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a b s t r a c t 

Cryo-electron tomography (cryo-ET) is uniquely suited to precisely localize macromolecular complexes 

in situ , that is in a close-to-native state within their cellular compartments, in three-dimensions at high 

resolution. Point pattern analysis (PPA) allows quantitative characterization of the spatial organization of 

particles. However, current implementations of PPA functions are not suitable for applications to cryo-ET 

data because they do not consider the real, typically irregular 3D shape of cellular compartments and 

molecular complexes. Here, we designed and implemented first and the second-order, uni- and bivariate 

PPA functions in a Python package for statistical spatial analysis of particles located in three dimensional 

regions of arbitrary shape, such as those encountered in cellular cryo-ET imaging (PyOrg). 

To validate the implemented functions, we applied them to specially designed synthetic datasets. This al- 

lowed us to find the algorithmic solutions that provide the best accuracy and computational performance, 

and to evaluate the precision of the implemented functions. Applications to experimental data showed 

that despite the higher computational demand, the use of the second-order functions is advantageous to 

the first-order ones, because they allow characterization of the particle organization and statistical infer- 

ence over a range of distance scales, as well as the comparative analysis between experimental groups 

comprising multiple tomograms. 

Altogether, PyOrg is a versatile, precise, and efficient open-source software for reliable quantitative char- 

acterization of macromolecular organization within cellular compartments imaged in situ by cryo-ET, as 

well as to other 3D imaging systems where real-size particles are located within regions possessing com- 

plex geometry. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The last decades of research in cell biology have revealed that 

ellular processes are performed by groups of interacting macro- 

olecules in a crowded environment. This is in contrast to earlier 

odels where macromolecules were considered to exist as isolated 

bjects floating randomly in the cytoplasm. Therefore the analy- 

is of their organization within their native cellular compartments 

an provide quantitative information that can be used to describe 

he mechanisms underlying macromolecular interactions. This in- 
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ormation has paramount importance to gain a deeper understand- 

ng of various cellular interactions [1,2] . 

Cryo-Electron Tomography (cryo-ET) is a unique imaging tech- 

ique capable of producing 3D views of large portions of cells at a 

esolution that is sufficiently high to localize and identify macro- 

olecular complexes [3] . In cryo-ET, biological samples are vitri- 

ed to preserve their natural molecular organization and are im- 

ged by electron microscopy in the fully-hydrated vitrified state, 

hus enabling the study of cells in a close-to-native state at high 

esolution [4,5] . 

Point patterns analysis (PPA) is a branch of statistics devoted 

o describing quantitatively point patterns in space. PPA has been 

sed extensively in experimental fields such as ecology [6] , so- 

ial sciences [7,8] , and more recently in biology [9,10] . Among PPA 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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ethods, first-order functions describe clustering of points and 

ypically determine a characteristic distance scale, whereas second- 

rder functions determine spatial correlations between points at a 

ange of distances. Ripley’s functions K (or its linearization, L ) and 

 [6] are the most used tools for second-order PPA. They have been 

sed for analyzing experimental biological data obtained from light 

nd electron microscopy [10–12] . Current implementations of the 

PA methods were either developed for 2D spaces [13] , or their ap- 

lication in 3D is limited to sphere-shaped structures within cubic 

olumes [11,14] . However, these approaches have two limitations, 

endering their application impractical for cellular cryo-ET data: 

i) cellular compartments have complex geometry so, there are no 

nalytical solutions for border compensation, unlike for the most 

imple geometries [14,15] , and (ii) proteins have specific shapes 

hat can not be properly represented by points or spheres. Recently 

oronoi tessellation has been used to describe the particle organi- 

ation in super-resolution optical microscopy [16] , but contrarily to 

ipley’s functions it does not allow comparison between datasets 

aving different density of points. 

The authors have already applied PPA functions to successfully 

olve some long-standing biological questions. Firstly, in [2] , we 

pplied a modification of Ripley’s function O to prove that Ru- 

isco complex has a liquid-like organization within the pyrenoid 

rganelle, thus discarding crystalline models proposed previously. 

his finding was also remarkable as cryo-ET data was used to suc- 

essfully analyze a phase-separated compartment in situ at nano- 

etric resolution for the first time. We also showed that the 

rp2/3 complex within actin waves modifies its clustered organiza- 

ion depending on the wave-phase [17] . Recently, we demonstrated 

hat Ripley’s functions can be used to characterize nano-domains 

ormed by synaptic membrane-bound complexes [18] . 

Here we present an implementation of the first and second or- 

er PPA functions where both particles and cellular compartments 

an be of arbitrary shape. Consequently, these functions are appli- 

able to cryo-ET images of cellular samples, that is they are suit- 

ble for the spatial distribution analysis of individual proteins or 

acromolecular complexes localized in any kind of cellular com- 

artment (cytoplasm, organelle lumen, membrane, etc). These nu- 

erical calculations are required to precisely calculate the compu- 

ationally intensive second order PPA functions. We also present 

 parallel implementation suitable for processing cryo-ET datasets 

hat takes advantage of modern multiprocessor architectures [19] . 

n addition to univariate PPA functions, we also implemented the 

ivariate versions of PPA functions, which enable the colocalization 

nalysis between different proteins and macromolecules. 

We present several applications to synthetic datasets in order 

o compare different numerical methods and find the most appro- 

riate ones. Finally, we also applied the methods we implemented 

n real Cryo-ET datasets to validate their real-case usability and 

o justify the necessity for an accurate implementation of second- 

rder PPA function. 

. Approach 

In this section, we show the implementation details relevant for 

he first and second order PPA functions, for univariate and bivari- 

te cases. 

.1. Design 

.1.1. Monovariate first-order analysis 

Nearest neighbor function G , spatial contact distribution func- 

ion F , and their combination J belong to the first order PPA func- 

ions. Location of proteins or macromolecular complexes of inter- 

st (particles) in a tomogram (3D image) is defined by their spatial 

oordinates X = { x ∈ V ∀ i = (1 , . . . , n ) } , where n is the number of 
i 

2 
articles and V ∈ R 

d is the Volume of Interest (VOI), that is a sub- 

pace of the tomogram where the particles are located. A VOI typ- 

cally represents an organelle or a distinct cellular compartment. 

Function G is defined as: 

 (r) = 

∫ r 

0 

p G (r) dr (1) 

here p G (r) is the probability distribution function of nearest 

eighbor distances r of all particles in X . 

Function F is similarly defined, except that it requires p F (r) , 

he probability distribution function of nearest neighbor distances 

mong points in sets X and X 

CSR ∈ V , where X 

CSR is a set of coor- 

inates distributed according to the Complete Spatial Randomness 

CSR) model in V [6,11] : 

 (r) = 

∫ r 

0 

p F (r) dr (2) 

The calculation of functions G and F are not computationally 

emanding even though function F requires the generation of set 

 

CSR . G is better suited to characterize short scale properties of 

article clusters, while F characterizes the space devoid of parti- 

les and large scale organization of particle clusters. In order to 

ombine their advantages, function J was defined as: 

(r) = 

1 − G (r) 

1 − F (r) 
(3) 

However, the practical applications of function J are limited be- 

ause it is not defined for F (r) = 1 and numerical problems appear 

hen F (r) → 1 . 

.1.2. Monovariate second-order analysis 

Ripley’s functions K, L and O are used for second-order analy- 

is. Because cellular compartments (VOIs) typically have an irregu- 

ar shape and many particles are found close to the compartment 

orders, it is not possible to determine edge-corrections for Rip- 

ey’s functions analytically [6,15] . Therefore, we proceeded to im- 

lement Ripley’s function where edge-corrections are performed 

umerically, for each particle separately. Specifically, function L is 

btained by the linearization of Ripley’s K function [6] , which facil- 

tates the interpretation. For a set of particles located at positions 

 i within a 3D VOI of arbitrary shape V , Ripley’s functions K and L 

re defined as follows: 

(r) = 

4 π r 3 

3 
·

∑ n 
i =0 C(x , S L (x i ,r)) 

λ·∑ n 
i =0 V (S L (x i ,r)) 

L (r) = 

3 

√ 

3 K(r) 
4 π − r (4) 

(x , S L (x i , r)) is the number of particles located in the neighbor-

ood S L (x i , r) and V (S L (x i , r)) is the volume of this neighbor-

ood, C(x , S) and V (S) are estimated numerically as described in 

ections 2.2.2 and 2.2.3 respectively. Neighborhood S L (x i , r) is de- 

ned as the edge-corrected neighborhood of the particle located at 

 i , which is obtained by the intersection of the VOI and the spher- 

cal neighborhood of the particle at radius r: 

 L (x i , r) = { ∀ x ∈ V| d(x , x i ) ≤ r } (5) 

here d is a distance metric ( Fig. 1 A). In an unbounded space 

 = R 

3 , or for particles located far from boundaries, S L (x i , r) is sim-

ly a sphere centered at x i with radius r. 

Ripley’s function O is defined as: 

 (r) = 

∑ n 
i =0 C(x , S O (x i , r, � r)) ∑ n 

i =0 V (S O (x i , r, � r )) 
(6) 

ere, S O (x i , r, � r) is defined as the edge-corrected shell-like neigh- 

orhood around the particle located at x i , which is obtained by 

he intersection of the VOI and the spherical shell or radius r and 

hickness � r centered at the particle location ( Fig. 1 B): 

 O ( x i , r, � r) = { ∀ x ∈ V| r − � r/ 2 ≤ d(x , x i ) ≤ r + � r/ 2 } (7) 
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Fig. 1. Particle neighborhood and shell for Ripley’s functions. (A) Edge corrected 

particle neighborhood S L used for Ripley’s L is formed as the intersection of the 

particle spherical neighborhood (shown as the red circle) and VOI (blue), and is 

indicated by light red areas. (B) Edge corrected particle shell S O used for Ripley’s 

O is formed as the intersection of the particle spherical shell (shown as the red 

ring) and VOI (blue), and is indicated by light red areas. In both cases particles 

are represented by black points. Shown in 2D for clarity. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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imilarly, in Eq. (6) , C(x , S O (x i , r, � r)) is the number of particles

ocated in the shell S O (x i , r, � r) and V (S O (x i , r, � r)) is the volume

f this shell. Therefore, our definitions of S O (x i , r) and S O (x i , r, � r)

rovide edge corrections for functions L and O . 

Despite their conceptual similarity, these functions show impor- 

ant differences. Function O (r) can be considered more precise be- 

ause it depends only on particle pairs having distance close to r, 

hile K(r) and L (r) receive contributions from all scales between 

 and r. However, because O (r) can be understood as a derivative 

f K(r) it is more affected by noise, especially when the density of 

articles is low, which limits its usefulness in practice. 

.1.3. Bivariate analysis 

The bivariate PPA functions allow investigations of the relation- 

hips between two different particle patterns, the reference pat- 

ern, X 

r = 

{
x r 

i 
∈ V| i = (1 , . . . , n ) 

}
, and the evaluation pattern, X 

e = 

x e 
i 

∈ V| i = (1 , . . . , n e ) 
}

. 

The distribution function G for the bivariate analysis is based on 

he nearest distances among particles between the two different 

atterns, p re 
G 
(r) : 

 

re (r) = 

∫ r 

0 

p re 
G (r) dr (8) 

here p re 
G 
(r) are distances from all reference particles to their 

earest evaluation particles. There is no bivariate counterpart for 

unction F and consequently neither for J. 

The bivariate versions of the Ripley’s second-order functions 

nalysis show the co-localization of the evaluation particles in re- 

pect to the reference particles. These functions are very similar to 

heir monovariate counterparts Eqs. (4) and (6) : 

 

re (r) = 

4 π r 3 

3 
·

∑ n 
i =0 C 

e (x e , S L (x r 
i 
,r)) 

λe ·∑ n 
i =0 V (S L (x r 

i 
,r)) 

L re (r) = 

3 

√ 

K re (r) 
4 π − r (9) 

 

re (r) = 

∑ n 
i =0 C 

e (x 

e , S O (x 

r 
i 
, r, � r)) ∑ n 

i =0 V (S O (x 

r 
i 
, r, � r )) 

(10) 

xcept that C e is the number of evaluation particles X 

e within the 

dge corrected neighborhood or the shell of reference particles X 

r . 

.1.4. Null-models and statistical inference 

In order to determine the statistical significance of particle dis- 

ribution analysis obtained by the first and second order PPA func- 

ions, statistical hypothesis testing methods are used to compare 

he experimental with the null-model results. Consequently, when 

enerating proper null-models for cryo-ET data, the shape of the 

articles and cellular compartments has to be considered. 
3 
The CSR model was previously defined for point particles lo- 

ated in arbitrary regions [6] . Here we introduce the Complete Spa- 

ial Randomness with Volume exclusion model (CSRV) as an ex- 

ension of CSR that takes into consideration the 3D shape of par- 

icles by imposing volume exclusion to avoid particle overlap. Sta- 

istical comparison of experimental results with CSRV null-model 

llows discarding the random particle distribution hypothesis (the 

ull hypothesis), in which case it can be concluded that the parti- 

le organization is controlled by a structural process. Furthermore, 

his comparison can show whether the experimental distribution 

s more clustered or more uniformly distributed than CSRV and de- 

ermine length scale(s) at which the differences are found. A more 

etailed analysis may require a null-model specifically designed for 

he actual experimental question [2] . 

To assess the statistical significance of the results obtained by 

he first order PPA functions G and F , the Kolmogorov-Smirnov (K- 

) test is used. It requires that the variable studied is continuous, 

nd it is applied to the PPA functions represented as the cumula- 

ive frequency distribution functions [11] to determine D n,m 

in the 

ollowing way: 

 n,m 

= sup 

r D 

| ˜ G n (r) − G m 

(r) | (11) 

˜ 
 n (r) is G or F function, obtained from experimental data com- 

rising n particles and G m 

(r) the CSRV null-model function, ob- 

ained by simulating m synthetic instances of the null-model with 

he same number of particles and the same VOI as the experimen- 

al dataset. The null hypothesis stating that experimental and the 

imulated distributions are identical can be rejected with the prob- 

bility 1 − α if [20] : 

 n,m 

> 

√ 

−
(

m + 1 

2 nm 

)
ln 

(
α

2 

)
(12) 

he K-S test determines a single significance value of a given first 

rder PPA function, by taking into account the entire range of dis- 

ances that forms its domain. When testing function G , the posi- 

ive sign of ˜ G n (r D ) − G m 

(r D ) specifies that the experimental parti- 

les are clustered and the negative sign signifies that they are uni- 

ormly distributed. The interpretation is the opposite when testing 

unction F . 

For the second order PPA functions, the null hypothesis can 

e tested by ranking PPA results obtained for multiple null-model 

imulations and constructing an interval of confidence (IC) as a 

unction of distance r: 

C(r) = 

[
IC (r) −, IC (r) + 

]
= [ L α(r) , L 1 −α(r) ] (13) 

here L α(r) is the value of the second order PPA function under 

onsideration that has the rank of α · 100% . If an experimental PPA 

unction falls outside of the interval IC(r) at the distance r, we can 

eject the null hypothesis with a confidence 1 − α. Additionally, if 

he experimental estimator is greater (smaller) than IC(r) + , we can 

onclude that the pattern is more clustered (more uniformly dis- 

ributed) than the null-model. 

.2. Methods 

.2.1. Computation of the second-order PPA functions 

Efficient implementations of many linear algebra operations 

hat are required to compute the PPA functions introduced above 

re already available in libraries written in different programming 

anguages. Here we present implementations of the operations that 

re currently not available in the standard libraries. 

The central part of the second-order function computations 

oncerns the determination of the number of particles C(·) and 

he volume V (·) of local edge corrected neighborhoods S and S . 
L O 
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a

ecause the neighborhoods are defined in a VOI of arbitrary ge- 

metry V , these computations cannot rely on closed formulas but 

equire numerical approximations. Therefore, they require com- 

utations of kernels for the number of particles and volume for 

eighborhoods of different radii, for each particle x i separately: 

(x , S L (x i , r)) , C(x , S O (x i , r, � r)) , V (S L (x i , r)) and V (S O (x i , r, � r)) .

s a consequence, second-order analysis is computationally much 

ore demanding than first-order analysis. We note that the global 

article density can be computed by λ = n/V (V) . 

.2.2. Counting the number of particles in a region of arbitrary shape 

It is critical to choose the most efficient way of evaluating 

hether a point belongs to a VOI ( x ∈ V ) because this condition 

s evaluated intensively during the computation of second-order 

unctions. It is required both for the computations involving real 

ata and the randomly generated data used for null-models. Here 

e consider two approaches that use different ways to represent 

OI. 

In the surface approach, VOI is represented as a closed surface 

efined by a triangle mesh. To evaluate the condition x i ∈ V , where 

 i is the particle center, we used the ray-firing method consisting 

f the following steps: (1) Randomly oriented rays originating at 

he evaluation point are generated. (2) For each ray, the number 

f intersections with the bounding surface is counted. (3) If the 

umber of rays having an odd number of intersections is larger 

han the number of rays having an even umber of intersections, 

he point is considered to belong to the VOI ( Fig. 2 A). 

In the second approach, a VOI is represented by true voxels 

n a dense 3D Boolean array (termed 3D array representation). A 

oint belongs to a VOI simply if it belongs to the set of true voxels

 Fig. 2 B). 

It is clear that the surface approach uses less memory than 

he 3D array approach, even though the array is binary. However, 

hecking the condition x ∈ V for the 3D arrays approach has the 

omplexity O (1) , while in the surface approach the complexity 

s O (N rays ) , where N rays is the number of rays used by the itera-

ive ray-firing method [21] . Our results showed that for both ap- 

roaches the running time per particle decreased with the number 

f particles (Fig. S1). This is likely a consequence of the hierarchi- 

al cache architecture of current processors. Importantly, for up to 

0 0 0 particles, the running time was smaller for the 3D array ap-

roach. Only for more than 10 0 0 particles did the running time 

f the surface approach became comparable to that of the 3D ar- 

ay approach. In addition, the running times were similar for the 

ases when particles were randomly distributed in a sphere or on 

 spherical shell. 
ig. 2. Counting particles in a region of arbitrary shape. A) The surface approach: VOI (b

“x” symbols”) between rays (dashed lines) and the VOI surface are counted. B) The 3D ar

s dashed blue line. (For interpretation of the references to colour in this figure legend, th

4 
.2.3. Estimating the volume of particle neighborhoods 

To calculate the volume of an edge corrected neighborhood 

 (S) , we propose two different algorithms. These parallel the ap- 

roaches to determine whether a point belongs to a region intro- 

uced in the previous section. 

Monte Carlo surface algorithm (MCS) requires the surface VOI 

epresentation. The volume of an edge-corrected neighborhood is 

alculated by randomly generating points within a spherical neigh- 

orhood, using the surface approach to determine whether these 

oints belongs to VOI and counting the number of points inside 

he VOI (Alg. S1, Fig. 3 A). 

The second, the 3D array algorithm, requires the 3D array VOI 

epresentation. The volume of an edge-corrected neighborhood is 

etermined by counting the number of voxels that belong to both 

he spherical neighborhood and the VOI using the array approach 

Alg. S4, Fig. 3 B). The 3D array used here has to be large enough

o hold the entire neighborhood S for the largest neighbor radius 

. To speed up the computations, the distance between each parti- 

le and all other voxels is pre-computed, so that a single distance 

alculation for a particle can be used for all neighborhoods of that 

article. 

To evaluate the precision of the neighborhood volume estima- 

ion by MCS and 3D array algorithms, we applied them to parti- 

les located at the distance of 5 nm to the boundary of a rect- 

ngular VOI, and also calculated the edge corrected neighborhood 

olumes analytically. In this way, particle distance to the VOI was 

mall compared to the size of the VOI (200 nm) and the spherical 

eighborhood maximum radius (80 nm). We use a rectangular VOI 

o be able to determine the ground truth analytically. The volume 

stimation error E is defined as: 

[%] = 

ˆ V − V 

V 

· 100 (14) 

here V is the ground truth volume (computed analytically) and 

ˆ V 

he estimated volume. 

Our data showed that for both spherical and shell edge cor- 

ected neighborhoods, 10 - 10 0 0 points and 10 rays per point the 

CS algorithm performed well for all neighborhood radii (Fig. S2). 

s expected, increasing the number of points decreased the vari- 

bility. 

The 3D array algorithm was also very precise, with noticeable 

rrors only for very small neighborhoods, (Fig. S3). This algorithm 

s expected to be less precise for small and non-flat neighborhoods 

ecause in such conditions the discretization of space by voxels de- 

iates from the most the real (curved) shapes. 
lue field) is stored as a triangle mesh (blue line), and the number of intersections 

ray approach: VOI is represented as true voxels (blue field). VOI boundary is shown 

e reader is referred to the web version of this article.) 
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Fig. 3. 2D schematics for irregularly bounded area computation. A) MCS algorithm. B) 3D array method. Both panels show VOI (blue area), a particle (small black circle), the 

spherical neighborhood (red dashed circle) and the edge corrected neighborhood of the particle (red area). Ray-originating points in A) that contribute to the volume are 

shown as small red circles and those that do not contribute as green x-symbols. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.) 
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In comparison, the MCS algorithm required around 10 0 0 parti- 

les to reach the precision of the 3D array algorithm. Another ad- 

antage of the 3D array algorithm is its non-stochastic nature. 

MCS required a larger running time for neighbor size up to 75 

oxels and was comparable to 3D array for larger sizes (Fig S4). 

ere we also used 10 rays per point for MCS. In both algorithms, 

he running time per volume or area unit decreased with the in- 

reased neighborhood size. 

.2.4. Particle overlap 

Particles encountered in cryo-ET are not points but have a fi- 

ite, possibly complex 3D shape. Therefore when a new particle is 

dded to a synthetic null-model instance, it is necessary to ensure 

hat the particle does not overlap with any other particle. Here we 

se the VTK library [21] to implement volume exclusion between 

articles. Namely, we first use this library to generate the particle 

urface at the intended position and orientation specified by Euler 

ngles. Next, we check whether the bounding box of the particle 

verlaps with any of the other particle bounding boxes. If it does, 

e use again the iterative ray-firing method implemented in VTK 

o ensure that no point of a particle surface is inside the surface 

f any previously inserted particle. If the particles indeed overlap, 

he new particle is rejected. This procedure ensures that particles 

o not overlap in 3D. 

.2.5. Parallel implementation 

Second-order metric implementations are very CPU intensive. 

hey require long running times for real data comprising dozens of 

omograms and thousands of particles each. Moreover, to achieve a 

ufficient statistical confidence, more than 100 simulations per to- 

ogram should be computed. To solve both problems, we provide 

 parallel implementation based on the multiprocessing package 

f the Python programming language, which uses a shared mem- 

ry environment and exploits the internal parallelism of current 

ulti-core processors. 

Specifically, particles are processed separately by n independent 

omputational units. To compute the second-order functions for real 

ata, these units are evenly distributed over p ≤ n processes that 
5 
hare access to VOI. For each particle, the distance map (Euclidean 

r geodesic, see Section 3.1.2 ), is computed once and used for all 

istances, which minimizes the number of times a distance map 

as to be computed (Fig. S5A, B). For simulated data, the workload 

s divided by the number of tomograms to be simulated ( m ) which 

re executed by p ≤ m processes (Fig. S5C). 

The computational speedup [22] obtained by parallelization was 

lmost linear up to 15 processes and continued to increase un- 

il the maximum number of processes (35) for both real and 

imulated data (Fig. S5D). For a high number of processes, the 

peedup was a little higher for the simulated data. This is bene- 

cial for our applications because most of the workload is gener- 

ted by the analysis of the null-model. Five synthetic tomograms 

ith 50 0x50 0x10 0 voxels and 200 particles each were used for 

econd-order function computations. To ensure a fair comparison, 

he number of simulated tomograms on each instance was the 

ame as the number of concurrent processes. 

.2.6. Computational requirements 

This software package has been developed in Python and is 

vailable open-source (see Code availability), in order to facili- 

ate its dissemination in the research community and the devel- 

pment of future extensions. Graphs are plotted using matplotlib 

ibrary [23] , and surface meshes are stored and processed using 

TK [21] and visualized through Paraview [24] . All computing ex- 

eriments were executed on a computer node of the Max Planck 

nstitute of Biochemistry cluster, it has 500GB RAM with 36 pro- 

essors Intel(R) Xeon(R) CPU E5-2699 v3 @ 2.30GHz with SUSE 

inux Enterprise Server 12 SLES 12 SP 1 Operation System. 

. Results 

.1. Validation with synthetic data 

.1.1. Uni- and bivariate functions 

To validate the implementation of the second-order metrics, we 

enerate synthetic tomograms that contain randomly distributed 

nd clustered particles ( Fig. 4 A, B). To simulate clustered particles, 

https://docs.python.org/2/library/multiprocessing.html
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Fig. 4. Synthetic datasets used for validations. A) CSRV. B) SRPV with cluster diameter d c ≈ 46 voxels and intercluster distance d ic = 125 . C) Two independently generated 

CSRV patterns (blue and red). D) CSRV pattern (blue), points of the spatially correlated pattern (red) are located at distances obtained from the normal distribution N (μ = 

10 , σ = 1) to the CSRV pattern, we chose the parameters of the normal distribution so that the two patterns visually colocalize. In all cases particles (blue and red) were 

spheres of radius r p = 5 each particle pattern contained 200 particles and tomograms had size 50 0x50 0x10 0 voxels. Scale bar 100 voxels. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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e introduce here the Sinusoidal Random Pattern (SRP) distribu- 

ion 

˜ U : 

˜ 
 

(
(x = qπx ′ , y = qπy ′ , z = qπz ′ ) | sin x + sin y + sin z > 3 t 

)
(15) 

here x ′ , y ′ and z ′ are random real numbers uniformly dis- 

ributed in the interval [ −1 , 1] , q ∈ N and t ∈ [0 , 1] . Distribution
˜ 
 creates clusters that have oval shape of maximal radius r c ≈
 

qπ) −1 arccos (3 t − 2) (in x ′ , y ′ , z ′ units). The clusters reach an al-

ost spherical shape for t > 0 . 8 , in which case the radius can

e approximated by r c ≈ ( qπ) −1 
√ 

6(1 − t) . The distance b etween 

eighboring clusters (center to center) is d ic = 2 /q (in x ′ , y ′ , z ′ 
nits). 

Here we generated multiple CSRV, and SRP with volume exclu- 

ion (SRPV) synthetic datasets, where SRPV was created from SRP 

opulated with finite size particles (as opposed to point-particles) 

nd excluding overlapping particles. Our software allows using any 

losed surface to represent particles. For simplicity, here we used 

pheres with radius r p = 5 . This synthetic datasets had a size of

0 0x50 0x10 0 voxels, where 500 voxels corresponds to x ′ , y ′ , and

 

′ interval [ −1 , 1] . For SRPV, we set q = 4 , and t = 0 . 8 , thus gen-

rating 16 clusters at the inter-cluster distance of d ic = 125 voxels 

 Fig. 4 B). 

To validate our implementation of the univariate Ripley’s func- 

ions, we first checked the L function obtained for the CSRV dataset 

the null-model). The mean value of 100 simulations was close to 

 and the IC 5 − 95% was spread around the 0 value, as expected 

or a pure random pattern ( Fig. 5 A, D). This was the case for the

hole distance range except for distances lower than 2 r p , indicat- 

ng that at short distances particle volume exclusion dominates. 

e also calculated the L function for additional five CSRV simula- 

ions, their mean shows the stochasticity expected for the analysis 

f real randomly distributed particles. 

The univariate Ripley’s functions that we obtained for 100 SRPV 

imulations did not differ between MCS and the 3D array algo- 

ithms, Next, we calculated the univariate Ripley’s functions L and 

 functions for the clustered, SRPV, datasets ( Fig. 5 B, C, E, F). Using

he MCS and the 3D array algorithms produced virtually indistin- 

uishable results, as was the case for the CSRV null-model (com- 

are panels A-C and D-F of Fig. 5 ). The calculated L and O functions

or SRPV model showed significant deviations from the results ob- 

ained for the CSRV null-model. Specifically, the distance at which 

unction L reached maximum and function O minimum were close 

o d c / 2 and d c respectively, as expected based on analytical calcula- 

ions [25] . Furthermore, function L was zero and its first derivative 

as positive at the distance that corresponds to the inter-cluster 

istance. This can be explained by observing that the concentration 

f particles in a neighborhood of radius that equals the periodic- 

ty of the point pattern is simply the global particle concentration. 

t the same distance, function O reached a local maximum, which 

irectly points to clustering at that distance d ic . 

Finally, to validate bivariate Ripley’s functions, we generated 

atasets containing two particle sets, the particle sets were spa- 
6 
ially uncorrelated in some and spatially correlated with each 

ther in other datasets. The uncorrelated datasets consisted of two 

ndependent CSRV patterns ( Fig 4 C). To generate the correlated 

atasets, we first generated a CSRV pattern and then placed par- 

icles of the second set at distances following the Normal distri- 

ution N (μ, σ ) from randomly selected CSRV particles ( Figs. 4 D 

nd 6 .A). For both MCS and the 3D array algorithms, the mean 

alue of the bivariate L function for 100 simulations of the null- 

odel was very close to 0 at all distances, except for the very short 

nes where the effects of volume exclusion dominate, thus show- 

ng that the two sets were independent ( Fig. 6 B). For the correlated 

atasets, the bivariate L function of the correlated dataset was sig- 

ificantly different from those obtained for the uncorrelated null- 

odel at an intermediate range of distances. The bivariate L func- 

ion for the correlated dataset reached significance at the distance 

f approximately μ − σ and reached a maximum at μ + σ , which 

grees with the criterion customarily used in the field [25] . 

All together, our implementation of the second-order uni- and 

ivariate functions on synthetic datasets yielded results that al- 

owed the determination of the correct clustering distance scales. 

urthermore, the MCS and the 3D array based implementations 

roduced almost identical results, thus validating both algorithms. 

.1.2. Influence of the distance metric 

Because a VOI can have an arbitrary 3D shape and it may in- 

lude holes, the choice of distance metric d used for defining the 

eighborhoods S L and S O , Euclidean or geodesic, can have a strong 

mpact on the computation of the second-order functions. We used 

he Distance Transform (DT) [26] for computing Euclidean and Fast 

arching Method (FMM) algorithm [27] for calculating geodesic 

istance. We implemented FMM only for the 3D array VOI repre- 

entation. 

For a VOI that has convex shape and trivial topology in 3D (such 

s that shown on Fig. 6 A), Euclidean and geodesic distances are the 

ame, resulting in essentially the same L and O functions ( Fig. 6 B,

). 

However, cellular VOIs often have a complex shape because 

hey are delineated by biological membranes or are formed by a 

articular distribution of molecular complexes. To evaluate the PPA 

unctions obtained using the two distance metrics, we generated a 

ynthetic dataset where VOI takes the shape of a cropped spher- 

cal shell of radius r m 

= 50 and thickness t m 

= 6 voxels ( Fig. 7 A).

uch VOIs are encountered for complexes bound to a membrane of 

 cellular organelle [28] . The particle pattern was formed by four 

lusters localized in the VOI, and for each cluster i , particles were 

istributed according to the following expression: 

˜ 
 i (x = x c + r m 

cos ( φ + ϕ i ) sin φ, 

 = y c + r m 

sin ( φ + ϕ i ) sin φ, z = z c + r m 

cos θ ) (16) 

here c m 

= (x c , y c , z c ) are the coordinates of the VOI, N (μ =
 , σ = 0 . 25) , r m 

is the radius of the VOI, θ and φ are spher-

cal angles taken from the normal distribution and ϕ 1 , 2 , 3 , 4 = 
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Fig. 5. Univariate second-order metrics validation with synthetic datasets. (A-C) 3D array and (D-F) MCS algorithm. (A, D) Function L for CSRV model, blue line shows the 

mean of additional five CSRV simulations. (B, E) Function L for SRPV model, shown are the mean of five simulations (blue line) and the CSRV null-model (grey). (C, F) 

Function O for SPRV model, shown are the mean of five simulations (blue line) and the CSRV null-model (grey). In all cases the grey area and line show IC 5 − 95% and the 

mean of 100 CSRV simulations, respectively. For MCS the number of iterations for convergence is 10 0 0 and the maximum 10 0 0 0 0. In (B, E) the vertical dashed lines mark 

d c / 2 and d ic , and in (C, F) d c and d ic respectively. In (A, B, D, E) the horizontal line marks X = 0 , and in (C, F) the global density λ, in all cases these lines represent the 

behavior of the ideal random pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Bivariate second-order analysis validation. (A) Two correlated point patterns where each particle of pattern 2 (red) are placed at a distance controlled by a distribution 

N (μ = 40 , σ = 5) to a particle of pattern 1 (blue). (B) Function L for the correlated pattern shown in A (mean of 5 simulations) is shown in blue, and the IC 5 − 95% of 100 

simulated uncorrelated pairs in gray. Distances were measured using Distance Transform (DT). (C) Like B except that Fast Marching Method (FMM) was used for distance 

computation. (B, C) Thick vertical lines represent r = μ and the thin ones r = μ ± 3 σ . Tomograms size 50 0x50 0x10 0. Scale bar 100 voxels. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Geodesic and Euclidean distance based second order functions on a complex VOI. (A) A biological membrane-like VOI, r m = 50 , and σ = 0 . 25 containing clustered 

particles (blue points). The inset shows the difference between geodesic (solid arrow) and Euclidean distances (dashed arrow) between two points on the opposite sides of a 

sphere. (B) Function L and (C) function O for the clustered particle pattern (blue lines) and the null-model ( IC 5 − 95% in gray, black line represents the mean). In both cases 

the second order functions based on geodesic distance (solid and blue line) and Euclidean distance (dashed blue line) are shown. Scale bar 30 voxels. (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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0 , π/ 2 , π, 3 π/ 2 } define cluster centers. In this way, the center- 

o-center inter-cluster distance was 1 
2 π r m 

(78.5 voxels for r m 

of 

0 nm) and the cluster size can be approximated by 3 σ r m 

(37.5 

oxels). In addition, particle distribution 

˜ U (x, y, z) takes volume ex- 

lusion into account. 

Our results showed that functions L and O were significantly 

ifferent from the CSRV null-model. The geodesic distance based 

 function had the first maximum at approximately 20 voxels 

 1 . 6 σ r m 

), a 0 crossing with a negative slope at 40 voxels and an-

ther with a positive slope at 80 voxels, while the geodesic O func- 

ion had a local maximum at 80 voxels ( Fig. 7 B, C). These corre-

pond to the size of the clusters and the distance between them, in 

he same way that functions L and O did for a simple VOI ( Figs 4 A

nd 5 B, C, E, F). However, the Euclidean distance based L and O 

unctions showed a shift towards shorter distances. Additionally, 

he geodesic distance based O function of the null-model particle 

attern (CSRV), was almost perfectly flat, as expected for the ideal 

ase ( Fig. 7 C). The L function for the null-model deviated slightly 

rom the expected 0-value at the largest distances, corresponding 

o the neighborhoods that reach to the opposite side of the VOI 

 Fig. 7 B). This is likely because the geodesic distance between some 

f the distant points on the cropped spherical shell VOI differs 

rom the geodesic distance on a full spherical shell. Therefore, our 

esults show that using FMM allows an accurate determination of 

he geodesic distance and that for membrane-like compartments 

nd other complex shape VOIs, the PPA functions should be calcu- 

ated based on geodesic and not Euclidean distances for. 

.2. Experimental data 

We proceeded to validate the computational methods described 

n previous sections on experimental data. To this end, we applied 

he first and second order PPA functions to study the organiza- 

ion of ribosomes in yeast cells visualized by cryo-ET. We used 

ata form two experimental groups, each comprising a set of to- 

ograms from yeast cell cytoplasm imaged in situ . The first set 

ontains 13 tomograms of yeast cells that were treated with Ra- 

amycin and the second 14 tomograms of untreated cells [29] . In 

oth cases, cell cytoplasm was segmented, ribosomes were local- 

zed by template matching and a high resolution structure of ribo- 

omes (obtained from EMD-3068) was used to represent the ribo- 

ome shape, as shown on a slice of a labeled tomogram ( Fig. 8 A).

hese masks are created manually, or first automatically and then 

orrected manually, which ensures they are close to if not com- 

letely accurate. Considering that the mask volume is > 10 6 nm 

3 

nd that only individual voxels may be mislabeled (segmentation 

oxel size 2.096 nm), the accuracy level can be estimated to be 

 99%. In the example shown in ( Fig. 8 A), particle localization was

etermined by template matching [29] . The precision error was be- 

ow 2.096 nm because template matching was done at every voxel. 

hile the segmentation and localization accuracies in general de- 

end on the tomogram quality and the segmentation and localiza- 

ion methods used, the accuracy levels stated above are reached 

outinely. 

We calculated the first-order functions for each tomogram sep- 

rately in order to determine the lengths that characterize the or- 

anization of ribosomes ( Fig. 8 .B-E). In untreated cells, the nearest 

eighbor function showed a clear peak that represents the most 

ommon nearest-ribosome distance. For each tomogram, multiple 

ull-model distributions were generated, each having the same VOI 

nd the same number of ribosomes as the corresponding tomo- 

ram. All functions ( G , F , and J) showed that ribosomes are signif-

cantly clustered with respect to the null-model (CSRV). This is in 

greement with the expected aggregation of functional ribosomes 

o form poly-ribosomes. More generally, this type of analysis can 

elp describing macromolecular interactions [2,17] . However, it is 
8 
ot straightforward to combine the first order functions of indi- 

idual tomograms within an experimental group to obtain a single 

unction that characterizes an experimental condition, because the 

article concentration within VOIs differ between the cells even 

hough they were grown under identical conditions, which influ- 

nces the first order functions ( Fig. 8 F-I). 

Second-order PPA functions were calculated for each tomogram 

eparately, as well as for their respective CSRV null-models ( Fig. 9 ). 

he null-model L functions for different tomograms and different 

xperimental groups (control and Rapamycin treated) were very 

imilar. The experimental group means were almost indistinguish- 

ble, only the variability was higher for the Rapamycin set likely 

ecause of the lower number of particles ( Fig. 9 .A). In contrast, 

unction O for the null-model was very different for different to- 

ograms and there was a clear separation between the two ex- 

erimental groups. Because this variability was likely due to the 

ifferent global particle concentration in the tomograms, we here 

ropose to use the radial distribution function g(r) [30] , which is 

omputed by normalizing function O by the global particle concen- 

ration: 

(r) = 

1 

λ
O (r) (17) 

his normalization restored the low variability of the null-model 

imulations between tomograms and experimental groups (see 

ig. 9 .C). 

When applied to the experimental data, the L and the radial 

istribution functions clearly showed significant clustering, both 

or all tomograms taken together and for the experimental groups 

aken separately ( Fig. 9 .D, F). In both experimental cases the first 

aximum was located around 25 nm, which approximately corre- 

ponds to the double of the most frequent nearest neighbor dis- 

ance Fig. 8 .B). While the large variability between the groups ob- 

ained for the function O precludes the interpretation of all to- 

ograms taken together, each of the experimental group showed 

ignificant clustering when compared to the corresponding null- 

odel ( Fig. 9 B, E). While it is expected that in the untreated cells

he formation of polyribosomes leads to ribosome clustering, our 

esults show that some form of ribosome clustering persists in the 

apamycin treated cells. 

Furthermore, in order to set the stage for a statistical compari- 

on between the experimental groups, we computed the mean and 

C 5 − 95% as we did before, except that because of the low number 

f tomograms, the IC contains all tomograms. This comparison is 

alid for L and radial distribution function as null-models converge 

o a similar IC. However, in our case, this approach can not be ap- 

lied to function O , because we already saw that it is sensitive to 

article global densities and the two experimental groups contain 

ifferent number of particles. The statistical significance between 

he groups can be easily established for distances at which the 

 and the radial distribution functions show clear separation be- 

ween the experimental groups. To determine the significance at 

ther distances, non-parameteric inference tests could be applied 

o values of the second order functions. 

Considering that there is no particle overlap, we estimate that 

ossible errors arising from imperfect segmentation and localiza- 

ion are well below the errors caused by the volume estimation 

Figs S2 and S3). In order to confirm this, we recalculated 2nd 

rder functions with randomly shifted protein position using the 

ormal distribution N (μ = 0 , σ = 1) . The results obtained (Fig. S6) 

re virtually indistinguishable from those presented in Fig. 9 .D,F. 

. Discussion 

Here we implemented the first and second-order, mono- and 

ivariate PPA functions for 3D VOIs of arbitrary shape. This is of 
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Fig. 8. First-order analysis of experimental data. A) Tomographic slice of the analyzed cryo-tomograms, with overlay showing segmented cytoplasm (VOI, transparent blue) 

and localized ribosomes (red), scale bar 200 nm. B) Histogram of all nearest neighbor distances (function G ), dashed vertical line marks the most frequent nearest neighbor 

distance. C) Function G shown as a cumulative distribution (K-S test, D 2182 , 20 = 0 . 6182 and α < 0 . 0 0 01 ). D) Spatial contact distribution function ( F ) with 10 0 0 simulated 

points (K-S test, D 10 0 0 , 20 = −0 . 1389 and α < 0 . 0 0 01 ). E) Function J. B-E) The functions obtained for tomogram showed in A), experimental data are shown in red. CSRV null- 

model simulation means are shown in black and IC 5 − 95% in grey (20 simulations). Dashed vertical lines show D n,m . F-I) Comparison between the two sets of tomograms, 

control (CONTROL, red), and Rapamycin treated (RAPA, green). F) Particle density within the VOIs, mean and IC 5 − 95% . G) Function G shown as histogram. H) Function 

G shown as the cumulative distribution. I) Function F . G-I) Analyses of individual simulated null-models are shown as thin lines, thick lines show the means. In all cases 

Euclidean distance was used. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Second-order analysis for experimental and the corresponding CSRV null-model data. A-C) Functions obtained for CSRV null-model data corresponding to the control 

(CONTROL, red) and Rapamycin treated (RAPA, green) tomograms. Each thin semi-transparent line represents a CSRV null-model simulation, five per tomogram, the thick 

dashed lines show the means. D-F) Functions obtained for experimental tomograms, control (CONTROL, red) and Rapamycin treated (RAPA, green). Pooled null-model sim- 

ulations (untreated and Rapamycin treated) IC 5 − 95% is shown in grey and the mean in black. E) Also shows the mean simulations of the experimental groups (dashed 

lines). A, D) Function L . B, E) Function O . C, F) Radial distribution function. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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articular importance for the analysis of molecular complexes vi- 

ualized in 3D biological images, such as those obtained by cryo- 

T of cellular samples, because cellular regions often have complex, 

on-convex shape. These cellular regions can be be formed by lipid 

embrane-bounded organelles and vesicules, membranes where 

ertain membrane-bound complexes reside, or any other cellular 

egions that constrain the localization of molecular complexes of 

nterest. Furthermore, because molecular complexes occupy a sub- 

tantial part of the cellular volume and the influence of their size 

annot be neglected at short distances, we represented molecular 

omplexes as 3D objects and imposed volume exclusion to prevent 

he overlap. 

The implementation of the second-order functions was particu- 

arly important because they are sensitive to clustering at multiple 

istance scales, thus providing more information than the first or- 

er functions. It critically depends on solving two tasks; (1) de- 

ermination of the number of particles located within an irreg- 

larly bounded spatial region and (2) measuring the volume of 

his space. The solutions depend on the approach taken to rep- 

esent spatial regions (particle neighborhoods and VOI). In the 

rst approach, we represented spatial regions by a triangular sur- 

ace mesh that defines the region boundary. Here we used the 

tochastic ray-firing algorithm to count the number of particles 

nd MCS for the volume determination. The second approach we 

mplemented is based on representing spatial regions as 3D binary 

rrays, which makes the implementation of the two tasks triv- 

al. In theory, ray-firing and MCS are stochastic methods that can 

chieve any precision and are independent of the volume shape. 

D array based methods are deterministic and they typically use 

ore memory than the surface based methods. However, our re- 

ults show that for the same computational time, the 3D array- 

ased methods achieved a higher precision than the surface-based 

ounterparts. Nevertheless, the second order PPA functions that we 

omputed using these two approaches were virtually indistinguish- 

ble. 

We validated the implementation of the second-order, uni- and 

i-variate PPA functions on synthetic datasets. Our software cor- 

ectly detected the clustering distance scales that characterized 

he particle distribution in the synthetic datasets. Additionally, 

e implemented the PPA functions based on both Euclidean and 

eodesic distances, verified that they produced the correct results, 

nd showed that for simple VOIs the Euclidean and the geodesic 

esults were the same. Importantly, the geodesic distance based 

econd order PPA functions were more suitable for applications in- 

olving complex VOIs, such as for describing the nanodomain or- 

anization of molecular complexes located on curved membranes, 

he situation commonly encountered in cellular environments. 

Because analytical solutions for the PPA functions do not exist 

or complex VOI and particle geometries, synthetic random tomo- 

rams (null-models) are required in order to determine the statisti- 

al significance of the PPA functions applied to experimental data. 

he inherent variability of cellular components and the fact that 

 typical cellular cryo-ET dataset contains tens of tomograms ne- 

essitate generating a set of synthetic random model tomograms 

or each experimental tomograms. An experimental tomogram and 

ts corresponding synthetic tomograms have to have the same VOI 

nd the number of particles. Furthermore, a large number of syn- 

hetic tomograms is needed to allow reaching a specified signifi- 

ance level. To alleviate the computational burden involved in the 

eneration of the necessary number of random models and the 

omputationally intensive calculation of the PPA functions for all 

omograms, we propose a multi-process implementation of these 

outines that reduced the running times, thus enabling the ef- 

ective analysis of realistic datasets. We achieved a speed-up fac- 

or of approximately 15 using a single processor multi-core archi- 

ecture, a similar value to those recently obtained in [31] where 
10 
 cluster of computers was used for computing space-time 

ipley’s K. 

Application of our software to yeast cell cytoplasm imaged by 

ryo-ET allowed us to detect ribosome clustering and determine 

he characteristic distance scales. Furthermore, we showed that 

he second order functions, in particular L and the radial distribu- 

ion functions, were better suited to compare experimental groups 

omprising multiple tomograms because they were not sensitive to 

he global concentration of particles. 

Future applications of our software are also expected to provide 

 spatial characterization of macromolecular crowding, as well as 

iquid and lipid phase separation. These processes recently gained 

 significant biological interest, because they were shown to affect 

iochemical reactions in cells and global organization of cellular 

embranes and regions in different cellular systems [32,33] . 

Therefore, our implementation of the PPA functions provides a 

ool that can characterize simultaneous clustering at multiple dis- 

ance scales, which is suitable for applications to cellular molec- 

lar complexes visualized by cryo-ET, as well as to other 3D sys- 

ems where real-size particles are located within regions possess- 

ng complex geometry. 

ode availability 

PyOrg code belongs to a more general public repository (py- 

eg_system, https://github.com/anmartinezs/pyseg _ system ) which 

ontains additional software, tests, and dependencies. The code of 

yOrg alone can be found within code/pyorg folder. https://github. 

om/anmartinezs/pyseg _ system/tree/master/pyseg-sys/pyorg . 
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