully ensures feasi
bility (100% of success in all the instances), achieving its main goal. The 
key features of the IR are the focus on feasibility by a real handling of the 
constraints (targeting directly the forbidden links and avoiding cost- 
based biased decisions), the use of two random reconstruction win
dows (allowing to explore many different recombinations) and its effi
ciency. These features, together with its constructive nature, make the IR 

a very good local search algorithm to be hybridized with the AS, solving 
the issues detected when only using the latter. 

Finally, with the main objective of improving the feasibility perfor
mance of the current algorithms satisfied, we also analyze the ability of 
the AS-IR to reduce costs. One advantage of the IR approach is that it can 
be used both to solve one constraint violation and to reduce the cost of a 
feasible sequence, by adding cost checks in a second phase. The exper
imental results show how the combination of the IR and the AS not only 
ensures feasibility but also helps in enhancing the cost performance. 

Further research will be focused on improving the current solutions 
for other finishing lines where more complex constraints are encoun
tered (i.e. multi-coil constraints). The presence of these type of con
straints was one of the reasons for using constructive metaheuristics in 
their scheduling, and the IR may be a good improvement for these lines 
as well, since it also uses a constructive procedure in its reconstruction 
mechanism. Another future line of study will be the analysis of the un
derlying graph of the instances, which may give us further insights and 
help find new strategies to improve the feasibility performance of the 
current scheduling solutions 

CRediT authorship contribution statement 

Nicolás Álvarez-Gil: Conceptualization, Methodology, Software, 
Formal analysis, Investigation, Resources, Writing – original draft, 
Writing – review & editing, Data curation. Segundo Álvarez García: 
Conceptualization, Methodology, Software, Formal analysis, Investiga
tion, Resources, Writing – review & editing, Data curation. Rafael 
Rosillo: Conceptualization, Methodology, Visualization, Investigation, 
Supervision, Writing – review & editing. David de la Fuente: Concep
tualization, Investigation, Supervision. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This article was financially supported by the Spanish State Research 
Agency of the Spanish Ministry of Science and Innovation (MCIN/AEI/ 
10.13039/501100011033), via the project ‘SPeeding Up the transition 
towards Resilient circular economy networks: forecasting, inventory 
and production control, reverse logistics and supply chain dynamics’ 
(SPUR, grant ref. PID2020-117021 GB-I00). 

This article was financially supported by the ERASMUS+ Program 
via the project Academic System Resource Planning: A Fully-Automated 
Smart Campus (ASRP) (UE-19-ASRP-598757). The authors deeply 
appreciate the constructive comments and valuable feedback offered by 
the anonymous reviewers. 

References 

Akiyama, T., Nishizeki, T., & Saito, N. (1980). NP-Completeness of the Hamiltonian Cycle 
Problem for Biparite Graphs. Journal of Information Processing, 3(2), 73–76. 

Applegate, D. L., et al. (2006). The traveling salesman problem: A computational study. 
Princeton University Press.  

Applegate, D., & Cook, W. (1991). A computational study of the Job-shop scheduling 
problem. Journal of Computing, 3(2), 149–156. 

Ascheuer, N., et al. (2000). A Branch & Cut Algorithm for the Asymmetric Traveling 
Salesman Problem with Precedence Constraints. Computational Optimization and 
Applications, 17. 

Baniasadi, P., Ejov, V., Filar, J. A., Haythorpe, M., & Rossomakhine, S. (2013). 
Deterministic “Snakes and Ladders” Heuristic for the Hamiltonian cycle problem. 
Math. Prog. Comp, 6, 55–75. 

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and 
conceptual comparison. ACM Computing Surveys, 35(3), 268–308. 

Cowling, P. I., Ouelhadj, D., & Petrovic, S. (2004). Dynamic scheduling of steel casting 
and milling using multi-agents. Production Planning & Control, 15(2), 178–188. 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0360-8352(21)00812-3/h0005
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0005
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0010
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0010
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0015
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0015
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0020
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0020
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0020
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0025
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0025
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0025
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0030
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0030
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0035
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0035


Computers & Industrial Engineering 165 (2022) 107908

13

Dorigo, M. (1992). Optimization, learning and natural algorithms (in italian) (p. 140). 
Politecnico di Milano, Italy: DEI. Ph.D. thesis. 

Dorigo, M., & Stützle, T. (2004). Ant Colony Optimization. Boston, MA: MIT Press.  
Dorigo, M., Maniezzo, V., & Colorni, A. (1991). The Ant System: An autocatalytic 

optimizing process. Technical report 91–016 revised, Dipartimento di Elettronica. Milan: 
Politecnico di Milano.  

Dorigo, M., & Gambardella, L. M. (1997). Ant Colony System: A cooperative learning 
approach to the traveling salesman problem. IEEE Transactions on Evolutionary 
Computation, 1(1), 53–66. 

Escudero, L. F. (1988). An inexact algorithm for the sequential ordering problem. 
European Journal of Operational Research, 37(2), 236–249. https://doi.org/10.1016/ 
0377-2217(88)90333-5 

Fernández, S., Álvarez, S., Díaz, D., Iglesias, M., & Ena, B. (2014). Scheduling a 
Galvanizing Line by Ant Colony Optimization. ANTS 2014: Lecture Notes in Computer 
Science, 8667. Springer, Cham. 

Feo, T., & Resende, M. (1995). Greedy Randomized Adaptive Search Procedures. Journal 
of Global Optimization, 6(2), 109–133. 

Framinan, J. M., Leisten, R., & Ruiz-García, R. (2014). Manufacturing Scheduling Systems.. 
https://doi.org/10.1007/978-1-4471-6272-8 

Gambardella, L. M., & Dorigo, M. (2000). An Ant Colony System Hybridized with a New 
Local Search for the Sequential Ordering Problem. INFORMS Journal on Computing, 
12(3), 237–255. https://doi.org/10.1287/ijoc.12.3.237.12636 

Graves, S. (1981). A review of Production Scheduling. Operations Research, 29(4), 
646–675. 

Garey, M. R., Johnson, D. S., & Tarjan, R. E. (1976). The planar Hamiltonian circuit 
problems is NP-Complete. SIAM J. Computing, 5(4), 704–714. 

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the 
Theory of NP-Completeness. Freeman. 

Ghiyasinasab, M., Lehouxa, N., Ménardb, S., & Cloutier, C. (2020). Production planning 
and project scheduling for engineer-to-order systems- case study for engineered 
wood production. International Journal of Production Research. https://doi.org/ 
10.1080/00207543.2020.1717009 

Gnonia, M. G., Iavagnilioa, R., Mossaa, G., Mummoloa, G., & Di Levab, A. (2003). 
Production planning of a multi-site manufacturing system by hybrid modelling: A 
case study from the automotive industry. International Journal of Production 
Economics, 85, 251–262. 

Harjunkoski, I., & Grossmann, I. E. (2001). A Decomposition Approach for the 
Scheduling of a Steel Plant Solution. Computers and Chemical Engineering, 25(11–12), 
1647–1660. 

Helsgaun, K. (2000). An effective implementation of the Lin-Kernighan traveling 
salesman heuristic. European Journal of Operational Research, 126, 106–130. https:// 
doi.org/10.1016/S0377-2217(99)00284-2 

Helsgaun, K. (2017). An Extension of the Lin-Kernighan-Helsgaun TSP Solver for 
Constrained Traveling Salesman and Vehicle Routing Problems. Technical report. 

Iglesias-Escudero, M., Villanueva-Balsera, J., Ortega-Fernandez, F., & Rodriguez- 
Montequín, V. (2019). Planning and Scheduling with Uncertainty in the Steel Sector: 
A review. Applied Sciences, 9, 2692. https://doi.org/10.3390/app9132692 

LKH-3 (Keld Helsgaun): http://webhotel4.ruc.dk/~keld/research/LKH-3/. Accessed: 
2019-01-16. 

Kapanoglu, M., & Koc, I. O. (2006). A multi-population parallel genetic algorithm for 
highly constrained continuous galvanizing line scheduling. Lecture notes in computer 
science, 4030, 28–41. 

Klement, N., Abdeljaouad, M. A., Porto, L., & Silva, C. (2021). Lot-Sizing and Scheduling 
for the Plastic Injection Molding Industry—A Hybrid Optimization Approach. 
Applied Sciences, 11, 1202. https://doi.org/10.3390/app11031202 

Krishnamoorthy, M. S. (1975). An NP-hard problem in bipartite graphs. SIGACT News, 7 
(1), 26. 

Korte, B., & Vygen, J. (2003). Combinatorial Optimization. Algorithm and Combinatorics 
book series (p. 21). Berlin, Heidelberg: Springer. 

Lee, H. S., Murthy, S. S., Haider, S. W., & Morse, D. V. (1996). Primary production 
scheduling at steelmaking industries. IBM Journal of Research and Development, 40 
(2), 231–252. 

Montemanni, R., et al. (2013). A decomposition-based exact approach for the Sequential 
Ordering Problem. Journal of Applied. Operational Research, 5. 

Nekovář, F., Faigl, J., & Saska, M. (2021). Multi-Tour Set Traveling Salesman Problem in 
Planning Power Transmission Line Inspection. IEEE Robotics and Automation Letters, 6 
(4), 6196–6203. 

Okano, H., Davenport, A. J., Trumbo, M., Reddy, C., Yoda, K., & Amano, M. (2004). 
Finishing line scheduling in the steel industry. IBM Journal of Research and 
Development, 48(5/6), 811–830. 

Pina-Pardo, J. C., Silva, D. F., & Smith, A. E. (2021). The traveling salesman problem 
with release dates and drone resupply. Computers & Operations Research, 129. 
https://doi.org/10.1016/j.cor.2020.105170 

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the 
permutation flowshop scheduling problem. European Journal of Operational Research, 
177(3), 2033–2049. 

Stürtz, J. A., & Marchetti, P. A. (2020). Efficient Scheduling of a Real Case Study of the 
Pharmaceutical Industry Using a Mathematical-Algorithmic Decomposition 
Methodology. In ICPR-Americas 2020: International Conference of Production Research 
– Americas Conference Proceedings (pp. 171–176). 

Tang, L., Liu, J., Rong, A., & Yang, Z. (2001). A review of planning and scheduling 
systems and methods for integrated steel production. European Journal of Operational 
Research, 133, 1–20. 

Tang, L., Luh, P. B., Liu, J., & Fang, L. (2002). Steel-making process scheduling using 
Lagrangian relaxation. International Journal of Production Research, 40(1), 55–70. 

Twaróg, S., Szwarc, K., Wronka-Pośpiech, M., Dobrowolska, M., & Urbanek, A. (2021). 
Multiple probabilistic traveling salesman problem in the coordination of drug 
transportation—In the context of sustainability goals and Industry 4.0. Journal Plos 
one.. https://doi.org/10.1371/journal.pone.0249077 

Valls Verdejo, V., Pérez Alarcó, M., & Lino Sorlí, M. (2009). Scheduling in a continuous 
galvanizing line. Computers & Operations Research, 36, 280–296. 

Verderame, P. M., & Floudas, C. A. (2010). Integration of Operational Planning and 
Medium-Term Scheduling for Large-Scale Industrial Batch Plants under Demand and 
Processing Time Uncertainty. Industrial & Engineering Chemistry Research, 49(10), 
4948–4965. 

Zhang, J., Guofo, D., Zou, Y., Shengfeng, Q., & Fu, J. (2017). Review of job shop 
scheduling and its new perspectives under Industry 4.0. Journal of Intelligent 
Manufacturing, 30, 1809–1830. 

N. Álvarez-Gil et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S0360-8352(21)00812-3/h0040
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0040
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0045
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0050
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0050
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0050
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0055
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0055
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0055
https://doi.org/10.1016/0377-2217(88)90333-5
https://doi.org/10.1016/0377-2217(88)90333-5
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0070
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0070
https://doi.org/10.1007/978-1-4471-6272-8
https://doi.org/10.1287/ijoc.12.3.237.12636
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0085
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0085
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0090
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0090
http://refhub.elsevier.com/S0360-8352(21)00812-3/opt7KltCK8RVX
http://refhub.elsevier.com/S0360-8352(21)00812-3/opt7KltCK8RVX
https://doi.org/10.1080/00207543.2020.1717009
https://doi.org/10.1080/00207543.2020.1717009
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0100
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0100
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0100
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0100
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0105
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0105
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0105
https://doi.org/10.1016/S0377-2217(99)00284-2
https://doi.org/10.1016/S0377-2217(99)00284-2
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0115
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0115
https://doi.org/10.3390/app9132692
http://webhotel4.ruc.dk/%7ekeld/research/LKH-3/
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0130
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0130
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0130
https://doi.org/10.3390/app11031202
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0140
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0140
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0145
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0145
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0150
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0150
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0150
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0155
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0155
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0160
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0160
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0160
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0165
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0165
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0165
https://doi.org/10.1016/j.cor.2020.105170
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0175
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0175
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0175
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0180
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0180
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0180
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0180
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0185
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0185
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0185
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0190
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0190
https://doi.org/10.1371/journal.pone.0249077
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0200
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0200
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0205
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0205
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0205
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0205
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0210
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0210
http://refhub.elsevier.com/S0360-8352(21)00812-3/h0210

	Sequencing jobs with asymmetric costs and transition constraints in a finishing line: A real case study
	1 Introduction
	2 Literature review
	3 Problem definition
	3.1 Context of the real case
	3.2 Definition
	3.3 The instances

	4 Algorithms
	4.1 Ant colony system
	4.2 Ant system
	4.3 Hybrid version of the ant system
	4.3.1 Motivation
	4.3.2 The ant system with interval reconstruction


	5 Results
	5.1 Feasibility performance
	5.2 Cost performance

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


