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ABSTRACT

This work is a review of the properties about background (e.g. submillimetre galaxies) and

foreground sources (e.g. clusters of galaxies or massive bound dark matters regions) that an al-

gorithm built up to simulate the cross-correlation function between them is able to reproduce in

the framework of Weak Gravitational Lensing (WGL). This cosmological phenomenon has been

proven as a solid observable in order to constrain not only astrophysical parameters regarding

the Halo Ocupation Model but also parameters of the current Cosmological Concordance Model

ΛCDM. The cross-correlation function (CCF) between two families of sources (as explained in

section 3.1) is shown to track the magnification bias effect induced by WGL. Knowing so, fur-

ther works have also revealed that the stacking method, when applied to deflectors of similar

size and characteristics, is able to feature better the cross-correlation at small angular scale.

A methodology section is presented in order to comment the various steps and requirements

that have to be applied over the samples (sources) selection in those works. This will help to

understand some of the limits that will be put on some of those properties. The estimators

and statistics used to work with the simulated data are also presented in this section, which

concludes with a summary of the models for the dark matter profiles, the magnification and

cross-correlation functions.

The simulator offers a good opportunity to understand the effects of magnification bias on

the background source counts first. Section 5 accounts for this, explaining the various regions

of the magnification functions and how they translate into maps of counts. Then we move on

to work with simulated cross-correlation functions and the reconstruction of properties from

the dark matter profiles. Those profiles have been used to produce the magnification functions,

which are related to the theoretical CCFs by simple equations, that alter the intrinsic flux of

the background sources.

Among the most interesting results we have obtained, stands out the detection of a plateau-

like behaviour of the CCF where strong lensing (measured as where the magnification function

reaches certain high values) occurs. Although at first we thought it was some kind of statistical

flaw of our computations, we discovered that it was due to the distribution of intrinsic fluxes

assigned to the background sources. Therefore, it should extend as well to realistic works with

real data. In any case, this effect can only be perceived when the amount of data that is

available to be treated is large enough. Observed CCFs by our main reference, Fernández et
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al. 2022 [1] (FER22), showed this behaviour at low angular scale, prompting the presence of

a brightest central galaxy (BCG) at low angular scales at the centre of clusters. The trends

did not blow up, according to our observations of the plateau with the simulator. Although

the amount of data that FER22 used in their works was not comparable to the number of

simulated sources we used, the lowest bins of richness in which they separated the samples had

enough statistics to ensure that this plateau-like behaviour is also present in real work with

data. Therefore, we concluded that WGL and the induced magnification bias is also useful to

unveil characteristics of the background sources -their intrinsic flux distributions-.

Finally, in section 6 we showed that our simulator could be used to reconstruct compound

profiles as the ones used in FER22. We were able to obtain a readout of four parameters at the

same time and discussed the possibility of performing a precision-level analysis, concluding that

the variability of the readout depending on the input values was important. At the end of that

section we reviewed the work by FER22 by trying a new model to explain the gaps observed in

their CCFs. Particularly, we explored their results for the fourth bin of richness, we discovered

that a case in which the oscillatory behaviour was so relevant at angular scales beyond the scope

of the BCG could well be reproduced if the outer term is replaced or added up with a compound

of SIS profiles. This is not only relevant for its use to keep track of the observed trend in their

works, but also because the masses needed for such combination of profiles are well in line

with expected masses for average or medium-sized galaxies (∼ 1011− 1012 M�). Moreover, the

angular scale at the redshift of clusters (∼ 0.3) is compatible with typical distances between

galaxies within them. Certainly, an oscillatory behaviour as the one described should be studied

even further in detail. Beyond that analysis, our simulator is able to reject any statistical flaw

as the reason behind it. If anything, statistical issues such as a lack of sources at certain

angular scales due to limited data (e.g. the fourth bin of richness in FER22 only counts with

424 detected background sources) can only exaggerate the effect, but when great numbers of

sources are used (e.g. the first or second bins of richness) the effect is still seen. This is an

indication that there is physics yet to be unveiled in this issue.
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’Everyone is pleased, the relativists [...] who are suddenly experts in a field they hardly knew ex-

isted [and] the astrophysicists for having enlarged their domain, their empire, by the annexation

of another subject -general relativity-.’

Thomas Gold before the 1st Texas Symposium on Relativistic Astrophysics (1965)

4



1 Introduction

This introduction is aimed to present the effects of lensing from a descriptive point of view,

since it does not constitute typically a main issue in undergraduate courses of General Relativity

or Astrophysics. Apart from a historical introduction to that effect, we will address the most

interesting concepts of dark matter and magnification bias and differentiate the three main

regimes of lensing, focusing on weak lensing since it is basic in this work.

In the second subsection, the use of weak lensing magnification bias to constrain cosmological

and astrophysical parameters is reviewed presenting state-of-the-art results in the area. It is

not our task to constrain cosmological parameters nor the main Halo Occupation Model astro-

physical ones but rather work with the cross-correlation and magnification functions and their

mass and concentration parameters. However, dependency on several cosmological parameters

is manifest. For that reason, it is natural to comment on the results obtained by recent research.

1.1 Historical Aspects and some Clarifications about Lensing

Figure 1.1: Figure shown in
the original paper by Dyson
et al. 1920 [2] between pages
292 and 293.

The first description in science of gravitational lensing does not

come from Albert Einstein’s Theory of General Relativity, but

much earlier when Isaac Newton theorised that in case light was

regarded as a particle with mass, it would be deflected when

passing near a massive object. We know today that photons

do not carry mass, which would be otherwise forbidden from a

relativistic point of view. The fist measurement of light deflection

in the framework of General Relativity took place in 1919 [2],

and constituted the very first empirical proof1 of the newborn

theory of Geometry and Gravitation by Albert Einstein. The

experimental work by Dyson, Eddington and Davidson proved

that light from nearby stars that should fall behind the sun by

their celestial coordinates -the moment a solar eclipse was taking

place- could be seen around our star. The deflection of the light rays followed the bending angle

predicted by General Relativity, and not the one (half the value2) they would in the classical

theory from Newton, being corpuscular massive particles.

1Along with the good description of the perihelion precession of Mercury’s orbit.
2Some comment on this point will be made in section 2.
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Although these first results involved physics in a flat space-time, in which all that is needed is

a Minkowski metric with a transition to a Schwarzschild metric3 in some particular moments,

gravitational lensing at cosmological scales requires from an understanding of the metric of

Friedmann-Lemâıtre-Robertson-Walker and the framework of the ΛCDM model. According to

conventional wisdom, when people are asked about Lensing Phenomena, figures as the ring-

shaped galaxies around foreground deflectors at some cluster of galaxies arise. For example

figure 1.2 is an actual4 picture of how a Luminous Red Galaxy (LRG) can deflect the incoming

light from a background galaxy in such a way that distorts its shape.

Figure 1.2: Red Luminous Galaxy LRG 3-
757 strongly deflecting light from a background
galaxy, distorting it to form a ring around the
foreground source. Picture from NASA (Hubble
Space Telescope) [3].

Apart from astonishing imagery, the role of

lensing in science is state-of-the-art when it

comes to applications in cosmology and dark

matter research, as will be reviewed in the

following subsection and in section 3. There,

magnification bias through weak lensing is

the main object of the discussion. Since the

present work relies in source counting as a

source of valuable information, and is trig-

gered by the results from works presented in

those sections, some basic concepts that ap-

pear everywhere in those papers should be

commented on before. These concepts are

dark matter, weak (vs. strong and mi-

cro) lensing and magnification bias.

Dark matter is needed in order to explain the shape and deepness of potential wells where

galaxies and clusters of galaxies fall. The history behind its discovery5 is quite long and

controversial; nevertheless, it is hard to argue in favour of the existence of something that has

not been directly measured -nor most of its properties6-. For it being established as a widely

recognised problem -see the article from de Swart et al. from 2017 [4] where a deep insight into

the history of dark matter is displayed-, physics had to wait until the 1970s. Two papers tend to

3Only needed when discussing deflection of light rays or some other interesting phenomena that involve
massive compact objects such as our star.

4Possibly colours are allocated following photometric techniques in several bands.
5It is rather inaccurate to say it has been discovered since it has not been. We could say instead that it was

postulated.
6Although we know some things, and particularly this work aims to characterise the magnification and

cross-correlation functions associated to certain types of mass-distribution profiles describing dark matter.

6



be acclaimed for being responsible for the standardisation of dark matter into modern physics

and dragging the attention of scientists to do research in the topic. The people behind them

were Fritz Zwicky, who worked in describing the virial stability of clusters of galaxies realising

that much more than the visible baryonic mass was needed to match the kinetic energy of

the particles7 within (around 1930); and Vera Rubin, who was the first scientist to study the

rotation curves of a nearby galaxy, Andromeda (M31), finding8 that there was a lack of mass

if the baryons alone were to explain them. The paper from Rubin and Ford gave research a

push into rotation curves, what in the end resulted in many more papers analysing them and

finding evidence for the lack of matter (from 1970 onwards).

When Cosmology started being the great-scale general relativistic counterpart9 of the Stan-

dard Model of Particle Physics, dark matter fitted as a natural part of the model. Great

obscurity10 remains around it, though. However, some of the properties that dark matter was

found to have proved to be -from the point of view of several theorists- as safe points to redi-

rect physical research into the true discovery of dark matter. One of the most accepted options

is that it is made up of fundamental particles that could be included as an extension to the

Standard Model. The range of beyond the standard model theories that have new particles

is quite explosive11 so as to be commented here, so we restrict the discussion to mentioning

axions. This candidate has consistently been reviewed as most promising; thus we refer to the

review by Marsh in 2016 [7]. It constitutes a comprehensive explanation of axions from their

conception in the QFT framework to the role several models of them played in the various

stages of the universe.

Regarding our involvement with Dark Matter this introduction is more than enough to set

the stage. Turning away in order to address the different regimes of lensing we aim to draw a

distinction between them. All throughout this work, we are going to work with weak lensing.

This is no different from the type of phenomena that Dyson, Eddington and Davidson studied,

7The word particles, in this context, refer to Galaxies or bound structures that were explained and mostly
-as we will see reading from Rubin’s work, it is not accurate to say so- understood by that time.

8In the referred article there is a full explanation on how the breakthrough was perceived at that time,
arguing that there were doubts in the scientific community regarding how the rotation curves were extrapolated
and its implications.

9This is my way of saying that the standard cosmological model also has input parameters, a complex model
developed and many open questions ahead with some tensions the community thinks will lead to new physics
in the coming future.

10The word dark blurs a bit the intention of Herni Poincaré when he described this type of matter -theorised
by Lord Kelvin some time before- (see reference [5] from Bucklin (2017) for further information on historical
aspects) as elusive or hard to define. The word he used in french obscure [matière] possibly referred to its rather
unknown nature.

11The paper from Roszkowski et al. from 2018 [6] offers a wide view on the current status of Weakly Interacting
Massive Particles (WIMPs) -theorised fundamental particles- candidates.
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but it being addressed from a cosmological point of view offers widely new opportunities. As

a general description, WGL covers all the phenomena that occurs far12 enough from the lens.

This is any macroscopic effect having to do with position change -deflection by an angle-, flux

increase and small distortions in shape. The last requirement is worth a slow read: we are

not talking about the stunning deformations observed of ring-shaped strong lensed background

galaxies as that of figure 1.2, but rather little twists and size changes.

Figure 1.3: Representation of how a population
of background sources would be seen around a
deflector -e.g. a cluster- in a case with mag-
nification (bottom-right map) and without it
(upper-left panel). In the magnified case, a
slight oriented distortion in shape can be per-
ceived. Figure taken from the Wikimedia repos-
itory of free media [8].

If a whole cluster was affecting background

sources weak lensing would be hard to spot

by eye from randomly shaped galaxies, unless

a mathematical approach is used e.g. source

counting of sources above certain flux. Figure

1.3 represents the effect a cluster of galax-

ies could make on a background population

of sources, with some preferred direction of

shear that can be hardly identified in case the

real sources do not have all the same intrinsic

shapes.

Microlensing is another known variety of

lensing which has been honoured with a very

own name since it is useful to uncover hidden

objects -due to our telescopes flux or resolu-

tion limited capacities- thanks to the interposition of massive fast13 moving deflectors. This

creates transient phenomena that can be studied through optical techniques. Further from

strict theoretical definitions whatsoever, the use we are going to make of strong and weak

lensing during some parts of the work can be rather confusing with respect to what has been

explained in the last paragraph; for that reason we explain it here. We will sometimes refer

to strong lensing when sources undergo14 magnifications greater than some value -typically a

factor ∼ 2 − 4 of magnification is enough to take sources from being non-observable to being

recorded by detectors if a minimum intrinsic flux of sources is set around 10 mJy-. Due to

the shape of the dark matter profiles, the magnification and cross-correlation functions will

also present some characteristic shapes when plotted against angular separation. Weak lensing

12In the plane of the lens, e.g. at great angular scale.
13Galaxies do not move fast on human timescales, but compact objects can.
14We know it since we create the magnification, the source and the intrinsic flux.
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and extreme-weak lensing, as we have coined when referring to arcmin-separated regions from

the deflector where magnification asymptotically meets the unity, fall further away from the

deflector than strong lensing regions.

Working with actual sources and their shapes can be tiring since requires quite a lot of effort

put into every single source. Counting sources, instead, relies on simply putting restrictions

to the acceptance of sources according to some criteria. This way, an extensive gathering of

sources can be undergone and one can count with big amounts of data to perform analyses. The

effect that weak lensing has on the total number of observed sources is called magnification

bias. It is in fact the object of science that we will use all throughout this work.

1.2 Magnification Bias in the Framework of Cosmology and Astro-

physics

Current research in the field of Cosmology aim to constrain the main cosmological parame-

ters that set a certain evolution of our universe in time, according to a theoretical-observational

model known as ΛCDM (standing for the cosmological constant Λ and the dark matter compo-

nent15, which is though to be made up of fundamental -yet unknown- massive particles). Some16

of those parameters are the Hubble constant H0, the tensor to scalar ratio r, the parameter of

the equation of state of the dark energy wΛ, the present amplitude of matter fluctuation σ8, or

the density parameters of the different types of cosmological fluids today Ωi,0. The current stage

of research in Cosmology is the precision-level Cosmology, not guessing which theory fits best

our observations of the universe, but rather once we have accepted the ΛCDM model as our

basic scheme, putting competitive constraints in the values of the parameters aforementioned.

Weak Gravitational Lensing has emerged as a novel observable when it comes to constraining

parameters of the model, as will be explained in the following lines. Apart from that, it has

the unique feature -with respect to the other observables used in Cosmology- to provide re-

searchers with information about some characteristics of dark matter haloes and astrophysical

properties of the sets of galaxies used as sources. Particularly, dark matter haloes attached to

baryonic-matter and standard-model-radiation emitters such as QSOs or Clusters of Galaxies

have been studied in detail by Bonavera et al. 2019 [9] (hereafter BON19) and Fernández et

15CDM means Cold Dark Matter, for it should be non relativistic and have an equation of state comparable
to that of ordinary (non-relativistic) baryonic matter.

16Many other parameters not mentioned in the text are important for the full understanding of the ΛCDM
model or intlation theories. Some of them will be explained in detail in the theoretical section as they would
have critical effects on the magnification and cross-correlation functions used when working with cosmological
lensing phenomena.
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al. 2022 [1] (hereafter FER22) respectively. Sections 3.2 and 3.3 are dedicated to these papers,

since they will be the basis of this work as they offer insight into the description of dark matter

haloes using the magnification bias effect derived from WGL phenomena.

Weak Gravitational Lensing as an Observable to Constrain Parameters in the

Framework of the ΛCDM Model

Figure 1.4: Left panel (figure 6 from Planck18) shows the results on the compound parameters of

Ωm,0 ·h2 and σ8 ·Ω1/4
m,0 providing confidence level regions. They take into account some observable

features -the richest case in terms of the amount of them used is plotted in blue- of the CMB.
The right panel (figure 10 right from BON20) shows the competitive confidence levels that an
auto-correlation analysis of the SMGs magnification bias can provide. Particularly relevant are
the results constraining the σ8 parameter.

Analysts of data and experimental scientists in Cosmology and Astrophysics have been using

a varied range of observables (e.g. the Cosmic Microwave Background, the Baryon Acoustic

Oscillations or the type Ia Supernovae) to put competitive limits to those parameters. The

reason behind it is that some of these observables are blind17 in a degeneracy level; this is, a

region of the possible values for two or more parameters is valid to account for the observed

data. For example, the Planck Collaboration in their results of 2018 [published in 2020] [10]

(hereafter Plank18) showed that the CMB results combining several features of the CMB such as

the power spectrum or measurements of lensing effects on it using temperature and polarisation

are able to provide constraints to the confidence regions for several parameters. The left panel

of figure 1.4, numbered as the sixth figure in the aforementioned paper, shows confidence levels

between18 Ωm,0 · h2 and σ8 · Ω1/4
m,0. There is a region of confidence that covers a really narrow

17To be understood as unable to provide an unambiguous readout of a certain parameters, but only certain
of a set of combined values for several observables.

18These are compound parameters from the original base parameters -some of which where mentioned in the
previous paragraph-. They are chosen this way so that the plot remains more linear than when plotting σ8 vs.
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interval for the first variable ∼ 0.14 while some more degeneracy is allowed in the second one

∼ [0.58, 0.62], in an almost linear correlation. Also, results on the degeneration in pairs of

other parameters can be seen in figure 5 of that paper, where the concept of degeneracy can be

so easily understood by looking at the Ωm,0 vs. ΩCDM,0 -dark matter density parameter- plot.

When plotting degenerate confidence regions for a certain pair of parameters obtained from

different observables altogether, one restricts further the confidence regions.

Figure 1.5: Results in the plane wa vs w0 re-
garding one evolution model with refshift for
the dark energy equation of state. Figure 10
from BON21.

This is just an example of how cosmological

parameters can be constrained through one

cosmological observable as the CMB, possible

one of the most popular ones for its strong

constraints and good results. Lately, as com-

mented in the first paragraph, WGL has been

of great use to put competitive constraints on

some of the parameters -e.g. Bonavera et al.

2020 [11] (BON20) and González-Nuevo et al.

2021 [12] (GN21)-, and the great results ob-

tained for physics beyond the ΛCDM model

in Bonavera et al. 2021 [13] (BON21) makes

it a contender to provide further insight in

the field of the wide reange of cosmological

parameters.

Reviewing the work of BON20 (grey CL region in the right panel of figure 1.4), we see that

although poor limits were obtained for the Ωm,0 parameter, the σ8 one was competitively de-

termined in comparison to some other current studies. When it comes to the overall confidence

levels, it was only overtaken by the results of Planck18 when all the features of the CMB were

taken into account (the little dark-blue circular region in the plot). GN21 obtained at a 68%

confidence level some better results than BON20 by performing a tomographic analysis, as can

be seen in their seventh figure.

When it comes to beyond the ΛCDM model, BON21 tried to put into test a theory in

which the parameter of the dark energy equation of state was allowed to evolve with redshift

(time). This is described with two parameters w0 and wa, which should return −1 and 0 as

Ωm,0 as seen in the results from BON20 -right panel of the figure- (see the reference in the following paragraph).
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experimentally obtained values in case the parameter of the equation of state was to remain

constant. The results, as shown in figure 1.5, are indeed competitive with respect to the results

shown by Planck18 using the variety of sub-observables from the CMB used in figure 1.4 (for

the dark-blue CL regions).

Weak Gravitational Lensing as an Observable to Constrain Astrophysical Param-

eters and Dark Matter Halo Models

From an astrophysical point of view, perhaps the most interesting applications of WGL and

magnification bias are the constraints on the Halo Occupation Distribution (HOD) model pa-

rameters. In many of the reviewed papers, BON19, BON20, BON21, González-Nuevo et al.

2017 [14] (GN17) and GN21 , this issue is addressed. The HOD is a model that explains the

probability of finding a central galaxy in a halo depending on its mass. Then, satellite galaxies

are contemplated when a certain mass level M1 is achieved, following a power law that de-

pends on a parameter α (check BON20 for a good description that can be further followed in

references given there). The results obtained in any of these papers show robust correlations

between the parameters, namely Mmin, M1 and α.

Astrophysics regarding dark matter haloes came to another level with the work of FER22.

Trying to use the stacking method to discover the presence of central galaxies haloes superposed

to the general halo of their host clusters is quite of a novel technique that allows us to study

magnification functions from up close. In section 3.3 this work will be reviewed and, indeed, it

is the one we will refer to mostly during the results and toy model sections. Nevertheless, the

aim of this work is to develop a simulator able to distinguish brightest central galaxies (BCGs)

due haloes from general haloes that are common to all clusters. The idea behind FER22’s

work -previously introduced by BON19- is that maps of counts can be used as a synonym

for the shape of magnification profiles. Just as an astronomer that works with photometry

uses photons to trace images of science, an astrophysicist or cosmologist can use the maps of

background galaxy counts to trace magnification profiles.

From the wide range of options up for study; i.e. ΛCDM parameters, HOD parameters, and

other astrophysical opportunities, only the latter will be central in this work. Regarding the

other two, the HOD model will be completely separated from anything that we will directly or

tangentially address here, so no further development will be done. When it comes to ΛCDM

parameters, the previously mentioned papers do not rely on the stacking technique to put

constraints on them; however, some parameters -ΩΛ,0, Ωm,0 and H0- enter in the definition
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of the dark matter profiles and their magnification functions. It is possible, therefore, that

stacking is used to constrain cosmological parameters when all the dependence on any other

variable is sufficiently well constrained. In any case, that is something that goes beyond the

scope of this work.
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2 General Relativity

When working with events at a cosmological scale, some background of general relativity is

needed. Namely we need to build up the lens equation for gravitational lensing phenomena

working with distances in megaparsecs. What is more, some key parameters or variables needed

(mainly distances) are hidden from us. We will need to work with angular distances, but we

typically know them thanks to the redshift of the objects we work with -a feature that telescopes

can indeed measure thanks to photometry and spectroscopy-.

We will begin with some basics of General Relativity and the ΛCDM model, commenting on

the Friedmann-Lemtâıtre-Robertson-Walker metric, the parameters of the Concordance Model

and how they affect the variables within mathematical expressions related to the lensing effect.

Once the Cosmology basics are displayed, a brief introduction into the theoretical framework

of light deviation is given, following the most traditional derivation from the geodesics equation.

Nevertheless, this will be a fast way to get to the deflection angle without losing theoretical

accuracy. With all this knowledge gathered, we will be able to build up the (gravitational)

deflection potential. From there, mathematical expressions for the convergence, magnification

function and magnification bias are obtained.

2.1 Standard Cosmological Model: Cosmological Parameters & Dis-

tances in Cosmology

Galaxy X at redshift zX would be a sentence to be commonly found in a work similar to this

one, or perhaps in papers alike those that will be discussed later on in section 3. Distances

then, which will enter critically in theoretical lensing expressions, have to be treated from a

general-relativistic and cosmological point of view.

The metric19 used then takes the analytic form of equation 2.1, where we have loosened up the

curvature parameter k, and chosen it to be a freely varying parameter in R. Note as well that

[k] = [r]−2 is kept so that Sk in equation (2.2) has units of distance. Despite this introduction of

the parameter k, the aim of this work is not considering or constraining the associated density

parameter for the curvature Ωk. When the time comes, the parameter will be set to 0 as the

concordance model suggests we live in a flat universe, or at least one in which the radius of

19There are several ways to write down the analytic expression for the metric and all of them are the same
from a physical point of view. Another choice in the definition
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curvature20 is far beyond the observable limit.

ds2 = −c2 dt2 + a2(t)

(
dr2

√
1− kr2

+ r2 dΩ2

)
(2.1)

For further references, equation (2.1) displays the metric of Friedmann-Lemâıtre-Robertson-

Walker (FLRW). Equation (2.2) introduces the resolution of the comoving distance, parame-

terised by the the curvature k. It is calculated radially dΩ ≡ dθ2 + sin2 θdφ2 = 0 and instanta-

neously dt = 0, so our only dependence is in r and k.

Note that with this definition, the FLRW metric could be rewritten as ds2 = −(c dt)2 +

a2(t) (dr2
comv + r2

k(rcomv) dΩ2), after having renamed Sk ≡ rcomv. That was a way of having the

comoving distance as a lonely parameter and putting all the dependence on the curvature on

the rk function, which is nothing but the inversion of Sk(r).

Sk(r) ≡
∫ s

0

ds(r, k, t)

a(t)
=

∫ r

0

dr√
1− kr2

=


k−1/2 sin

(
r k1/2

)
(k > +1)

r (k = 0)

k−1/2 sinh
(
r k1/2

)
(k < −1)

(2.2)

It would be a huge simplification to say that all modern Cosmology falls into knowing accu-

rately towards the past and the future the shape of the scale factor a(t); however, doing so,

would give us solutions and certainty over a lot of open questions today. Similar to the latter

equation is the evolution of the Hubble parameter with time, or alternatively as is our case,

with redshift. Equation (2.3) shows the evolution of the Hubble parameter with redshift; the

order we have chosen for presenting the density parameters of the different components is due

to the present time standard model of their respective values.

We can take now the curvature to be 0, since we know that the first term of the equation is

heavily supressed in the concordance model. For radiation, we know that it dominated only

at the early stages of the universe. This means that we can also get rid of it. Finally matter

and the cosmological constant are the main variables regarding the current expansion of the

universe, with a incipient domination of the cosmological constant in a rate of ∼ 0.3 vs 0.7 in

its favour.

20Continuing with the idea of the previous footnote, another parameterisation of the parameter k would allow
for the introduction of R0 (the radius of curvature at present time) in the expression for the metric.
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H(z) ≡ H0 · E(z) = H0 ·
(
Ωk,0 (1 + z)2 + Ωrad,0 (1 + z)4 + Ωm,0 (1 + z)3 + ΩΛ,0

)1/2
(2.3)

The density parameters today are defined as usual Ωi,0 ≡ εi,0/εc,0. The critical density of the

universe today εc,0 is defined as εc,0 = 3H2/8πG; and εi,0 is the energy21 density of a fluid of

certain characteristics today.

Distance (e.g. the r coordinate in the metric) is the variable that matters us the most.

However from a physical point of view it is not something measurable. To be accurate, the

word distance accepts a lot of definitions from a cosmological point of view. When we refer

to that r coordinate we are talking about the physical or proper distance. The fact that we

live in an expanding universe spoils our ability to measure this quantity directly unfortunately,

so we need another way to measure distances. As Ryden amusingly points out in her book

[15], we would need a tape and instant communication -or at least a stop in the expansion of

the universe while measurements of distance are taking place- between its two ends in order to

measure this quantity.

Since working with angles and distances (angles) on the celestial sphere is needed22, the right

distance to be used is the angular distance. This is the notion of distance that we get when

we divide the real size23 of a source by its angular size on the celestial sphere. To be as much

accurate as we can, the angular distance to the source multiplied by the sine of half the angle

it subtends in the sky gives back half its real size. There’s no need the use the sine of the angle

however, since the biggest source that we can see in the night sky, which is the moon, only

takes 31 arcmin. This allows for the approximation sin θ ≈ θ being perfectly valid here.

dA =
∆x

δθ
(2.4)

In the previous equation, ∆x stands for the real size of the object, and δθ for its angular size

on the celestial sphere. Essentially we would not need anything else to work our physics out, but

21Debate could be raised on the accuracy of using energy to describe the density ε. It is appropriate when we
work in a relativistic framework -the whole derivation could be done just with thermodynamics-, and ε refers
to the time-time component of the energy-momentum tensor Tµν . For a comprehensive theoretical path from
equation (2.1) to equation (2.3), we refer to appendix A.

22To be thoroughly detailed in section 2.2.
23Obviously one cannot go to the light years apart the source falls to measure this, but for the most cases, we

can make good approximations of the real size of the object from a comparison to similar ones that live closer
to us, or by other physical helping hands. As Ryden puts it, we know a standard yardstick’s real size, so placing
it somewhere far away and measuring its angular size on the celestial sphere gives back a notion of distance.
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since typically sources are measured by its redshift z, we would get our computations shorter

if we had something that relates the latter with the angular distance, since redshift is easier to

get24. First, knowing that we measure sizes in the plane of the celestial sphere, we can go back

to the FLRW metric, and conclude that ∆x = a(te) r δθ ≡ rδθ/(1 + z); where te stands for the

time at which light was emitted. Again, to be accurate, ∆x up there represents the size of the

object when light was emitted, but the assumption that cosmological expansion is negligible

for bound objects is natural. r is not something we can measure easily, but corresponds to

the radial coordinate position in the comoving system. For its definition it corresponds to the

proper distance, which can be expressed as a function of redshift as follows

r(z) = c

∫ t0

te

dt

a(t)
=

c

H0

∫ z

0

dz′
H0

H(z′, {Ωk,0,Ωrad,0} ≈ 0)

=
c

H0

∫ z

0

dz′√
(1 + z)4 + Ωm,0 (1 + z)3 + ΩΛ,0

(2.5)

Several steps have been taken between the two terms at the right in the first line of previous

expression25. Some of these are the relation between the Hubble parameter and the scale

factor, then the relation between the differential of time and the differential of redshift etc.

On the other hand, if we wanted to avoid integration, and just apply a simple equation at

some moment we could refer to the simplifications made for example by Ryden. Expanding the

Hubble parameter to first order in z, one finds the expressions below

dp(t0) ≈ c

H0

z

(
1− 1 + q0

2
z

)
⇒ dA ≈

c

H0

z

1 + z

(
1− 1 + q0

2
z

)
(2.6)

This is an approximation that works when the second derivative of the scale factor today is

dominant over the their derivative, and can be extended back and forward in time as long as

this holds26. q0 is known as the deceleration parameter and is related to the second derivative

of the scale factor by

q0 ≡ −
(

ä

aH2

)
t=t0

= Ωr,0 +
1

2
Ωm,0 − ΩΛ,0 (2.7)

where in the right-hand side of the equation has been used the acceleration equation. It can

24There are several experimental techniques to access it. For example, it can be calculated through photometry
or spectroscopy.

25For further information one can refer, for example, to the lectures of Prof. Max Pettini [16].
26This is the relation that can be found in chapter 6 of Ryden’s book; which works works well when close in

time -or redshift-, as can be checked in figure 2.1
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be derived from the first law of thermodynamics, as Ryden does (see section 4.3), and be

written relating the scale factor and its second derivative with the energy density and pressure

of an ideal gas that we introduce in the Tµν of the general relativity: ä/a = − (4πG/3c2) ·∑
i (ρi + 3Pi). Alternatively Pi can be substituted by the equation of state corresponding to

the certain component by wiρi.

Figure 2.1: Proper distance (solid black), an-
gular distance (solid blue) and the approxima-
tion for low z (dash-dotted blue). In addition,
the regions where treating proper distance and
angular distance (yellow) or angular distance
and the approximation by Ryden (green) indis-
tinctly mean a mistake of less than 100 Mpc are
shaded.

Keeping with equation (2.5), we only need

to substitute in equation (2.4) to have a

closed expression that we can work with eas-

ily through numerical integration. The re-

sult and validity of the approximation made

by Ryden are compared to the most accu-

rate result given by equation (2.8) in figure

2.1, shown both in units of Mpc. It can be

translated to units of [c/H0] by recalling that

c/H0 ≈ 4286 Mpc.

dA(z) =
c

H0

1

1 + z

∫ z

0

dz√
Ωm,0 (1 + z)3 + ΩΛ,0

(2.8)

2.2 General Relativistic Bending of Light

With the arrival of General Relativity the mathematical expressions describing the lensing

phenomenon were developed. We are following Carroll’s book [17] on space-time and geometry

to provide solid grounds, although there are hundreds of references with nice descriptions as

well. At page 286, departing from working with the Einstein Equation, a weak intensity of the

gravitational field gµν is imposed, decomposing the metric of space time as a flat Minkowski

background ηµν with a perturbation hµν = −2Φδµν . The gravitational potential Φ is defined

after having set a gauge fixing for the gravitational field. It obeys the Poisson equation ∇2Ψ =

4πGρ and is defined after the split of the metric intro background and perturbation aimed at

explaining phenomena arising from linearised gravity such as gravitational waves. Φ ≡ −1/2h00,

in this case it also happens Φ = Ψ; with Ψ ≡ −1/6δijhij, so that the perturbation becomes

traceless.
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We introduce the path of a massless particle split into background (straight Minkowski)

and perturbation as xµ ≡ x(0)µ(λ) + x(1)µ(λ). Then the wave vector and deviation vector as

kµ ≡ ẋ(0)µ and lµ ≡ ẋ(1)µ respectively; where the dot stands for the conventional derivation

with respect to the parameter. We can then write the geodesics equation for the light rays as

gµν ẋ
µẋν = 0 (2.9)

The equation solved to first order simply gives (k0)
2

= ~k2 ≡ k2, so that when it gets introduced

into the geodesics equation at first order27 with hµν = −2Φδµν results in

2ηµνk
µlµ − 2Φδµνk

µkν = −2kl0 + 2~k ·~l − 4Φk4 = 0 (2.10)

The Christoffel simbols can be shown to be as equation (2.11) indicates28. Then one gets

to l̇µ = −Γµρσk
ρkσ, which is free of linear terms in lµ since Φ is, as already said, first order in

perturbation theory.

Γ0
0i = Γi00 = ∂iΦ

Γijk = δjk∂iΦ− δik∂jΦ− δij∂kΦ
(2.11)

We can work the equation of deviation split into its time component and its spatial components

dlµ

dλ
= −Γµρσk

ρkσ ⇒ dl0

dλ
= −2k

(
~k · ~∇Φ

)
,

d~l

dλ
= −2k2

(
~∇Φ− k−2

(
~k · ~∇Φ

)
~k
)

(2.12)

Integrating the temporal part can be done easily29

l0 = −2k

∫ (
~k · ~∇Φ

)
dλ = −2k

∫ (
d~x

dλ
· ~∇Φ

)
dλ = −2kΦ (2.13)

Introducing this into the first order equation (2.10) yields ~l·~k = 0, verifying that the deflection

occurs perpendicular to the flat trajectory. One can calculate the deflection angle observed in

figure 2.2.

27First order requires either one deviation vector lµ or the gravitational potential Φ in each term. This is the
effect of the approximation taken above.

28Again, all this relies on the choice of the transverse gauge when defining the perturbation field, then setting
some components of that field to zero (it be possible) and hij = −2Φδij as it is manifest here.

29All integration constants can be dodged by making optimal choices of the initial conditions. For example,
one can demand l0 = 0 when Φ = 0.
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Figure 2.2: Sketch of the deflection of the
geodesic xµ(λ) a light ray follows, measured by
the angle (vector) α̂. Figure taken from Car-
roll’s page 288, there numbered as figure 7.3.

Now it seems like the perfect moment to in-

troduce talking about angles in these circum-

stances as vectors: we have to measure dis-

tances between objects on the celestial sphere.

The location of objects there is given by two

coordinates (a vector), their difference is an-

other vector whose modulus, in the planar

approximation, is the angle we talk about

all the time. In the case of α̂, it belongs to the plane perpendicular to the vector ~k. Moreover,

since no torsion can happen in the situation of figure 2.2, the vector30 α̂ must be parallel to

the vector ~l, specifically

α̂ = −∆~l

k
= −1

k

∫
d~l

dλ
dλ = 2k

∫ (
~∇−

~k

k2

(
~k · ~∇

))
Φ dλ ≡ 2k

∫
~∇⊥Φ dλ

≡ 2

∫
~∇⊥Φ ds

(2.14)

where in the last two steps we have made two definitions; first ~∇⊥ ≡ ~∇− ~k
k2

(
~k · ~∇

)
, then we

have made use of the physical spatial distance s = kλ.

The deflection vector ~l, the impact parameter (yet to be introduced) and the deflection angle

α are three vectors in close relation. The second one enters the potential Φ, and represents what

is depicted in figure 2.2. Actually, we are using the same notation for coordinates, therefore

the potential can be expressed as

Φ = −GM
r

= − GM√
ξ2 + x2

(2.15)

Performing the transverse (⊥) gradient simply implies doing its definition, or in short, the

derivation sees the coordinate proportional to the impact parameter b as a constant, then one

takes the derivative with respect to the other coordinates; in this simple yet general case, only

30This footnote is important to keep track of what we mean when we introduce in an equation
an angle. In general we will not put the vector marker (e.g. ~θ) over an angle that has two components, but it
is expected it be understood by the context (as the celestial sphere can be parameterised by two coordinates).
All angles have two components, and referring to e.g. θi means the i component of the vector. When we put e.g.
θ in general we will be talking about either the full vector or its module (to be understood from the text). For
example the vector marker over the gradient in equations (2.14) or (2.26) explicitly implies that α is a vector
there. Seeing an angle in a denominator, as in the convergence for the SIS model (4.4) is to be understood as
θ being its modulus. In the case of the shear γ, since it is not strictly an angle, we will leave the notation γ for
the full angle and |γ| for its modulus.
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x is to matter. The result is ~∇Φ = − (ξ2 + x2)
−1

Φ~ξ. Then we have a closed31 expression for

the deflection angle32

α̂ =
4GM

c2ξ
(2.16)

However, this equation is only valid when we assume that the deflector mass can be thought

as point-like, or its span shorter than the impact parameter ξ. In a more general computation

one can write

α̂ =
4G

c2

∫
dξ′
∫
ds ρ(ξ′, s)

ξ − ξ′

|ξ − ξ′|2
(2.17)

where the prime refers to the radial distance, in the plane where deflection occurs, of the mass

element. The integration along the line of sight
∫
ds is what is to be used, after we introduce

some insights about distances in Cosmology, to relate convergence and the lensing potential.

It can be summarised that using equation (2.16) is appropriate when ξ � ξ′ and

using (2.17) is appropriate otherwise.

Figure 2.3: We can check all the angles and
relations that happen among them. Picture ob-
tained from NB97, there numbered as figure 5.

It is customary at this point to comment

that Newton had arrived to half this result

a few centuries before, which might not sur-

prise us much, since a lesson that current Cos-

mology and General Relativity teaches is that

radiation and matter may be not as much dif-

ferent as they might seem in our classical limit

lives.

Once here, all that was needed from general

relativity has been displayed. However, it is

obviously useful to connect this with theory

of lenses; in particular the region where de-

flection occurs can be thought of as a prism

with refraction index

31We introduced here the factor c−2 to reverse the tradition by Carroll (which has been used all along, and
is conventional) of doing calculations in general relativity with c = 1. We leave the factor to keep in mind that
units are important. The c−2 that appears in equation 2.18 accounts for the same.

32We commented that Newtonian physics allow for light deflection if it was a massive particle -which is not-.
The mathematical derivation following that hypothesis can be found in Soares’ paper [18].
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n = 1− 2

c2
Φ (2.18)

Nevertheless, the macroscopic effect of time delay that a medium other than vacuum exerts

over light rays is an immediate computation that can be done; we refer to Carroll’s for such

derivation.

2.3 Lensing Phenomena

What makes our particular case of lensing distinct from, for example, the gravitational lensing

produced by stellar objects in our galaxy that magnify stars from satellite galaxies (LMC,

SMC...), is how we treat distances. To that end we had introduced section 2.1 since we have

to work with angular distances. Figure 2.3, taken from Narayan & Bartelmann 1997 (NB97)

[19], is valid in any context. For our case Dds, Dd and Ds refer to angular distances.

From figure 2.3 we come across the lens equation θ = α+ β. That sum can be made because

the angles are measured by the same observer; however this does not hold in other cases. For

example, α̂ 6= θ. If distances were proper, Dds + Dd = Ds. In that case, α̂ = θ as well. Just

as happened with distances, the angles from figure 2.3 depend heavily on the redshift. In the

cosmological case, physical invariants would be measurements made at the same redshift. For

example, the distance between I and S in the figure cannot change depending on the angular

distance and angle we use to measure it. We then come to the relation αDs = α̂Dds, which

combined with the lens equation translates into

d(I, S) = α Ds = α̂ Dds ⇒ β = θ − Dds

Ds

α̂ (2.19)

But angle α̂ had a closed expression as a function of the distance separating the light ray

traveling towards us and the gravitational center of the deflector as shown in equations (2.16)

and (2.17). This means that we can work with either α̂ or α. We are choosing the latter. In

the ξ � ξ′ case this reads

α(θ) =
Dds

Ds

4GM

c2ξ
=

4πGΣ

c2

DdsDd

Ds

θ , Σ(ξ) ≡
∫
ds ρ(ξ, s) ≡

∫
ds ρ(Dd · θ, s)

=
M

πξ2
si ξ � ξ′

(2.20)
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where Σ is a surface density defined in the plane of the lens, and we have taken into account33

that ~ξ = Dd · θ. This is a most important point: now the lens equation reads as a function β

of the angle θ. When we are not working with the approximation commented in the paragraph

above, but keep to equation (2.17) instead, the angle α would then be written as

α(θ) =
Dds

Ds Dd

4G

c2

∫
dθ′

θ − θ′

|θ − θ′|2

∫
ds ρ(θ′, s) =

Dds

Ds Dd

4G

c2

∫
dθ′

θ − θ′

|θ − θ′|2
Σ(θ′) (2.21)

We define the critical convergence (also named surface-mass density, as it has such dimensions)

as the inverse of everything that multiplies Σ θ in equation (2.20), as specified in equation (2.22).

If we fix a standard angular length at 1 Gpc so that the mix DdsDd/Ds (which has units of

distance) is measured in such unit, then we can express the critical convergence as

Σcrit =
c2

4πG

Ds

DdDds

=
0.35 g cm−2

DdDds

Ds
[Gpc]

(2.22)

For the most general case, following equation (2.21), we would not get a great simplification

by substituting the critical convergence, but for the approximation θ � θ′ we do get a simplified

lens equation

β(θ) = θ

(
1− Σ(θ)

Σcr

)
(2.23)

We define the Einstein Radius to be the angle at which a source is deflected when it sits back

in the centre of the projected plane, equivalently η = 0 in figure 2.3.

θE ≡
√

4GM

c2

Dds

DdDs

(2.24)

To get the notions and expressions of convergence, magnification and shear it is useful

to start by defining a deflection potential34 as

ψ(θ) ≡ Dds

Ds Dd

2

c2

∫
ds Φ(θDd, s) (2.25)

ψ is built up so that its gradient in the direction of the angle on the celestial sphere matches

33Go back to figure 2.3 to recall the variables we are using.
34Shortly ago we introduced the concept of integrating the density function along the coordinate of the line

of sight. Indeed the deflection potential has to do with this.
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the angle α.

α = ~∇θψ =
2

c2

Dds

Ds Dd

∫
~∇θΦ ds =

2

c2

Dds

Ds

∫
~∇ξΦ ds (2.26)

which is essentially the same of equation (2.14) but for the factor Dds/Ds and the c2 coming

from the restoration of c in equation (2.16). Now we have two expressions for α, the latter

(2.26) and (2.21). We find, comparing those equations, that

∫
Φ ds = 2G

∫
dθ′ Σ(θ′)

∫
dθ

θ − θ′

|θ − θ′|2
= 2G

∫
dθ′ Σ(θ′) ln |θ − θ′| (2.27)

which we can introduce in the expression of the deflection potential to find the potential ex-

pressed as

ψ(θ) =
Dds

Ds Dd

4G

c2

∫
dθ′ Σ(θ′) ln |θ − θ′| = 1

π Σcrit

∫
dθ′ Σ(θ′) ln |θ − θ′|

=
1

π

∫
dθ′κ(θ′) ln |θ − θ′| , κ(θ) ≡ Σ(θ)

Σcrit

(2.28)

It is straightforward to find out that the Laplacian of the deflection potential is proportional

to the convergence κ, which is an important variable to compute the magnification, as will be

seen soon.

∇2
θψ =

1

π

∫
dθ′ κ(θ′)∇2

θ ln |θ − θ′| = 2κ(θ) (2.29)

Finally since our objective was to relate θ (the angle to the image) to β (the angle to the

source), we need the matrix of the change of basis between the angles A.

The trace of the matrix of second derivatives of the potential is the Laplacian, and there-

fore can be substituted by the convergence. Also, the shear is defined from the orthogonal

combination of the diagonal elements and from the antidiagonal ones

γ(θ) ≡

1
2

(
∂2ψ
∂θ21
− ∂2ψ

∂θ22

)
∂2ψ

∂θ1∂θ2

 ≡ |γ|
cos (2φ)

sin (2φ)

 (2.30)

The Jacobian matrix can be expressed then as a function of the convergence and the shear

as follows
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Aij ≡
∂βi
∂θj

=
∂ (θ − α)i

∂θj
= δij −

∂2ψ

∂θi∂θj
(2.31)

A =

1− κ− γ1 −γ2

−γ2 1− κ+ γ1

 = (1− κ) · I− |γ| ·

 cos 2φ sin (2φ)

sin (2φ) − cos (2φ)

 (2.32)

where the γ1 and γ2 represent each of the components of the shear vector and the I is the

identity matrix.

Figure 2.4: Combined effects of convergence and shear. Figure 2.3 from Shuntov 2019 [20].

The shear γ is defined by its modulus |γ| and the angle of twisting of the stretched image in

comparison to the direction drawn by any of the angles of the system (all of them are actually

in the same direction). If the source was circular, its image would get stretched to be an ellipse

with semiaxes (1− κ± |γ|)−1. Finally the magnification equals the inverse of the determinant

of matrix A

µ =
1

detA
=

1

(1− κ)2 − γ2
(2.33)

The reason behind this is the invariance of the surface brightness distribution. A linearization

of the lens equation gives the relation β ∼ β0 +A(θ0) · (θ − θ0) between two points {β0, β} and

{θ0, θ} of the source and the lensed image respectively. From these two arguments we get

I(im)(θ) = I(s) (β0 +A(θ0) · (θ − θ0)). The total flux of both images (the source and the lensed

image) are given as integrals over these distributions. Since the distributions are equal, the
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difference lies on the surface of integration, which is bigger (due to both magnification and

shear) for the lensed image. The ratio among the fluxes, which is the ratio among the surfaces,

is the magnification µ. Due to this reasoning, it has the expression shown above.

2.4 Weak Gravitational Lensing: Magnification Bias

The paper by Bartelmann and Schneider from 1999 [21] (BS99) prompts a few statements

about the grounds and utility of WGL. Acknowledging that the intrinsic spherical shape of

galaxies, individual work with galaxies through weak lensing seems hard and little significant.

However, collective effects can throw deeper information with ease; for example an average

uniform distribution of the distortion of images, exceeding the threshold of random noise due to

random ellipticities of the sources, can give information about the strength of the magnification

field.

Figure 2.5: (Right) The amount of sources visible after WGL works depends critically on the
exponent describing the number of source counts as a function of the flux. The Left panel
sketches the amplification effect of WGL in sources of the correct kind. Figure 1 from BON22
compromises both panels

As said before, conservation of surface brightness creates an enhancement of flux due to the

effect of magnification on the area of the image (in comparison to the source). But let’s not

stop there; suppose we have a detector with a threshold of flux below which sources cannot

be distinguished. If magnification brings some sources whose intrinsic flux is below that level

upwards, we will have an effect in the number of sources of a certain type that we will detect

on the sky near to overdensities at cosmological scale (for example a cluster of galaxies).

We will work with the latter fact, as did the papers of Bonavera et al. from 2019 [9] (BON19)

and Fernández et al. from 2022 [1] (FER22). The effect that lensing has on the source number

counts can be thoroughly explained as in BS99. It can be summarized as
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n(> S, z) =
1

µ
n0 (> S/µ, z) (2.34)

where n represents the number of source counts of sources at redshift z with flux greater than

a threshold S on the visible sky, and n0 the number of sources that would be seen without

magnification at the same redshift but with a threshold of flux modified to be S/µ. We can

see two effects, as explained in Bonavera et al. 2022 [22] (BON22). First we see that flux limit

is lowered S → S/µ (more sources would be seen), and then the number of sources is diluted

∝ µ−1, due to some sources exiting the region observed by the stretching of that region of sky.

It is usual to expect a distribution of sources as a function of flux following n0 (> S, z) ∝ S−β.

Where β is referred to as the source number count slope. The choice of the type of background

source is thereby a major concern, since the overall effect on the number of sources and the

amount of statistics therefore available is critical; as shown in the right panel of figure 2.5. This

means, in what concerns flux, the number of counts should follow a power law. Now there is

also a part of dependence on redshift, with a factor p0(z;S) entering the proportionality. This

is a statistical description of the probability of finding a source at redshift z with flux S.

We can write the factor between the sources that are seen and those that would be seen, with

flux surpassing the threshold of detection, as

n

n0

(> S, z) = µβ−1 p0(z;S/µ)

p0(z;S)
∼see text µβ−1 (2.35)

We can neglect the dependency on redshift if we take into account that we will work at a fixed

one. In the most realistic case, the redshift assigned to the sources will be bounded and we will

assume that the probability of finding sources with a given flux changes slowly with redshift.

Moreover, we can neglect the full factor by assuming that p0(Sµ) ∼ p0(S) for the sources that

we are simulating (which fall close below/above the threshold).

We could aim to get rid of redshift from the very beginning, so we perform an integration of

equation (2.34) over it

n(> S) = A

∫
1

µ

(
S

µ

)−β
p0 (z;S/µ) dz = A

∫
µβ−1S−βp0 (z;S/µ) dz (2.36)

n0(> S) = A

∫
S−βp0 (z;S) dz = AS−β (2.37)
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So that the relation n(> S)/n0(> S) is easily performed

n

n0

(> S) =

∫
µβ−1p0 (z;S/µ) dz ∼see text µβ−1 (2.38)

For systems with lenses that fall not too much far away, one can neglect the dependency on

redshift. Finally the integration over p0 gives 1.

The bias, which will be named as wx, in the number of sources can be written as a function

of the magnification. This is the typical symbol used for the cross-correlation function, which

will be thoroughly described in sections 3.1 and 4.2.

wx(θ) ≡
n (> S, z; θ)− n0 (> S, z; θ)

n0 (> S, z; θ)
= µβ−1(θ)− 1 (2.39)

The expression above is extremely useful when working with the stacking method (described

in section 3.2), since sources are all distributed respectively to their separation to the lens on

the celestial sphere.

When testing compound profiles, the analytical description of the process can become largely

unmanageable. A simple game with the expressions of convergence and shear show us that

Σ→ Σ1 + Σ2 ⇒ ψ → ψ1 + ψ2 ⇒

γ → γ1 + γ2

κ→ κ1 + κ2


=⇒ µ =

1

(1− κ)2 − γ2
→M(κ1, κ2, γ1, γ2) =

1

(1− κ1 − κ2)2 − γ2
1 − γ2

2 + 2γ1γ2

(2.40)

which is in general different from any easy function of µ1 and µ2. From a physical point of

view, however, one can make two natural assumptions -in order of accuracy to the real case- to

work out the effect of two analytical dark matter haloes superposed that belong together into

the same spatial region:

• As a first approach to the problem one can say that the haloes are different enough so

that the parts where one becomes dominant with respect to the other cover the majority

of the celestial area around the compound object; which means that except for a small

annular region, the effect can be parameterised as one magnification profile (from the

inner object) a transition region and another magnification profile. Since the transition is

thought to be smooth, no greater problem should arise. Mathematically, equation (2.41) is
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a good description, where θch refers to the angular separation where the dominant profile

changes.

µ(θ) = µinn(θ)Θ(θch − θ) + µout(θ)Θ(θ − θch) (2.41)

• The more accurate approach would require that, since magnification is35 is always above

1, the product µ1µ2 behaves similarly to the magnification function of eq. (2.41). This

is, the region where the profile 1 is less dominant, µ2 � µ1 or µ2/µ1 � 1 and vice versa.

35Supposing that demagnification does not occur in the region of interest [θmin, θmax] where out data sample
falls.
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3 Previous Works, Motivation and Framework

In order to fully understand the work developed with the simulation, it is important to be

familiar with the concepts of cross-correlation and stacking. Their usefulness is thoroughly

explained in the papers featured in the following subsections respectively. Physical properties

of the sources and profiles used in those papers, although the former are not a central issue in

the current work, are to be explained afterwards in the methodology, section 4.

3.1 González-Nuevo et al. 2014: Cross-Correlation Indicates (Weak)

Lensing Phenomena

Figure 3.1: The number of counts function,
which is proportional to the CCF, tracks the
effect of WGL in the high flux region. Figure
14 of GN14.

The Cross-Correlation function (abbre-

viated as CCF) is defined as the probability of

finding two sources of populations36 A and B

separated an infinitesimal distance, scaled by

the probability of the random case. There are

several statistical estimators to reproduce the

CCF, each thought for a different purpose, to

work with. This is further explained in sec-

tion 4.2.

González-Nuevo et al. 2014 [23] (GN14)

showed that the CCF between sources of lens

population and background population, see

figure 3.1, track the effect of WGL in the high flux region, where few sources should be expected

if the lensing effect was not working. The steepness of the number of counts respective to the

flux helps enhance the effect.

3.2 Bonavera et al. 2019: Magnification Bias through Stacking

Traditional Cross-Correlation is calculated extensively with dependence on both the location

of the lens and the location of the sources. However, it will be sometimes useful to work

irrespective to the location of the lenses; this means, scaling everything to their position. The

stacking technique relies on a principle basic from photography: an area -e.g. in our case this

36e.g. Deflectors and background sources (for example SMGs)
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is the stacked area of several arcmin-sized regions of the celestial sphere- is represented by a

number (or group of numbers). The idea is no different from what is done in astrophotography

for some particular purposes such as photometry. The difference relies on us changing the

(colour scale in figure 3.2) scale of the numbers associated to the pixels from a measure of the

energy deposition to a measure of the number of sources seen at a particular position on the

celestial sphere.

Figure 3.2: Filtered (with σ = 2.4 arcsec)
and normalised amount of sources detected
(upper panel). Filtered (idem) and nor-
malised random case (simulated, bottom
panel). 1000 pixels are used, with a 0.1
arcsecs per pixel, which covers a circular
region of 50 arcsec in radius. Figure 2 from
BON19.

In BON19 the stacking method was used to char-

acterise the weak lensing region of similar37 lenses,

which proved capable of producing a readout of

the mass and concentration38 of the dark matter

overdensity associated to, in this case, QSOs. Ob-

viously this has some risks when it comes to the

reliability of the readout that any study of this

kind produces. Notably, there is no physical re-

quirement for every dark matter halo to be similar

to any other; although one would naively ask any

two galactic or cluster-like objects sharing most as-

trophysical properties to also share a similar dark

matter distribution. Some other warnings to take

into account are the apparent lack of knowledge

about the real mass of the deflector, unless one

makes use of a catalogue39 that measures it by any

other method; and the variability of the magnifica-

tion function with the redshift of both populations.

In figure 3.2 the map of source counts after stack-

ing is performed with the data of BON19 is shown.

The same scale is used so that the comparison

is completely clear: the notorious overdensity of

sources visible in the centre is clear. Some randomness can be appreciated in the outer (θ > 10

arcsec) region. Two main ideas can be driven out of this and without having to check the

37Some notes to be considered as limitations of the work and its results are given at the end of the paragraph.
38This parameter is linked to the type of profile used. In section 4.3 this and some other parameters related

are described.
39The paper described in the next subsection covers the good agreement of a magnification-bias reconstructed

mass and the mass measured in some catalogues.
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CCF graph (figure 3.3), which shows it as well, nevertheless. First, the region closest to strong

lensing can be well characterised by stacking. Second, and most important to the present work,

we would like to know if an arbitrary amount of sources is able to blur the inhomogeneities at

the central (outer in figure 3.2) weak lensing region.

Figure 3.3: In the weak lensing region the
CCF calculated by the stacking method
gives a thoroughly detailed profile. Statis-
tical fluctuations of the data series at larger
distances spoils a good tracking in that re-
gion. Figures 4 and 7 bottom of BON19.

Figure 3.3 shows the calculated CCF with the

available data and stacking method. The aim of

the upper panel is to show the improvement in

the shaping of the CCF in the weak lensing region

compared to the traditional40 way of computing,

relying in extensively computing the values of the

estimator associated for every pair of sources. In

the bottom panel the result of having applied a

weak lensing approximation in the magnification

function breaks at < 10 arcsec. This is due to the

beginning of the strong lensing region. Still, no

blow up of the data is perceived, but rather is a

plateau; the function used for the fitting is also

smoothed at that region. This raises another issue

that we aim to answer, whether if an analytical so-

lution can be given to work with the strong lensing

region.

In the following subsection the ability of the cur-

rent method to calculate the mass and concentra-

tion of the dark matter distributions is explored. BON19 does also estimate some values

in this direction. They found41 a combined estimation of M200c = 1.0+0.4
−0.2 × 1014 M� and

C = 3.5+0.5
−0.3 M�.

3.3 Fernández et al. 2022: The Right Choice of Profile

Although we tend to relate dark matter overdensities with the presence of bayonic matter

(e.g. galaxies), these two types of gravitationally bound collectives are different things; and

40To get a clearer understanding of this, go to section 4.2, where this figure is referred to explain the difference
between the Landy-Szalay and Davis-Peebles estimators when calculating the CCF.

41M200c and C are described in section 4.3.
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particularly from the former we know so little from a fundamental point of view. Clusters of

Galaxies present a dark matter distribution, that is apt to be studied through weak lensing

and stacking. In FER22 the magnification bias induced by these structures upon submillimetre

galaxies (SMGs) has been evaluated. They test as well the hypothesis of a Brightest Central

Galaxy (BCG) associated with a halo of itself that would produce a enhancement of the CCF

towards lower distances (. 10 arcsec). The choice we make of the dark matter profile for the

mass distribution has a direct effect on the CCF as well. The main two profiles that are used in

most of the literature are the Navarro-Frenk-White (NFW) and the Singular Isothermal Sphere

(SIS), which are fully described in section 4.3.

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Total

SIS + NFW
MSIS[1013 M�] 0.5 0.6 0.6 0.6 1.0 0.5
MNFW[1013 M�] 4.9 5.3 10.1 14.0 51.5 5.5

C 0.94 0.30 1.17 0.65 0.56 1.84
Outer MNFW[1013 M�] 5.8 7.9 11.2 27.4 51.5 7.1

(. 100 kpc) C 0.74 0.39 1.00 1.74 0.56 1.72
Inner MNFW[1013 M�] 3.8 2.3 7.2 1.0 1.0 4.1

(& 100 kpc) C 3.63 6.83 3.81 11.91 14.8 4.17
Inner + Outer M [1013 M�] 9.6 10.2 18.4 28.4 52.5 11.2

〈R〉 14.6 20.9 31.4 50.4 91.4 20.0
From 〈M200〉 [1013 M�] 7 11 18 32 64 11

catalogue 〈z〉 0.38 0.39 0.37 0.32 0.24 0.38
scale [kpc/arcsec] 5.42 5.51 5.33 4.85 3.96 5.42

Table 3.1: Results from FER22, labelled as table 2 in that paper. Upper row shows the fit of
the CCFs with SIS (BCG) and NFW (general halo) profiles. The following three rows show
the fit under a double NFW. Last row shows the available data from catalogues on several
parameters.

Working with well formed clusters heavily restricts the overall number of lenses available,

since only in recent stages of the universe have these objects had the time to get formed. In

any case, more than 8000 targets (lenses) have been used, accounting for an average of 3 − 4

detected attached background galaxies each. The amount of statistics is enough to produce a

solid analysis and lenses could be divided in richness bins, following the hypothesis of greater

richness means greater overall halo mass. The distribution of redshifts in each bin varies

accordingly to the fact that greater structures were formed later in time, as depicted in figure

1 from FER22. Table 3.1 provides the measured masses and concentrations derived for the

different richness bins, regions and mass density profiles. Additionally, the last row gathers

the available information from catalogues on the measured mass, richness and redshift of the

clusters. That figure should be regarded as a great summary of the work developed by FER22.
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Figure 3.4: Bins 1 and 4 of richness from
figure 5 of FER22. The inner BCG associ-
ated halo has a greater share of the total
reproduced mass (up to the general halo)
for lower richness. The readout vales for
the mass can be read as well in table 3.1.

An interesting lecture driven from these results

is the importance of the profile chosen to describe

the dark matter halo responsible for the lensing

effect. In figure 3.5 the CCF of the second bin

of richness is shown, with a SIS+NFW fit at the

right han side representing the BCG and general

halo region respectively. At the right-hand side

a double NFW profile was chosen. Although the

NFW profile presents the disadvantage of an ex-

tra free parameter, the concentration, it was able

to produce a much better combined mass estima-

tion, in close accordance to the data available from

the catalogues. In addition, the relevance of the

BCG with respect to the richness group is also im-

portant, as can be fast checked in figure 3.4, as

well as in table 3.1. Bins 1 and 4 were chosen to

draw the comparison since bin 5 had poor statis-

tics (few cluster-galaxy couples), big uncertainties

and a variability that forced a fit by hand of the

parameters. However the tendency of mass share

of the BCG becoming smaller as richness increases

is solid.

Figure 3.5: Plots of the CCF in the second bin of richness. At the left, for a fit with a
combination of a SIS (BCG) and a NFW(general halo) profiles; at the right for two NFW
profiles. The subplots belong to the figures 4 and 5 of FER22.
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The perceptible lack of signal in their observed CCFs at ∼ 10 and ∼ 25 arcsec covers a

whole part of the discussion section in the work of FER22. They realised that at all bins of

redshift -particularly manifest in the fourth bin of redshift in the above figures- this feature

was detectable, prompting of it being a non-richness dependent issue. They drew comparison

to other works in which galaxies and clusters are reviewed and found that it was a common

anomaly in all of them at the same angular scales.

Regarding the present work, the main idea to work with in our simulator and driven from the

reviewed work is the reproducibility of the double-deck shape of the BCG-cluster halo terms

in the CCF. The overall effect in terms of mass of each part is an input variable in any case,

and something that is expected to work smoothly. However, our main concern is whether the

double shape is distinguishable.
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4 Methodology

The papers which we worked with in the previous section carry an extensive and thorough

preparation and selection of the sources used. The aim of the current one is to provide the

most important features of these choices, comment the expected variability of the CCFs with

some of them or the suitability of certain type of sources. The cross-contamination in redshift

is addressed in this part.

Once the sources have been well described, and an outline of the tests on the parameters that

are going to be undertaken in our simulator is given, we will introduce the statistical estimators

(the Landy-Szalay and Davis-Peebles ones we named when we reviewed the work of BON19)

that build the CCF from the available data. At the end of that section the relation between

the magnification bias and the distribution calculated from the estimators will be drawn.

We have left the dark matter density profiles to the end because they have some direct impli-

cations for the toy model that is to be explained afterwards in section 5. This section, although

being theoretical to some extent, also presents useful figures which account for the differences

between the two main profiles used, the Navarro-Frenk-White (NFW) and the Singular Isother-

mal Sphere (SIS).

4.1 Sources: Redshift Distribution and Selection

Figure 4.1: Bands from the PACS instrument,
figure 6 from [24], including wavelengths in the
range ∼ 50 to ∼ 200 µm. Referred papers work
with data in the range ∼ 100 to ∼ 500 µm,
where at 200 − 500 µm enter the sources from
SPIRE.

The redshift distribution of the sources, spe-

cially the lenses, is quite critical in modify-

ing the angular distance that enters into the

mathematical expression of the magnification

and convergence; therefore a wide width of

the distribution of the sources (e.g. parame-

terised by a normal distribution), this is, a big

standard deviation, can produce a lack of re-

liability in the results. This has to be treated

carefully.

Apart from this, an extensive methodology

has been developed to remove possible cross-

contamination of sources, which should com-

36



promise with the type of background galaxies matching a steep source number of counts function

with respect of flux (figure 2.5). This is quite well described in GN14, although almost all the

referred papers above cover the issue.

To cover the selection procedure of the sources GN14 provide a thorough explanation, fol-

lowing the lines from Lapi et al. 2011 [25] (LAP11). Photometric bands are important in case

we want to distinguish sources of different kinds, with spectral energy distributions peaking

at different zones. Particularly submillimetre galaxies (SMGs) are expected at the infrared

(near microwave) range, while many foreground sources are to be seen in the optical range.

Apart from that, they have a steep slope of the source number counts with respect to flux

β > 3, being an optimal sample for magnification bias studies, as commented back in section

2.4. The papers we have talked about worked with data from the Herschel-ATLAS data from

the Herschel space observatory [26]. PACS [24] and SPIRE [27] are two of the three science

instruments from the telescope, observing from 100 µm to 500 µm. Therefore, sources detected

through these instruments are hardly misidentified with those with SED peaking in the optical.

In figure 4.1 one can check the wavelength bands from the PACS instrument.

Figure 4.2: Redshift distributions of both background and foreground sources from BON19,
figure 1 (left), and FER22, figure 1 top (right).

For the most recent data, used by BON19 and FER22, a 4σ detection is implicit at 250

µm (from SPIRE), with a threshold flux of detection of 29 mJy. In both works42 a 3σ a

detection limit was also applied to sources at 350 µm, thought to increase robustness and

reliability. Sometimes a redshift limit in background sources is applied, BON19 uses the range

zbkg ∈ [1.2, 4] and FER22 impose a photometric lower limit, zbkg > 1. One can easily check

42Nevertheless, these criteria were already applied in the earliest papers in the field that we refer to, both
LAP11 and GN14. The flux detection limit was slightly higher in those occasions, though.
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that the distribution functions of both background samples (those of BON19 and FER22)

smoothly (or almost) meet a normalized number of counts of 0 when z → 1 (see the high

redshift distributions -background samples- of figure 4.2).

When it comes to the prodecure to select foreground sources the addressed papers naturally

take different approaches. Particularly BON19 aimed to study QSOs as hosts to halos the size

of cluster ones whereas FER22 did not put any other restriction on the astrophysical detectable

object that is attached to a cluster size dark matter halo than being detected as an actual cluster

(from an astrophysical point of view). As a consequence, the catalogues used may differ. Indeed,

although both use data from the SDSS (Sloan Digital Sky Survey), BON19 applied a specific

target selection method43, departing from the sources already used in Bianchini et al. 2019

[29]. They put a hard cutoff in redshift -in order to further avoid cross contamination-, limiting

foreground sources to zfore ∈ [0.2, 1.0], which can be easily seen (at least for the upper limit) in

the right panel of figure 4.2. For their part, FER22 opted to work with the catalogue of Wen

et al. 2012 [30]. As explained in the article, it is made up of 132684 clusters with photometric

redshifts in the range zphoto ∈ [0.05, 0.8). Sources with greater masses (> 1014 M�) tend to live

at lower redshifts (zBig Clusters . 0.42). These typically correspond to the ones we talked about

in section 3.3 as belonging to bins of greater richness.

Not only are redshift limits applied in order to avoid cross-contamination, but since magnifi-

cation functions depend on the angular diameter distance of the samples, particularly at z . 1

the wide of the range of redshifts chosen is critical. Having a limited range of redshifts for the

samples could increase significance in comparison to an unrestricted case. At any rate, this

enters as one of the features that is going to be studied with our simulator.

4.2 Cross-Correlation Estimators

References above have made use of mainly two estimators to compute the CCF, the one of

Davis-Peebles (DP), eq. (4.1), and the one of Landy-Szalay (LS), eq. (4.2). We refer to Davis

& Peebles 1983 [31] and Landy & Szalay 1993 [32] to further information about the statistical

properties of both estimators. Concerning the DP estimator, the reference paper by Davis and

Peebles uses a different notation, due to some sources not having changed (DR instead of RR).

We have used however the notation introduced in BON19 and FER22, which makes sense as

we only have one set of variable data: the random background sources distribution. Note that

43They refer to a detailed procedure explained in Ross et al. 2012 [28].
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stacking fixes the location of all foreground sources into one place in our map.

wx(θ) =
DD(θ)−RR(θ)

RR(θ)
=
DD(θ)

RR(θ)
− 1 (4.1)

The way we have built up the magnification bias according to our variable parameter, the

relative location of background sources on the celestial sphere with respect to the deflector,

makes the DP estimator (4.1) refer to physically the same as did equation (2.39): both DD(θ)

and n(> S, z; θ) are the number of counts in the real case, when magnification makes its effect;

then RR(θ) and n0(> S, z; θ) are the number of sources that would appear if magnification did

not exist. On the other hand, we have the LS estimator

wx(θ) =
D1D2(θ)−D1R2(θ)−R1D2(θ) +R1R2(θ)

R1R2(θ)
(4.2)

Figure 4.3: The double halo regime, observable
at larger separations (θ > 100− 1000 arcsec) is
only well outlined using the LS estimator. Fig-
ure 5 of BON19.

which needs both samples (background and

foreground, e.g. 1 and 2 respectively) varying.

It is not suitable in the current stacking case.

Apart from the appropriateness of using one

estimator or the other depending on whether

we resort to stacking, the choice also depends

on what one wants to measure. For example,

if we revisit the results from BON19, one can

easily check that one estimator (DP) is more

suitable than the other one (LS) at a certain

range of distances between the lensed objects

and the deflector(s). However, at higher dis-

tances only the LS estimator is able to reproduce the double-halo pattern that is shown in figure

4.3, taken from BON19. This feature is also analysed in GN14, figure 6, or in González-Nuevo

et al. 2017 [14] (GN17), figures 2 and 4.

As for our simulator, the Davis-Peebles estimator is the one to be used, since the stack-

ing method is one of the things to be tested in the various aspects that have already been

commented.
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4.3 Dark Matter Profiles

The nature of dark matter is still largely unknown; even so, FER22 succeded in realising that

a Navarro-Frenk-White model describing the halo of the BCG works better than a Singular

Isothermal Sphere profile. Differences between profiles in the magnification function and the

CCF are sought, since they will help to further reveal properties of dark matter. In the present

subsection we describe both profiles -NFW and SIS- to be tested, the theoretical building of their

magnification functions, some particular parameters that enter their mathematical expressions

(concentration and scale radius for the NFW and Einstein radius and the particles44 velocity

of dispersion for the SIS) and the shape of their CCF.

Figure 4.4: The CCF calculated from equation (2.39) after magnification takes the forms (4.5)
and (4.8) for the SIS (left) and NFW (right) profiles. Masses were given in the range 1013 to
1015 M� as references. The red shaded region represents the typical field we are going to work
with afterwards. BON19 and FER22 stacked sources in circular regions of radius 100 and 250
arcsec respectively.

In figure 4.4, where the CCFs of our dark matter profiles are presented, we have chosen 3

orders of mass as a reference. 1013 M� serves as a good example of a thick loner galaxy

-associated to a perceptible concentration of dark matter attached to it-, although the main

reason behind its choice is that it could work well to depict the effect of a BCG. 1014 M� is

the typical intermediate case; nevertheless, 11 × 1013 M� or 1.1 × 1014 M� was the average

value found for45 the total M200 from catalogue and calculated value in the work of FER22 (see

the last column in table 3.1). Therefore, that intermediate case would work pefectly well to

describe a typical medium size cluster of galaxies. Finally, 1015 M� is the upper bound

44In this context particles would refer to galaxies or stars moving freely -in a theoretical way-.
45For a more extended explanation of some of the parameters used -e.g. M200 or r200- we refer to the third

subsection of appendix A, where the concept of virial mass is described following Sparke & Gallagher 2007 [33].
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example of a massive cluster. Only few of them get to this mass order, and they would be

recorded into the bin 5 from FER22. To give a nearby exmaple, the Virgo cluster would be

characterised for a binding virial mass of this order. As discussed in general for objects from

the fifth bin from FER22, these can only appear in the low redshift universe zfore → 0, due

to the time it takes these structures get formed. Concerning our simulation, the magnification

profiles will be dependent on a series of variables, and so will the theoretical CCFs following

equation (2.39). The two profiles being treated have dependency on several parameters

µSIS ≡ µ(θ,M200c, zd, zs,Ωm,ΩΛ, H0) , µNFW ≡ µ(θ,M200c, zd, zs, C,Ωm,ΩΛ, H0) (4.3)

Figure 4.5: CCF (green) and magnification
(yellow) functions for the intermediate case
of 1014 M�. The demagnification region
can be appreciated towards the left.

Singular Isothermal Sphere (SIS)

This profile46 is regarded as a typical example

when studying the lensing effect theoretically since

it departs from the simplification that all galaxies

or stars within the halo should have constant ve-

locities all throughout the halo. In this case the

surface-mass density behaves as47 Σ ∝ r−1 ∝ θ−1.

Into the proportional factors enters the velocity of

dispersion σv of the components that build it. The

convergence can be written, in such case, as

κ(θ) =
θE
2θ

, ρSIS =
1

2πG

(σv
r

)2

(4.4)

Thanks to that definition the convergence varies

with the mass of the deflector. The shear and mag-

nification are obtained as

γ = −θE
2θ

cos (2φ)

sin (2φ)

 , µ =
1

1− θE/θ
(4.5)

Although the SIS profile is regarded as unphysical due to its singularity at θ = 0, as well the

fact that the integration of the density function up to infinity does not return a finite mass.

46An extended explanation can be found in section 3.1.5 of BS99.
47Here we call b ≡ r, to be consistent with the notation we use for the NFW profile.
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However, since we can write the convergence (and from it the magnification and CCF) as a

function of a given mass, we can introduce it as a parameter.

The identification of the SIS profile as a good description for the shape of the dark matter

distribution in a galaxy or cluster sized object would be easy if we find the characteristic sharp

demagnification drop at the left-hand side of the CCF function, as can be seen in figure 4.5.

So far, FER22 used the good fit of the double NFW profile (see again table 3.1 and 3.5) to

return the mass order of the foreground sources that catalogues provided, in comparison to the

rather bad fit of the SIS+NFW profile. However, looking at the left panel of figure 4.4, one

can easily realise that the sharp fall in the CCF should be noticed even for objects containing

only ∼ 1013 M� at r < rρ=200ρc -thick galaxies to give an example-.

Navarro-Frenk-White Profile (NFW)

The density profile of the Navarro-Frenk-White profile was developed from N-body simulations

by Navarro, Frenk and White as presented in their paper of 1997 [34]. Their model is a

density profile with two48 free parameters (concentration C and scale radius rs) and is scaled

by the critical density of the universe at the redshift the object is found. In equation (4.6) the

density function for the NFW profile is shown. It can be fully described49 by the mass and the

convergence.

ρNFW(r; rs, ρs) =
δc ρcrit(z)

(r/rs) (1 + r/rs)
2 ,

δc = 200
3

C3

ln (1+C)−C/(1+C)

ρcrit(z) = 3H2(z)
8πG

(4.6)

The convergence is then found to be

κNFW(θ) =
2rsδc ρcrit(z)

Σcrit

f(θ/θs) , f(x) =


1

x2−1
+ arccosh (1/x)

(1−x2)3/2
for x < 1

1/3 for x = 1

1
x2−1
− arccos (1/x)

(x2−1)3/2
for x > 1

(4.7)

The critical density is calculated from equation (2.22), the scale angle is obtained as θs ≡

rs/Dd. A fast way to get to the magnification is writing it as

µ(θ) =
1

1− κ̄(θ)

1

1 + κ̄(θ)− 2κ(θ)
(4.8)

48In appendix A, results by Mandelbaum et al. 2008 [35] show how weak lensing prefers some relation between
C and M200 (alternatively M and rs as explained in that appendix as well).

49rs is usually taken as a compound parameter since the virial mass is preferred over it. Further discussion
on these parameters is contained in appendix A.
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where κ̄ is the mean of κ. It can be expressed as

κ̄NFW(θ) = κNFW(θ)
h(θ/θs)

f(θ/θs)
, h(x) =


2
x2

(
arccosh (1/x)

(1−x2)1/2
+ log

(
x
2

))
for x < 1

2 (1− log (2)) for x = 1

2
x2

(
arccos (1/x)

(x2−1)1/2
+ log

(
x
2

))
for x > 1

(4.9)

Figure 4.6: CCF (green) and magnification
(yellow) functions for the intermediate case of
1014 M�.

One big difference between both profiles is

the double divergence-peak in the caustic re-

gion of the NFW profile, caused by the ze-

roes in the denominator of the two factors in

the magnification equation (4.8). Concerning

the steep fall in the CCF in the demagnifica-

tion region, it is no different from that of the

SIS case, but it happens at much shorter dis-

tances. One would expect that a greater res-

olution, which would be achieved if the CCF

had sensitivity in the light-red shaded region

-see again figure 4.4-, makes the demagnifica-

tion region noticeable. Moreover, there is no physical requirement for it to be otherwise. Still,

BCGs or smaller galaxies within the cluster50 could spoil the event. For this reason, the effect

of a change in the scale of pixels (e.g. 1 px = 1 arcsec to 1 px = 0.1 arcsec) may have on

the good fit of the theoretical CCF to the observed (simulated) data will be inspected. In the

future, the stacking working region, marked as the red shaded regions in the above figures, will

be named ROI (for region of interest). It does not mean that CCF cannot be studied at greater

distance or it is less interesting, indeed GN14, GN17 and BON19 address at some point the

second halo model seen at arcmin-order distances, where extreme weak lensing occurs. In any

case, one of the conclusions of BON19 was that stacking works well in the weak lensing region

where µ is not extremely close to 1, so we will limit the work to that region.

When it comes to one halo model being preferred over the other one, clearly FER22 showed

that the NFW profile for the inner term (hypothesised as the BCG) returned overall values of

mass and concentration in accordance to preexisting data from catalogue. For that reason, our

main focus when we tackle double deck CCFs in section 6 will be through the simulation of

50Note that we are talking about clusters since only the 1015 M� case would produce a demagnification fall
in that region.
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double NFW profiles. In section 5 though, where we put the simulator into test, both profiles

will be used.

Apart from the CCF, in figures 4.5 and 4.6 the magnification function was drawn in order

to show that in the ROI µ is not asymptotically 1 yet -extreme weak lensing would happen at

& 100−1000 arcsec in the figures above-. Weak lensing, understood as the region where observed

fluxes do no more than double intrinsic fluxes, occurs in the centre of the ROI. In addition, strong

lensing, understood as µ factors well above 2, should also be appreciated at lower separations;

especially with more massive deflectors. In general, risking not to be extremely accurate, one

can draw a relation between the caustic region in the CCF and magnification profiles and the

strong lensing effect. Despite this, source counting is an inefficient method to reproduce, from

observational data, the caustics in the CCF and µ. This can be seen before performing any

simulation, and its nature is purely statistical

wx, Stack =
DD(θ)

RR(θ)
− 1 ≤ N(θ)

RR(θ)
− 1 (4.10)

As will be seen with our simulation and has already been shown in the bottom panel of figure

3.2, the RR(θ) distribution is highly isotropic with θ. In case N(θ) -the total number of sources

simulated in the area θ±δθ- and RR(θ) are proportional one to each other51, then the observed

CCF plateaus at

wx, Plateau =
N(θ)

RR(θ)
− 1 =

1

c
− 1 (4.11)

where we have named c the proportionality constant. When we introduce the function that

assigns random fluxes to the simulated sources, that constant will represent the average number

of sources above a certain detection flux Slim. In the real world, however, we have no access to

the total number of sources. Simulated functions for the flux as that one we have mentioned

do only reproduce the knowledge of the -limited- background sources we have.

Indeed, when we conduct the very preliminary results in our CCF-simulator in the Toy Model

section, we will have chosen some values for the flux limits in the flux simulator function.

However, from a physical point of view, we cannot know how many background-type sources

with fluxes below the detection limit exist. Namely, N(θ) is completely unknown to us.

The only thing we can do is guessing the range of intrinsic fluxes that should be given to our

51This occurs when the amount of data available is big enough, so that statistical fluctuations are negligible.
The size of the annular regions we use to count the sources is also important in this respect.
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simulated sample of sources so that the (observed) simulated CCF resembles the (observed)

real one. Comparing with the total number of sources observed in other studies (e.g. FER22)

for given deflector masses -knowing the richness bin in which we are performing our study-

and concentrations is a way to do so. When we study the behaviour of the plateau with our

simulation, we aim to show that it is independent of the number of sources simulated, following

the hypothesis that it only depends on the type of sources used.

The fact that the plateau will strongly depend on the properties of the sources used as

background sample is not a trivial issue, though. Particularly, the function that will be used

to simulate the intrinsic flux of those sources has to be bounded from above and below. The

upper limits are somewhat easier to set: it is enough to know the maximum flux received from

a non magnified background source of that type. It will be set all throughout the work at 100

Jy. The lower limit is, on the other hand, somewhat harder to define.

To give an example, the paper from Papovich et al. from 2007 [36] (PAP07) worked to

study the infrared properties of high-redshift galaxies, which match -or could match- the type

of background sources we use. They used photometric bands and therefrom calculated fluxes

from the Spitzer Space Telescope. Although some bands are somewhat different from those

used by the PACS and SPIRE instruments -at least in their peak values-, at 70 µm -shared by

PACS (see figure 4.1)- show average flux densities between 0.88 and 1.5 mJy. That is, sources

at even 0.1 mJy (or 10−4 Jy) should be considered to produce a comprehensive analysis with a

realistic simulation of background sources. This would have the effect of changing the constant

c in equation (4.11) for a function of the intrinsic flux of the SMGs, c(S). We refer to section

5.2 for the very first analysis along that line, where we show the evolution of the plateau limit

of the observed CCFs with respect to the lower limit of the flux generator. When it comes to

assess the distribution of fluxes, the generator is assumed to produce reliable proportions at

the simulated ranges of fluxes.

The acknowledgement that the plateau of the CCFs should be addressed could be driven as

well from something else. The bottom panel of figure 3.3 and figures 3.5 and 3.4 already show

a plateau at low θ, and we know that it is a strong lensing region according to what BON19

concluded in respect to the bad fit of the weak lensing approximated CCF (grey dots in the

first figure of those mentioned). Neither do we see the caustics in the CCFs they used to fit

the data trend. In their case, for the combination of masses and profiles used, the caustics fall

outside the angular scale covered by the data. With our simulator, we will check the existence
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of that plateau through a piecewise function -built up from experimental knowledge- and then

we are going to perfom a smoothing once the plateau is set.
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5 Simulator Development and Toy Model

The programming language of phython will be used from this point onwards -it was also used

to create self-made figures such as 2.1 or those of section 4.3-. Some libraries of functions were

provided by the supervisors -some of those and self-developed functions will be presented in

appendix B- to perform some calculations like the magnification function or the radial analysis

before computing the observed52 CCF. All throughout this section and the following one, the

number of sources used will play a major role. Unless the opposite is said, when we say that

10X sources have been simulated, we refer to that number of sources being given a random

intrinsic flux -which can be or not enough to surpass the detection limit either before or after

the magnification is applied-; sometimes it will be useful to represent a certain number of

sources being represented in the maps of counts (i.e. passing the detection limit after being

magnified, as in figure 5.14), but if that is the case, it will be explicitly commented.

This section is divided into two parts. In the first part we aim to see that the different parts

of the magnification functions can be seen in a map of counts where sources with enough flux

are plotted. The steps that have been followed in those representations are the ones detailed

in the following list:

(i) One thousand sources were distributed randomly (e.g. a pair of random coordinates

were given) in a plot.

(ii) Each of those sources was assigned a random flux, first distributed from a normal dis-

tribution averaged in 30 mJy (the flux detection limit), and then following a distribution

that resembles the flux distribution53 of SMGs at 350 µm.

(iii) If a source surpasses the flux limit of detection, it is shown in those plots where non

magnified sources are represented (e.g. figure 5.2 as blue dots).

(iv) We apply the magnification function to the intrinsic fluxes, those with resulting fluxes

surpassing that limit are shown in the corresponding plots (e.g. NFW-magnified sources

as yellow dots and SIS-magnified sources as pink dots in figures 5.1, 5.3 and 5.7).

• The foreground source is always the same at this point. Namely, out of the physi-

cal properties that enter afterwards as variables of the magnification functions, the

52For the remaining sections, observed CCF(s) refers to CCFs simulated by us; while if any CCF from
previous papers appears, it will be referred to as observed CCF(s) from [reference] .

53Code 1 was used to produce some random fluxes in the first part of the Toy Model and always from then
onwards.
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mass54, redshift55, concentration -if working with the NFW profile- and cosmological

parameters are set fixed.

• Note that since the simulator works with the stacking technique, the position of the

foreground source is irrelevant.

The availability of options and studies to undergo in this first part can be huge. We have

restricted ourselves to what might be essential to understand well all the work that is done with

the CCFs in section 5.2 and beyond, which is the main interest of this work. So, as a summary,

we have shown figures that help to understand the effect of magnification functions in the maps

of counts, that is, the visual introduction to the effect of magnification bias. In this first part

the three mass cases introduced at the beginning of section 4.3 will be treated independently.

We remind that 1013 M� is a mass order related to thick galaxies, what would be expected

as well for a BCG in a cluster and its attached halo. 1014 M� is a central value, giving an

idea of the CCF and magnification produced by an average cluster. Finally, 1015 M� is a

perfect value to set an upper limit, a mass order expected for thick clusters at zfore ∼ 0.

Each case will be profoundly studied and results regarding the description of each zone of the

magnification profiles (e.g. strong lensing, weak lensing and -if applicable- demagnification)

will be obtained. Meaningful representations accounting for the effect of magnification with

respect to the random -non magnified- case will be shown.

Once this first stage is clear and thoroughly exploited, we will move on to the general model

of the simulator, which is focused on the observed cross-correlation functions (CCFs) and the

information that can be obtained from them. CCFs are built from maps of counts that, at

this point, will be replaced by matrices of counts, where pixels accounting for an area on the

celestial sphere around the deflectors are represented by the elements of the matrix. Indeed,

this photographic experimental technique is vastly used by observational astronomers56. Our

idea is similar to that one, although what we record is not photons or deposited energy in a

camera but number counts.

In the following lines we are going to explain the methodology step by step for creating an

observed CCF, as well as some ideas of how the ones we obtain are going to be fitted by a

54See the discussion in the paragraph following this enumeration about the masses used. It was already
introduced at the beginning of the previous subsection, though.

55There is a unit in section 5.2 dedicated to explaining the effect of distributions of redshift applied to the
sources -both background and foreground-. The effect of slightly variable masses of the deflectors is considered
in section 6.1 once we are with complex profiles results.

56For example, when measuring photometric fluxes from stars or transient events, the recorded light in each
pixel -which depends on the exposure time- is represented by a number, and the whole field by a matrix.
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theoretical model:

(i) A map of pixels is created. The radial scale is set up between 0 and 250 arcsec, with a

matrix of size n = 500 px × n = 500 px in the stardard case, where 1 px = 1 arcsec.

• Magnification is calculated at the centre of each pixel and that mean value is given

to each of the n2 pixels. It is done in this way so that magnification has to be

calculated only once. The reason behind this is the fact that computation time

becomes intractable57 if magnification is calculated in the particular position of each

source. A copy of the magnification map is saved.

• The minimum θ value for each map of size n × n is 500/2n, with 500 being the side

of the squared 500 arcsec × 500 arcsec fixed region analysed. We are not going to

change the size of the celestial sphere region. This means that any change in the size

of the matrix of pixels will only change the size of each pixel. Following this, a map

of 500-side pixels has θmin -or resolution- of 0.5 arcsec, but a map of 5000-side pixels

has a resolution of 0.05 arcsec. This difference is of major relevance since, as seen in

figure 4.4, the left-hand side of the ROI could get to cover the demagnification fall

of the CCF if we performed the simulation with the smallest possible resolution.

(ii) Random position of sources was calculated and assigned for each of the 106 simulated

sources -unless another amount is specified at some point-, an then they were given a

random flux from the realistic58 distribution. Unless the opposite is said, sources are

going to be described by a minimum flux level of 10 mJy. The upper limit will always

be fixed at 100 Jy. Functions can be consulted in the appendix B. For the generation of

random fluxes we refer to code 1. Then for the creation of the maps of counts codes 3, 4

and 5 served to that end depending on what was intended to be studied.

• A source with an intrinsic flux overcoming the detection limit is assigned as a count

(e.g. +1) in a new map called random. From this map the counts RR(θ) will be

obtained.

• If the intrinsic flux of the source, multiplied by the magnification calculated at the

pixel of the source overcomes the detection limit, a count (e.g. +1) is added to a

new map called magnified. From this map of counts DD(θ) will be obtained.

57Particularised magnifications are calculated in the unit about the effect of redshift in section 5.2. Also in
section 6.1, when some variability over the mass of the deflectors is considered, magnification will have to be
calculated for each source in particular.

58Check the flux functions in appendix B.
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(iii) Optionally, a Gaussian smoothing can be applied to the maps to account for the uncer-

tainty in the location of the sources. This aims to reproduce the maps of figure 3.2. It

is also useful in order to eliminate possible zeroes in DD(θ) when the DP estimator is

computed. Once the smoothing is introduced in the unit dedicated to it in section 5.2, it

will be used in the rest of the calculations. Particularly in the whole of section 6.

(iv) A Jackknife analysis will be performed in annular regions calculated with a logarithmic

scale. Each of the points in the observed simulated CCF trends has as θ coordinate the

mean value of each ring.

(v) The CCF is computed with the Davis-Peebles estimator (DP)

(vi) The fit is performed with a theoretical CCF. The virial mass parameter will be loosened all

throughout the second subsection, since it is common to both profiles (SIS and NFW) and

is assessed by BON19 and FER22 regarding the dark matter profiles. The concentration

C parameter will be left set at 4.0 -as it is59 an average value within the binned analysis

by FER22- unless the contrary is said. Particularly, at the end of this section a mass

and concentration distribution will be allowed for the deflectors, and a common [M,C]

curve fit analysis will be performed. Regarding the algorithm for the fit, both the curve fit

function from the scipy.stats library and a self-made least squares method were used, we

refer to codes 8, 9, 10, 11, 12 and 13. Note that:

• If the raw CCF calculated from the theoretical profiles is used (figure 4.4), the caustic

region cannot be used to perform the fit.

• If the piecewise or the smoothed piecewise CCFs are used instead, a global fit can

be carried out.

Firstly, a computation of the observed CCFs for the three mass cases and the two profiles

will be made. Also, related features as the change of tendency in the CCFs as a result of the

plateau region and the discussion held at the end of section 4.3 about the effect of the range

of fluxes simulated will be shown and studied. Finally, the more complex theoretical fits of the

piecewise function and the smoothed CCFs will be conducted. Apart from the detailed steps

explained above, appendix B shows some of the code lines an functions used. We refer to them

for a deeper understanding of the computing methodology used.

59Beyond these references that we use all throughout this work, White’s paper from 2001 [37] comments that
5.0 is a reference value for the NFW concentration of a cluster halo.
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5.1 Toy Model (I): Magnification and Source Counts

The magnification theoretical profiles and the effect they have in me maps of counts will

be presented in a growing-mass order. Some different features and figures will be added and

commented in each case, but figures 5.1, 5.3 and 5.7 are central in the structure and are

a common start point in all of them. In all those figures, the dotted panels (at the right)

represent the sources that get magnified60 by each profile. Empty pink dots represent sources

magnified by the SIS profile alone. Filled yellow dots represent sources magnified by the NFW

profile alone. Dots with those two colours represent sources magnified by both profiles. In the

panels at the left the magnification function is presented for both profiles in the ROI.

Thick Galaxy or BCG: 1013 M�

Figure 5.1: Magnification profiles for a source of mass 1013 M� (left). Shaded regions represent
the parts in which one profile effectively magnifies more sources than the other. Horizontal
lines represent the magnification that separates regions where all sources are seen, some are
seen (normal weak lensing) and none is seen. At the right, the map of 1000 sources randomly
distributed with the distance (or separation) from the deflector. Empty pink dots represent
source that are effectively magnified above the detection limit by the SIS profile but not the
NFW profile -there are a few of them-. Yellow filled dots represent the opposite -non distin-
guishable in this map-. Combined dots of both colours represent sources effectively magnified
by both profiles.

Both the SIS profile and the NFW profile show the same behaviour above ∼ 4 arcsec. Though

as seen in the right panel of figure 5.1, where we have simulated a thousand sources and intrinsic

fluxes ranging between 20 mJy and 40 mJy, seemingly the SIS magnification is slightly above

60In this context magnified is an abbreviated form to say effective magnified above the flux detection limit, 30
mJy. This value is chosen in accordance to the latest flux detection limits commented in BON19 and FER22.
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the NFW one: there are some sources that are not magnified enough by the NFW profile but

they are by the SIS profile (empty pink dots). This would be quite natural if it happened,

according to what we can see in the left panel of the figure, in between ∼ 2 and ∼ 10 arcsec.

There, the SIS profile goes well above the NFW, falling bellow the blue dashed-dotted line that

represents the limit between the strong61 and weak lensing regions. However, as seen in the

yuxtaposed panel, the trend is quite general at all distances. It could be well explained by the

fact that the distribution of sources is radial with distance. Annular regions at greater θ ± δθ

have larger areas, and therefore, more sources. Even if the difference between µSIS and µNFW

is not that big at greater θ, the greater amount of sources overall can amplify the effect.

Figure 5.2: Sources overcoming the detec-
tion limit without having been magnified (blue
dots) and after magnification is applied (red
dots). There is a consistent overconcentration
of sources towards the central region.

Regarding demagnification, the effect could

be seen for any source falling bellow ∼ 0.5 to

∼ 0.7 arcsec. However, there is little chance

of this happening in a region (θ < 0.7 arcsec)

the size of one ∼ 130000th of the total region.

In other words, one should display ∼ 130000

sources to have a non negligible probability

of seeing a filled yellow dot alone: a source

magnified above 30 mJy by the NFW profile

but suppressed by the SIS.

Another interesting feature to comment here

is the quite important concentration of figures

towards the centre of the figure. The effect

of magnification is responsible for this, and

happens equally for both profiles, as can be

seen in figure 5.2, where we have simulated sources with random intrinsic fluxes overcoming

the detection limit (blue dots) and magnified sources with total fluxes surpassing it (red dots).

However, some rogue red dots can be found in further regions, which is somewhat expectable.

Sources are given a random flux between 20 and 40 mJy, so any of it which comes close

enough from below to the limit value of 30 mJy in outer regions, can jump above just with a

tiny magnification increase. Indeed, the intrinsic flux of sources being magnified in the region

θ > 10 arcsec was tested with the simulator. The results consistently showed it between 28 and

61This is not extremely accurate but has to be understood as a way to define the region where all sources
with intrinsic fluxes within certain boundaries are magnified above the detection limit and the standard region
where some sources are effectively magnified and others do not.
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30 mJy.

Average Cluster: 1014 M�

Results in the intermediate mass case are in general similar to what was seen in the lower

mass case. The displacement of the magnification profiles towards the right, though, should

allow to sight randomly some full yellow dot at the centre of the right panel of figure 5.3. With

10000 random distributed sources it should happen that at least one falls in the demagnification

region of the SIS profile. That number of sources is, nevertheless, hard to represent in a way

the figure is easy to understand.

Figure 5.3: Same representation as in figure 5.1 but with a mass for the deflector of 1014 M�.

Figure 5.4: Linear representation of the left
panel of figure 5.3 zooming in the 1.0−1.1 range
of magnification.

Another interesting change from what hap-

pened in the 1013 M� case has to do with the

move of the right hand tails of the magnifi-

cation functions towards the right as well. In

this case, both profiles pass from the strong

lensing regime to the weak lensing one quite

at the same time: the profiles cross the blue

dash and dotted horizontal line at close θs,

and overall at a greater θ than they did in the previous case. This translates to the right-hand

side panel in the form of empty pink dots falling at greater distances from the centre.

Following the last few lines of the last paragraph talking about figure 5.2 it would be wise

to ask whether the sources that get magnified only by the SIS profile at greater distances do
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so because their intrinsic fluxes are close to the 30 mJy limit. Indeed, what is found is in this

line. The lowest intrinsic flux obtained from only-SIS magnified sources after several iterations

at θ > 200 arcsec is 29.4091, for which the difference between the magnification of both profiles

needs to be, at much, of only ∼ 0.02. Obviously, this would be something hard to see from

the magnification profiles in the left panel alone. To help with that, figure 5.4 represents in a

linear scale the magnification profiles with distance, allowing the magnification levels between

1.0 and 1.1. It appears clear there that the difference between the SIS profile and the NFW

profile above ∼ 70 arcsec can be enough to produce in the SIS-magnified case a jump of the

flux over 30 mJy.

Figure 5.5: 1000 sources distributed along a circular region of radius 250 arcsec (left) and
25 arcsec (right). Red shaded regions at the right panel represent the full demagnification
region. Concentric circumferences divide the region in 4 areas, from inner to outer: (i) full
magnification, (ii) inner weak lensing area, (iii) strong lensing area and (iv) general weak
lensing.

What happens with the demagnification region is also important and has to be addressed in

detail. When we simulated 1000 sources in the circular region of radius 250 arcsec, it was hard

to see one source that fell in the inner ∼ 2.5 arcsec. If we chose to distribute the 1000 sources

in a circular region of radius 25 arcsec instead, to keep the statistics and proportionality in

the original ROI (250 arcsec) we should have simulated a total of 100000 (105) sources. Indeed

this is not such a great number when we perform the analysis of the CCF, since there the

computations run acceptably fast up to 107 or 108 sources. Just to give an idea of the relevance

of these simulations, FER22 used ∼ 20000 background sources. This is enough to allow for some

sources randomly falling in the demagnification region, provided the SIS profile was an accurate
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description of the dark matter profile of the deflectors. Figure 5.5 shows the importance of the

number of sources used in order to fully appreciate every region of the magnification function.

In the left panel 1000 sources were distributed randomly in a circular area of radius 250 arcsec,

25 arcsec in the right panel. Green dots represent sources with intrinsic fluxes below the limit at

30 mJy; from those, red dots represent the ones which, thanks to the magnification provided by

the SIS profile, overcome the limit. Figure 5.5 is quite useful not only to see the demagnification

region, but as well the overall shape of magnification at larger scales. The strong lensing region

and the close weak lensing one following it cause the greater number of sources brought above

the detection limit. The left panel represents this quite well; there the circumferences of the

right panel are also ploted, in order to give a view of the small size of the strong lensing and

demagnification regions.

Figure 5.6: Average bias calculated for the last two mass cases after 1000 iterations of the
algorithm.

Overall, the 1014 M� case magnifies more sources than the 1013 M�; which is quite natural

since strong lensing covers a wider region in that case. To give a quantity of the overall increase

-should be thought as an averaged magnification bias or CCF- figure 5.6 is ploted. Both panels

represent the distribution of average magnification bias obtained from the simulated data. The

values are computed following the Davis-Peebles estimator but as an average over the total RR

and DD data. This means no radial analysis is performed, but sources are counted as they are

ploted in each case. Before finally closing our example of 1014 M�, a note should be given on its

relevance as the model to rely on. The foreground sources studied as deflectors by BON19 and

FER22 appeared in this mass range. From catalogue the masses of the latter ranged between

0.7 to 6.4 in orders of 1014 M� for the total mass terms. Outer halo terms represented up to

an 80% of the mass. Moreover, BON19 found results in agreement with this; an estimation

of M200 = 1.0+0.4
−0.2 × 1014 M� when constraining mass and concentration parameters altogether

using the NFW profile as a ruler.
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Massive Clusters: 1015 M�

Figure 5.7 presents greater differences from the previous cases. In this extreme case, which

aims to be an upper limit of the mass of clusters we will find, a SIS profile would cause a

demagnification region observable in the inner region of the map. In the right panel of the

figure we have plotted the two circumferences that were before displayed in the right panel of

figure 5.4, adapted to the magnification profiles in this one case. From 100 arcsec onwards the

behaviour is quite comparable to those observed in figures 5.1 and 5.3, though.

Figure 5.7: Same representation as in figure 5.1 but with a mass for the deflector of 1015 M�.
Additionally, in the right panel, the rings of the right panel of figure 5.4 were incorporated in
the right panel of this figure.

Regarding the left panel this is the first time that the NFW profile shows its demagnification

part within the ROI. For this reason additional plots will be made similar to that of figure 5.5

so that, if possible, some -complete- absence of sources be seen. Possibly, it may be necessary

that the amplified region gets much closer to the origin than in the previous case. This can be

asserted just by comparing the separations (θ) at which the 1015 M� NFW and the 1014 M�

SIS profiles cross the limit level for no source can be seen. Certainly, the ∼ 0.2 arcsec requires

the region of area ∼ π · 0.22 arcsec2 to be big enough as to contain a few simulated sources.

If the simulator is able to produce enough sources in that region, it comes as obvious that

staring at the magnification/CCF profiles (alike the left panels of figures 5.1, 5.3 or 5.7) or

the maps of source counts (the right panels of those figures) is essentially the same. Again,

this will only work well when the amount of sources that are simulated in each region of the

magnification profiles is big enough. To keep in mind some numbers and an idea of the amount
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of sources that would be needed to have at least 100 sources in the circular π arcsec2 area

-which means a radius of 1 arcsec-, since it represents a 1.6 × 10−6 fraction of the total area,

6.25× 106 would be the number. This means that if we work with between 106 and 107 sources

in our simulator, every region of the profiles -in the 1015 M� case- should be available for our

CCF to keep track of it.

Figure 5.8: From left to right panels are distributed being maps of size {log θx × log θy} =
{(1.5, 1.5), (0.5, 0.5), (0.0, 0.0)}. 1000 sources were simulated in each case. In the left panel the
dashed circumference represents the external limit to the area in which no source would be seen
if the profile chosen was the SIS. In the central and right panels, the circumferences represent
the limit to the area in which no source would be seen regardless of the chosen profile.

Figure 5.9: The black line represents the
number of sources that is needed to have
at least 100 sources simulated in the region
below θinn. The orange lines represent the
mass needed to take each profile to that
θinn.

As a way to see this clear, we have performed an

extra plot (figure 5.9) in which we show the num-

ber of sources needed in a circular area of radius

250 arcsec so as to produce at least 100 sources in

the circular area placed inside a circumference of

radius θinn. Note that θinn is defined to be the

region where demagnification causes a total ab-

sence of sources; however, we had simulated in

figure 5.8 100 sources in areas at θ greater than

θinn. For that reason, figure 5.9 will see greater

values for the number of sources, in the θinn in-

terval of [0.01, 1.0] arcsec, than those commented

above. Therefore, one should see the number of

sources from the black solid line as an upper limit.

In this figure we have also computed the mass needed to produce a θinn at those values. One

conclusion that can be obtained from it is that the NFW profile would move to the right in the
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plots of the magnification function faster with growing masses. This means that it would be

possible that a seen cluster of ∼ 2−3×1015 M� had a greater demagnification region. Notably,

before having reached a mass of 1016 M� the NFW profile would show its inner demagnification

region at ∼ 10 arcsec (not shown in the figure). This is an important result for the heaviest

clusters. It will be seen that θinn is less relevant than the precision available on the location of

sources and whether if the map of counts that will be used gets to separate sources that lay

short distances apart. Particularly the magnitude order change from 0.5 arcsec resolution to

0.05 arcsec should play the major role in the identification of demagnification regions.

5.2 Toy Model (II): Cross-Correlation Functions

The cross-correlation function (CCF) is used as the observable that talks us into the existence

of a magnification bias. Through it we aim to obtain information about parameters of the

various models used; particularly the dark matter profiles presented in section 4.3. In the

following lines we are going to explain the display of the map of counts and the fit with the

theoretical CCFs.

As a first attempt to reproduce the fits performed in BON19 and FER22, we show figure

5.10, where upper panels represent NFW profiles and bottom panels SIS profiles of distributed

dark matter in the halo, ordered from left to right in ascending value of mass. 106 sources

were simulated in each case, with no smoothing applied on the map of counts. One aspect

that should be left clear is that no algorithm is applied to separate the caustic region, which

cannot be fitted to any theoretical model of CCF so far, from the weak lensing regions. Indeed,

the plateau we had introduced when reviewing the work of BON19 is what we see in the

1015 M� cases -possibly the SIS 1014 M� one as well, but we lack resolution in the caustic

region to assert this-. This means that some difference can be perceived between the trend of

the observed CCF (black dots) and the theoretical fits in the strong lensing region. Apart from

that, the 1014 M� and 1015 M� panels in the SIS case allow us to perform a fit of the inner

weak lensing-demagnification region. Therefore, the total reproduced mass and its model was

computed as the averaged -weighed taking into account uncertainties- value obtained from the

upper and lower fits. In general, the readout of the mass can sometimes diverge from the input

value.
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Figure 5.10: From left to right plots in ascending value of the mass of the deflector. Upper
panels then represent NFW profiles while bottom panels represent SIS profiles. The fit through
the theoretical CCFs is there performed at the right-hand side of the caustic (red line) and, when
possible, at the left-hand side (blue-dotted line). Since we have used a 0.5 arcsec resolution,
only the bigger mass SIS profiles show the demagnification region clearly.

Figure 5.11: By-hand division of the observed
CCF between the strong lensing and weak lens-
ing regions in the 1015 M� NFW case.

Improving the Fit: Piecewise and

Smoothed CCFs

The doubtful good fit to every point of the

observed CCF data in some of the shown

cases -namely the 1013 M� for the SIS case

and the 1014 M� and 1015 M� for the NFW

case- prompts us to create a solid algorithm

to know where the separation of the different

regions of the observed CCF happens, so that

points foreigner 62 to each region are removed.

Figure 5.11 shows how a differentiated analy-

sis reproduces well the observed data. It was

computed manually and, of course, our lin-

62To be understood not as points that differ significantly from the trend but spoilers to the fit with the
theoretical model because they fall in the plateau or have huge uncertainties.
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ear63 fit in the weak lensing region works well only coincidentally. Indeed, the 1013 M� and

1014 M� cases with NFW profile (upper-left panels of figure 5.10) show tendencies that can

hardly be approximated by a linear order. Anyway, the theoretical CCF can be fitted in the

weak lensing region, so we only need to solve the strong lensing issue.

Firstly, we will address the development of a piecewise function which combines a plateau in

the strong lensing region with the theoretical CCFs in the weak lensing parts. To that end, it

is necessary to have measured the value of c ≡ c(S) from eq. (4.11) and assessed whether it

evolves with the number of sources simulated. Once we know that the plateau remains mostly

unaffected by the number of sources, the impact of the lower bound of the distributed intrinsic

fluxes will be evaluated. The scope of that impact is yet unknown to us, and we have little

clue of how much the plateau may change for lower limits of the flux generator. The result of

that study will depend much on the shape of the distribution of sources the generator provides.

The only thing we can guess so far is that the height of the plateau will rise -allowing us to see

a greater portion of the theoretical CCF- with lower values of the lower bound. It would be

something natural that less sources were simulated with intrinsic fluxes above 30 mJy, so that

the average value of 〈RR(θ)〉 would go down rendering a greater value of N/〈RR(θ)〉.

Figure 5.12: Left panel shows the value of the CCF at the plateau; directly calculated as
indicated in eq. (4.11). The confidence region was calculated by performing a linear lift with
the extreme values (e.g. data + uncertainties) of the trend. The right panel shows the result
of applying a piecewise fit for the observed CCF of the 1015 M� NFW case (upper right panel
in figure 5.10).

Having studied the behaviour of N/〈RR(θ)〉−1 for different values of N we prove that c ≡ c(S)

is a constant that can only depend on the type of sources used and their intrinsic fluxes, as

expected. The results are shown in the left panel of figure 5.12, pointing to the flux distribution

for the background sources as the main cause behind the plateau behaviour shown. A linear

63The fit is linear in a logarithmic scale.
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fit was attempted in order to exclude any possible evolution with the number of sources. The

fit results include a first order dependency of order 10−12, in comparison to an average value

for the CCF value in the plateau of 8.257... with an uncertainty heavily suppressed as well

∼ O(10−7).

Figure 5.13: In the most massive cases the fit was performed for a greater number of sources (the
panels at the left 107 sources and the panels at the right 108 sources). The plateau becomes less
variable as the availability of sources increases. Linking to the results brought along with figure
5.12, the plateau remains constant at the same level; proving once again what was discussed
above.

When the theoretical CCF is modified as a piecewise function that accounts for a plateau

at a set64 value of w = 8.257, a complete fit can be performed over the whole observed CCF

trend. Unfortunately, the readout of the mass is not better than the one obtained by a fit

of the by-hand chosen data that belong65 to the weak lensing region, as shown in the upper

right panel of figure 5.10. The modified theoretical CCF with the plateau gives back a value

of 1.1× 1015 M� when only the data trend is considered, the limits there presented [. 1.1, 2.8]

are obtained when the fit is performed with the extreme values of the uncertainty associated to

each point of the observed CCF; all those values were obtained by performing a least squares

64We chose that value since it was the one obtained after the fit of the trend of the left panel.
65It should be reminded that the elements of the data trend that were classified as belonging to the weak

lensing region did not follow any set or conventional algorithm for their choice.
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method between the data trend and mass-spaced models of the theoretical CCF. When the

curve fit function from the catalogue of scipy.optimize is tried instead, it is able to provide a

readout of the best fitting mass -which is a huge improvement in comparison to what we were

able to do in the previous cases- and the uncertainty obtained for that parameter is surprisingly

small, ∼ O(10−5) in units of 1015 M�.

Fluctuations in the plateau region should be associated with anisotropies in small angular

regions, as can be seen in the right panel of figure 5.12. It should be natural, though, that a

greater number of sources resulted in a reduction of the variability due to the availability of

more statistics to work with. Conversely, it is possible that a small number of sources helps

fluctuations to grow.

Figure 5.14: A 1015 M� NFW profile was sim-
ulated, assigning background sources random
fluxes from the flux generator but changing
each time the lower bound. Coloured observed
CCFs and their tendencies go from the standard
(black) 10−2 Jy to (orange) 10−4 Jy in logarith-
mic steps.

The lower limit of flux used in the flux gen-

erator affects critically the CCF when one ap-

proaches the caustic region. It can be easily

seen in figure 5.14, where the observed CCF

tries to come closer to the theoretical function

(in dashed lines). Notably no major differ-

ence between the observed CCFs is perceived

at & 3 arcsec. Figure 5.14 was simulated by

changing the lower bound of the flux simula-

tor66 from 10 mJy to ∼ 5, 1, 0.5 and 0.1 mJy.

The maps generator programme was run un-

til 106 sources had surpassed the flux detec-

tion limit in the magnified case, which meant

long computational times for the most ex-

treme minimums of the flux generator (10−4.0

and 10−3.3 Jy). According to the relation ob-

served in infrared galaxies in PAP07, the fact that the observed average fluxes in that paper in

160 µm lie around 1−5 mJy come to confirm that observed CCFs can easily exceed order 101 (as

in the bottom panel of figure 3.4). Now, the number of simulated sources becomes critical, since

only the log (Slower bound) = −2.0,−2.3 and − 3.0 cases adjust well with the theoretical CCF +

plateau, while the other two cases fail to get well fitted. Particularly, when performed until 104

and 105 magnified sources were simulated -see figure C.1 in appendix C- the fit got completely

66In the plot, these values of flux are expressed as powers of 10 in Jy.
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lost due to the huge variability of the observed CCF in the plateau region. That would work

as well as a hint of real observed CCFs failing to produce a solid readout of parameters at . 1

arcsec separations.

Numerical proof that N/〈RR(θ)〉 is a function of the minimum flux can be seen in figure

5.15. In the left panel of the figure the computation of N/〈RR〉 − 1 as a function of Smin is

shown. Since we have no idea of how that function would behave, no analytical fit was tried;

what is more, if a polynomial was to be tested, one of grade three or more would be needed

to fit the data properly. In the right panel we have shown the (linear) normalised67 number of

background galaxies simulated with respect to the intrinsic flux given.

Figure 5.15: In the left panel the mean value of N/〈RR〉 -1 is plotted against the minimum
flux input into the flux generator function. At the right, the distribution of background sources
with respect to the assigned intrinsic fluxes for five cases of the minimum flux.

The flux generator affecting the observed CCFs at any part other than the plateau was not

considered. From figure 5.14, though, we see that the weak lensing region (i.e. θ & 3 arcsec)

does not suffer any change of behaviour respective to the intrinsic flux distribution. Taking

into account this, we can give a good description of the behaviour of N/〈RR〉 either by saying

that it is a function of the minimum value input in the flux generator -generally speaking of

the intrinsic flux distribution-, or at least any other dependence has not been perceived.

Summarising our thorough analysis of this piecewise function, a nice conclusion is that we have

gained a comprehensive way to fit the observed CCF data trends that is applicable anywhere.

Similarly, the algorithm separates, according to numerical criteria, the regions of weak lensing

from68 strong lensing. From this point onwards, it will be useful to keep working with the

67We have omitted the y-scale since us choosing a logarithmic x-scale with a logarithmic-spaced binning makes
the y-scale blow up to a meaningless scale.

68We remind again that weak or strong lensing, in this context, refers to the value of the magnification function
in that angular separation.
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piecewise function since we are able to perform complete fits with the theoretical + plateau

CCFs; moreover, if any complex system is simulated, much clarity will be gained with these

functions, since no divergence will spoil the fit at different angular regions. For example, if a

BCG of ∼ 1013 M� produced an increase of the magnification in the 10 − 100 arcsec region,

resulting in a & 1 rise in the value of w, over a general halo profile of ∼ 1014.5 M�, it would

be much harder to see if the theoretical fit of the general halo was left loosened and blew up

in a caustic region. Also, regarding the plateau, as long as w(θ) . wplateau at the θ range

represented, we are safe to distinguish well double haloes.

Figure 5.16: A smoothing was performed over the theoretical CCF + plateau for the 1014 M�
and 1015 M� cases for both profiles. The σ of the smoothing was chosen in accordance to the
one used in the maps of counts as it is explained afterwards (σ = 2.4 arcsec).

As an improvement to the piecewise function developed, and commented in the previous

paragraphs, a smoothed version of it could be helpful since our work with pixelated maps of

counts and our later smoothing (σ = 2.4 arcsec) of it (see figure 5.18 and the discussion around)

would have the effect of smoothing the observed CCF. To give the idea of how it would be useful

for a highly representative and well-fitted example, the upper right panel in figure 5.13 shows

a smooth transition from the weak lensing part of the CCF to the plateau. Obviously, this

improvement will be of little use if the available statistics to build up the observed CCFs are

scarce and create variability and fluctuations along the trend. Furthermore, being realistic

with respect to the results obtained so far, it seems like a second order improvement of the fit.
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Anyway, in some situations (e.g. figure 5.19) the smooth will help to improve the readout of

the mass parameter. The results obtained give back reasonable values when the fit is performed

with curve fit, whereas the self-made69 least squares algorithm fails to produce a competitive

readout.

Uncertainties, Resolution and Maps of Counts

Regarding the management of uncertainties, it is possible that some do not come from statis-

tics and the methods used in the analysis, but the detectors themselves. Positional uncertainties

in the location of the background sources might cause fluctuations and changes along the ob-

served CCFs with respect with the theoretical models. From our perspective, we have to clarify

that what we are testing is not a fluctuation in the θ of the background source that has im-

plications on the value the magnification function µ ≡ µ(θ) takes, but a change of pixel in the

map of counts due to a mistaken read of the location by the detector.

This is the way that errors could rise in the real case, so we performed some studies in order

to calculate the effect of several random perturbations θmap → θmap + δθ; with δθ ∼ N (0, σ).

Several levels of uncertainty were taken, from a slight one of σ = 2 arcsec and a huge one of

σ = 10 arcsec. Remember that in the current maps of counts the size each pixel covers is 1

arcsec of the celestial sphere around the deflector.

Figure 5.17: 1014 M� dark matter profiles distributed as NFW (upper row) and SIS (bottom
row). The black trend is the simulated CCF shown in the central plots from figure 5.10.
Green, red and blue trends represent induced positional errors distributed as δθ ∼ N (0, σ)
with σ = {2, 5, 10} arcsec respectively.

From figure 5.17 we learn that the NFW profile suffers little along the whole trend for the 2−5

69Codes 10 or 11.
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arcsec induced errors. This is a good feature since the smoothing -in line70 with BON19 and

FER22- that is to be used will be carrying a 2.4 arcsec Gaussian filter. When demagnification

regions are involved -the SIS profiles show the feature- the positional errors move the observed

CCF to much higher values, possibly due to the fact that the strong lensing region is so close

in a linear angular separation scale (from 1 to 3 arcsec the bottom panels in figure 5.17 move

sharply from demagnificaiton to strong lensing -caustic region-) that some sources lying within

the caustic move to inner pixels causing an increase in the map of observed magnified sources.

Indeed, this is nothing but a proof that uncertainties work like a smoothing, or can be taken

into account by performing one over the observed maps of counts. The extreme cases of ∼ 10

arcsec positional errors show greater divergences, although in the θ > 10 arcsec region the

effect is still unnoticed; possibly due to the fact that greater amounts of simulated sources in

those annular regions result in a balance between those moved to greater separations and those

moved to smaller separations, i.e. δN(θinner → θouter) ≈ δN(θouter → θinner). It could be as well

explained by the fact that the magnification function is much more smooth in the weak lensing

region.

Figure 5.18: Maps of counts after a smoothing (not normalised) has been performed, with
σ = 2.4 arcsec, following the values used in BON19 and FER22. A deflector mass of 1014 M�
has been chosen for the representation, allowing some demagnification to be seen at the centre
of the SIS profile (right panel).

BON19 and FER22 chose a 2.4 arcsec Gaussian filter in order to account for uncertainties in

the location of the background sources. The location of the centre of the clusters was known

with σpos . 0.1 arcsec (see FER22 for a more detailed discussion), which led the SMGs to be

responsible for all the assumed uncertainties. The choice of that value followed from the results

by Bourne et al. 2016 [38] which compares to previous work by Smith et al. 2011 [39] estimating

a σpos = 2.40± 0.09 arcsec for SPIRE objects. Maddox et al. 2018 [40] found 2.4 arcsec to be

the positional accuracy for the faintest sources detected with the reviewed photometric bands

70See figure 3.2.
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from PACS and SPIRE at section 4.1.

Figure 5.19: Smoothed fit with plateau of the
observed CCFs calculated with the data from
figure 5.18.

The result of having applied the smoothing

on the maps of counts is figure 5.18, where the

three maps (random, NFW magnified and SIS

magnified respectively from left to right) are

presented for a deflector of mass71 1014 M�.

The demagnification region of the SIS profile

can be seen for this mass, although greater

masses72 make it easier. The scale of the data

should be modified in each case since the num-

ber of sources that can overcome the threshold

varies with changing masses of the deflector.

The colour scale can be also varied so that the

total number of pixels sum up 1; this is, nor-

malising the map as done in figure 3.2. Figure 5.19 shows the fit of the observed CCF arising

from maps in figure 5.18 with a smoothed theoretical CCF+plateau.

Figure 5.20: Smoothed fit with plateau of the
observed CCF calculated with a magnification
function from a NFW profile of 1015 M�. The
resolution (pixel size) is 0.1 arcsec, allowing us
to see the demagnification region in the ob-
served CCF at < 1 arcsec.

Choosing a greater resolution would work

well to improve the resolution of the profile at

smaller angular scales. Particularly it could

be a useful tool to test the behaviour of the

NFW profile in the demagnification region.

Performing all the computations again for a

map of pixels of size 0.1 × 0.1 arcsec2 -keeping

the window of 250 × 250 arcsec2- takes more

computational time (due to them being 100

times bigger than those figures). For that rea-

son, we have chosen to test the simulation in

pixels of size 0.1 × 0.1 arcsec2 just for the

NFW profile with a mass of 1015 M�, to look at the resolution at < 1 arcsec.

The observed CCF and its theoretical fit are shown in figure 5.20. We see that with this

71The mass only affects the magnified maps -central and right plots-.
72See figure C.2 in appendix C, where 1015 M� profiles generating maps of counts similar to figure 5.18 were

displayed.
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smaller resolution, the demagnification region can be perceived. Apart from that, the general

trend that we had already seen of smaller angular distances producing greater fluctuations in

the CCF is still present in this figure. Notably, whereas before the < 5 arcsec region presented

huge uncertainties and fluctuations, now we have to go well below 1 arcsec to see them. One

can conclude that uncertainties in our simulator are triggered by the amount of pixels belonging

to the annular regions that each point in the observed data trend represents. With more pixels

entering each ring at greater angular distances, uncertainties diminish until they reach a stable

point in the right-hand side of the trend.

We have not spent too much time on describing figure 5.18, but there is a rather evident

difference with respect to the maps of counts observed by BON19 (upper panel in figure 3.2)

and FER22 (right panels in figures 6.10 and 6.11). Overdensities in the our map of magnified

counts are centred in the inner 100-round arcsec, while in the plots from BON19 they had a

greater size and in FER22 the scattered overdensities reached greater concentrations of sources,

i.e. scattered regions reached similar densities to that at the centre of the cluster (the map).

Note as well how the colour scale chosen by FER22 -the same as ours- in their figure makes it

easy to draw the comparison to the present work.

The Effect of Distributions: zf , zb, M200 and C

Calculating the magnification function for each pair of background and foreground sources

with their respective redshifts zb and zf (zs and zd if following the notation from section 2.2)

carries a huge computational effort (programmes 4 and 3 with the Gz = True take many more

minutes to execute than the latter with Gz = False -using therefore maps of magnification

instead of calculating the magnification for each pair-). Moreover, doing so would be of little

use, since we know that the greatest variability of the magnification functions is at typically low

angular separations. For that reason, we have been using the average measured (respectively)

redshifts from the samples used in FER22 for every background and foreground source. What

is more, unless the opposite is explicitly said, for the rest of the project magnification maps

calculated at average redshift will be used.

Now we are testing the variability of the CCFs with distributions of redshift for the sources.

The first thing we need is a function to distribute the sources with redshift in an analytical

way (or described by a python function) that resembles the distribution followed by the sources

FER22 used. We can see from figure 5.21 that two normal distributions serve quite well to

produce analytical distribution functions. The mean and standard deviations were the ones

68



obtained from the real samples and, as can be seen in the bottom panel, the sample and

the simulated distributions resemble to one another. Knowing this, we can use the normal

distributions used for the fit as generators of redshifts for our sources.

Figure 5.21: The upper panel shows as shaded
regions the histograms with bins of width 0.1
and 0.5 in redshift for foreground (red) and
background (grey) samples. Solid lines repre-
sent the normal distributions thought to be used
as generators of random redshifted sources. In
the bottom panel, the deviation (in σ) of the
data sample from the simulated distributions.

In figure 5.22 the results are shown and it

can be seen how distributing sources with red-

shift implies little variation with respect to

the other cases -we should focus the most in

the upper panels with the red trends, where

we have not applied the Gaussian filter on

the maps of counts-. We can therefore as-

sume that the average value of each sample

is enough to produce reliable readouts for

our purposes. Of course, this all depends

on where we put our request of CCFs being

well reconstructed. At the end of the day, if

the simulator is unable to return parameters

within certain limits73 asking for a realistic

distribution of redshift-distributed sources is

useless: it will not affect the readout signif-

icantly. Above 10 arcsec it seems that the

observed CCFs are quite similar to the original ones from figure 5.10. The 1014 M� case for the

SIS profile with the Gaussian filter applied (blue trend) shows a difference with respect to the

non filtered CCF. For its similitude with the bottom panel of figure 5.19, we have to assume

that it is due to the Gaussian filter itself. For the rest of the cases the CCFs behave quite

similarly.

The last test constitutes the most physically accurate simulation of a real work with stacking

to obtain information about virial mass and concentration, while still working with single

profiles. Note that our interest in the following results section is not in performing complicated

and time-consuming computations to obtain results from a physically accurate distribution of

sources in terms of redshift, virial mass or concentration distributions. Instead, there we are

testing double-profile simulations trying to get close to the work by FER22. Now, however,

73e.g. the same value for the mass and concentration as the ones that were introduced to create the magnifi-
cation function with just few divergences in the last decimal positions
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our last toy model test consists in a comprehensive variation of every single parameter: zf , zb,

M200 and C. Take as a reference code 4.

Figure 5.22: Same plots as in figure 5.10 but omitting the fits to theoretical CCFs to make
the figure look clear. Red trend represents the sources that were simulated with a distributed
redshift according to the Gaussian functions from figure 5.21, without a Gaussian filter applied
to the maps of counts. Blue trend represents the same as the red trend but with a Gaussian
filter applied. Grey trend is the same one as in figure 5.10.

The variation in the virial mass and concentration cannot be followed from any previous work

since FER22 used a bins of richness to perform a kind of tomographic analysis on their samples

of foreground sources -and therefore background sources since the latter were attached to each of

the ones from the foreground sample-. We define our distribution of sources with respect to both

virial mass and concentration as normal distributions centred in M̄200 = 1014 M� and C̄ = 4.0

respectively. As standard deviations we have chosen half the mean values (σM200 = 5×1013 M�

and σC = 2.0). If we look at table 3.1, our choice would be a mixture of the concentration

expected for the inner halo terms of the intermediate bins (2 and 3) and an overall virial mass

that accounts for the total contribution of the two parts, in the total mass range of the three

first bins.
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Figure 5.23: In the left panel, the fit with fixed concentration at C = 4.0. Both methods to
determine the virial mass (codes 10 in blue and 12 in red) were used. Note that the curve fit
based test does not return acceptable levels of uncertainty, so we just indicated the fiducial
value. In the right panel, the multivariable analysis on both M200 and C; check the work with
uncertainties in the text.

In figure 5.23 we see the results of this simulation. We performed three different fits74 on the

obtained CCF. In the upper panel we fitted with only mass-varying theoretical CCFs, we refer

to codes 10 and 12. The curve fit based code was unable to produce appropriate uncertainties

for us to put in the figure, so we indicated only the fiducial value. By eye, though, the curve fit

analysis seems the one that adjusts best the data trend. Only a curve fit based algorithm

was able to produce a multivariable analysis on M200 and C. Uncertainties were obtained not

from the fitting function but averaging the mean values obtained from the algorithm when the

bounds in the fit (line 12 in code 13) were changed by taking them from a preexisting array of

bounds.

74A self-made least-squares method based on code 10 was tried for the multivariable analysis on M200 and C,
but results were completely unsatisfactory.
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6 Results

Now that the robustness of our simulator has been thoroughly explored, we can start perform-

ing tests of physical interest. Those tests are going to be related to the work already undergone

by FER22, but taking things a step further. To give some examples, in the first subsection we

are going to test the characterisation of double profiles -accounting for a BCG and a general

halo-, the observed CCF trend that our simulator offers, and how it adapts to the results by

FER22.

In the second subsection we will explore the gaps and hills observed by FER22 in their

richness-divided analysis by changing the CCF double compound profile for an inner profile

that remains unchanged -chosen following the work of FER22- and a sequence of SIS profiles at

greater angular scale. Apart from that, we will recover the discussion initiated in the previous

section when we saw that the simulated maps of counts presented some differences with respect

to those observed by FER22.

6.1 Profile Characterisation

This simulator will prove to be useful if it helps to determine mass, concentration and some

other properties of the dark matter haloes attached to cosmological deflectors. The first step

into that path is checking the differentiation between the shapes of NFW and SIS profiles. To

that end, we have performed simulations at the three masses commented in previous sections.

Figure 6.1: Combined plots for both profiles (NFW and SIS) at the three mass orders. Smoothed
profiles at low mass regimes . 1014 M� are quite similar to each other, while at 1015 M� the
difference is much more clear due to the wide range of the SIS demagnification region.

It could happen that with not a large amount of data (to give an idea, around 105 magnified

sources surpassed the detection limit) the two profiles get confused both in shape and returned

values of target parameters. Certainly, it is the shape of the profiles what enables us to distin-

guish one from another, so good statistics would be needed in order to assess a type of profile
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for each of them. Regarding the mass value obtained with the fitting functions75, a wide initial

range of values (1011 to 1017 M�) was allowed; but the programme effectively returned good

readouts in accordance to the input mass orders in each case. The nominal result (either NFW

or SIS) on the type of profile could not be performed through the curve fit method, so we used

our self-made least-squares algorithm. Consistently, it chose the input type of profile as the

best fitting one. Seemingly the developed programme is capable to tell more than an outcome

of parameters that match -within their uncertainty range- the input values. Note, in any case,

that the 1014 M� NFW profile fit falls short to include the input value in the returned band of

uncertainty for the virial mass parameter.

Outcome of Parameters

Once we have a system to differentiate different profiles developed, is time to test the simulator

on its ability to characterise compound profiles. This was the main objective of the work of

FER22. To that end, a battery of simulated76 CCFs is needed. To adapt and compare results

to the previous work by FER22 and since we have spent quite a long time considering the effect

of different virial masses, we are using the results for the aforementioned parameters from table

3.1 (they can also be seen in the FER22 columns in tables C.1 and C.2). There is another

reason for using those values. Even if they were somewhat77 mistaken with respect to the real78

ones, they are well suited to produce a double deck in the shape of the simulated CCFs. This

corresponds to two profiles getting one region of dominance each in the same range of angular

separations. For the rest of the work, unless said otherwise, we are using 106 magnified sources.

Obviously translating into a much greater number of total simulated sources ∼ O(107).

To build up the magnification maps, two options have been considered; they are explained

at the end of section 2.4. However, our work is typically with the cross-correlation functions.

We need to know if there is any theoretical requirement to build the CCF from a compound

magnification profile. The theoretical function is still wx = µβ−1 − 1, only now µ is not an

analytical function but a composition of two different magnification functions following the

indications on (2.41) -case A- or the following paragraph -case B-. From a physical point

of view is the latter that makes more sense. We should think of two haloes separated in the

75Codes 10 and 11.
76Now that we are directly comparing results from FER22 with our simulations there is a need to distinguish

the origin of the shown CCFs. Apart from indicating that appropriately in the plots to be shown, observed
CCF(s) will refer to theirs while simulated CCF(s) to ours.

77FER22 acknowledges that the obtained values from their fits are not in complete agreement with mass-
richness nor mass-concentration expected relations (fourth paragraph of their section 5.1.1).

78If the NFW profile was a good approximation to the physical mass distribution of dark matter.
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direction of the line of sight enough so as to think magnification Sintr → Sobs = µ · Sintr as two

independent processes Sintr → SH1 = µ1 · Sintr → Sobs = µ2 · SH1 = µ1 · µ2 · Sintr ≡ µTOT · Sintr.

This is what was explained there in section 2.4, but how does that translate into the CCF?

Well, the answer is just introducing µTOT into wx = µβ−1 − 1. Luckily, there is no need of

making any further simplification or working any mathematical derivation. By knowing that

magnification and CCF can be written each of them as a function of the other is enough. When

we restore parameters (in this little example let’s suppose we treat a compound of two NFW

profiles, one for the BCG term and the other for the cluster halo) from the simulated CCF, we

will do

{Min, Cin, Mout, Mout} = Fit (wobs, wteo) (6.1)

with

wteo = µβ−1 − 1 = (µin · µout)
β−1 − 1 = (µ (win) · µ (wout))

β−1 − 1 (6.2)

and

wout ≡ w (Mout, Cout) , win ≡ w (Min, Cin) (6.3)

where µ(w) is the inverse function of w(µ), which is fortunately just the inversion of an expo-

nential and therefore analytical as µ(w) = (w + 1)1/(β−1). The functions used to perform the

fit commented in equation (6.1) can be found in appendix B, they are codes 14 and 15.

To get started we plot in figure 6.2 the results of having introduced the obtained values

for the virial masses and concentrations in the second bin of FER22 (see table 3.1), namely

Min = 2.3 × 1013 M�, Cin = 6.83, Mout = 7.9 × 1013 M� and Cout = 0.39. We chose this bin

since we can see in the left panel of figure 3.5 that it is the case where the parameters create

two well differentiated regions, the inner clearly dominated by the BCG halo term and the

outer by the cluster halo. The colours of the fits in the following figures were chosen so that

they matched the colours chosen by FER22, so that comparisons are easier to draw. For the fit

of case A we have not only performed the one detailed above -which is a fit for the compound

theoretical CCF- (the solid lines in the upper panel of figure 6.2) but also to each dominance

region independently (with code 13).
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Figure 6.2: The simulated CCF calculated fol-
lowing equation (2.41) (case A, upper panel),
and following the product of the individual
magnifications (case B, bottom panel). The
solid red (blue) tendency is the theoretical CCF
for the inner (outer) halo term, calculated with
the parameters returned from the global fit. In
the upper panel local fits were also calculated.

The general halo fit does not change much

if the local fit is chosen in the upper panel

-actually it can be seen by eye-. The virial

mass varies from ∼ 18.20 × 1013 M� (local)

to ∼ 16.90 × 1013 M� (general fit) and the

concentration from ∼ 0.46 (local) to ∼ 0.42

(general fit). It is the BCG term that suf-

fers greater variations, indeed both parame-

ters change conversely to one another. Con-

centration is related, for the range of values

we work with, to the slope of the fitting curve

-being clearly steeper the general fit BCG

profile-; while the virial mass would pull the

whole profile to the right (as mentioned above

in the Toy Model section). For those rea-

sons, the local fit (dashed red trend) returns

M200 ∼ 6.92× 1013 M� and C ∼ 3.83 against

a global fit that offers M200 ∼ 1.18× 1013 M�

and C ∼ 6.82. The distinction of the regions was estimated beforehand with a function built up

to that end (code 16) that returns the limiting angular separation between them. In the bottom

panel, the simulated CCF used data which underwent a magnification function following case

B. Note that we have not tried a local analysis of each part there since the shape of the trend

does not allow for an easy identification by eye, even if the limiting angular separation was

decided with the algorithm prepared for it. Note as well that either choosing the case A or B

produces quite different effects on the shape of the simulated CCF, with the case A (being the

magnitude calculated as the maximum of the inner and outer functions) showing a non-smooth

continuity at θ ∼ 20 arcsec, matching the angular separation marked with a dashed vertical

line in the right panel of figure 3.5. Testing the presence of such non-differentiable shapes tells

us about how dark matter haloes are embedded into one another, and whether the dominance

of the BCG halo region is relevant or not.

Figure 6.3 shows the results of having performed a fit on the simulated CCF for the two

types of compound profile that FER22 treated, we chose to represent the case with the product
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Figure 6.3: Simulated CCF and performed fit for the SIS+NFW (left panel) and double NFW
(right panel) profiles. The input parameters were the ones that can be found in the last column
of table 3.1 -from the total case, which is a result of having used all the available data altogether
regardless of richness divisions-.

magnification since it is the most realistic from a physical point of view79. Before discussing

the uncertainties, we stop to see that the obtained values after the regression were in the

expected order of magnitude. In the NFW + SIS case the fitting algorithm (based on curve fit)

provides an estimation of the BCG mass somewhat shorter to the input value (∼ 0.2×1013 M�

vs. 0.5 × 1013 M� as input), while it gives out an overestimation of the cluster halo mass

(∼ 1014 M� vs 5.5× 1013 M� as input). When it comes to the concentration, the fit does not

change much the input value. In fact, for all the results we have obtained, the concentration

did not vary much with respect to the input. The fitting algorithm did not provide satisfactory

uncertainty levels for that parameter, so they were not included in the figures.

The latter is a good link to start covering the issue of uncertainties. First of all, it is not easy

to estimate together cluster masses in units of M� -accounting for values of order ∼ 1014- and

concentrations of order ∼ 100− 101. Naturally, the curve fit algorithm finds struggle managing

such unalike numbers, so we chose to work with the decimal logarithm of the virial masses,

which give out reasonable numbers -as they belong to ∼ (1, 100)-. We tried before working

in units of 1013 M�, which would be similar numbers in the range ∼ (0.1 − 1000), but the

algorithm failed to return any other value than the ones introduced for every input. Figures

C.4, C.5, C.6 and C.7 in appendix C present the results for the fit performed with all the inputs

available from the results of FER22. Results of the fits from the referred figures are written

in tables 6.1 and 6.2. Those are presented without the uncertainties since they can be seen

already in the figures. As we said, we are working with case B to calculate the magnification;

therefore, results for case A are left for the appendix, in tables C.1 and C.2. As can be checked,

79Although as we can see in some of the plots by FER22, their observed CCF -we refer to the bare
data, only having computed the CCF, but nothing else- does show quite of a sharp border between two
tendencies. In the second bin of richness (figure 3.5) the effect is more visible.
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the results are no better than the ones in the tables right below. Our simulator was able to

keep the outcome parameters within close range to the inputs, so that the growth trend in the

mass of the cluster halo is tracked, as well as all other results obtained by FER22, naturally.

However, some differences can be noticed, as for example in the mass of the cluster haloes in

the second, third and fourth bins for the double NFW profile. There, the outcome mass for the

deflector doubles the input mass.

Parameters Bin 1 Bin 2 Bin 3
[M ] ≡ 1013 M� FER22 Out B FER22 Out B FER22 Out B

SIS + NFW
MSIS 0.5 0.5 0.6 0.6 0.6 0.6
MNFW 4.9 7.9 5.3 17.4 10.1 19.9
C 0.94 0.95 0.30 0.33 1.17 0.81

Outer
MNFW 5.8 10.3 7.9 16.1 11.2 24.1
C 0.74 0.86 0.39 0.39 1.00 0.90

Inner
MNFW 3.8 1.2 2.3 2.4 7.2 2.6
C 3.63 6.51 6.83 6.83 3.81 6.82

Inner + Outer MTOT 9.6 11.5 10.2 18.5 18.4 26.8

Table 6.1: Output values from our fitting algorithm after having introduced FER22 results,
accounting for bins from 1 to 3.

Parameters Bin 4 Bin 5 Total
[M ] ≡ 1013 M� FER22 Out B FER22 Out B FER22 Out B

SIS + NFW
MSIS 0.6 1.5 1.0 0.7 0.5 0.2
MNFW 14.0 14.2 51.5 78.7 5.5 10.1
C 0.65 0.35 0.56 0.30 1.84 1.98

Outer
MNFW 27.4 39.5 51.5 47.1 7.1 8.5
C 1.74 1.64 0.56 0.56 1.72 1.73

Inner
MNFW 1.0 0.4 1.0 0.9 4.1 4.9
C 11.91 11.86 14.8 14.79 4.17 4.17

Inner + Outer MTOT 28.4 39.9 52.5 48.0 11.2 13.4

Table 6.2: Output values from our fitting algorithm after having introduced FER22 results,
bins 4, 5 and the totals.

That some figures do not get a perfect fit by eye does not need to mean anything. To give

an example, figure 6.4 shows the result of having performed a fit for the simulated CCF with

the inputs of the fifth bin of richness where, at the left, we have let the algorithm go alone

with the sole hint of the inputs we had introduced. At the right, we modified the seeds of the

fit algorithm so that we observed the best adjustment of the theoretical function (grey solid

line) to the data. The parameters introduced can be seen in the fist row of table 6.3, and the

outcome provided by the algorithm in the second one. Naturally, the logarithmic scale hides
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Figure 6.4: The left panel shows the outcome given when we put the input parameters as seed.
In the right panel, we forced the seed parameters so that, by eye, the grey trend (the overall
fit) resembled the most the simulated CCF. All the needed parameters are shown in table 6.3

from our view that a perceptible deviation at the rightest part of the trend can be much smaller

than a (by eye) negligible deviation at low θ. Table 6.3 shows the total accumulated deviation

of the fit from the simulated CCF in the linear and logarithmic cases. In the bottom rows the

mean deviation is presented (mean deviation by data point of the trend). Note that the guided

fit (right columns) obtains smaller deviations, which means that some degeneracy would be

expected in the plane of the best fitting parameters.

Guided by FER22 Guided by Hand
Min Cin Mout Cout Min Cin Mout Cout

Input 1.0 14.8 51.5 0.56 2.51 6.80 467.7 0.64
Output 1.0 14.79 46.8 0.56 0.5 6.79 89.1 0.64

[
∑

i(Fiti − CCFi)
2]

1/2
16.37 16.07[∑

i log2
10 (Fiti/CCFi)

]1/2
3.03 2.73

〈CCF〉 3.17
〈δCCF〉 0.39 0.38

〈log10 ObsCCF〉 0.34
〈δ log10 ObsCCF〉 0.07 0.06

Table 6.3: Comparison between an input-guided fit and one guided by hand so as to produce the
best fitting pattern at all scales by eye. The simulated CCF was produced with the parameters
obtained as a result of the work of FER22 for their fifth bin of richness, we used the method B
(magnification functions product) to produce the total magnification function.

10− 25 arcsec Characterisation

As commented in section 3.3, one important side revelation from the work of FER22 was the

consistent -at all richness bins- presence of a lack of signal in their observed CCFs at particular

angular scales (∼ 10 and ∼ 25 arcsec). With our simulator it is possible to try combinations

of magnification functions in order to obtain different shapes in the CCFs. We will now test

different combinations that could reproduce a gap in the 10 arcsec region.
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A big part of this work was dedicated to explore demagnification regions from different profiles.

We saw that SIS profiles had much narrower strong lensing areas, leaving at smaller angular

scales perceptible demagnification effects. Particularly, this region mounted up to somewhat

above 10 arcsec in the 1015 M� case. Although the SIS has long been set aside due to a

common preference for the NFW profile, it could happen that the right combination of profiles

reproduced well the commented lack of signal in the observed CCFs by FER22 at 10 arcsec.

There is one aspect to take into account that arises from the present work. When we reviewed

the effect of a lower limit in the simulated range of intrinsic fluxes, we discovered that it

translated into a plateau effect in the CCFs. A 1015 M� SIS profile produces a caustic above

10 arcsec, that translates into a plateau in simulated CCFs. However, what we saw at FER22

-in the most extreme cases which where the fourth (bottom panel from figure 3.4) and fifth

bins of richness-, is an increment of the CCF that does not get to the maximum of the trend

of the CCF. Moreover, in other bins of richness (e.g. the second in figure 3.5) the small hill in

the CCF after the gap at ∼ 10 arcsec is much more subtle. Therefore, as a previous idea, we

do not expect that a SIS profile of these characteristics is the physical cause behind the gap,

however it can help to shed light on the issue. We have decided to try two cases; in the first case

a double SIS profile -which is something relatively new and different from what FER22 did.

Notably they assumed that the NFW was the best-fitting model for general haloes-. Then we

tried to fit a NFW profile for the inner region, the reason why we did this has to do with what

we can see in the left panel of figure 6.5: an inner SIS profile means another demagnification

region at the smallest scales which translates into a fall in the CCF.

Figure 6.5: Double profiles trying to reproduce the gap of the signal in the observed CCFs by
FER22. At the left a 1014.7 M� SIS outer profile and another 1013.6 M� SIS inner profile were
simulated. At the right a 1015.0 M� SIS outer profile combined with a 1014.2 M� NFW inner
profile with a concentration of 6.0.

Indeed, what we see in the left panel of the figure above is that at the lowest angular scales

(. 10 arcsec) the simulated CCF does not reach such a high value as it does at ∼ 10 − 40
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arcsec. On the other hand, the right panel shows a much stronger signal at lower angular scales

and a not so deep gap which goes in accordance with the three lowest bins of richness from

FER22. What is more, the outer SIS strong lensing region is no higher than the low angular

scale plateau. Apart from all of that, the NFW mass for the inner profile clearly exceeds the

upper bounds allowed for a BCG halo; ∼ 1014.2 M� is clearly beyond what is expected for an

inner thick galaxy and its halo. Without such a big inner mass, we would be back in the left

panel case; which is contrary to observations by FER22 where never did the fluctuations at

& 10 arcsec overcome the value of the CCF at low angular scale.

Regarding the comparison between the simulated CCF and the theoretical80 function we see

that at great angular scales (& 10 − 20 arcsec) the fit is good, so that the simulated CCF

behaves independently of statistical effects from the simulation and distribution of sources. At

lower angular scales, however, the fit does not work. In order to explain this, the most natural

way is saying that rapid fluctuations in the theoretical trend do not translate into macroscopic

effects in the simulated CCF. This is possibly due to the effect of both counting sources from

maps in annular regions -which means that small averages take place at every data trend point-

and the smoothing of the maps of counts. Note as well that the lack of a gap in the lowest

angular scales (∼ 1 arcsec) in the left panel of figure 6.5 can be partially explained by it. It is

quite natural though, if we think of the effect we saw in the SIS smoothed case of ∼ 1014 M�

in either the middle panel in figure 6.1 or the bottom panel in figure 5.19.

We could say that the above results do not make the satisfactory conclusion we would like

them to be. Apart from the issues about a strong lensing regime at great angular scales -which

is not what is observed in FER22- and the discrepancies between simulated and theoretical

CCFs, we have not discovered a method to reproduce a gap at ∼ 25 arcsec. When FER22

tackled the issue of the behaviour of their observed CCF at ∼ 10− 25 arcsec, they commented

how there was a gap in the CCF also at that angular separation. It is notorious in bin 4 as

well, and also in bin 3 where there is a clear lack of one or two points of the CCFs at that

angular region. Taking a comprehensive look at all the plots, the general trend seems to be a

cyclic-like pattern of variability with little hills and valleys or gaps in the CCF at radial angular

separations & 10 arcsec and onwards. One idea to cover the issue is the simulation of small

galaxies or little clusters within the general halo term at fixed81 angular scales. The morphology

of clusters is rich and through the stacking method any morphological particularity of a certain

80We calculated it following (6.2).
81At least in each bin of richness and keeping the 10 arcsec gap as a common point.
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cluster is lost. Indeed we do not care about the internal structure of clusters as such, but we

see their dark matter distribution through the lensing effect on background sources that can

fall anywhere at a radial angular scale from the centre of the cluster. However, if a pattern of

distances was common for all clusters so that it is no rare to find overdensities of matter at

certain separations from the centre of the cluster or the BCG, it could be possible to spot it

inferring from observed CCFs.

As a simple test, we have introduced a dark matter profile eccentric82 to the general halo

and the inner halo profiles. The ground level of our simulation are matter distributions for the

cluster halo and the BCG. We have chosen two NFW profiles of 1013.4 M� with C = 10.0 (for

the BCG) and 1015.0 M� with C = 0.30 (general halo). Additionally, we have introduced83 a

1012.2 M� SIS profile at 10, ∼ 12.6 (101.1), ∼ 15.8 (101.2) and ∼ 20.0 (101.3) arcsec. These and

any other extra dark matter concentrations at eccentric positions from the cluster halo centre

have to be introduced into the radial magnification function and then rotated to produce the

revolution magnification maps (one of the codes used to this end is 6).

Figure 6.6: Left panel: Simulated map of counts for the case of a 1012.2 M� SIS third dark
matter profile at ∼ 20 arcsec. Right panel: Simulated CCF and deviation from the theoretical
CCF created by the inner and outer terms alone.

We have seen that the maps of counts themselves shed light on the shape that could be

expected in the CCFs. We show in the upper panel in figure 6.6 the map of simulated counts

after magnification has taken place when a 1012.2 M� SIS profile has been put at ∼ 20 arcsec.

82E.g. not aligned to the centre of the cluster.
83If the idea of overdensities of dark matter repeated at certain distances is good, the masses introduced

cannot be too large. Particularly, it should not affect the total sum of masses combining the BCG and the
cluster halo, so that a limit of ∼ 1013 M� for additional profiles should be set.
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By eye, the election of 1012.2 M� for the additional profile produces something close to the

desired effect in terms of a ring of overmagnification preceded by a decrease in the number of

counts just after 10 arcsec. The resulting CCF can be observed in the bottom panel, where a

subplot has been added showing the deviation of the simulated CCF from the theoretical model

created by the combination of the inner (1013.4 M� NFW with C = 10.0) and outer (1015.0 M�

NFW with C = 0.30) profiles. The theoretical model, though, fails to reproduce statistical

effects at great angular scales that separate both trends (making the simulated CCF higher

than the theoretical model). The great number of simulated sources84 (106 in π · 250 px2) was

seemingly enough to make the strong lensing region invariable, producing a good fit as can be

checked at low angular scales in the bottom right panel.

Figure 6.7: From left to right, first the upper row and then the bottom, the four cases for the
location of an extra source at 10.0, ∼ 12.6, ∼ 15.8 and ∼ 20.0 arcsec respectively. We added
the deviation from the theoretical trend made up by the combination of the inner and outer
profiles (1013.4 M� NFW with C = 10.0 and 1015.0 M� NFW with C = 0.30).

The radial distance we choose to place the extra profile makes an effect on the simulated

CCF. To explore it, we show figure 6.7, where the four cases for the location of the SIS profile

are displayed (101.0 ≡ 10, 101.1 ∼ 12.6, 101.2 ∼ 15.8 and 101.3 ∼ 20.0 arcsec). We can see that

84Note that the colour scale in the maps of counts reflects the density of sources per pixel, not per arcsec -this
will be important soon when we compare the effect of different pixel scales in our ability to distinguish the gap
and subsequent elevation in the CCF-.
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as the distance from the centre of the cluster rises, the hill is better seen, although the gap

is still imperceptible. The lack of agreement between the simulated trend and the standard

theoretical model at great angular scales is always present.

Reflecting on what we knew of low mass SIS profiles, we see that the importance of the pixel

scale is a major issue. Indeed, the ability to spot a clear gap depends much on whether the SIS

profile gets to be resolved in a way that the µ → 0 effect is clear. To that end we have tried

a similar case to the one above. We have modified the base of our simulation (the mass and

concentration of the inner and outer profiles) to adapt to the obtained values by FER22 in its

fourth bin of richness. On top of that, we have modified slightly the mass of the introduced

SIS profile, to ensure that when the resolution is increased, the gap at ∼ 10 arcsec can be

observed. With only lowering the pixel scale to 0.5 arcsec/px the presence of a the SIS-due

demagnification zone is clear, as can be seen in the right panel in figure 6.8. It should be

compared to the left panel in the same figure, where the standard pixel size (1 arcsec/px) has

been used. Note that the overall simulated region is the same from a physical point of view

(250 round arcsecs); apart from that, an adjustment in the number of simulated sources was

undertaken to ensure that the density of sources per pixel is kept (and thereby the colour scale).

Figure 6.8: Simulated CCF and theoretical model built up from the parameters obtained by
FER22 in their fourth bin of richness as inputs for the mass and concentration. In the left
panel the case for a pixel size of 1 arcsec/px, at the right for 0.5 arcsec/px.

When the pixel size is not small enough to achieve a good resolution at the closest angular

scale around the position the SIS profile has been placed, the gap in the CCF is lost (as can be

observed in the left panel). Once the resolution is high enough, the gap becomes clear. From

the deviation panels we see that the enhancement in the trend after the gap (check the right

panel) is somewhat less obvious, and can be confused with the aforementioned discrepancy

between the theoretical model and the simulated CCF at great angular scale. In appendix C

the maps of counts (figure C.10) used to create the CCFs in figure 6.8 can be checked.
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We have seen that just a single extra SIS profile is not enough to reproduce all of the features

that we have seen in the observed CCFs by FER22. However, it serves as a basis for the review

that will be made regarding one of the bins of richness that FER22 used to divide their samples

of data. The former discussion about pixel scales will become less relevant, since by adapting

to their criteria, it will be fixed to the standard case (1 arcsec/px).

6.2 Reviewing Bin 4 of Richness from Fernández et al. 2022 [1]

Finding a gap in the CCF at certain angular distances is a challenge that motivates complex

ideas about compound profiles and theoretical functions for the fit. What is presented in the

following lines is a new model in which we have tried to fix the one used previously -an outer

profile and an inner profile- with a composition of profiles replacing the outer one. We decided

to keep the inner profile fixed because the behaviour of the observed CCF at low angular scale

is quite well described by the model, indeed our region of interest in the current section is at

θ > 10 arcsec.

Figure 6.9: In black, the observed CCF by FER22 for their fourth bin of richness. In blue, our
simulations with maps of magnification created with a sequence of SIS profiles placed at 20,
40, 70, 100 and 210 arcsec respectively. In the left panel, the result for a simulation with 104

sources represented in the map of counts -which is enough to produce a picture that is similar
in scattering of dense spots similar to the Total bin by FER22. At the right, a simulation with
2.5× 105 sources, enough to produce a good resemblance to the observed trend by FER22.

We introduced as many SIS profiles as hills could be spotted by eye in their measured CCF

(black trend in figure 6.9). Code 7 (appendix B) was used to produce the radial magnification

function; where a total of five SIS profiles were introduced. The virial masses of the profiles

were 1012.0, 1011.3, 1011.5, 1010.7 M�; at angular distances of 20, 40, 70, 100 and 210 arcsec

respectively. Note that the angular scales make a good resemblance to what is expected for the
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typical (possibly somewhat short) separation between galaxies in clusters. The virial masses

used also resemble the typical masses expected for mean to big sized galaxies. We can see

that an increase in the number of sources simulated (e.g. right panel) only improves the fit

a low angular scales (. 10 arcsec), where the BCG should be located. There, a plateau-like

behaviour can be observed at a height of around ∼ 8.26 -the function used for distributing

sources is described by a lower cut-off at 10 mJy-. We represented as well in a red solid line

the theoretical description of the compound profiles, which is much smoother than both the

observed (black) and simulated (blue) CCFs.

Figure 6.10: Comparison of the simulated maps of counts (104 sources at the left and 2.5× 105

sources in the central panel) with the total case observed by FER22 (right panel here; top
panel from figure 2 of the paper). The total case from FER22 is the result of having added up
together all the objects from all bins of richness. A visual idea of how scattered overdensities
raise naturally with small amounts of sources is what is intented with this representation.

The number of background sources (counts) in the fourth bin of richness is much smaller than

104. A test with the same number of sources used by FER22, which is detailed in the first table

of their paper, is performed in the left panel in figure 6.11. The results in terms of measured

CCF in that case can be observed in figure 6.12 as the green tendency. The central panel in

figure 6.10 shows rings of overdensity due to the large amount of data. However, according to

the simulated CCFs in figure 6.9, that a trend can already be observed in the maps of counts

does not need to mean that the absence of it does not translate into a similar shape of the

simulated/observed CCF. Indeed, at & 10 arcsec both panels in figure 6.9 behave similarly,

even though they are built up from perceptibly different maps (the two at the left in figure

6.10 respectively). Note that any of our maps of counts may differ in the colour scale with the

ones from FER22, due to they having chosen a normalised map. Even their own maps change

the colour scale, not to mean that the number of sources expected in high-concentration pixels

change accordingly to it, but due to the effect of the normalisation. For example, from panel

6.10 right to panel 6.11 right their colour scale also changes since there are much more sources
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in the first case, so due to the choice of normalisation that scale is lower than that of the latter

panel.

Figure 6.11: Attempt of reproducing the map of counts offered by FER22 (right panel here,
bottom panel from figure 3 in that paper) for their fourth bin of richness by simulating the
same number of sources as they did (left panel). A total of 424 sources were displayed, and we
can see that both maps are quite similar to one another.

Figure 6.12: Observed CCF of the fourth bin of
richness compared to our simulation with the
same number of sources used there.

The simulated CCF with the same number

of sources used by FER22 in their fourth bin

of richness produced a fluctuating CCF that

is much different from the observed one than

when a greater number of sources was dis-

played. However, the main features (gaps and

hills in the tendency) were still seen.

This little study has offered us another view

on the reasons behind the pattern of gaps and

hills observed and commented in FER22, which is also present in previous works, as they

explicitly mentioned in the paper. The results obtained here can point to preferred locations

in the concentration of dark matter in clusters from the central BCG, not meaning that every

single cluster has concentric shells of dark matter concentration but rather a number of galaxies

situated at certain distances.
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7 Conclusions

A gathering of the most important ideas derived from the work above is presented below. We

address all the knowledge that we have gain through our study, covering essentially sections 5

and 6.

The reduced Toy Model of section 5.1 served to understand how the profile-dependent mag-

nification functions make an effect in the maps of counts of background galaxies situated in

the plane of the deflector on the celestial sphere. We were able to differentiate the parts of

the magnification function qualitatively by checking the regions where only one type of profile

magnified sources (e.g. right panel of figure 5.7). We discovered that the amount of sources

simulated per area is an important number to take into account. For instance, in a 1014 M�

SIS-profile simulation the fall due to the demagnification region would be perceived in the ob-

served CCF if & 105 sources were simulated. Note that in later studies (sections 5.2 and 6),

106 sources is a standard value in the simulation unless the use of another number of sources

is commented.

In the second part of the Toy Model, we learnt that the effect of applying a Gaussian filter to

the maps of counts (e.g. figure 5.18) translates into a smoothing of the observed CCFs, which

can be then followed with a theoretical fit by just performing a fit over the CCF + plateau

functions (e.g. figure 5.19). The discovery of the flat behaviour itself in the strong lensing

region -what we have called plateau- is a huge advancement of this work. If a great resolution

can be obtained in the future some knowledge about the flux distribution of particular families

of sources can be obtained from the plateau of the observed CCFs themselves.

The last test of our simulator had to do with the variability of the CCF if sources are

distributed realistically with physical parameters. Namely we tested distributions of redshift

(for both samples), virial mass of the deflector and its concentration (when applicable, NFW).

Since the outcome of parameters (virial mass and concentration) was in line with previous

studies with fixed parameters and the shapes of the simulated CCFs showed no big differences,

we could say that working with sources that vary slightly on those parameters is perfectly

acceptable. We could say as well that a richness tomography of the foreground sample of

clusters is a good tool in order to inspect particularities in each bin. As a downside, we should

left clear that the uncertainties returned by our fit programmes were not satisfactory enough

so as to say that a precision-level measurement of parameters is possible.

87



Then, we started with the main issue of the work: simulating compound profiles and seeing

how them could serve to understand better the observed CCFs obtained by FER22. As a pre-

liminary result we observed that a hand-made fitting program was able to distinguish between

different types of profiles. Then we built up double magnification functions and simulated

compound CCFs, learning that a hard angle in the observed CCF prompts the beginning of

a region with a sharply different concentration parameter. After testing the simulator several

times, we discovered that this parameter is essential when accounting for the slope of the CCF.

Analysing the best model to build the magnification function we discovered that seemingly

different results can be obtained if the theoretical model used for the fit is a compound function

calculated as indicated in equations (6.2) and (6.3), or we used a local fit with simple profiles for

each part. The latter method would require an additional function to separate the general halo

term from the BCG term. When a fitting programme was run in order to return parameters

such as the virial mass and the concentration, we saw that the choice of the input seed was

relevant, leading to different outcomes. This could indicate some level of degeneracy on the

parameters. We were estimating four parameters at the time.

The last step in our analysis of compound profiles led us to investigate the ∼ 10 and ∼ 25

arcsec gaps in the CCF observed by FER22. As a first attempt we tried to reproduce the gap

with the demagnification region that a SIS profile for the general halo would impose in the CCF.

Our conclusion was that this view is mostly flawed in several ways. Firstly, a SIS profile of

& 1014 M� creates a strong lensing region at great angular scales that is non-physical. However,

we succeeded in finding a drop in the CCF at the wanted scale (∼ 10 arcsec). Apart from that,

a SIS profile of that size creates a vast regions of demagnification and strong lensing, much

different from what we saw at great angular scales (10 − 200 arcsec) in FER22. Actually, the

results of the paper indicate more of a cyclic pattern that is incompatible with such huge-mass

SIS profile. As a more realistic way to tackle the issue, we recovered the inner and outer halo

terms by FER22 but included a low-mass SIS magnification profile at the commented angular

scale so that somehow a demagnification region was introduced at limited angular scales. We

studied different masses and profiles and the result was a much more precise enhancement

and gap -although the latter was harder to spot-. Indeed, we observed that the pixel scale

was determinant in this case, as low-mass SIS profiles show demagnification in the number of

counts only when the pixel size is small enough.

Those results were not satisfactory enough, and still the maps of counts that we observed
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prior to simulating CCFs showed vastly different shapes and distributions than those from

the original papers. Therefore, when reviewing the fourth bin of richness by FER22, where

consecutive repetitions of gaps and hills were observed in the CCFs, we adopted a new method

consisting on replacing the outer halo by a series of compound low-mass SIS profiles to reproduce

the observed CCF (check again figure 6.9). Additionally, we saw that the right choice of the

amount of sources distributed could reproduce well the maps observed by FER22. Results

were mostly satisfactory in this part. SIS profiles of mass in order to what is expected for

typical galaxies (∼ 1011 − 1012 M�) were found to cover well most of the tendency, at any

spotted oscillation in the larger angular scale (& 10 arcsec). The physical interpretation of it

is somewhat open, though. One idea is that there are preferred locations (or distances) for

non-central (e.g. not BCGs) within clusters. This means that when one puts all the sample

of clusters together, there are overdensities of counts at certain rings after stacking has taken

place. One does not expect a clear pattern of shells of galaxies concentric to the cluster halo

centre in the real world as a general model, but maybe two or three galaxies in each cluster at

preferred distances. When stacking is performed, an overdensity could in such case be observed.

When we sayobserved we refer to the CCF at least, since explicit rings of counts overdensities

are only expected in maps if a huge (non real) number of sources constitute our samples.

Further tests should be developed comparing the results at other bins of richness in order to

see how much the virial masses can vary. Also, in other bins, FER22 found a reasonable good fit

by an outer NFW profile. For that reason, there is also a need to see how a combination of both

a general outer NFW profile and low mass SIS profiles improves the fit. As a final comment,

our simulator offers a wide range of opportunities for inspecting WGL-due magnification bias

on differnt aspects. From the distribution of fluxes of the background sample to the most

addressed properties of clusters and foreground objects, our simulator has been capable of

producing interesting alternatives to shed light on some yet unexplained features.
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A Extra Theoretical Notes

This appendix is dedicated to a further insight into theoretical cosmology. In section 2 we had

introduced the FLRW metric -equation (2.1)- and the evolution of the Hubble parameter with

the redshift -equation (2.3)-. Going from the former to the latter requires some more equations

(the Friedmann equations and the equations of state for different types of matter) and quite of

an extended theoretical path. Actually, there are two ways that actually match each other; one

can work with newtonian dynamics -allowing for a magical expansion of space parameterised

by the scale factor a(t)- with a helping hand of thermodynamics or can derive -preferentially

with a computer programme- the Einstein equations in the framework of General Relativity.

Nicely, one arrives to the same point after both derivations. All of that is covered in the first

two subsections from this appendix, where we are going to use as references the notes by Prof.

Pettini [16] and Ryden’s book [15].

When in section 4.3 we say that the profiles are parameterised by the mass of the cluster -or

the deflector in a general way- we have to assess the extension of the object, which is not a

trivial issue at all. Only when we talk about compact objects -let’s put the Earth- we know

with high precision its size or mass. Earth has a mass contained within its surface or order 1024

kg; its atmosphere is only a tiny fraction of that order in mass, ∼ 1018 kg. For most purposes

a change in the sixth significant number of the mass of the Earth is completely irrelevant, so

one typically stays with the relevant mass order.

Non compact objects require a virial treatment instead, which we are going to follow from

Sparke and Gallagher’s book [33]. For cosmological purposes one calculates the mass of galaxies

and clusters thanks to the observed velocities of objects within them. As a matter of fact there

is few other ways to detect the presence of dark matter but by exclusion of the observed

baryonic mass from the needed virial mass of bound objects, calculated to match the velocity

of substructures there contained.

A.1 Cosmological Parameters (I): Newton’s Mechanics with a Some

Concepts from Cosmology

Classical Cosmology is enough to arrive to the first Friedmann Equation and the fluid equa-

tion, without resorting to General Relativity. One has to consider, though, that it is possible

that space gets stretched with time. Moreover, at some point we will have to use some magic
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to arrive at some concepts such as curvature or energy85 density. Actually it is not magic, but

rather that we have used an ANSATZ from the general relativistic derivation.

The existence of a scale factor does not go against any prerequisite demanded by classical

mechanics axioms, but it is an input, nevertheless. In General Relativity there is no need either

for it, but since one of the wonders of General Relativity is that you can write the craziest

metric imagined and work with it, a simple metric as that of FRLW with a scale factor a(t)

seems quite natural.

Figure A.1: Grapical representation of
Birkhoff’s theorem, where particles situated
at some points (A, B, C, D) on the surface of
a sphere suffer a gravitational attraction that
can be substituted by a single particle of mass
equivalent to that of the whole sphere situated
at its centre.

In any case, starting with a classical deriva-

tion requires contemplating Brikhoff’s theo-

rem (see figure A.1) to understand that what

might change the size of a sphere -to be

thought as the whole universe- is the mat-

ter within86 it. We can write Newton’s sec-

ond law of motion for the radius Rs(t) of that

sphere -eq. (A.1)-, knowing that Rs(t) has

to be a comoving radius rs -which does not

evolve with time- and a scale factor a ≡ a(t).

It is here where the first typically related gen-

eral relativistic term appears: the scale factor.

r2
s ä = −GMs

rsa
(A.1)

Integrating and taking everything but the integration constant to the same side we obtain

U = T + V =
rs
2
ȧ2 − G Ms

rs a
(A.2)

where the mass of the sphere Ms can be put as a function of a time dependent density ρ ≡ ρ(t)

and the radius: Ms ∝ ρ (rsa)3. The non-relativistic counterpart of the first Friedmann

85Here is where the debate when defining ρi as the energy density of a certain fluid could be raised. Mass
density is the only density known in classical mechanics when working with something defined as the mass of
a gravitational attractor divided by some volume. But we would need to change that density for an energy
density ε and divide by c2 to find the density counterpart from general relativity, which is what is defined as
energy density in that theory.

86Concepts from statistical mechanics are needed -as well as special relativity- to understand that matter, in
this context, refers to all that is contained. The proper way to address it is with the concept of cosmological
fluid.
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equation is then found when we divide equation (A.2) by (rsa)2 and rearrange it slightly,

having defined the Hubble parameter H as ȧ/a.

H2 ≡ H2(t) ≡
(
ȧ

a

)2

=
8πG

3
ρ+

2U

r2
s

1

a2
(A.3)

Now, to access the general relativistic expression, we have to change87 ρ by ε/c2 and the

factor88 accompanying a−2 at the right-hand side of equation (A.3) by −kc2.

H2 ≡ H2(t) ≡
(
ȧ

a

)2

=
8πG

3c2
ε− kc2

a2
(A.4)

This is the first Friedmann equation. If we divide it by the Hubble parameter squared, so

that at the left hand side of the equation we find a 1, we have created the density parameters

ΩU and Ωk. We had talked about them in section 2 without having appropriately defined them.

Now we do so, but remind that were the density parameters evolve with time.

1 =
8πG

3H2
ε− kc2

H2a2
≡ ε

εc
+ Ωk ⇒ Ωk = 1− Ω (A.5)

Note that the εc defined in equation (A.5), as well as ε, are not the energy densities today

we talked about in section 2 but time evolving energy densities. At the end of the equation

we have defined the (evolving) density parameter for the curvature -we have used that choice

of the sign in order to be coherent with the notation in equation (2.3)- so that the density

parameters of the fluids within our universe and the spatial curvature induced density sum up

1. This way, if at present one finds that the Ω(t = today) value is different from 1, we would

live in a non-flat universe. Particularly, with our choice89 of signs, a negative value of Ωk means

a closed universe k = +1 (cyclic in space), while a positive value of Ωk means an open universe

k = −1 (hyperbolic in space).

Now, we are interested in finding the fluid equation, for which it is enough to put the

first law of thermodynamics in play. The heat transfer to the inside or outside of a volume is

dQ = dE + P dV , where dE is the change in the internal energy and P the pressure within

that volume. Since we do not expect our universe to cede or gain any heat, we can put dQ
87This is indeed the classic rest energy of an object in the special-relativistic framework E = mc2.
88Well, that rs should be treated more carefully and one could talk about the curvature radius of the universe

in general-relativistic terms and have a quite extended physical debate. For our purposes we will simply say
that we have chosen k with units of length−2, so that the kc2/a2 remains with time−2 units, as it should to
match the units of Hubble parameter.

89Matching Ryden’s choice.
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to 0. This means that we are working with an adiabatic universe. Differentiating with respect

to time one finds Ė + P V̇ = 0. Now, we do know the volume of the universe since it is the

volume of the sphere we began with. Besides, the energy of the universe E can be written as

the product of its volume by its energy density ε. This translates into

Ė = −P V̇ ⇒ 3a2ȧε+ a3ε̇ = −3Pa2ȧ ⇒ 3
ȧ

a
(ε+ P ) + ε̇ = 0 (A.6)

which is the fluid equation. It can be solved with the inclusion of a fluid equation. Moreover,

note that since ε and ε̇ are the total energy density of the universe and its derivative, there is

no problem in writing them as the sum of several fluids, e.g. ε ≡
∑

i εi. This is, we do not need

to know how the universe behaves as a whole, but knowing the fluids that make it up. It is

customary in every introductory course to Cosmology to start here a discussion on the several

models of universe available depending on the type of fluid that dominates. It is done in section

5.3 of Ryden’s book and in the fourth lecture of Pettini’s course, as it is extremely useful to

understand the behaviour of the universe at the time when each type of fluid dominated its

composition. However, we will only stop to describe the equations of state for each component,

since our aim is to arrive to H(z) expression in 2.3.

Counting the fluid equation and the first Friedmann equation we have 3 unknowns in a

system of two differential equations. The unknowns are ε ≡ ε(t), a ≡ a(t) and P ≡ P (t). But

we had seen that {P, ε} are {Pi, εi} for each type of cosmic fluid i; and each of the fluids can

be parameterised with a fluid equation that can be derived from statistical mechanics and be

written in the form

Pi(εi) = wiεi (A.7)

Relativistic matter is characterised by a factor wrel = 1/3, cold matter by wm = 0 and dark

energy by wΛ = −1. The equation of fluid is deemed as a differential equation that relates a

and ε, taking into account the information that we have acquired from state equations. The

result is90 that the energy density of every fluid will evolve with the scale factor, but each of

them will do so in a particular way

90This is just as saying that each type of fluid does not talk to each other, which might not be true. Nicely,
though, the mathematical part of this theory works perfectly well if we plug the result for each type of fluid
(the εi(a,wi) functions) into the fluid equation.
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3
ȧ

a

(∑
i

εi +
∑
i

wiεi

)
+
∑
i

ε̇i = 0 ⇒ ε̇i
εi

= −3 (1 + wi)
ȧ

a
⇒ εi = εi,0 a

−3(1+wi) (A.8)

For relativistic matter this translates into εrad ∝ a−4, for cold matter into εm ∝ a−3 and

for dark energy into εΛ = εΛ,0. This is, the energy density of the dark energy is expected

to remain the same at any point in the history of our universe. Although it might not seem

clear as it is written know, we have arrived to the end, we just need to plug equation (A.8)

into the first Friedmann equation, but a special form of it. To get the result with the density

parameters today -the ones we measure-, we need to divide the Friedmann equation by the

Hubble constant -the value of the Hubble parameter today- squared H2
0 . The result is

E2(a) ≡
(
H

H0

)2

=
8πG

3c2H2
0

∑
i

εi,0a
−3(1+wi) +

kc2

a2H2
0

=
∑
i

Ωi,0a
−3(1+wi) + Ωk,0a

−2 (A.9)

The last step -to get to equations (2.3) and (A.11) from the previous expression- is just a simple

question of redshift being the quantity that is convened in cosmology to measure distances.

Also, since it has the easiest relation with respect to light’s wavelength and frequency. It is

defined as a function of the scale factor as

1 + zobj =
a(t = today) ≡ 1

a(t = tem)
=
λobs

λem

=
νem

νobs

(A.10)

where zobj refers to the object’s redshift, λem to light’s wavelength from that object at the

time it was emitted and λobs to that light’s wavelength when it gets to us. Similarly for the

frequencies ν. With the definition z(a) we can substitute in equation (A.9) and obtain

E2(z) =
∑
i

Ωi,0(1 + z)3(1+w) + Ωk(1 + z)2

H(z) =H0

√
ΩΛ + Ωk,0(1 + z)2 + Ωm,0(1 + z)3 + Ωrad,0(1 + z)4

(A.11)

A.2 Cosmological Parameters (II): Non-Stop Flight from FLRW to

H(z)

One of the greatest things about general relativity is that one does not need to resort to

extremely armed arguments or theorems such as Birkhoff’s, nor making up that U ∝ k an
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invented curvature of space-time. By the way, this would be quite a strange thought in the

minds of classical physicists91 before Einstein’s special and general ways. The downside of

General Relativity is that everything becomes a bit more boring when words are unneeded

and all one requires is either a lot of time to work out Christoffels and Riemmans or a good

computation programme.

The non-zero elements of the metric of FLRW (2.1) are

gtt = −c2 , grr =
a2

1− kr2
, gθθ = a2r2 , gφφ = a2r2 sin2 θ (A.12)

Once the computation programme has made its magic, one obtains the time-time and radial-

radial components of the Einstein equations as the ones that are independent and non-zero. At

the right-hand side of the traditional Einstein equations one finds a stress-energy tensor for the

cosmological fluid, with components92 those of (A.13). This time, though, as we have already

introduced the cosmological constant before, we will just simply say that at the left-hand side.

Adding to the Einstein tensor we will have a constant term multiplied by the metric −Λgµν ,

which is the natural way of introducing the cosmological constant as a scalar field theory in

the Lagrangian of our theory.

Ttt = ε , Trr =
pa2

1− kr2
(A.13)

where p stands for the fluid’s pressure. Einstein (A.14) equations93 translate into the two

Friedmann (A.15) equations

Gµν =
8πG

c4
Tµν ,

 Gtt = 3(ca)−2(ȧ2 + kc2) = 8πG
c4
ε

G̃rr = −c−2(2aä+ ȧ2 + k) = 8πG
c4
p

(A.14)

(I) H2 =

(
ȧ

a

)2

=
8πG

3c2
ε− kc2

a2
(II) 2

ä

ȧ
+

(
ȧ

a

)2

= −8πG

c2
p− kc2

a2
(A.15)

Subtracting from the second Friedmann equation the firs one, we obtain the acceleration

equation. That is useful to see whether the universe expands faster or slower with time. With

respect to finding H(z), we have arrived to the same point as with equation (A.4) in the previous

91Why would our R3 space be the surface of a four-dimensional sphere or hyperboloid?
92We only care about the time-time and the radial-radial ones.
93The G̃rr equals Grr but multiplied by the (1 + kr2) factor from the radial-radial term of the metric. It was

chosen so that the expression in (A.14) is clearer.
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subsection. Now the rest of the path is the same as before. One needs both the fluid equation

and some equations of state for the different types of cosmological fluids, and happily gets to

equation (A.11)

Figure A.2: Evolution of the density parameters with redshift. Figure 8.7 from Sparke and
Gallagher 2007 [33]. The benchmark model takes ΩΛ,0 ∼ 0.7 and Ωm,0 ∼ 0.3.

A.3 Galaxies and Clusters are Bound

Figure A.3: Figure 3 from Weinberg &
Kamionkowski 2003 [41]. Represented the
evolution of the ∆vir value with respect to
redshift in the benchmark model.

If dark matter was discovered and a direct way

to detect it -other than gravitational need for it-

was available, it would be easy to say that clus-

ters of galaxies are gravitationally bound struc-

tures. Despite it not having happened, the fact

that these kind of structures are common and

some reconstructions of the mass density due

to weak lensing phenomena with background

sources of particular clusters helped us deter-

mine that these groups of galaxies are indeed

gravitationally bound. Note that from galaxies

and downwards in complexity, the timescale of

phenomena showed enough variability in human

standards so that structures could be classified
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as bound. The comprehensive reconstruction of the mass density of Abell 1689 by Coe et al.

in 2010 [42] and the weak lensing contours of the Bullet Cluster by Clowe et al. 2004 [43] are

but two examples of the rich literature studying the dark matter component of clusters.

Figure A.4: Density levels of the region belong-
ing to the known as Bullet Cluster; plots A and
B from figure 1 in Clowe et al. 2004. The dark
lines represent mass density contours levelling
2.8× 108 M� kpc−2 in each step.

Our simulation requires an analytical de-

scription of dark matter models (NFW and

SIS) that depend -particularly the first of

them- on a notion of scale radius. It was de-

fine after equation (4.6) as the radio enclos-

ing a region with ρ > 200ρc(z) at the z of

the bound object that is being studied. The

critical density at which a region is consid-

ered gravitationally virialised is ρvir = ∆virρc,

with ∆vir being quite a variable quantity. It

depends on the type of cosmology used94, but a standard value tends to be95 ∆vir = 200, so

astrophysicists and cosmologists typically work with M200 and r200. With the convention es-

tablished, the mass we are using all throughout the work in general referring to the mass of the

deflector is

M200 =
800

3
πr3

200ρc(z) (A.16)

Since ρc(z) is fully determined at known z, r200 and M200 are the same96. Remembering that rs

is a function of C and r200, we can set rs ≡ rs(M,C), so with the (virial) mass and concentration

we can fully determine the NFW halo profile of a dark matter overdensity. However, the NFW

profile can also be taken to be a one-parameter family by using the relation obtained from

Mandelbaum et al. 2008 [35] (their equation (7) and surrounding text). This fact was taken

into account, for example, by BON19; where they used

C(M200, z) =
4.6

1 + z

(
M200

1.56× 1014h−1 M�

)−0.13

⇒ NFW (C,M200)→ NFW (M200) (A.17)

94This means, the numbers chosen for a ΛCDM model parameters in a non-precision level. For example,
∆vir = 200 is used for Ωm = 1 models (see White’s 2001 paper [37].), which is notably far from the present
status of the universe. Once upon a (long) time, Ωm ∼ 1 though. This happened after the first life forms already
lived in Earth (!), at z ∼ 2.

95We see from Weinberg & Kamionkowski 2003 [41] that ∆vir ≈ 200 works quite well in the benchmark model
for z & 1. See figure A.3.

96Just as 2.998...× 108 m equal 1 s at c = 1.
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B Coding Lines

In this section the functions that make up the backbone of our work are displayed. Firstly,

we introduce the functions that served to create the fluxes of the background sources and to

calculate the plateau of the CCF. Then we move on to the functions that created the maps of

counts. Finally, we address the functions that were used to calculate the observed CCFs and

perform the fit with the theoretical (modified) CCFs.

The theoretical CCF functions that appear within the ones below -e.g. get xc SIS or get xc NFW -

are provided in libraries provided by the supervisors. Essentially they reproduce the theoretical

functions commented in section 4.3. The Jackknife analysis function was also provided by the

supervisors and belonged to another library.

B.1 Random Fluxes

1 def rand_flux(Ns , hor , ver , Sn , Sx):

2 from numpy import random , interp , hstack

3 Sx = min(Sx , max(hor[ver * Ns > 0.01]))

4 ver = ver[(hor >= Sn) & (hor < Sx)]

5 hor = hor[(hor >= Sn) & (hor < Sx)]

6 Nr = int(max((Ns * 3, 1e6)))

7 x = Sn + (Sx - Sn) * random.rand(Nr)

8 y = min(ver) + (max(ver) - min(ver)) * random.rand(Nr)

9 y0 = interp(x, hor[::-1], ver [:: -1])

10 S = x[y < y0]

11 if (S.size < Ns):

12 while (S.size < Ns):

13 x = Sn + (Sx - Sn) * random.rand(Nr)

14 y = min(ver) + (max(ver) - min(ver)) * random.rand(Nr)

15 y0 = interp(x, hor[::-1], ver [:: -1])

16 S = hstack ((S, x[y < y0]))

17 S = S[:Ns]

18 else:

19 S = S[:Ns]

20 return 10 ** S

Listing 1: Function used for the generation of random fluxes. It uses input variables hor and

ver that come from another function named counts provided by the supervisors.

103



1 def cuantosN0(N, Sn , LIM):#PXlim == maxarcsec/ratio [ratio ]== arcsec/pixel , [

LIM ]==Jy , [Sn]== log_10(Sn) (NEGATIVO)

2 from numpy import isnan , log10

3 hor , ver = counts (857, ’lapi11 ’)

4 ver[isnan(ver)] = 1e-20

5 mn = log10 (10**( Sn))

6 Mx = log10 (100)

7 arrayf = rand_flux(N, hor , ver , mn , Mx)

8 testi = 0

9 N0_supS = 0

10 while testi <N:

11 if arrayf[testi]>LIM:

12 N0_supS +=1

13 testi +=1

14 wxc_max = (N-N0_supS)*N0_supS **( -1.0)

15 return wxc_max , N0_supS

Listing 2: Function used to calculate the plateau of the CCF depending on the number of sources

simulated, on the minimum of the flux distribution Sn, and the flux limit of the detector.

B.2 Maps of Counts

1 def rand_distr_G(N, PXlim , LIM , nfw , sis , Sfilt ,G=False , Gz = False):#PXlim

== maxarcsec/ratio [ratio ]== arcsec/pixel , [LIM ]==Jy

2 from numpy import array , isnan , random.normal , random.rand , log10 , zeros

, dot , pi

3 SIZE = int(PXlim *2)

4 conc = 4.0 #Concentration

5 beta = 3 #Logarithmic slope of background source number counts

6 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")])

7 Mass = 1.0 e13

8 mapaWOM = np.zeros((SIZE , SIZE))

9 hor , ver = counts (857, ’lapi11 ’)

10 # print(hor , ver)

11 ver[isnan(ver)] = 1e-20

12 mn = log10 (10.0**( -2.0))

13 Mx = log10 (100)

14 arrayf = rand_flux(N, hor , ver , mn , Mx)
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15 testi = 0

16 testb = 0

17 mapaNFW = zeros((SIZE , SIZE))

18 mapaSIS = zeros((SIZE , SIZE))

19 if Gz ==True:

20 zl_Gauss = random.normal (0.268794356307358 , 0.2814263623965842 , N)

21 zs_Gauss = random.normal (2.2038906736872597 , 0.4686407172675681 , N)

22 for i in range(np.shape(zl_Gauss)[0]):

23 if zl_Gauss[i] <=0.0:

24 zl_Gauss[i] = -1.0* zl_Gauss[i]+0.00001

25 if zs_Gauss[i] <=1.0:

26 zs_Gauss[i] = 1.0+(1.0 - zs_Gauss[i])

27 if zl_Gauss[i] >=1.0:

28 zl_Gauss[i] = 1.0-( zl_Gauss[i]-int(zl_Gauss[i]))

29 while testi <N:

30 coordsmapa = random.rand (2)*SIZE #We assign random coordinates

31 coords = coordsmapa -PXlim

32 radial = dot(coords , coords)**0.5 #We calculate the radial distance

from the deflector

33 if radial >PXlim:

34 continue

35 else:

36 if Gz==False:

37 if arrayf[testi]>LIM:

38 mapaWOM[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

39 if arrayf[testi ]*nfw[int(coordsmapa [0]), int(coordsmapa [1])

]>LIM:

40 mapaNFW[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

41 testb +=1

42 if arrayf[testi ]*sis[int(coordsmapa [0]), int(coordsmapa [1])

]>LIM:

43 mapaSIS[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

44 testi +=1

45 else:

46 radialr = radial*pi /(180.*3600.)

47 magNFW = (get_xc_NFW(radialr , Mass , zl_Gauss[testi],

zs_Gauss[testi], conc , cpar)+1.0) **(1.0/( beta -1.0))

48 magSIS = (get_xc_SIS(radialr , Mass , zl_Gauss[testi],

zs_Gauss[testi], cpar)+1.0) **(1.0/( beta -1.0))

49 if arrayf[testi]>LIM:
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50 mapaWOM[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

51 if arrayf[testi ]*magNFW >LIM:

52 mapaNFW[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

53 testb +=1

54 if arrayf[testi ]*magSIS >LIM:

55 mapaSIS[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

56 testi +=1

57 print(’el numero de mayorquemag es ’+str(testb))

58 print(’el numero de simulated es ’+str(testi))

59 from scipy.ndimage import gaussian_filter

60 if G==True:

61 mapaWOM = gaussian_filter(mapaWOM , Sfilt)

62 mapaNFW = gaussian_filter(mapaNFW , Sfilt)

63 mapaSIS = gaussian_filter(mapaSIS , Sfilt)

64 return mapaWOM , mapaNFW , mapaSIS

Listing 3: General model of function used for the generation of maps of counts. It allows for the

redshift distribution of sources, although the computation time gets longer due to the nested

loops, it activates with Gz = True. It covers as well the gausian filtering of the generated maps

with G = True, with Sfilt being the filter used -typically 2.4 arcsec-. Note that nfw and sis are

magnification maps, the same size of our resulting maps of counts. They should be built up

beforehand.

1 def GENERAL_rand(N, PXlim , LIM , Sfilt , M, conc =4.0,G=False):#PXlim ==

maxarcsec/ratio [ratio ]== arcsec/pixel , [LIM]==Jy

2 from numpy import array , zeros , isnan , log10 , random.normal , random.rand

, dot , pi

3 SIZE = int(PXlim *2)

4 conc = 4.0 #Concentration

5 beta = 3 #Logarithmic slope of background source number counts

6 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")])

7 # Mass = 1.0e13

8 mapaWOM = zeros((SIZE , SIZE))

9 hor , ver = counts (857, ’lapi11 ’)

10 # print(hor , ver)

11 ver[isnan(ver)] = 1e-20

12 mn = log10 (10.0**( -2.0))

13 Mx = log10 (100)
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14 arrayf = rand_flux(N, hor , ver , mn , Mx)

15 testi = 0

16 testb = 0

17 mapaNFW = zeros((SIZE , SIZE))

18 # mapaSIS = zeros ((SIZE , SIZE))

19 zl_Gauss = random.normal (0.268794356307358 , 0.2814263623965842 , N)

20 zs_Gauss = random.normal (2.2038906736872597 , 0.4686407172675681 , N)

21 M_Gauss = random.normal(M, 0.5*M, N)

22 C_Gauss = random.normal(conc , 0.5*conc , N)

23 for i in range(N):

24 if zl_Gauss[i] <=0.0:

25 zl_Gauss[i] = -1.0* zl_Gauss[i]+0.00001

26 if zs_Gauss[i] <=1.0:

27 zs_Gauss[i] = 1.0+(1.0 - zs_Gauss[i])

28 if zl_Gauss[i] >=1.0:

29 zl_Gauss[i] = 1.0-( zl_Gauss[i]-int(zl_Gauss[i]))

30 if M_Gauss[i] <=0.0:

31 M_Gauss[i] = M+M_Gauss[i]

32 if C_Gauss[i] <= 0.0:

33 C_Gauss[i] = conc + C_Gauss[i]

34 while testi <N:

35 coordsmapa = random.rand (2)*SIZE #We assign random coordinates

36 coords = coordsmapa -PXlim

37 radial = dot(coords , coords)**0.5 #We calculate the radial distance

from the deflector

38 if radial >PXlim:

39 continue

40 else:

41 radialr = radial*pi /(180.*3600.)

42 magNFW = (get_xc_NFW(radialr , M_Gauss[i], zl_Gauss[testi],

zs_Gauss[testi], C_Gauss[i], cpar)+1.0) **(1.0/( beta -1.0))

43 magSIS = (get_xc_SIS(radialr , M_Gauss[i], zl_Gauss[testi],

zs_Gauss[testi], cpar)+1.0) **(1.0/( beta -1.0))

44 if arrayf[testi]>LIM:

45 mapaWOM[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

46 if arrayf[testi]*magNFW >LIM:

47 mapaNFW[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

48 testb +=1

49 print(testb)

50 if arrayf[testi]*magSIS >LIM:
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51 mapaSIS[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

52 testi +=1

53 print(’el numero de mayorquemag es ’+str(testb))

54 print(’el numero de simulated es ’+str(testi))

55 from scipy.ndimage import gaussian_filter

56 if G==True:

57 mapaWOM = gaussian_filter(mapaWOM , Sfilt)

58 mapaNFW = gaussian_filter(mapaNFW , Sfilt)

59 mapaSIS = gaussian_filter(mapaSIS , Sfilt)

60 return mapaWOM , mapaNFW , mapaSIS

Listing 4: Function used for the generation of maps in a realistic way that takes into account

all the astrophysical parameters: mass, concentration and redshift distributions.

1 def double_distr_G(N, PXlim , LIM , mag , Sfilt , G=False , N_M = 1.0):

2 from numpy import zeros , isnan , log10 , random.rand , dot

3 SIZE = int(PXlim *2)

4 mapaWOM = zeros((SIZE , SIZE))

5 mapaMAG = zeros((SIZE , SIZE))

6 hor , ver = counts (857, ’lapi11 ’)

7 ver[isnan(ver)] = 1e-20

8 mn = log10 (10.0**( -2.0))

9 Mx = log10 (100)

10 arrayf = rand_flux(N, hor , ver , mn , Mx)

11 NT = 0

12 testi = 0

13 testb = 0

14

15 while testb <N_M:

16 coordsmapa = random.rand (2)*SIZE #We assign random coordinates

17 coords = coordsmapa -PXlim

18 radial = dot(coords , coords)**0.5 #We calculate the radial distance

from the deflector

19 if radial >PXlim:

20 continue

21 else:

22 if testi >N-2:

23 NT = NT+testi

24 arrayf = rand_flux(N, hor , ver , mn , Mx)

25 testi = 1
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26 testi +=1

27 # if testi % 100.0 == 0.0 and testi >0.0:

28 # print(testi /100.0)

29 if arrayf[testi]>LIM:

30 mapaWOM[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

31 if arrayf[testi]*mag[int(coordsmapa [0]), int(coordsmapa [1])]>LIM

:

32 mapaMAG[int(coordsmapa [0]), int(coordsmapa [1]) ]+=1

33 testb +=1

34 if testb % 1000.0 == 0.0:

35 print(testb /1000.0)

36 NT = NT+testi

37 print(’el numero de mayorquemag es ’+str(testb))

38 print(’el numero de simulated es ’+str(NT))

39 from scipy.ndimage import gaussian_filter

40 if G==True:

41 mapaWOM = gaussian_filter(mapaWOM , Sfilt)

42 mapaMAG = gaussian_filter(mapaMAG , Sfilt)

43 return mapaWOM , mapaMAG

Listing 5: Function used to generate the maps of counts used in section 6 for the compound

profiles.

1 def caso1025(Min , Cin , Minter , LOCinter , Mout , Cout , TMN):

2 from numpy import array , linspace , pi , zeros_like , zeros

3 zl = 0.268794356307358 #Mean redshift of the lenses

4 zs = 2.2038906736872597 #Mean redshift of the sources

5 beta = 3 #Logarithmic slope of background source number counts

6 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")])

7 size = 250.0/ TMN

8 radios = linspace (0.5*size , (TMN -0.5)*size , TMN)

9 radiosrad = radios*pi /(3600.0*180.0)

10

11 radiosinter = zeros_like(radios)

12 for i in range(TMN):

13 if radios[i]<LOCinter:

14 radiosinter[i]=( LOCinter -0.5-i)*size

15 else:

16 radiosinter[i]=(i-LOCinter +0.5)*size
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17 radiosinterrad = radiosinter*pi /(3600.0*180.0)

18 mag_in = (get_xc_NFW(radiosrad , Min , zl , zs , Cin , cpar)+1) **(1/( beta -1)

)

19 mag_inter = (get_xc_SIS(radiosinterrad , Minter , zl, zs, cpar)+1) **(1/(

beta -1))

20 mag_out = (get_xc_NFW(radiosrad , Mout , zl , zs , Cout , cpar)+1) **(1/( beta

-1))

21

22 MAG = mag_in*mag_inter*mag_out

23

24 MAPA = zeros ((TMN*2, TMN *2))

25 for i in range(TMN*2):

26 print(i)

27 for j in range(TMN*2):

28 if i < TMN:

29 if j < TMN:

30 pos = (((TMN -0.5-i)*size)**2+ ((TMN -0.5-j)*size)**2)

**0.5

31 else:

32 pos = (((TMN -0.5-i)*size)**2+((j-(TMN -0.5))*size)**2)

**0.5

33 else:

34 if j < TMN:

35 pos = (((TMN -0.5-j)*size)**2+((i-(TMN -0.5))*size)**2)

**0.5

36 else:

37 pos = (((j-(TMN -0.5))*size)**2+((i-(TMN -0.5))*size)**2)

**0.5

38 for k in range(TMN):

39 if pos >k*size and pos <(k+1.0)*size:

40 MAPA[i, j] = MAG[k]

41 return MAPA

Listing 6: Function used to generate a map of magnification with an introduced SIS profile at

an angular separation defined by LOCinter.

1 def caso1025B(Min , Cin , Minter , LOCinter , Mouter , LOCouter , Mouter2 ,

LOCouter2 , Mouter3 , LOCouter3 , Mouter4 , LOCouter4 , TMN):

2 from numpy import array , linspace , zeros_like , pi

3 zl = 0.268794356307358 #Mean redshift of the lenses
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4 zs = 2.2038906736872597 #Mean redshift of the sources

5 beta = 3 #Logarithmic slope of background source number counts

6 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")])

7 size = 250.0/ TMN

8 radios = linspace (0.5*size , (TMN -0.5)*size , TMN)

9 radiosrad = radios*pi /(3600.0*180.0)

10

11 radiosinter = zeros_like(radios)

12 radiosouter = zeros_like(radios)

13 radiosouter2 = zeros_like(radios)

14 radiosouter3 = zeros_like(radios)

15 radiosouter4 = zeros_like(radios)

16 for i in range(TMN):

17 if radios[i]<LOCinter:

18 radiosinter[i]=( LOCinter -0.5-i)*size

19 else:

20 radiosinter[i]=(i-LOCinter +0.5)*size

21 if radios[i]<LOCouter:

22 radiosouter[i]=( LOCouter -0.5-i)*size

23 else:

24 radiosouter[i]=(i-LOCouter +0.5)*size

25 if radios[i]<LOCouter2:

26 radiosouter2[i]=( LOCouter2 -0.5-i)*size

27 else:

28 radiosouter2[i]=(i-LOCouter2 +0.5)*size

29 if radios[i]<LOCouter3:

30 radiosouter3[i]=( LOCouter3 -0.5-i)*size

31 else:

32 radiosouter3[i]=(i-LOCouter3 +0.5)*size

33 if radios[i]<LOCouter4:

34 radiosouter4[i]=( LOCouter4 -0.5-i)*size

35 else:

36 radiosouter4[i]=(i-LOCouter4 +0.5)*size

37 radiosinterrad = radiosinter*pi /(3600.0*180.0)

38 radiosouterrad = radiosouter*pi /(3600.0*180.0)

39 radiosouterrad2 = radiosouter2*pi /(3600.0*180.0)

40 radiosouterrad3 = radiosouter3*pi /(3600.0*180.0)

41 radiosouterrad4 = radiosouter4*pi /(3600.0*180.0)

42 mag_in = (get_xc_NFW(radiosrad , Min , zl , zs , Cin , cpar)+1) **(1/( beta -1)

111



)

43 mag_inter = (get_xc_SIS(radiosinterrad , Minter , zl, zs, cpar)+1) **(1/(

beta -1))

44 mag_out = (get_xc_SIS(radiosouterrad , Mouter , zl , zs , cpar)+1) **(1/( beta

-1))

45 mag_out2 = (get_xc_SIS(radiosouterrad2 , Mouter2 , zl, zs, cpar)+1) **(1/(

beta -1))

46 mag_out3 = (get_xc_SIS(radiosouterrad3 , Mouter3 , zl, zs, cpar)+1) **(1/(

beta -1))

47 mag_out4 = (get_xc_SIS(radiosouterrad4 , Mouter3 , zl, zs, cpar)+1) **(1/(

beta -1))

48

49 MAG = mag_in*mag_inter*mag_out*mag_out2*mag_out3*mag_out4

50

51 MAPA = np.zeros ((TMN*2, TMN *2))

52 for i in range(TMN*2):

53 print(i)

54 for j in range(TMN*2):

55 if i < TMN:

56 if j < TMN:

57 pos = (((TMN -0.5-i)*size)**2+ ((TMN -0.5-j)*size)**2)

**0.5

58 else:

59 pos = (((TMN -0.5-i)*size)**2+((j-(TMN -0.5))*size)**2)

**0.5

60 else:

61 if j < TMN:

62 pos = (((TMN -0.5-j)*size)**2+((i-(TMN -0.5))*size)**2)

**0.5

63 else:

64 pos = (((j-(TMN -0.5))*size)**2+((i-(TMN -0.5))*size)**2)

**0.5

65 for k in range(TMN):

66 if pos >k*size and pos <(k+1.0)*size:

67 MAPA[i, j] = MAG[k]

68 return MAPA

Listing 7: Function used in section 6.2 to produce a requence of SIS profiles imitating the

variable behaviour of the observed CCF in the fourth bin of richness in FER22.
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B.3 CCF Construction and Fitting

1 def xc_maker (SinMG , MG , radio , ssnMG , sMG):

2 salida = array ([])

3 radiosalida = array ([])

4 sigmasalida = array ([])

5 for i in range(shape(SinMG)[0]):

6 if SinMG[i]==0.0:

7 continue

8 else:

9 salidai = MG[i]/ SinMG[i]-1

10 salida = append(salida , salidai)

11 radiosalida = append(radiosalida , radio[i])

12 if MG[i]==0.0:

13 sigmasalida = append(sigmasalida , salidai *(ssnMG[i]/SinMG[i

]))

14 else:

15 sigmasalida = append(sigmasalida , salidai *(ssnMG[i]/SinMG[i]

+ sMG[i]/MG[i]))

16 return salida , sigmasalida , radiosalida

Listing 8: Function used to produce the arrays of observed CCF, the associated uncertainty

and the array of angular separations associated to each data point of the CCF trend.

1 def plateauXC (XC_arr , plateau):

2 from numpy import copy , shape

3 salida = copy(XC_arr)

4 for i in range(shape(salida)[0]):

5 if salida[i]>plateau:

6 salida[i]= plateau

7 return salida

Listing 9: Function used to modify the theoretical CCFs in order to add the plateau.

1 def MBF_parts(rxc , xcobs , sigma_xcobs , prof , M, S):

2 from numpy import logspace , array , zeros_like , shape , sum , argmin , amin ,

amax , pi

3 Ms = logspace (11.5, 17.5, 10000)
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4 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")]) #Wikipedia https ://en.wikipedia.org/wiki/Lambda -CDM_model

5 zl = 0.268794356307358 #Mean redshift of the lenses

6 zs = 2.2038906736872597 #Mean redshift of the sources

7 conc = 4.0 #Concentration

8 beta = 3.0 #Logarithmic slope of background source number counts

9

10 radrxc = rxc*pi /(180.0*3600.0)

11

12 msqs = zeros_like(Ms)

13 msqs_up = zeros_like(Ms)

14 msqs_down = zeros_like(Ms)

15 from scipy.ndimage import gaussian_filter1d

16 for i in range(shape(Ms)[0]):

17 if prof==’NFW’:

18 msqs[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(radrxc , Ms

[i], zl, zs, conc , cpar), 8.257) -xcobs), S)**2.0)

19 msqs_up[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(radrxc ,

Ms[i], zl , zs , conc , cpar), 8.257) -(xcobs+sigma_xcobs)), S)**2.0)

20 msqs_down[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(

radrxc , Ms[i], zl , zs , conc , cpar), 8.257) -(xcobs -sigma_xcobs)), S)**2.0)

21 if prof==’SIS’:

22 msqs[i] = sum(( gaussian_filter1d(plateauXC(get_xc_SIS(radrxc , Ms

[i], zl, zs, cpar), 8.257) -xcobs), S)**2.0)

23 msqs_up[i] = sum(( gaussian_filter1d(plateauXC(get_xc_SIS(radrxc ,

Ms[i], zl , zs , cpar), 8.257) -(xcobs+sigma_xcobs)), S)**2.0)

24 msqs_down[i] = sum(( gaussian_filter1d(plateauXC(get_xc_SIS(

radrxc , Ms[i], zl , zs , cpar), 8.257) -(xcobs -sigma_xcobs)), S)**2.0)

25

26 MASSOUT = Ms[argmin(msqs)]/M

27 S_up = Ms[argmin(msqs_up)]/M

28 S_down = Ms[argmin(msqs_down)]/M

29 return MASSOUT , amin(array([S_up , S_down ])), amax(array([S_up , S_down ]))

Listing 10: Function developed to perform a fit on the mass parameter from the observed CCFs,

with a least squares method built up by hand.

1 def MBF_parts_TOT(rxc , xcobs , sigma_xcobs , M, S):

2 from numpy import logspace , array , pi , zeros_like , shape , sum , argmin ,

amin , amax
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3 Ms = logspace (11.5, 17.5, 10000)

4 cpar = array ([(0.3089 , 0.6911 , 0.7)], dtype =[("omgM", "f"), ("omgL", "f"

), ("h", "f")]) #Wikipedia https ://en.wikipedia.org/wiki/Lambda -CDM_model

5 zl = 0.268794356307358 #Mean redshift of the lenses

6 zs = 2.2038906736872597 #Mean redshift of the sources

7 conc = 4.0 #Concentration

8 beta = 3.0 #Logarithmic slope of background source number counts

9

10 radrxc = rxc*pi /(180.0*3600.0)

11

12 msqsNFW = zeros_like(Ms)

13 msqs_upNFW = zeros_like(Ms)

14 msqs_downNFW = zeros_like(Ms)

15 msqsSIS = zeros_like(Ms)

16 msqs_upSIS = zeros_like(Ms)

17 msqs_downSIS = zeros_like(Ms)

18 from scipy.ndimage import gaussian_filter1d

19 for i in range(shape(Ms)[0]):

20 msqsNFW[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(radrxc , Ms[

i], zl, zs, conc , cpar), 8.257) -xcobs), S)**2.0)

21 msqs_upNFW[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(radrxc ,

Ms[i], zl, zs, conc , cpar), 8.257) -(xcobs+sigma_xcobs)), S)**2.0)

22 msqs_downNFW[i] = sum(( gaussian_filter1d(plateauXC(get_xc_NFW(radrxc

, Ms[i], zl, zs, conc , cpar), 8.257) -(xcobs -sigma_xcobs)), S)**2.0)

23 msqsSIS[i] = sum(( gaussian_filter1d(plateauXC(get_xc_SIS(radrxc , Ms[

i], zl, zs, cpar), 8.257) -xcobs), S)**2.0)

24 msqs_upSIS[i] = sum(( gaussian_filter1d(plateauXC(get_xc_SIS(radrxc ,

Ms[i], zl, zs, cpar), 8.257) -(xcobs+sigma_xcobs)), S)**2.0)

25 msqs_downSIS[i] = sum(( guassian_filter1d(plateauXC(get_xc_SIS(radrxc

, Ms[i], zl, zs, cpar), 8.257) -(xcobs -sigma_xcobs)), S)**2.0)

26

27 MASSOUTNFW = Ms[argmin(msqsNFW)]/M

28 MASSOUTSIS = Ms[argmin(msqsSIS)]/M

29 if abs(MASSOUTNFW -1)>abs(MASSOUTSIS -1):

30 print(’SIS’)

31 S_up = Ms[argmin(msqs_upSIS)]/M

32 S_down = Ms[argmin(msqs_downSIS)]/M

33 print(MASSOUTSIS , amin(array ([S_up , S_down ])), amax(array ([S_up ,

S_down ])))

34 return MASSOUTSIS , amin(array([S_up , S_down ])), amax(array([S_up ,
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S_down ]))

35 else:

36 print(’NFW’)

37 S_up = Ms[argmin(msqs_upNFW)]/M

38 S_down = Ms[argmin(msqs_downNFW)]/M

39 print(MASSOUTNFW , amin(array ([S_up , S_down ])), amax(array ([S_up ,

S_down ])))

40 return MASSOUTNFW , amin(array([S_up , S_down ])), amax(array([S_up ,

S_down ]))

Listing 11: Function used to test the ability of the simulator to differentiate SIS from NFW

observed CCFs.

1 def M_L(rxc , xcobs , prof , M):

2 from numpy import log10 , pi , array , shape , append

3 xcobs_LC = log10(xcobs)

4 from scipy.optimize import curve_fit

5 radrxc = rxc*pi /(180.0*3600.0)

6 radrxc_LC = log10(radrxc)

7 radrxc_L = array ([])

8 xcobs_L = array ([])

9 for i in range(shape(xcobs_LC)[0]):

10 if xcobs_LC[i] >0.00001:

11 radrxc_L = append(radrxc_L , radrxc_LC[i])

12 xcobs_L = append(xcobs_L , xcobs_LC[i])

13 if prof == ’NFW’:

14 pars , dpars = curve_fit(get_xc_NFW_M , radrxc_L , xcobs_L , p0=[M],

bounds =(0.5*M, 2.0*M))

15 if prof == ’SIS’:

16 pars , dpars = curve_fit(get_xc_SIS_M , radrxc_L , xcobs_L , p0=[M],

bounds =(0.5*M, 2.0*M))

17 return pars , dpars

Listing 12: curve fit adapted function to perform the filtered theoretical + plateau mass fit of

the CCFs.

1 def MC(rxc , xcobs , M, C):

2 xcobs_LC = np.log10(xcobs)

3 from scipy.optimize import curve_fit

4 radrxc = rxc*np.pi /(180.0*3600.0)
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5 radrxc_LC = np.log10(radrxc)

6 radrxc_L = np.array ([])

7 xcobs_L = np.array ([])

8 for i in range(np.shape(xcobs_LC)[0]):

9 if xcobs_LC[i] >0.00001:

10 radrxc_L = np.append(radrxc_L , radrxc_LC[i])

11 xcobs_L = np.append(xcobs_L , xcobs_LC[i])

12 pars , dpars = curve_fit(get_xc_NFW_MC , radrxc_L , xcobs_L , p0=[M, C],

bounds =((0.5*M, 0.5*C), (2.0*M, 2.0*C)))

13 return pars , dpars

Listing 13: curve fit adapted function to perform the filtered theoretical + plateau mass and

concentration fit of the CCFs.

1 def fit_2NFW(rxc , xcobs , Min , Cin , Mout , Cout):

2 from numpy import log10 , pi , array , shape , append

3 xcobs_LC = log10(xcobs)

4 from scipy.optimize import curve_fit

5 radrxc = rxc*pi /(180.0*3600.0)

6 radrxc_LC = log10(radrxc)

7 radrxc_L = array ([])

8 xcobs_L = array ([])

9 for i in range(shape(xcobs_LC)[0]):

10 if xcobs_LC[i] >0.00001:

11 radrxc_L = append(radrxc_L , radrxc_LC[i])

12 xcobs_L = append(xcobs_L , xcobs_LC[i])

13 pars , dpars = curve_fit(get_xc_2NFW , radrxc_L , xcobs_L , p0=[Min , Cin ,

Mout , Cout], bounds =((0.2*Min , 0.2*Cin ,0.2*Mout , 0.2* Cout), (10.0*Min ,

10.0*Cin ,10.0* Mout , 10.0* Cout)))

14 return pars , dpars

Listing 14: curve fit adapted function to perform the filtered theoretical + plateau mass and

concentration fit of a compound profile made up of two NFW individual ones.

1 def fit_NFWSIS(rxc , xcobs , Min , Mout , C):

2 from numpy import log10 , pi , array , shape , append

3 xcobs_LC = log10(xcobs)

4 from scipy.optimize import curve_fit

5 radrxc = rxc*pi /(180.0*3600.0)

6 radrxc_LC = log10(radrxc)

7 radrxc_L = array ([])

8 xcobs_L = array ([])
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9 for i in range(shape(xcobs_LC)[0]):

10 if xcobs_LC[i] >0.00001:

11 radrxc_L = append(radrxc_L , radrxc_LC[i])

12 xcobs_L = append(xcobs_L , xcobs_LC[i])

13 pars , dpars = curve_fit(get_xc_NFWSIS , radrxc_L , xcobs_L , p0=[Min ,Mout ,

C], bounds =((0.2*Min ,0.2* Mout , 0.2*C), (10.0*Min ,10.0* Mout , 10.0*C)))

14 return pars , dpars

Listing 15: curve fit adapted function to perform the filtered theoretical + plateau mass and

concentration fit of a compound profile made up of one NFW for the cluster halo and a SIS

one for the BCG.

1 def cortes_compound(modo , Mout , Min , profin , Cout , Cin = 1.0):

2 from numpy import logspace , pi , shape

3 r = logspace(-1, 3, 10000)

4 rrad = r*pi /(180.0*3600.0)

5 xc_out = get_xc_NFW(rrad , Mout , zl , zs , Cout , cpar)

6 if profin == ’SIS’:

7 xc_in = get_xc_SIS(rrad , Min , zl, zs, cpar)

8 if profin == ’NFW’:

9 xc_in = get_xc_NFW(rrad , Min , zl, zs, Cin , cpar)

10

11 if modo == ’byhand ’:

12 return r, xc_out , xc_in

13 if modo != ’byhand ’:

14 prueba = xc_in - xc_out

15 for i in range(shape(prueba)[0]-1):

16 if prueba[i]* prueba[i+1] < 0.0:

17 donde = r[i]

18 else:

19 continue

20 if modo == ’indicativo ’:

21 return donde

22 if modo == ’todo’:

23 return donde , r, xc_out , xc_in

Listing 16: curve fit adapted function to perform the filtered theoretical + plateau mass and

concentration fit of a compound profile made up of one NFW for the cluster halo and a SIS

one for the BCG.
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C Additional Figures

Figure C.1: Relating to figure 5.14, the left and right panel show respectively the change of the
plateau region of the CCF for 104 and 105 magnified sources.

Figure C.2: Same representation as figure 5.18 but for a deflector mass of 1015 M�.

Figure C.3: Smoothed map of the observed sources in FER22 (figure 2a).
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Figure C.4: Best fit to the observed compound CCFs for the double NFW profile. Maps of
counts built up with input parameters the results for the first three bins of richness in FER22.
Go to table 3.1 to consult them.

Figure C.5: Best fit to the observed compound CCFs for the double NFW profile. Maps of
counts built up with input parameters the results for last two bins of richness and the total in
FER22. Go to table 3.1 to consult them.
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Figure C.6: Best fit to the observed compound CCFs for the SIS + NFW profile. Maps of
counts built up with input parameters the results for the first three bins of richness in FER22.
Go to table 3.1 to consult them.

Figure C.7: Best fit to the observed compound CCFs for the SIS + NFW profile. Maps of
counts built up with input parameters the results for last two bins of richness and the total in
FER22. Go to table 3.1 to consult them.

Parameters Bin 1 Bin 2 Bin 3
[M ] ≡ 1013 M� FER22 Out A FER22 Out A FER22 Out A

SIS + NFW
MSIS 0.5 0.1 0.6 0.5 0.6 0.1
MNFW 4.9 8.4 5.3 2.4 10.1 18.3
C 0.94 1.21 0.30 0.29 1.17 0.76

Outer
MNFW 5.8 5.7 7.9 16.9 11.2 8.4
C 0.74 0.39 0.39 0.42 1.00 0.40

Inner
MNFW 3.8 1.5 2.3 1.2 7.2 2.4
C 3.63 6.74 6.83 6.82 3.81 6.86

Inner + Outer MTOT 9.6 7.3 10.2 18.1 18.4 10.9

Table C.1: Output values from our fitting algorithm after having introduced FER22 results,
accounting for bins from 1 to 3. Magnification calculated for the case A.
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Parameters Bin 4 Bin 5 Total
[M ] ≡ 1013 M� FER22 Out A FER22 Out A FER22 Out A

SIS + NFW
MSIS 0.6 0.1 1.0 0.5 0.5 0.1
MNFW 14.0 35.5 51.5 55.1 5.5 5.8
C 0.65 0.28 0.56 0.29 1.84 1.99

Outer
MNFW 27.4 32.9 51.5 54.1 7.1 4.6
C 1.74 1.00 0.56 0.56 1.72 1.72

Inner
MNFW 1.0 0.9 1.0 0.5 4.1 2.5
C 11.91 8.34 14.8 12.89 4.17 4.17

Inner + Outer MTOT 28.4 33.8 52.5 54.6 11.2 7.0

Table C.2: Output values from our fitting algorithm after having introduced FER22 results,
bins 4, 5 and the totals. Magnification calculated for the case A.

Figure C.8: Map of counts for the double SIS profile for which the simulated CCF is presented
in the left panel in figure 6.5. From left to right we simulated 106, 105 and 104 sources. We have
chosen a window of 200× 200 arcsec2 so that features are better seen. For further information
go to section 6.1.

Figure C.9: Map of counts for the outer 1015.0 M� SIS profile and inner 1014.2 M� with con-
centration 6, for which the simulated CCF is presented in the right panel in figure 6.5. From
left to right we simulated 106, 105 and 104 sources. For further information go to section 6.1.

122



Figure C.10: Maps of counts simulated to build up CCFs in figure 6.8. A 1012.6 M� SIS profile
was introduced at ∼ 12.6 arcsec. At the left the pixel size is 1 arcsec/px. At the right, 0.5
arcsec/px.
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