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Abstract: A set of analytical equations for the calculation of the temperature in supercapacitors
operating in constant-power applications is presented in this paper. Although the main operation
modes of supercapacitors are constant-current and constant-power charge and discharge, this study
was focused on the latter, since both sources and loads act as constant-power systems in a wide
range of power conversion facilities. The starting point of this study is the classical supercapacitor
model based on electrical and thermal parameters provided by manufacturers or also obtained by
experimental means. The proposed mathematical analysis is based on the so-called incomplete
gamma function that presents two major advantages over previously existing methods. Firstly, it
is not necessary to solve any differential equations system by means of numerical methods, which
reduces the required computational effort. Secondly, no simplifications to relief the calculations are
made in the computation of any variable. The new formulation renders valid solutions even for
high-power demand situations. Moreover, the temperature of the supercapacitor can be expressed as
a function of time or any other electrical variable in the charging and discharging processes. There-
fore, the proposed formulas are especially remarkable for the electrical and thermal dimensioning
of supercapacitors.

Keywords: constant-power operation; supercapacitors; electrical and thermal analysis

1. Introduction

The high capacitance and low series-resistance of supercapacitors (SCs) provide them
with a significant specific power, high charging and discharging currents, and a notable
efficiency. Therefore, SCs are increasingly used in a wide range of industrial pieces of
equipment as the principal energy storage system or, more frequently, as a support to
devices with a higher energy storage capacity, albeit dynamically poorer because of its
slower response, as in the case of batteries and fuel cells [1–5]. Together with them, SCs
make up hybrid energy storage units installed in electric vehicles [6–9], renewable energy
systems [10–13], microgrids [14,15], and public transport vehicles [16]. This hybrid combi-
nation presents particular uses as well, such as public works machinery [17], military [18]
and recreational vehicles [19], and even maritime transport [20].

Diverse models to analyze the behavior of SCs have been already developed. L. Zhang
et al. [21] classified such models into four categories: electrochemical, equivalent-circuit-
based, neural network, and fractional-order models. Although neural network models,
such as the one developed by J. Marie-Françoise et al. [22], remarkably capture the dy-
namic features of the cell, complex calculations are needed and variables that must be
experimentally measured are frequently required. Moreover, several of these variables
have no physical meaning and cannot be easily incorporated into an electrical model. On
another note, fractional-order models were introduced to improve the accuracy of the
reproduction of the behavior of SCs [23] and to identify their parameters [24,25]. The
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order of the differential equations defining them is a non-integer value, unlike that of
ordinary equations. Furthermore, a series-connected component (called a Warburg-like
element) is added, whereas it is absent from the other aforementioned models. Equivalent-
circuit-based models are the most widely chosen due to their simplicity and the use of
ordinary differential equations. Numerous variants of these models have already been
developed and tested. Models with multiple parallel-connected RC branches provide
results quite similar to those given by an actual SC. The number of branches in parallel
does not tend to be higher than three, and each branch is characterized by having a specific
time constant. Their dynamics are notable, especially at voltages higher than 40% of the
rated value, and their accuracy can be improved by incorporating further branches, as
stated by L. Shi et al. [26]. Aside from this, the physical structure and dynamic response of
SCs is notably improved when using transmission-line RC models. However, they require
intricate analytical formulas, and their parameters are not provided by the manufacturers.
Other RC models do not consider the capacitance to be constant, but variable with the
internal voltage [27,28]. Although the results provided by such models are good, their
complexity makes it difficult to build analytical equations for the operation at constant
power, they are, thus, suitable and commonly used for numerical simulation. When the
study is aimed at the self-discharge processes, a parallel-connected resistor is incorporated.
This resistor is assumed to be constant by Lei Zhang et al. [29] or treated as variable by
Ying Zhang et al. [30].

Despite the huge number of possibilities that can be found in the previous research, the
RC-series model is most widely used. Both the resistance and the capacitance are provided
by manufacturers and can be also obtained by means of standard experimental tests [31].
The constant-parameter RC-series model [32–34] renders reasonably simple analytical
formulas when analyzing the SCs charge and discharge at constant power. Moreover, the
well-known analogy between electric and thermal circuits is used in this model to assess
the temperature of the SC [35–38]. The thermal resistance and capacitance required to
build the thermal model of the SC are provided by manufacturers as well, thus allowing
its implementation.

The main operation modes of the SCs are the constant-current and constant-power
charge and discharge. In any operation mode, both sources and loads may act like constant-
power systems in a large number of power conversion systems (e.g., those involving
Variable Speed Drives and DC-DC converters [32,33]). On the contrary, charging processes
conducted by means of real voltage sources are not common in industrial applications
because of its poor efficiency. As demonstrated by Rufer et al. [39], efficiency cannot surpass
the 50% when the SC starts charging at a nil voltage. Finally, Mohammed E. Fouda et al. [40]
referred to various applications where SCs can be discharged through a constant resistor,
as is the case of heaters and speakers. Several studies have focused on studying SCs in
constant-power applications. For instance, the analysis of the efficiency and losses of
SCs operating at constant power is presented in [41]. The traditional RC-series model
considered in [42–44] has also been used by other researchers to compute the autonomy
time of SCs discharging at constant power. In this regard, an approximate method based
on an energy balance is proposed in [33] and an accurate equation expressed as a function
of the internal voltage is obtained in [32]. Moreover, Burke gave an alternative formula that
produces excellent results in [45]. J. F. Pedrayes et al. presented in [46] a complete analysis
of the main electrical variables involved in the constant-power charge and discharge
operation that enables the expression of any of those variables as a function of the rest.

The thermal behavior of SCs is of paramount importance when it comes to the design
of an energy storage system, its installation, operation, service, and lifetime. In this respect,
it is crucial to analyze the temperature the SCs may reach when being subjected to a
succession of charging and discharging processes. If temperature is accurately calculated,
the most suitable and efficient refrigeration system can be selected. The SCs array exact
dimensioning will be possible, and its lifespan will also be assessed, since it depends on
the voltage range and average temperature of the individual cells during operation [47–53].
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Whereas the analysis of the temperature of the cells when SCs are charged or discharged at
constant current is well documented [54,55], the number of references that can be found on
the subject for constant-power operation is scarce. A simplified study based on the same
exponential behavior as the one considered in the constant-current analysis is undertook
in [43]. This study is only acceptable when the thermal capacitance is particularly high.
J. F. Pedrayes et al. [56] developed a mathematical expression to assess the instantaneous
temperature of the cells when they operate at constant power. Such an expression is valid
for any value of the thermal capacitance; however, the obtained results are not accurate
under high power demand conditions due to the various simplifications that are made.

This paper aims at providing a formula free of such simplifications and, hence, able to
render an improved evolution of the temperature of the cells over time, as well as the one of
any other electrical variables intervening in the constant-power charging and discharging
processes. This extension of the theoretical background can be useful to implement simple
tools for the pre-design of the cooling system of SCs arrays, with a great potential to
simplify the conduction of final experimental tests. It is important to point out that, even
if the power profile imposed to the SC array is not constant, as in the example shown
in Figure 1, it can always be discretized to a stepwise function, either using a fixed or
variable time step, ti. Notice that if the power profile is measured to be used as an input
for the design process, it will be typically obtained using digital data loggers. Thus, the
raw data will inherently be provided in a stepwise format. Obviously, the shorter the
discretization step the better the approximation to the actual power profile. By using the
mathematical expressions provided in this paper, the temperature at the end of each time
step can be straightforwardly obtained from the initial values of the same interval. Besides
this generalization, there are a good number of industrial pieces of equipment, such as
uninterruptible power supplies (UPSs), in which the SCs are typically commanded to
provide grid support by feeding an essentially constant power to loads such as emergency
lighting, electronic measurement devices, monitoring systems, etc. In these widespread
applications, the estimation of the SCs temperature can be conducted directly for the
full discharge process by using the analytical expressions presented in this paper. The
proposed formulas can also be used to simplify the development of new control techniques
for SCs arrays.
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The present study is, therefore, aimed at providing an alternative mathematical
formulation that eliminates the simplifications used by the authors in [56]. This way, it is
possible to obtain the strictly accurate value of the temperature vs. time evolution of an SC
cell, as well as any other electrical variable, when it is used in all constant-power industrial
applications. The equations presented in this paper, which are based on the traditional
electrical and thermal models, as well as on the features of the so-called Incomplete Gamma
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Function [57–61], allow a fast and explicit calculation of the temperature of the SC cell to
be made, avoiding the use of more complex simulations or experimental tests at the initial
design stage. This fact opens the door to an effortless analysis of different scenarios during
the design process: different ambient temperatures, different initial temperatures of the
device, different power profiles (either constant or not), and so on.

The rest of the paper is organized as follows: Section 2.1 shows a summary of the
electrical analysis of an SC cell subjected to constant-power charge and discharge; in
Section 2.2, the Incomplete Gamma Function is presented; finally, in Section 2.3, the entire
temperature analysis of an SC cell is developed. The results are presented in Section 3,
which that include several case studies that prove that the proposed formulation is valid
for all possible conditions as well as a summary that briefly shows the practical application
of the new equations. Section 4 shows the conclusions of the study.

2. Materials and Methods
2.1. Electrical Analysis of an SC Cell Operating at Constant Power

A complete mathematical formulation for the electrical analysis of SCs operating at
constant power is presented in [46] by the authors of this paper. Nevertheless, the main
electrical variables involved in the charge and discharge of an SC cell at constant power
will be hereafter described for the sake of clarity. As it can be seen in Figure 2, the cell is
emulated by means of a RC-series electrical model, R being the internal resistance and C
the rated capacitance, which is assumed to be constant. The remaining variables in Figure 2
are the internal voltage, u, the external voltage, uco, and the discharge current, i.
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The initial internal voltage of the cell is called U0. A discharge at constant power,
P > 0, is assumed to begin at t = 0. From the mathematical formulation obtained in [46],
a dimensionless variable, g1(t), can be defined as:

g1(t) = −W−1

(
− exp(−g(t)

2·R·P )

2·R·P

)
, (1)

where W−1(x) is the secondary branch of the Lambert-W function. In the event of a
charging process (P < 0), the main branch of the Lambert-W function, W0(x), must be used.
The argument of this function includes another variable, g(t), measured in V2, that varies
over time according to:

g(t) = U2
0 + U0·

√
U2

0 − 4·R·P− 4·R·P· ln
(

U0 +
√

U2
0 − 4·R·P

)
+ 2·R·P·[ln(2)− 1]− 4·P·t

C . (2)
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As is shown in this equation, the linear function g(t) decreases over time for dis-
charging processes and increases for charging. In order to obtain a clearer mathematical
representation, it can be abbreviated as:

g(t) = A− 4·P·t
C

, (3)

where A is the y-intercept of g(t),

A = U2
0 + U0·

√
U2

0 − 4·R·P− 4·R·P· ln
(

U0 +
√

U2
0 − 4·R·P

)
+ 2·R·P·[ln(2)− 1]. (4)

As is detailed in [46], all the electrical variables involved in the analysis of the cell
charge and discharge at constant power, as well as time, can be expressed as a function of
g1(t). For instance, the power losses, pd, in R can be calculated as:

pd =
P
g1

, (5)

and the internal voltage, u, can be expressed as:

u =
√

R·P·g1 +

√
R·P
g1

. (6)

2.2. Incomplete Gamma Function

The incomplete Gamma Function is obtained from the gamma function, Γ(a), which
is defined as:

Γ(a) =
∫ ∞

0
ta−1· exp(−t)·dt, (7)

where a > 0. The interval of integration of Γ(a) can be split into two parts rendering
two functions:

γ(a, x) =
∫ x

0
ta−1· exp(−t)·dt, (8)

Γ(a, x) =
∫ ∞

x
ta−1· exp(−t)·dt, (9)

where x ≥ 0. The functions γ(a, x) and Γ(a, x) are, respectively, called Lower and Upper
Incomplete Gamma Functions. The latter being also called Complementary Incomplete
Gamma Function or Prym’s function. Both are defined on complex numbers, but only on
those with a positive real part in the case of γ(a, x). More specifically, the function Γ(a, x)
will be used in this study to conduct the thermal analysis of the SC cell. In this regard,
Figure 3 shows the evolution of Γ(a, x) for different values of a.

Another function,

Γ(a, x1, x2) =
∫ x2

x1

ta−1· exp(−t)·dt = Γ(a, x1)− Γ(a, x2), (10)

called the Generalized Incomplete Gamma Function, can be defined from Γ(a, x) and is also
used in this study. All the functions mentioned in this section are widely applied in other
fields of research, such as astrophysics, probability theory, and engineering, particularly in
heat transfer studies [57–62].

2.3. Thermal Analysis of SCs Operating at Constant Power Based on the Incomplete Gamma Function

The thermal model of the SC is based on the classical analogy with an electric circuit, as
is shown in Figure 4 [33], where pd represents the power losses at the internal resistance of
the cell, pamb stands for the heat power losses, Tamb is the ambient temperature (considered
constant), Tcell is the temperature of the cell, pinternal is the heat power that increases the
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thermal energy stored in the SC, and RTH [◦C/W] and CTH [J/◦C], respectively, are the
thermal resistance and capacitance of the cell. Both RTH and CTH are usually provided by
the manufacturer or can be calculated by conducting simple experimental tests.
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The differential equation that determines the thermal behavior of the cell is as follows:

pd = CTH·θ′+
θ

RTH
, (11)

θ being the difference between the cell and ambient temperatures:

θ = Tcell − Tamb. (12)

Equation (11) can be expressed as a function of g1 by applying the chain rule:

pd = CTH·
dθ
dg1
·
dg1
dt

+
θ

RTH
= CTH·

dθ
dg1
·g′1 +

θ

RTH
. (13)

The time derivative of g1, g1
′, can be calculated by deriving Equation (1) and express-

ing the result as a function of g1 itself:

g1
′ =

dg1
dt

= − 2
R·C ·

W−1

(
− exp

(
−g(t)
2·R·P

)
2·R·P

)

1 + W−1

(
− exp

(
−g(t)
2·R·P

)
2·R·P

) =
2

R·C ·
g1

1− g1
. (14)
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By combining Equations (5), (13) and (14), a first-order differential equation on θ as a
function of g1 can be obtained:

dθ
dg1

=

(
R·C

2·RTH·CTH

)
·
g1 − 1

g1
·θ−

(
R·C·P
2·CTH

)
·
g1 − 1

g1
2 . (15)

In order to simplify Equation (15), a and b are defined as follows:

a =
R·C

2·RTH·CTH
=

τ

2·τTH
, (16)

b = −R·C·P
2·CTH

= − τ·P
2·CTH

, (17)

where τ and τTH, respectively, are the electrical and thermal constants. Because in most
commercial cells τTH � τ, the value of a is within 0 and 1; 0 < a < 1. Moreover, as can
be deduced from Equations (16) and (17), a is dimensionless, whereas b is measured in
temperature units. These values can be assumed to be constant within the temperature
range that goes from 0 ◦C to 65 ◦C because the electrical parameters of the cells, R and C,
barely change in that span, as indicated by manufacturers [62,63], and P is assumed to be
constant in this study. Therefore, Equation (15) can be expressed more compactly as:

dθ
dg1

=

(
g1 − 1

g1

)
·
(

a·θ+ b
g1

)
. (18)

The general solution of Equation (18) is as follows:

θ(g1) =
exp(a·g1)

g1
a ·

(
k +

b
aa ·(a·Γ(a− 1, a·g1)− Γ(a, a·g1))

)
, (19)

where k is the constant of integration, dependent on the initial temperature of the cell
and Γ(a, x) is the aforementioned Upper Incomplete Gamma Function. Considering the
definition given for Γ(a, x) in Equation (9) and integrating it by parts the following recursive
expression can be defined:

Γ(a− 1, a·g1) =

(
1

a− 1

)
·
(

Γ(a, a·g1)− (a·g1)
a−1· exp(−a·g1)

)
. (20)

By replacing Equation (20) in Equation (19), and according to the definition of a and b
given in Equations (16) and (17), the general solution of Equation (18) can be expressed as
a function of the starting parameters, RTH, P, and a, with the final solution being:

θ(g1) =

(
exp(g1)

g1

)a

·
(

k− RTH·P
aa−1 ·

(
1

a− 1

)
·Γ(a, a·g1)

)
+

a
(a− 1)

·RTH·P
g1

. (21)

In the most general case, the cell will not initially be at the ambient temperature. In
this situation for t = 0, g1 = g1(0) and θ

(
g1(0)

)
= θ0 = T0 − Tamb, where T0 is the initial

temperature of the cell and Tamb the ambient temperature, are assumed to be constant, as
explained above. Accordingly, Equation (21) can be solved for the constant of integration:

k =

(
θ0 +

RTH·P·a
1− a

· 1
g1(0)

)·g1(0)
a· exp

(
−a·g1(0)

)
+

RTH·P
aa−1 ·

(
1

a− 1

)
·Γ
(

a, a·g1(0)

)
. (22)

Finally, θ can be expressed as a function of g1 by replacing k from Equation (22), in
Equation (21):

θ(g1) =

(
exp(g1)

g1

)a

·(kT1 + kT2·Γ(a, a·g1)) +
a

(a− 1)
·RTH·P

g1
. (23)
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The new constants kT1 and kT2 have been defined, once more, to simplify the solution
and are measured in temperature units:

kT1 = (θ0 +
RTH·P·a

1− a
· 1
g1(0)

)·(
g1(0)

exp(g1(0))
)

a
+

RTH·P
aa−1 ·(

1
a− 1

)·Γ(a, a·g1(0)), (24)

kT2 =
RTH·P
aa−1 ·

(
1

1− a

)
. (25)

As can be deduced, if the value of the electric constant τ is much lower than the
thermal constant: τ� τTH, then a ≈ 0, kT1 and kT2 tend to θ0 and 0, respectively, and the
thermal jump θ tends to θ0, i.e., the temperature of the cell barely varies. This result is
logical because the higher the thermal capacitance, the higher the thermal inertia and the
lower the temperature increase with respect to the ambient for a given amount of power
losses. The same happens if R tends to 0 because, in that case, a tends to 0 as well, and θ

maintains its initial value (θ0) since no thermal energy is dissipated.
By combining Equations (23)–(25), the thermal jump θ can be alternatively expressed as:

θ(g1) =

(
θ0 +

RTH·P·a
(1− a)·g1(0)

)
·

g1(0)

g1
·

exp(g1)

exp
(

g1(0)

)
a

+
RTH·P·a
(a− 1)

·

exp(a·g1)·Γ
(

a, a·g1(0), a·g1

)
(a·g1)

a +
1
g1

, (26)

where:
Γ
(

a, a·g1(0), a·g1

)
= Γ

(
a, a·g1(0)

)
− Γ(a, a·g1), (27)

according to Equation (10). A new function, f
(

a, g1(0), g1

)
, and constants kθ1 and kθ2 can

now be defined as:

f
(

a, g1(0), g1

)
=

exp(a·g1)·Γ
(

a, a·g1(0), a·g1

)
(a·g1)

a +
1
g1

, (28)

kθ1 =

(
θ0 +

RTH·P·a
(1− a)·g1(0)

)
· exp

(
−a·g1(0)

)
, (29)

kθ2 =
RTH·P·a
(a− 1)

, (30)

in order to refine the result and defining a more compact and simple expression, we obtain:

θ(g1) = kθ1·
(g1(0)

g1

)a
· exp(a·g1) + kθ2·f

(
a, g1(0), g1

)
. (31)

Constants kθ1 and kθ2 are real numbers that are measured in temperature units, the
former being positive in all the cases, and the latter being positive in charges (P < 0) and
negative in discharges (P > 0).

The Incomplete Gamma Function, Γ(a, x), provides real values when x ≥ 0 and
complex numbers otherwise. Because the variable to be computed is a temperature, it
cannot be a complex number. According to the definitions of g1 and its initial value, g1(0),
both of them are positive for discharges and negative for charges, as stated in [46]. Because
a, according to Equation (16), is a non-integer positive real number, the functions Γ(a, a·g1),

Γ
(

a, a·g1(0)

)
, and (a·g1)

a render complex numbers for charge processes. However, the

value of function f
(

a, g1(0), g1

)
is a real number in both charge and discharge. Taking into
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account that the incomplete Gamma Function, Γ(a, x), can be expressed as a function of
gamma function Γ(a) as follows:

Γ(a, x) = Γ(a)− xa·
∞

∑
k=0

(−x)k

(a + k)·k!
(32)

it can be concluded, from Equation (10), that:

Γ
(

a, a·g1(0), a·g1

)
(a·g1)

a =
∞

∑
k=0

(−a·g1)
k

(a + k)·k!
−
(g1(0)

g1

)a
·

∞

∑
k=0

(
−a·g1(0)

)k

(a + k)·k!
(33)

Because the signs of g1 and g1(0) are equal (both positive in discharges and both nega-

tive in charges),
( g1(0)

g1

)a
renders in Equation (33) a real number, as do both summations

due to k being an integer. The same applies to the first summand in Equations (26) and (31).
Finally, the temperature of the cell can be computed by summing the thermal jump θ(g1)
in Equations (28)–(31) plus the ambient temperature:

Tcell(g1) = θ(g1) + Tamb. (34)

Once the temperature of the cell is expressed as a function of g1 (dimensionless), it can
be defined as a function of the electrical variables involved in the charging and discharging
processes (current, internal and external voltages, dissipated energy, state of charge, etc.)
according to the expressions given in [46], or as a function of time from Equation (1). For
instance, g1 can be expressed as a function of the external voltage as:

g1 =
u2

co
R·P. (35)

By combining Equations (31), (34), and (35), the temperature of the cell can be ex-
pressed as a function of the external voltage as:

Tcell(uco) = kθ1·
(

u2
co(0)

u2
co
· exp

(
u2

co
R·P

))a

+ kθ2·f
(

a,
u2

co(0)

R·P ,
u2

co
R·P

)
+ Tamb, (36)

where uco(0) represents the initial value of the external voltage, uco. The same procedure
can be repeated with any other variable involved in the process.

3. Discussion

The charge and discharge of an SC at both low and high constant power are assessed
in this section in order to prove the proposed formulation valid. Parameters R, C, RTH, and
CTH given by Maxwell Technologies™ for a 650-F cell are used [63] and shown in Table 1,
which also includes the value of the constant a as defined in (16). Moreover, U0, P, T0, and
Tamb are assumed to be known variables as well.

Table 1. Parameters of the cell under study.

Electrical Values Thermal Values Constant

C (F) R (mΩ) RTH (◦C/W) CTH (J/◦C) Tamb (◦C) a

650 0.8 6.5 190 20 210.53 × 10−6

The differential equation that enables the calculation of i can be defined by means of a
power balance in the discharge:

0 = −i3 + C·
(

P− R·i2
)
·i′. (37)
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Three additional differential equations must be solved to compute the internal voltage
u, the energy losses, ed, and the thermal jump θ; once these variables are known, the other
remaining electrical variables (external voltage, discharged energy, state of charge, etc.) can
be calculated straightforwardly. These three equations are the well-known formula relating
i and u, the relation between the power and energy losses, and the thermal Equation (11).
Therefore, the equations system to be solved is as follows:

i′ = i3

C·(P−R·i2)
u′ = − i

C
e′d = pd = R·i2

θ′ = R·i2
CTH
− θ

RTH·CTH
.

(38)

As referred to above, once Equation (38) is solved, the thermal jump θ and the other
variables are directly obtained. All of them can be expressed as a function of the others.

3.1. Charge and Discharge at Low Power

In this case study, the initial voltage of the cell is assumed to be 2.7 V. A discharge is
followed by a charge. The former occurs at 20 W for 100 s, whereas the latter takes place at
40 W for 50 s. These values are below 4% of the maximum allowed power indicated by the
manufacturer. Table 2 shows the values of the temperature at both the beginning and end
of each time interval, as well as the internal voltage at the beginning of each process and
the values of the constants g1(0) (g1(t) at t = 0), kθ1, and kθ2.

Table 2. Charge and discharge parameters at a low power.

With Proposed Formulas

Process P (W) Duration (s) T0 (◦C) Tfinal (◦C) U0 (V) g1(0) kθ1(◦C) kθ2(◦C)

Discharge 20 100 20 20.05 2.7 453.623 54.849 −27.374
Charge −40 50 20.05 20.15 1.0516 −36.528 52.419 54.748

With approximate formulas [56]

Discharge 20 100 20 20.047 2.7 - - -
Charge −40 50 20.047 20.140 - - - -

Difference (Diff T)

Discharge 20 100 0 4.168 × 10−4 - - - -
Charge −40 50 3 × 10−3 1 × 10−2 - - - -

Figure 5 shows the temperature of the cell obtained every 5 s, by using both the
formulas proposed in Section 2.3, and the approximate equations described in [56]. As
can be concluded from the graph, the agreement between both formulations is absolute
during the discharge, whereas a minor discrepancy can be observed during the charge.
Therefore, the approximate equations practically provide the same results as those given by
the proposed formulas, thus proving the former are proper for charging and discharging
processes at low or moderate power values, as stated in [56].

3.2. Charge and Discharge at High Power

In this case study, the initial voltage of the cell is also considered to be 2.7 V. A charge
is preceded by a discharge as well. The discharge is assumed to occur at 200 W for 10 s,
whereas the charge is kept at 400 W for 5 s. The latter is around 40% of the maximum
allowed power given by the manufacturer, thus representing a high-power value. Table 3
shows the data for this case, the external voltage at the beginning of each process, uco(0) has
also been included. The electrical and thermal parameters of the cell are the ones presented
in Table 1.
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Table 3. Charge and discharge parameters at a high power.

With Proposed Formulas

Process P (W) Duration (s) T0 (◦C) Tfinal (◦C) U0 (V) uco(0) (V) g1(0) kθ1(◦C) kθ2(◦C)

Discharge 200 10 20 20.71 2.7 2.639 43.539 0.00623 −0.2737
Charge −400 5 20.71 21.74 0.848 1.131 −3.998 0.84887 0.5475

With approximate formulas [56]

Discharge 200 10 20 20.59 2.7 - - - -
Charge −400 5 20.59 21.41 - - - - -

Difference (Diff T)

Discharge 200 10 0 0.12 2.7 - - - -
Charge −400 5 0.12 0.33 - - - - -

Figure 6 is the counterpart of Figure 5 for this case study. As can be observed, the
results rendered by the approximate formulas diverge from the exact solution, more
markedly during the charging process. Therefore, the exact formulation proposed in this
study is the most suitable for high-power processes. It must be noticed that if more charge
and discharge cycles were added after those 15 s, the accumulation of errors in each cycle
would give rise to even greater differences between the approximate equations and the
proposed exact solution.

Figure 7 shows the evolution of the variable g1 over time according to Equations (1) and (2).
The values of g1 are positive during the discharge, whereas they are negative in the charge.

Figure 8 shows the evolution of the cell internal and external voltages over time
according to Equations (1), (2), (6) and (35). The discontinuity that can be observed in the
external voltage is due to the voltage drop at the internal resistance, as the reference of the
current is reversed.

Figure 9 shows the evolution of the cell temperature as a function of the variable g1
obtained by means of Equations (28)–(34).

Figure 10 shows the evolution of the cell temperature as a function of the external
voltage obtained from Equations (16), (28)–(30) and (36). As depicted in the graph, both
variables increase during the charge, whereas the external voltage decreases and the
temperature increases in the discharge.
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3.3. Summary and Practical Application

A summary showing the procedure to obtain the temperature of an SC cell will be
hereafter presented. The input data that define the SC will be the ones given by the
manufacturer or those obtained in laboratory normalized tests: electrical resistance, R,
capacitance, C, thermal resistance, RTH, and thermal capacitance, CTH. These are used
together with the values of other variables, such as ambient temperature Tamb (assumed
invariable), the initial value of the internal voltage, U0, initial value of the cell temperature,
T0, and the charge or discharge power must be selected by the user, P.

To obtain the temperature of the cell vs. time, the process is the following:

1. By means of the values of R, C, U0, and P, the function g(t), described in the Equation (2),
must be defined.

2. Once g(t) is obtained, the function g1(t) must be calculated by means of Equation (1).
3. By using the values of R, C, RTH, and CTH, the constant “a” will be defined according

to Equation (16).
4. The initial thermal jump, θ0, will be calculated as the difference between the initial

temperature of the cell, T0, and the ambient temperature, Tamb; θ0 = T0 − Tamb.
5. Once θ0, RTH, P, a, and g1(0) (g1(t) for t = 0) are known, the value of the constants kθ1

and kθ2, according to the Equations (29) and (30), will be calculated. The function
f(a, g1(0), g1) will be defined as well, as stated in Equation (28), g1(t) being the function
previously defined in the point 2 of this summary.

6. The evolution of the temperature of the cell vs. time will be then the following:
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Tcell(t) = kθ1·
( g1(0)

g1(t)

)a
· exp(a·g1(t)) + kθ2·f

(
a, g1(0),g1(t)

)
+ Tamb (39)

To express the temperature of the cell as a function of any other electrical variable, i.e.,
internal or external voltage, dissipated energy, etc., the process is nearly the same. Steps 1
and 2 should be omitted and g1 should be defined as a function of the selected variable.
If for the sake of clarity the desired variable is called “y”, the procedure is as simple as
replacing g1 by g1(y); f(a, g1(0), g1) = f(a, g1(0)(y), g1(y)) and with the f function; f(a, g1(0)(y),
g1(y)), the evolution of the temperature of the cell vs. y will be as follows:

Tcell(y) = kθ1·
(

g1(0)(y)

g1(y)

)a

· exp(a·g1(y)) + kθ2·f
(

a, g1(0)(y), g1(y)
)
+ Tamb. (40)

This result has been obtained in the same way it was done in Equation (36) to calculate
the temperature of the cell as function of the external voltage, uco.

4. Conclusions

A set of formulas that enable the analytical calculation of the temperature of an SC cell
subjected to charging and discharging processes at constant power have been presented.
The traditional RC-series model has been used for both the electrical and thermal analysis.
In this regard, the electrical and thermal parameters are normally provided by manufactur-
ers or can be obtained by means of simple experimental tests. By applying the so-called
Incomplete Gamma Function, the proposed formulation renders strictly accurate results for
any operation mode (including high-power demand situations). This approach represents
a breakthrough in the field of SCs because analytical results identical to those obtained by
utilizing numerical methods are now provided. Therefore, the evolution of the cell temper-
ature over time can be straightforwardly calculated from the cell parameters (electrical and
thermal resistance and capacitance), charging and discharging power, the initial internal
voltage and temperature, and the ambient temperature. Moreover, the cell temperature
can be also expressed as a function of any other electrical variable (current, internal and
external voltages, energy losses, state of charge, etc.), providing this way a useful and
simple tool for designing, dimensioning, cooling, or developing new control algorithms.
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Glossary

A, a, b, kT1, kT2, kθ1, kθ2 Constants
C Capacitance
CTH Thermal capacitance
g1 ratio P/pd (dimensionless)
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g1(0) initial ratio P/pd (g1 calculated at t = 0 s)
i current of the cell
P Power of charge/discharge
pd dissipated power in R
R(ESR) Equivalent Series Resistor
RTH Thermal resistance
t time
Tamb Ambient temperature (considered constant)
Tcell Temperature of the SC cell
u Internal voltage of the cell
U0 initial internal voltage
uco External voltage of the cell
uco(0) Initial external voltage of the cell
θ Temperature different between Tcell and Tamb
θ0 Initial temperature different between Tcell and Tamb
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