

UNIVERSIDAD DE OVIEDO

FACULTAD DE QUÍMICA

Aplicación del método crioscópico para la determinación de masas moleculares

(Química Física)

TRABAJO FIN DE GRADO EN QUÍMICA

Ángela Moreiras Vega

Oviedo, julio, 2020

Índice

1. Abreviaturas
2. Resumen2
3. Introducción3
3.1. Definición de potencial químico. Equilibrio material y equilibrio de fases. 3
3.2. Propiedades coligativas. Descenso crioscópico5
3.3. Método Beckmann9
3.4. Diagrama de fases del tert-butanol10
3.5. Métodos alternativos para el cálculo de masas moleculares
4. Objetivos
5. Procedimiento experimental
5.1. Reactivos
5.2. Material de laboratorio14
5.3. Procedimiento operativo15
5.3.1. Medida del punto de congelación del disolvente puro15
5.3.2. Medida del punto de congelación de las distintas disoluciones16
6. Resultados y discusión16
6.1. Disolvente puro16
6.2. Disoluciones tert-butanol/etanol17
6.3. Disoluciones tert-butanol/acetona21
6.4. Disoluciones tert-butanol/cloroformo
6.5. Masas moleculares obtenidas por extrapolación a dilución infinita28
7. Conclusiones
8. Bibliografía
9. Apéndices

1. Abreviaturas.

Etanol: EtOH

Presión: P

Temperatura: T

Tiempo: t

2. Resumen.

En el presente trabajo se determinan masas moleculares aplicando el método crioscópico. El descenso crioscópico es una propiedad coligativa, y para encontrar la expresión que la relaciona con las masas moleculares de los distintos solutos, se explican una serie de conceptos termodinámicos a lo largo de la introducción. El método experimental utilizado es el método Beckmann o de subenfriamiento. Este método proporciona medidas de temperatura frente a tiempo a partir de las cuales se obtienen todos los datos necesarios para el cálculo de masas moleculares. Se han determinado las masas moleculares de etanol, acetona y cloroformo, utilizando como disolvente *tert*-butanol. La utilización de ese disolvente evita el uso de mezclas frigoríficas, pues su temperatura de congelación es próxima a la temperatura ambiente.

Este método ha resultado tedioso y con cierto grado de arbitrariedad a la hora de elegir los datos para la realización de cálculos. Los resultados obtenidos son los esperados en el caso de dos solutos, pero tienen un error elevado en el tercero, por lo que se concluye que el método utilizado podría ser aceptable para fines docentes, pero no para otros fines, como sería su aplicación a nivel industrial.

3. Introducción.

El descenso crioscópico es una propiedad coligativa de las disoluciones, es decir, una propiedad que depende solo del número de partículas de soluto en la disolución, sean átomos, iones o moléculas, pero no de su naturaleza. Otras propiedades coligativas son: el descenso en la presión de vapor, el ascenso ebulloscópico y la presión osmótica. Para encontrar expresiones matemáticas que relacionen las distintas propiedades coligativas con la concentración de los solutos conviene introducir los conceptos de potencial químico, equilibrio material y equilibrio de fases. Esto se hará en la primera parte de la Introducción. Después de deducir la ecuación que relaciona el descenso en el punto de congelación del disolvente con la molalidad del soluto cuya masa molecular se quiere determinar y de comentar otros métodos disponibles para este fin, se presentará en esta introducción el método experimental y las sustancias químicas que se van a utilizar.

3.1. Definición de potencial químico. Equilibrio material y equilibrio de fases.

Para un sistema de varios componentes la forma diferencial de la energía libre de Gibbs en función de la T, la P y la composición es¹:

$$dG = \left(\frac{\partial G}{\partial T}\right)_{P,nj} dT + \left(\frac{\partial G}{\partial P}\right)_{T,nj} dP + \sum \left(\frac{\partial G}{\partial n_i}\right)_{T,P,nj} dn_i$$
(1)

Por lo que, a T y P constantes,

$$dG = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,nj} dn_i \tag{2}$$

la derivada parcial de G respecto al número de moles de i es una de las definiciones del potencial químico del componente i o "µi". El potencial químico es una propiedad intensiva, es decir, es independiente de la masa o cantidad total del sistema.²

$$\mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,P,nj \neq ni} \tag{3}$$

Sustituyendo la ecuación (3) en (1), y sabiendo además que $\left(\frac{\partial G}{\partial T}\right)_{P,nj} = -S$ y

 $\left(\frac{\partial G}{\partial P}\right)_{T,nj} = V$ obtenemos la forma químicamente más útil de la ecuación fundamental de la termodinámica.

$$dG = -SdT + VdP + \sum \mu_i dn_i \tag{4}$$

aplicable a procesos reversibles e irreversibles que conecten los mismos estados inicial y final. La ecuación (4) es aplicable a sistemas de una sola fase, en equilibrio térmico y mecánico, pero no necesariamente material.

Para un sistema de varias fases, α , se puede calcular *G* total sumando las contribuciones de todas las fases, dado que es G una propiedad extensiva. $G = \sum_{\alpha} G^{\alpha}$. En forma diferencial:

$$dG = -\sum_{\alpha} S^{\alpha} dT + \sum_{\alpha} V^{\alpha} dP + \sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
(5)

Como S y V son también extensivas, $S = \sum_{\alpha} S^{\alpha}$ y $V = \sum_{\alpha} V^{\alpha}$, por lo que, sustituyendo en (5),

$$dG = -SdT + VdP + \sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$$
(6)

Cuando un sistema cerrado a *T* y *P* constantes alcanza el equilibrio, *G* toma el valor mínimo, es decir, $dG_{T,P} = 0$ para cualquier cambio infinitesimal. Aplicando esta condición a la ecuación (6) obtenemos que

$$\sum_{\alpha} \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha} = 0 \tag{7}$$

Esta es la condición general de equilibrio material.

Partiendo de la condición de equilibrio material, se puede considerar un sistema de dos fases que está en equilibrio, después de que dn_j moles de sustancia *j* hayan pasado de la fase α a la fase β ; para llegar al equilibrio, la sustancia habrá tenido que pasar de la fase en la que tiene mayor potencial químico hasta aquella en la que tiene menor potencial.

La ecuación (7) pasa a ser:

$$\mu_j^{\alpha} dn_j^{\alpha} + \mu_j^{\beta} dn_j^{\beta} = 0 \tag{8}$$

Como $dn_j^{\alpha} = -dn_j \ y \ dn_j^{\beta} = dn_j$ sustituyendo en (8):

$$\left(\mu_{j}^{\beta}-\mu_{j}^{\alpha}\right)dn_{j}=0.$$
 Como $dn_{j}\neq0$, se cumple que $\left(\mu_{j}^{\beta}-\mu_{j}^{\alpha}\right)=0$, por lo que
 $\mu_{j}^{\alpha}=\mu_{j}^{\beta}$ (9)

La ecuación (9) es la condición del equilibrio de fases en un sistema cerrado y está directamente relacionada con este Trabajo Fin de Grado, puesto que en él se estudia el

equilibrio entre una fase sólida (el disolvente congelado) y una líquida (disolución de dicho disolvente con el soluto cuya masa molecular se quiere determinar).

3.2. Propiedades coligativas. Descenso crioscópico.

El descenso crioscópico es un descenso del punto de congelación de una disolución en comparación con el del disolvente puro. Aunque las propiedades coligativas no dependen de la naturaleza del soluto, para su estudio, hay que distinguir entre solutos electrolíticos y no electrolíticos, ya que unos y otros generan diferente número de partículas en disolución a partir del soluto aislado.

Los electrolitos son aquellas sustancias que, en estado puro o en disolución, son capaces de transportar la corriente eléctrica debido a que se disocian en sus iones correspondientes o a que generan iones por reacción con el disolvente. Las especies que no se disocian, es decir, que permanecen inalteradas en su forma neutra, son las denominadas no electrolitos³.

Por otra parte, una disolución diluida ideal es aquella en la que una partícula de soluto se encuentra rodeada de partículas de disolvente, es decir, solo interacciona con partículas de disolvente debido a la altísima dilución. En una disolución diluida ideal, el soluto cumple la Ley de Henry, y el disolvente cumple la Ley de Raoult. Las relaciones matemáticas entre las propiedades coligativas que posteriormente se van a presentar y la concentración de la disolución requieren la condición de disolución diluida ideal, y las disoluciones de electrolitos fuertes no cumplen esta condición por su propia naturaleza.

Se ha comprobado que las medidas de propiedades coligativas en disoluciones de electrolitos fuertes dan como resultado valores distintos a los esperados para una disociación completa⁴. Esta diferencia se debe a la formación de pares iónicos, formados por uno o más cationes y uno o más aniones unidos temporalmente entre sí debido a las fuerzas electrostáticas entre iones de carga opuesta. Está unión hace que disminuya el número total de partículas en disolución, lo que conduce a una disminución del valor de las propiedades coligativas medidas. Para los electrolitos débiles es necesario tener en cuenta su constante de disociación si se quiere tener idea del número de partículas presentes en la disolución. El siguiente estudio se realizará con solutos no electrolíticos de modo que estas complicaciones propias de los solutos electrolíticos no se producirán.

La adición de un soluto a un disolvente puro A a T y P constantes trae consigo una disminución del potencial químico del disolvente, μ_A , por debajo de μ^*_A , correspondiente a A puro¹. Esto modifica su presión de vapor, su punto de ebullición normal, su punto de congelación normal y da lugar a la presión osmótica que, como hemos dicho, son las propiedades coligativas.

En particular, nos interesa el hecho de que la adición de un soluto B hace que disminuya el punto de congelación del disolvente A.

Figura 1. Potencial químico de una sustancia A (disolvente) en función de la temperatura a presión constante⁵. (Se asume P normal)

En la figura 1 se puede ver la variación del potencial químico para el sólido puro A, el líquido puro A, el vapor A (líneas continuas) y una disolución en la que A es el disolvente (línea discontinua). Se puede apreciar cómo la reducción del potencial químico ocasionada por la adición de un soluto a A(I) disminuye el punto de congelación de A desde T^{*}_f hasta T_f.

Se comprueba que la temperatura de congelación de la disolución, T_f, a una presión dada P, es menor que la temperatura de congelación del disolvente puro a esa misma presión, T_f^{*}. La diferencia entre estas temperaturas es lo que denominamos descenso del punto de congelación o descenso crioscópico¹:

$$\Delta T_{\rm f} = T_{\rm f}^* - T_{\rm f} \tag{10}$$

En el punto de congelación normal de A puro, T_f^* , las fases sólida y líquida se encuentran en equilibrio, por lo que sus potenciales químicos serán iguales: $\mu^*_{A(s)} = \mu^*_{A(l)}$.

Por debajo de T_f^* , el sólido puro A es más estable que el líquido puro A y $\mu^*_{A(s)} < \mu^*_{A(l)}$, debido a que la fase más estable es aquella con el menor valor de μ . Por encima de T_f^* pasará justo al contrario. Por otra parte, la adición de un soluto a A(I) a T y P constantes siempre reduce μ_A , por lo que $\mu_{A(dis)} < \mu^*_{A(l)}$ a cualquier T, tal y como se muestra en la figura 1. Por esta razón, el punto de corte entre las curvas A(dis) y A(s) aparece a una T menor que en el caso de A(I) y A(s). El punto de congelación T_f de la disolución (que se puede ver cuando $\mu_{A(dis)} = \mu^*_{A(s)}$, porque solo se congela A puro) será entonces menor que el punto de congelación T^{*}_f de A(I) puro. La disminución de μ_A estabiliza la disolución y hace que sea menor la probabilidad de que A se congele a T^{*}_f.

Considerando una disolución formada por un disolvente, A, y un soluto, B, vamos a deducir una expresión para calcular el descenso del punto de congelación de A debido a la presencia de B. Se supondrá que únicamente la sustancia A pura se congela en la disolución cuando esta se enfría hasta su punto de congelación normal.

Partiendo de que la condición de equilibrio en el punto de congelación normal es que los potenciales de A sólido puro y de A en la disolución sean iguales:

$$\mu_A^*(s, T_f, P) = \mu_A(disolvente, T_f, P, a_A)$$
(11)

(Siendo *a*_A la actividad de A en la disolución en equilibrio con el sólido puro).

Entonces, $\mu_A(disolvente, T_f, P, X_A)$ (potencial químico de A en la disolución), se puede expresar en términos de $\mu_A^*(l, T_f, P)$ y de la actividad de A en la disolución:

$$\mu_A(disolvente, T_f, P, X_A) = \mu_A^*(l, T_f, P) + RT_f lna_A$$
(12)

Por ello:

$$\mu_A^*(s, T_f, P) = \mu_A^*(l, T_f, P) + RT_f lna_A$$
(13)

Suponiendo que la disolución se comporta como una disolución diluida ideal, se podrá sustituir a_A por X_A , obteniendo:

$$\mu_{A}^{*}(s, T_{f}, P) = \mu_{A}^{*}(l, T_{f}, P) + RT_{f} ln X_{A}$$
(14)

entonces, despejando X_A y sustituyendo los potenciales por las Energías de Gibbs molares:

$$lnX_{A} = \frac{\mu_{A}^{*}(s) - \mu_{A}^{*}(l)}{RT_{f}} = \frac{G_{m,A}^{*}(s) - G_{m,A}^{*}(l)}{RT_{f}} = -\frac{\Delta fusG_{m,A}^{*}}{RT_{f}} = -\frac{\Delta fusH_{m,A}^{*}}{RT_{f}} + \frac{\Delta fusS_{m,A}^{*}}{R}$$
(15)

Cuando A está puro, $X_A = 1$, por lo que ln $X_A = 0$, entonces:

$$0 = -\frac{\Delta f u s H_{m,A}^*}{R T_f^*} + \frac{\Delta f u s S_{m,A}^*}{R}$$
(16)

- Se va a suponer que $\Delta S \ge \Delta H$ se mantienen constantes en el intervalo de temperaturas $T_f^* - T_f$.

- Se supone que la disminución de la temperatura es muy pequeña.

- Como $lnX_A = ln (1 - X_B)$, haciendo un desarrollo en serie de Taylor se obtiene que $ln(1 - X_B) = -X_B$

Entonces, teniendo en cuenta todas estas aproximaciones y restando (15)-(16):

$$-X_B = -\frac{\Delta f u s H_{m,A}^*}{R} \left(\frac{1}{T_f} - \frac{1}{T_f^*}\right)$$
(17)

Y como $\Delta T_f = T_f^* - T_f$, teniendo en cuenta la aproximación de que las temperaturas varían muy poco y operando:

$$-X_B = -\frac{\Delta f u s H_{m,A}^*}{R} \left(\frac{\Delta T_f}{{T_f}^{*2}}\right)$$
(18)

Despejando ahora ΔT_f

$$\Delta T_f = \frac{\left(T_f^{*2}\right)_R}{\Delta f u s H_{m,A}^*} X_B \tag{19}$$

Relacionando la fracción molar con la molalidad en disoluciones acuosas muy diluidas, m_B , se obtiene que $X_B = m_B M_A$, siendo M_A la masa molar del disolvente:

$$\Delta T_f = \frac{M_A (T_f^{*2})_R}{\Delta f u_S H_{m,A}^*} m_B$$
⁽²⁰⁾

 $\frac{M_A(T_f^{*2})_R}{\Delta f u_S H_{m,A}^*}$ es constante para un disolvente determinado (a una presión dada) y se denomina constante molal del descenso del punto de congelación o constante crioscópica (*k_j*), por lo que, sustituyendo en (20):

$$\Delta T_f = k_f m_B \tag{21}$$

A P atmosférica, para el agua, k_f = 1,86 kg K mol⁻¹ mientras para el tert-butanol k_f = 8,30 kg K mol⁻¹

Esta ecuación se puede utilizar para determinar la masa molar de un soluto no electrolito, *B*. Hay que tener también en cuenta que:

$$m_B = n_B / w_A \tag{22}$$

siendo w_A la masa del disolvente A y

$$n_B = w_B / M_B \tag{23}$$

La ecuación (21) por lo tanto se puede re-escribir de la siguiente manera:

$$M_B = \frac{k_f w_B}{w_A \Delta T_f} \tag{24}$$

Como esta ecuación solo la cumplen las disoluciones diluidas ideales, habrá que determinar el valor de M_B mediante la medida del descenso del punto de congelación de varias disoluciones de *B* en *A* con distinta proporción en peso, y posteriormente representar las masas molares obtenidas frente a la concentración (en porcentaje en

peso) de las disoluciones. Se obtiene el valor exacto de M_B extrapolando a porcentaje en peso de B igual a cero.

3.3. Método Beckmann.

Para medir experimentalmente el descenso del punto de congelación del disolvente causado por la presencia de diferentes solutos se utilizará el método Beckmann. Este método⁶ consiste en poner en contacto (aunque separados por una cámara de aire) el disolvente o la disolución cuyas temperaturas de congelación se quieren determinar, con un baño a temperatura inferior a la de congelación del disolvente (una mezcla frigorífica si el disolvente es agua). El enfriamiento lento permite que la temperatura del disolvente/disolución descienda por debajo de su punto de congelación, es decir, se subenfríe (por eso este método es también llamado método de subenfriamiento). Mientras esto ocurre, se irán midiendo tiempos y temperaturas, para construir una curva de enfriamiento a partir de la cual obtendremos T_f^* (para el disolvente puro) y T_f (para la disolución). Para llevar a cabo este método, además de una mezcla frigorífica/baño, se utiliza un termómetro de resistencia de platino, que mide temperaturas con elevada precisión. Se podría utilizar también un termómetro de Beckmann⁷ (que, por razones históricas, da nombre al método), pero no se hace porque tiene menor precisión (no mide temperaturas absolutas, por lo que habría que realizar la medida de dos temperaturas con el mismo termómetro para el disolvente puro y la disolución).

Figura 2. Termómetro de resistencia de platino (Medidor y sonda)⁸.

El termómetro de resistencia de platino (Figura 2) comprende un intervalo muy amplio de temperaturas (entre 15K y 900K aproximadamente), y, además, puede permanecer calibrado durante largos periodos de tiempo⁹.

3.4. Diagrama de fases del *tert*-butanol.

En este trabajo se ha escogido el *tert*-butanol como disolvente para los experimentos de crioscopía que pretenden determinar la masa molecular de etanol, acetona y cloroformo. En el apartado 5.1 se especifican con detalle las propiedades del tert-butanol que lo hacen óptimo para este uso. En la Figura 3 se muestra su diagrama de fases, que permite comprobar su característica más importante para este trabajo: en condiciones normales, su temperatura de fusión está próxima a los 25°C.

Figura 3. Diagrama de fases del tert-butanol¹⁰.

3.5. Métodos alternativos para el cálculo de masas moleculares.

Además del método crioscópico, existen otros que también pueden ser útiles para la determinación de masas moleculares. Un procedimiento alternativo estrechamente relacionado con el crioscópico y que se basa en otra propiedad coligativa es el método ebulloscópico: Consiste en preparar una disolución y medir la temperatura de ebullición de esta para compararla con la del disolvente puro. Con ello, se calcula el aumento del punto de ebullición para, posteriormente, calcular la masa molecular del soluto. La gran mayoría de métodos alternativos para determinar masas moleculares están destinados a polímeros y proteínas, como la osmometría, la dispersión de luz, microscopía electrónica, ultracentrifugación, cromatografía de exclusión molecular, cromatografía de masas, viscosimetría... Hay muchas técnicas para medir pesos moleculares promedios, con la característica de que cada uno de ellos proporciona un valor para dicho parámetro.

La osmometría es un método que consiste en medir otra propiedad coligativa: la presión osmótica. Con la osmometría de presión de vapor se puede determinar fácilmente el peso molecular promedio en número de un polímero. Si se dispone de un recipiente cerrado que contiene un disolvente, este se encontrará en equilibrio con su fase vapor. Si se pone en contacto una gota de disolución con el vapor, se produce una condensación de disolvente sobre ella con desprendimiento del calor latente de vaporización. En un osmómetro, que es el instrumento utilizado para la técnica de osmometría, se introducen una gota de disolución y otra de disolvente en dos termistores. El desprendimiento de calor generado al condensarse el disolvente sobre la disolución produce una diferencia de T que es medida como una resistencia. Dicha magnitud es proporcional a la concentración a través de una constante que involucra al peso molecular promedio número, obteniéndose este valor¹¹.

Otros métodos útiles para determinar masas moleculares son:

- Dispersión de luz estática: Técnica en la cual se mide el peso molecular absoluto de una molécula comparando la intensidad de luz dispersada por esta con su peso molecular y su tamaño. Esta relación viene dada por la teoría de Rayleigh, la cual explica que la cantidad de luz dispersada es proporcional al peso de la molécula¹². Esta técnica se suele combinar con GPC (cromatografía de exclusión por tamaños), cuyo fundamento es la separación de macromoléculas en función de su volumen de elución a través de un gel poroso.

- Viscosimetría: El peso molecular de la mayoría de los polímeros sintéticos es un valor promedio y no un valor absoluto, ya que estos son mezclas de macromoléculas de distintos tamaños. La viscosimetría es una técnica sencilla, ya que utiliza poco material, y permite obtener el peso molecular promedio viscosimétrico, el cual, cuando el polímero es poco polidisperso (no está formado por muchas cadenas de distinta longitud), corresponde al peso molecular promedio en peso¹³.

4. Objetivos.

El objetivo principal de este trabajo es el cálculo de las masas moleculares de etanol, acetona y cloroformo mediante el método crioscópico utilizando *tert*-butanol como disolvente. Para ello se ha desarrollado un método experimental adecuado a los reactivos que se van a manejar, y una vez obtenidos los resultados, se comparan con los valores reales, para determinar la validez y exactitud del método crioscópico.

5. Procedimiento experimental.

5.1. Reactivos.

La Tabla 1 muestra los reactivos utilizados en este trabajo, indicando sus nombres, fórmulas químicas, fabricante y pureza, densidad, temperatura de fusión, algunas propiedades químicas relevantes y precauciones necesarias en su manejo.

Sustancia/ Fórmula molecular	Fabricante/ Pureza	Densidad (g/cm ³)/ constante dieléctrica	T de fusión normal (°C)/ Masa molecular (g/mol)	Propiedades Químicas	Precauciones
Tert-butanol (2-metil-2- propanol/alcohol tertbutílico) (CH ₃) ₃ COH	VWR, BCH chemicals. 99,6%.	0,79	25 / 74,12	* T fusión próxima a la ambiental. *Miscible con compuestos polares y no polares. *Constante crioscópica elevada: K _f = 8,30 K.kg/mol	*Líquido y vapores muy inflamables. *Nocivo en caso de inhalación. *Provoca irritación ocular grave. *Puede irritar las vías respiratorias. *Puede provocar somnolencia o mareos.
Etanol (alcohol etílico) CH ₃ CH ₂ OH	VWR Prolabo. 100%	0,79/ 24,5	-117,3/ 46,07	*Líquido incoloro e inflamable, alcohol.	*Líquido y vapores muy inflamables. *Provoca irritación ocular grave. *Mantener alejado de fuentes de ignición.
Acetona (propanona) C ₃ H ₆ O	Scharlau 100%	0,79/ 20,7	-95/ 58,08	*Líquido orgánico incoloro, muy volátil. *Soluble en agua y en muchos alcoholes.	*Líquido y vapores muy inflamables. *Provoca irritación ocular grave. *Puede provocar somnolencia o vértigo. *La exposición repetida puede provocar sequedad o formación de grietas en la piel.
Cloroformo CHCl ₃	Scharlau 99,0-99,6% (Estabilizado con etanol, 1,0-0,4%)	1,74/ 4,81	-63/ 119,38	*Líquido incoloro, volátil. * Soluble en etanol, benceno, éter dietílico, acetona Ligeramente soluble en agua. * Suele encontrarse con un pequeño porcentaje de etanol u otro estabilizador, ya que en presencia de aire se puede oxidar, y algunos de estos productos de oxidación son peligrosos, como el fosgeno.	*Manipulación con guantes y gafas de seguridad. * Provoca daños en el sistema nervioso central (cerebro), hígado y riñones ¹⁴ . *Provoca irritación cutánea. *Provoca irritación ocular grave. *Tóxico en caso de inhalación. *Puede provocar somnolencia o vértigo. * Nocivo en caso de ingestión.

Tabla 1. Datos físicos y químicos junto con precauciones de manejo de los reactivos utilizados¹⁵.

El *tert*-butanol ha sido elegido como disolvente debido a que su punto de fusión normal es próximo a 25 °C, por lo que, desde el punto de vista experimental, será relativamente fácil estudiar su congelación tanto cuando está puro como cuando es el disolvente de alguna disolución. Los descensos crioscópicos producidos por los diferentes solutos ocurrirán a temperaturas cercanas a la temperatura ambiente, por lo que no será necesario utilizar una mezcla frigorífica, como pasaría si el disolvente fuese agua (su punto de fusión normal es de 0°C). Por otra parte, el *tert*-butanol es miscible tanto con compuestos polares como no polares. Además, como tiene una constante crioscópica tan elevada (K_f = 8,30 K.kg/mol), incluso a concentraciones bajas de soluto, se producirán descensos crioscópicos elevados.

Los tres solutos que se han elegido cumplen la condición imprescindible de ser miscibles en *tert*-butanol, aunque tienen diferente polaridad, y distintos puntos de fusión.

5.2. Material de laboratorio

Cubeta con tapa	Probeta
Tubo exterior	Pipeta graduada de 5 mL
Tubo interior	Pipeta graduada de 10 mL
Termómetro analógico	Pera de goma
Termómetro de resistencia de platino	Frasco lavador
Varilla agitadora	Cronómetro
Juntas de goma	

5.3. Procedimiento operativo.

Figura 4. Equipo de crioscopía.

5.3.1. Medida del punto de congelación del disolvente puro.

En la cubeta se coloca agua hasta que cubra bien los tubos interno y externo. No es necesario fijar la temperatura del agua mediante un baño termostático, ya que estará siempre a temperatura ambiente, que suponemos que no se modificará apreciablemente en las sesiones de trabajo. En el centro de la cubeta se coloca el tubo externo y, en el centro de este, el tubo interno. Ambos tubos deben estar fijados; si se dispone de una junta de goma, se coloca entre el tubo externo y el tubo interno para evitar que entren en contacto. Así se favorecerá un enfriamiento progresivo y lento. Este enfriamiento se producirá siempre ya que el agua del baño estará a una temperatura menor que la de la disolución añadida al tubo interior.

Se agregan 10 mL de *tert*-butanol con una pipeta graduada al tubo interno y se introduce en él el termómetro, fijándolo para que no toque las paredes del tubo. El *tert*-butanol deberá estar siempre por encima de 25 °C cuando se añade en el tubo, preferiblemente entre 26°C y 28°C. Se realizan medidas de temperatura del *tert*-butanol a intervalos seleccionados de tiempo (30 segundos), siempre con agitación (varilla agitadora).

La representación de las mediciones de T del disolvente frente a t se denomina curva de enfriamiento del disolvente. Su punto de congelación será la ordenada en el origen de una recta obtenida con los puntos finales de la curva de enfriamiento, cuando la temperatura ya sea aproximadamente estable por corresponder al equilibrio sólidolíquido de una sustancia pura.

5.3.2. Medida del punto de congelación de las distintas disoluciones.

Utilizando el mismo montaje, con una pipeta graduada se añaden 0,4/0,3/0,2 ml de soluto correspondiente, etanol, acetona o cloroformo, (cantidades pequeñas para que las disoluciones se asemejen lo máximo posible a una disolución diluida ideal) al *tert*-butanol añadido al tubo interior (10 mL), y se realizan las mediciones de temperatura de las disoluciones a lo largo del tiempo, concretamente, a intervalos de 30 segundos. Se construye una curva de enfriamiento para cada una de las disoluciones (es decir, se elaboran 3 curvas de enfriamiento para cada soluto). En ellas se observan dos tramos aproximadamente rectos: el primero correspondiente al enfriamiento de la disolución inicial, antes de comenzar la cristalización, y el segundo, al equilibrio de fusión de las disoluciones cada vez más concentradas que se forman a medida que el disolvente se va separando de la disolución por congelación. Cada tramo se ajusta a una recta mediante regresión lineal. La temperatura de congelación de cada disolución vendrá dada por la intersección de ambas rectas.

Cuando vaya a cambiarse de soluto, se debe lavar cuidadosamente todo el sistema con abundante agua y después secarse bien. Se puede utilizar acetona para el secado.

6. Resultados y discusión.

6.1. Disolvente puro.

Se muestra en primer lugar la curva de enfriamiento del disolvente *tert*-butanol puro. A partir de ella se obtendrá su temperatura de fusión o congelación asumiendo una presión constante próxima a 1 atm.

Figura 5. Curva de enfriamiento tert-butanol puro a P atmosférica.

Figura 6. Recta de regresión correspondiente a equilibrio de congelación del tert-butanol puro.

La recta de ajuste que se muestra en la Figura 6 indica que, según las medidas realizadas en este experimento, el disolvente *tert*-butanol congela a 24,74 °C. El coeficiente de regresión de la recta es muy bajo, pues la temperatura de congelación obtenida no es constante en su tramo final, cuando sí debería serlo para el disolvente puro. Hay fluctuaciones que pueden ser debidas a irregularidades en la agitación. Se realizaron más pruebas y más curvas de enfriamiento, pero la que se presenta fue la que proporcionó un valor para la temperatura de fusión del tert-butanol más próxima a la recogida en las propiedades físicas de la sustancia (ver Tabla 1).

6.2. Disoluciones tert-butanol/etanol.

Las Figuras 7 y 8 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de *tert*-butanol y 0,2 mL de etanol.

Figura 7. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y 0,2 mL de etanol a P atmosférica.

Figura 8. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tertbutanol y 0,2 mL de etanol: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

La Figura 7 indica que los tramos inicial y final de la curva de enfriamiento muestran un comportamiento aproximadamente lineal, con más variaciones respecto a este comportamiento en el tramo final correspondiente a la congelación de parte del disolvente. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de *tert*-butanol y 0,2 mL de etanol es de 21,51°C.

Las Figuras 9 y 10 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de *tert*-butanol y 0,3 mL de etanol.

Figura 9. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,3 mL de etanol** a P atmosférica.

Figura 10. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,3 mL de etanol: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se observa una tendencia parecida a las curvas de la disolución con 0,2 mL de etanol, viéndose la mayor parte de las fluctuaciones en la zona de congelación del disolvente. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de *tert*-butanol y 0,3 mL de etanol es de 18,91°C.

Las Figuras 11 y 12 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de *tert*-butanol y 0,4 mL de etanol.

Figura 11. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,4 mL de etanol** a P atmosférica.

Figura 12. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,4 mL de etanol: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

En este caso, se observa un enfriamiento más lineal que en los casos anteriores. No se observa sobreenfriamiento en la curva, solo un descenso progresivo de la temperatura desde la disolución inicial hasta después de la congelación. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tert-butanol y 0,4 mL de etanol es de 19,53°C.

Tomando como temperatura de congelación del disolvente la obtenida en este trabajo, 24,74 °C, y utilizando la ecuación (24) se obtienen los descensos crioscópicos y los valores de la masa molecular del etanol recogidos en la Tabla 2.

Volumen de etanol (mL)	Temperatura de congelación (°C)	Descenso crioscópico (ΔT _f)	Masa molecular (g/mol)
0,2	21,51	3,23	51,20
0,3	18,91	5,83	42,56
0,4	19,53	5,21	63,49

Tabla 2. Temperaturas de congelación, descensos crioscópicos y masas moleculares obtenidas para disoluciones formadas con distintos volúmenes de etanol añadidos a 10 mL de tert-butanol.

Como se puede comprobar mediante la ecuación 20, al aumentar la concentración debe aumentar también el descenso crioscópico. Esta tendencia esperada, en el caso del etanol, no es observada para las medidas de 0,3 y 0,4 mL (tabla 2), ya que el descenso crioscópico es mayor que en el caso de 0,3 mL. Las masas moleculares obtenidas se aproximan a la masa molecular teórica (46,07 g/mol), menos en el caso de 0,4 mL, que dista de ella considerablemente.

6.3. Disoluciones tert-butanol/acetona.

Las Figuras 13 y 14 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de *tert*-butanol y 0,2 mL de acetona.

Figura 13. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y 0,2 mL de acetona a P atmosférica.

Figura 14. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,2 mL de acetona: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se observa un enfriamiento constante, bastante lineal en las regiones inicial y final de la curva de enfriamiento. Después del sobreenfriamiento la temperatura asciende rápido para posteriormente mostrar un pequeño descenso, más leve de lo que cabría esperar para una disolución cuya concentración va aumentando conforme se congela el disolvente. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de *tert*-butanol y 0,2 mL de acetona es de 22,06°C.

Las Figuras 15 y 16 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de tert-butanol y 0,3 mL de acetona.

Figura 15. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y 0,3 mL de acetona a P atmosférica.

Figura 16. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,3 mL de acetona: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

En este caso también se observa un enfriamiento casi lineal, pero con alguna fluctuación. El aumento de temperatura después del sobreenfriamiento no es tan elevado como con 0,2 mL, y después comienza a disminuir la temperatura poco a poco, como cabría esperar. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tert-butanol y 0,3 mL de acetona es de 20,82°C.

Las Figuras 17 y 18 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de tert-butanol y 0,4 mL de acetona.

Figura 17. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,4 mL de acetona** a P atmosférica.

Figura 18. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,4 mL de acetona: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se observa un descenso constante de la temperatura en las zonas inicial y final de la curva de enfriamiento, pero con algunas oscilaciones respecto al comportamiento lineal, sobre todo en el tramo final. El salto de temperatura después del sobreenfriamiento es más pequeño que en otros casos. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tert-butanol y 0,4 mL de acetona es de 19,62°C.

Tomando como temperatura de congelación del disolvente la obtenida en este trabajo, 24,74 °C, y utilizando la ecuación (24) se obtienen los descensos crioscópicos y los valores de la masa molecular del etanol recogidos en la Tabla 3.

Volumen de acetona (mL)	Temperatura de congelación (°C)	Descenso crioscópico (ΔT _f)	Masa molecular (g/mol)
0,2	22,06	2,68	61,68
0,3	20,82	3,92	63,57
0,4	19,62	5,12	64,60

Tabla 3. Temperaturas de congelación, descensos crioscópicos y masas moleculares obtenidas para disoluciones formadas con distintos volúmenes de acetona añadidos a 10 mL de tert-butanol.

En el caso de la acetona se observa el descenso crioscópico esperado en función de la concentración de las disoluciones y se obtienen unos resultados muy buenos en todos los casos (tabla 3), siendo las masas moleculares resultantes cercanas al valor teórico (58,08 g/mol).

6.4. Disoluciones *tert*-butanol/cloroformo.

Las Figuras 19 y 20 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de tert-butanol y 0,2 mL de cloroformo.

Figura 19. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,2 mL de cloroformo** a P atmosférica.

Figura 20. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,2 mL de cloroformo: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se observa un descenso casi lineal de la temperatura con alguna pequeña oscilación. El aumento de temperatura después del sobreenfriamiento es bastante rápido y elevado, y después se observa un descenso de temperatura constante, limpio y lineal. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tertbutanol y 0,2 mL de cloroformo es de 23,26°C.

Las Figuras 21 y 22 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de tert-butanol y 0,3 mL de cloroformo.

Figura 21. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,3 mL de cloroformo** a P atmosférica.

Figura 22. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,3 mL de cloroformo: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se observa un descenso constante de la temperatura en el tramo inicial, pero un sobreenfriamiento y posterior aumento muy suave, nada brusco, además de que el aumento de temperatura no es muy elevado. Después, se puede apreciar un ligero aumento de la temperatura antes de comenzar a descender. El descenso es suave y constante. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tert-butanol y 0,3 mL de cloroformo es de 20,63°C.

Las Figuras 23 y 24 recogen la curva de enfriamiento y las rectas de regresión obtenidas para la disolución formada por 10 mL de tert-butanol y 0,4 mL de cloroformo.

Figura 23. Curva de enfriamiento de la disolución formada con 10 ml de tert-butanol y **0,4 mL de cloroformo** a P atmosférica.

Figura 24. Rectas de regresión correspondientes al enfriamiento de la disolución formada con 10 mL de tert-butanol y 0,4 mL de cloroformo: A) enfriamiento de la disolución inicial. B) enfriamiento durante la congelación de parte del disolvente.

Se puede observar un descenso de la temperatura constante antes de la congelación del disolvente, con alguna oscilación. Posteriormente, se observa un sobreenfriamiento con un ascenso de la temperatura muy pequeño, para luego empezar a descender lentamente. La intersección de las rectas de regresión correspondientes indica que, según nuestras medidas, la temperatura de congelación de la disolución formada con 10 mL de tert-butanol y 0,4 mL de cloroformo es de 20,62°C.

Tomando como temperatura de congelación del disolvente la obtenida en este trabajo, 24,74 °C, y utilizando la ecuación (24) se obtienen los descensos crioscópicos y los valores de la masa molecular del etanol recogidos en la Tabla 4.

Volumen de soluto (mL)	Temperatura de congelación (°C)	Descenso crioscópico (ΔT _f)	Masa molecular (g/mol)
0,2	23,26	1,48	247,69
0,3	20,63	4,11	133,98
0,4	20,62	4,12	177,80

Tabla 4. Temperaturas de congelación, descensos crioscópicos y masas moleculares obtenidas para disoluciones formadas con distintos volúmenes de cloroformo añadidos a 10 mL de tert-butanol.

En el caso del cloroformo, se observa el aumento esperado del descenso crioscópico, pero al pasar de 0,3 mL a 0,4 mL de soluto añadido (tabla 4) se debería esperar una diferencia mayor de la observada, es decir, un mayor descenso crioscópico para el caso de 0,4 mL. Los resultados obtenidos para las masas moleculares distan bastante del resultado teórico (119,39 g/mol). Sospechamos que el reactivo no estaba en buenas condiciones. Se sabe que tiene tendencia a oxidarse al contacto con el aire y la botella de la cual se tomó ya había sido utilizada antes de nuestro trabajo.

6.5. Masas moleculares obtenidas por extrapolación a dilución infinita.

Para calcular la masa molecular de cada soluto, se realizará una representación de las masas moleculares obtenidas frente a las concentraciones en g/L (suponemos volúmenes aditivos). La masa molecular se obtendrá por extrapolación a dilución infinita de la recta de regresión obtenida, es decir, será la ordenada en el origen de dicha recta.

Concentración (g/L)	Masa molecular (g/mol)
15,49	51,2
23,01	42,56
30,38	63,49

Tabla 5. Concentraciones y masas moleculares de etanol.

Figura 25. Recta de regresión de las masas moleculares frente a la concentración de las disoluciones de etanol en tert-butanol.

La masa molecular del **etanol** obtenida por extrapolación de la recta de regresión es de 33,62 g/mol, y el valor real es de 46,07 g/mol, por lo que el resultado obtenido tiene un error relativo elevado del 27,02%.

Concentración (g/L)	Masa molecular (g/mol)
15,49	61,68
23,01	63,57
30,38	64,6

Tabla 6. Concentraciones y masas moleculares de acetona.

Figura 26. Recta de regresión de las masas moleculares frente a la concentración de las disoluciones de acetona en tert-butanol.

La masa molecular promedio obtenida para la **acetona** a partir de la recta de regresión es de 58,78 g/mol. Este resultado es muy bueno, ya que se aproxima valor real (58,08 g/mol) con un error relativo muy pequeño, solo del 1,21%.

Concentración (g/L)	Masa molecular (g/mol)
35	247,69
52,6	133,98
70	177,8

Tabla 7. Concentraciones y masas moleculares de cloroformo.

Figura 27. Recta de regresión de las masas moleculares frente a la concentración las disoluciones de cloroformo en tert-butanol.

Para el **cloroformo** se obtiene una masa molecular promedio de 291,84 g/mol, la cual se aleja mucho del valor real (119,39 g/mol). Viendo que este resultado es el peor de los obtenidos, y con un error tan elevado (144,44%), se podría optar por tomar como valor final la masa molecular obtenida para 0,3 mL de cloroformo, que es de 133,98 g/mol. Este resultado sí se aproxima considerablemente al valor real (error: 12,22%).

7. Conclusiones.

• Se ha comprobado que el *tert*-butanol presenta ciertas ventajas en comparación con el agua cuando se utiliza como disolvente en experimentos de crioscopía. Por ser una sustancia estable con punto de fusión en torno a 25 °C evita el uso de baños refrigerantes/mezclas crioscópicas cuya temperatura debe mantenerse por debajo de 0°C. Además, tiene una constante crioscópica alta (8,30 kg K/mol) en comparación con la del agua (1,86 kg K/mol) por lo que, para una misma concentración, el descenso crioscópico es más acusado.

• Un inconveniente en el uso de *tert*-butanol como disolvente cuando se trabaja a temperatura ambiente inferior a su punto de fusión es que es necesario calentarlo inicialmente para que esté en estado líquido y se puedan disolver en él los solutos deseados.

• Utilizando el método crioscópico, se han obtenido las siguientes masas moleculares (acompañadas de su error relativo) de tres solutos no electrolitos: etanol = 33,62 g/mol (27,02 %), acetona = 58,78 (1,21 %), cloroformo = 291,84 (144,44 %). Puesto que los resultados para las dos primeras sustancias son aceptables, asumimos que el procedimiento experimental es adecuado y, basándonos en otras evidencias, sospechamos que la muestra de cloroformo utilizada en este trabajo no estaba en buenas condiciones.

• Desde el punto de vista experimental, el método crioscópico es bastante tedioso por la cantidad de medidas que hay que realizar y el tiempo que llevan. Además, implica un tratamiento de las curvas de enfriamiento con cierto grado de arbitrariedad a la hora de elegir los puntos para hacer los ajustes. Por estas razones, se puede considerar adecuado para fines docentes, pero no tanto para otros fines (investigación, aplicación industrial...).

8. Bibliografía.

(1) I. N. Levine, Fisicoquímica, McGraw–Hill, Madrid, 2004. (pp. 415-422).

(2) K. C. Rolle, *Termodinámica* (sexta edición), Prentice Hall México, México, 2006. (pp. 478).

(3) A.R. dos Santos, E.C. Vidotti, E.L. Silva, F. Maionchi e N. Hioka, *Determinação da massa molar por crioscopia: terc-butanol, um solvente extremamente adequado,* Química Nova vol.25 no.5, **2002**. (pp. 844-848).

(4) F. J.T. Santacoloma, Soluciones acuosas: teoría y aplicaciones. Módulo de apoyo académico en Química, Editorial Universidad de Medellín, **2014.** (pp. 110).

(5) https://navarrof.orgfree.com/Docencia/FQaplicada/UT3/indexut3 1.htm

(Fecha de la última consulta: 03-02-2020)

(6) A. Findlay, Química-Física práctica de Findlay, B.P. Levitt, 1979. (pp. 127).

(7) H. D. Crockford & J. W. Nowell, *Laboratory manual of physical chemistry*, John Wiley, Nueva York, **1956.** (pp. 26–27).

(8) https://www.testo.com/es-ES/termometro-profesional-testo-735-2/p/0563-7352

(Fecha de la última consulta: 20-04-2020)

(9) M.L. McGlashan, *Chemical Thermodynamics,* Academic Press Inc., London, 1979. (pp. 42–43).

(10) <u>https://www.researchgate.net/figure/P-T-phase-diagram-of-tert-butanol-and-freeze-</u> <u>drying-path_fig1_226666320</u>

(Fecha de la última consulta: 03-04-2020)

(11) https://canal.uned.e s/video/5a6f122eb1111ff1528b4752

(Fecha de la última consulta: 30-03-2020)

(12) <u>https://www.malvernpanalytical.com/es/products/technology/light-scattering/static-light-scattering</u>

(Fecha de la última consulta: 02-04-2020)

(13) J. Gacén, J. Maillo y M. Galizia, *Peso molecular y constantes viscosimétricas de las fibras acrílicas*, Trabajo de Fin de Grado, Universitat Politècnica de Catalunya, Terrassa, 2000.

(14) Agencia para Sustancias Tóxicas y el Registro de Enfermedades: https://www.atsdr.cdc.gov/es/phs/es_phs6.html

(Fecha de la última consulta: 05-03-2020)

(15) Propiedades y toxicidad de compuestos. www.fishersci.es

(Fecha de la última consulta: 01-03-2020)

9. Apéndices.

- Apéndice 1: Cálculo de masas moleculares a partir del descenso crioscópico observado.

Conocido el descenso crioscópico correspondiente y utilizando la constante crioscópica del tert-butanol ($k_f = 8,3 \ kg \ K/mol$), se calcula la masa molecular según la ecuación 24.

$$M_B = \frac{k_f w_B}{w_A \Delta T_f} \tag{24}$$

Por ejemplo, para la disolución formada con 0,2 mL de etanol (EtOH), las masas del disolvente y del soluto se calculan teniendo en cuenta su densidad y su riqueza:

$$w_A = 10 \ mL \ tBu \ x \frac{0,79 \ g}{1 \ mL} \ x \frac{100}{99,6} = 7,93 \ g \ de \ tBu$$
$$w_B = 0,2 \ mL \ EtOH \ x \ \frac{0,79 \ g}{1 \ mL} = 0,158 \ g \ de \ EtOH$$

De modo que:

$$M_B = \frac{8.3 \frac{kgK}{mol} \times 0.158 \times 10^{-3} kg}{7.93 \times 10^{-3} \times (3.23K)} = 0.05120 \frac{kg}{mol} = 51.20 \ g/mol$$

- Apéndice 2: Cálculo del error relativo de las masas moleculares obtenidas.

Se calcula el error relativo de las masas moleculares finales dividiendo el en error absoluto por el valor teórico o real.

$$Er = \left| \frac{Valor \ obtenido - Valor \ teórico}{Valor \ teórico} \right| x \ 100$$

Ejemplo para el etanol:

$$Er = \left|\frac{33,62 - 47,06}{47,06}\right| x \ 100 = 27,02\%$$

t(s)	T(°C)	t(s)	T(°C)
0	27,4	840	22,716
30	27,272	870	22,602
60	27,09	900	22,477
90	26,876	930	22,38
120	26,646	960	22,279
150	26,403	990	22,177
180	26,16	1020	22,079
210	25,992	1050	22,187
240	25,712	1080	22,187
270	25,496	1110	22,756
300	25,317	1140	23,155
330	25,136	1170	23,378
360	24,972	1200	23,502
390	24,813	1230	23,583
420	24,656	1260	23,633
450	24,5	1290	23,666
480	24,345	1320	23,835
510	24,192	1350	24,078
540	24,036	1380	24,125
570	23,894	1410	24,183
600	23,748	1440	24,188
630	23,605	1470	24,219
660	23,467	1500	24,266
690	23,336	1530	24,242
720	23,2	1560	24,16
750	23,077	1590	24,131
780	22,956	1620	24,194
810	22,834	1650	24,076

- Apéndice 3. Medidas de temperatura frente a tiempo del disolvente puro.

Tabla 8. Medidas de temperatura frente a tiempo del disolvente puro.

- Apéndice 4: Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol y 0,2/0,3/0,4 mL de etanol.

t(s)	T(°C)	t(s)	T(°C)
30	26,128	660	21,23
60	25,776	690	21,083
90	25,457	720	20,94
120	25,19	750	20,852
150	24,812	780	20,752
180	24,522	810	20,645
210	24,237	840	20,541
240	23,986	870	20,59
270	23,759	900	20,857
300	23,493	930	21,076
330	23,195	960	21,108
360	22,947	990	21,05
390	22,699	1020	21,072
420	22,502	1050	21,074
450	22,327	1080	21,044
480	22,137	1110	21,043
510	21,959	1140	21,034
540	21,764	1170	20,997
570	21,584	1200	20,892
600	21,47	1230	20,884
630	21,35		

Tabla 9. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol y 0,2 mL de etanol.

t(s)	T(°C)	t(s)	T(°C)
30	26,309	1260	20,046
60	25,976	1290	19,979
90	25,669	1320	19,906
120	25,443	1350	19,841
150	25,264	1380	19,773
180	24,999	1410	19,712
210	24,776	1440	19,675
240	24,549	1470	19,546
270	24,139	1500	19,461
300	23,95	1530	19,392
330	23,732	1560	19,309
360	23,575	1590	19,225
390	23,344	1620	19,138
420	23,157	1650	19,066
450	23	1680	19,01
480	22,811	1710	18,936

510	22,639	1740	18,852
540	22,481	1770	18,789
570	22,344	1800	18,733
600	22,276	1830	18,657
630	22,079	1860	18,605
660	21,955	1890	18,56
690	21,794	1920	18,502
720	21,663	1950	18,446
750	21,544	1980	18,373
780	21,434	2010	18,324
810	21,319	2040	18,319
840	21,201	2070	18,368
870	21,1	2100	18,442
900	21,001	2130	18,58
930	20,883	2160	18,648
960	20,814	2190	18,713
990	20,742	2220	18,735
1020	20,628	2250	18,735
1050	20,538	2280	18,729
1080	20,455	2310	18,723
1110	20,395	2340	18,72
1140	20,316	2370	18,7
1170	20,249	2400	18,69
1200	20,19	2430	18,69
1230	20,129	2460	18,66

Tabla 10. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol y 0,3 mL de etanol.

t(s)	T(°C)	t(s)	T(°C)
30	27,19	2130	19,88
60	26,956	2160	19,856
90	26,738	2190	19,786
120	26,508	2220	19,75
150	26,288	2250	19,739
180	26,072	2280	19,726
210	25,858	2310	19,709
240	25,658	2340	19,693
270	25,458	2370	19,675
300	25,264	2400	19,655
330	25,07	2430	19,636
360	24,892	2460	19,616
390	24,637	2490	19,597
420	24,413	2520	19,577
450	24,254	2550	19,559

480	24,109	2580	19,542
510	23,963	2610	19,524
540	23,82	2640	19,507
570	23,682	2670	19,49
600	23,544	2700	19,477
630	23,402	2730	19,462
660	23,272	2760	19,41
690	23,142	2790	19,397
720	23,015	2820	19,391
750	22,893	2850	19,381
780	22,778	2880	19,37
810	22,65	2910	19,359
840	22,55	2940	19,347
870	22,439	2970	19,336
900	22,263	3000	19,286
930	22,161	3030	19,257
960	22,063	3060	19,25
990	21,987	3090	19,226
1020	21,9	3120	19,219
1050	21,762	3150	19,211
1080	21,666	3180	19,197
1110	21,602	3210	19,212
1140	21,531	3240	19,215
1170	21,457	3270	19,173
1200	21,385	3300	19,161
1230	21,315	3330	19,158
1260	21,167	3360	19,159
1290	21,125	3390	19,169
1320	21,083	3420	19,143
1350	21,029	3450	19,135
1380	20,966	3480	19,13
1410	20,909	3510	19,148
1440	20,808	3540	19,112
1470	20,722	3570	19,115
1500	20,84	3600	19,134
1530	20,65	3630	19,117
1560	20,609	3660	19,125
1590	20,565	3690	19,132
1620	20,521	3720	19,082
1650	20,48	3750	19,103
1680	20,437	3780	19,08
1710	20,396	3810	19,084
1740	20,311	3840	19,09

1770	20,273	3870	19,084
1800	20,25	3900	19,077
1830	20,22	3930	19,075
1860	20,185	3960	19,068
1890	20,152	3990	19,033
1920	20,117	4020	18,988
1950	20,082	4050	18,94
1980	20,048	4080	18,89
2010	19,982	4110	18,83
2040	19,956	4140	18,712
2070	19,942	4170	18,371
2100	19,924	4200	17,941

Tabla 11. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol y 0,4 mL de etanol.

- Apéndice 5: Medidas de temperatura frente a tiempo de la disolución de 10 mL de *tert*-butanol y 0,2/0,3/0,4 mL de acetona.

t(s)	T(°C)	t(s)	T(°C)
30	25,177	690	21,922
660	24,962	720	21,823
90	24,805	750	21,727
120	24,616	780	21,645
150	24,441	810	21,563
180	24,246	840	21,477
210	24,107	870	21,402
240	23,926	900	21,38
270	23,739	930	21,88
300	23,555	960	21,992
330	23,397	990	22,015
360	23,233	1020	22,018
390	23,122	1050	22,019
420	23	1080	22,018
450	22,836	1110	22,017
480	22,685	1140	22,014
510	22,577	1170	22,01
540	22,448	1200	22,008
570	22,333	1230	22,004
600	22,233	1260	21,999
630	22,126	1290	21,997
660	22,018		

Tabla 12. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,2 mL de acetona.

t(s)	T(°C)	t(s)	T(°C)
30	26,519	1050	21,31
60	26,288	1080	21,222
90	26,056	1110	21,14
120	25,862	1140	21,076
150	25,625	1170	21,027
180	25,403	1200	20,967
210	25,256	1230	20,902
240	25,055	1260	20,858
270	24,87	1290	20,794
300	24,676	1320	20,741
330	24,516	1350	20,699
360	24,316	1380	20,656
390	24,171	1410	20,62
420	24,01	1440	20,571
450	23,864	1470	20,509
480	23,728	1500	20,452
510	23,577	1530	20,365
540	23,369	1560	20,324
570	23,2	1590	20,197
600	23,125	1620	20,121
630	22,95	1650	20,082
660	22,679	1680	20,489
690	22,472	1710	20,717
720	22,346	1740	20,718
750	22,24	1770	20,712
780	22,147	1800	20,712
810	22,019	1830	20,703
840	21,93	1860	20,692
870	21,845	1890	20,67
900	21,733	1920	20,673
930	21,67	1950	20,647
960	21,581	1980	20,647
990	21,478	2010	20,65
1020	21,37		

Tabla 13. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,3 mL de acetona.

t(s)	T(°C)	t(s)	T(°C)
30	25,959	930	21,27
60	25,9	960	21,082
90	25,8	990	20,855
120	25,686	1020	20,677
150	25,562	1050	20,507
180	25,45	1080	20,349
210	25,303	1110	20,1
240	25,167	1140	19,975
270	25,038	1170	19,8
300	24,9	1200	19,754
330	24,76	1230	19,526
360	24,621	1260	19,377
390	24,5	1290	19,191
420	24,341	1320	18,973
450	24,132	1350	18,762
480	23,995	1380	18,594
510	23,833	1410	18,572
540	23,67	1440	19,007
570	23,496	1470	19,074
600	23,313	1500	19,33
630	23,144	1530	19,143
660	22,928	1560	19,165
690	22,69	1590	19,159
720	22,52	1620	19,056
750	22,339	1650	18,983
780	22,161	1680	18,9
810	21,983	1710	19
840	21,807	1740	18,966
870	21,63	1770	18,92
900	21,465	1800	18,862

Tabla 14. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,4 mL de acetona.

t(s)	T(°C)	t(s)	T(°C)
30	28,227	1170	22,999
60	27,91	1200	22,922
90	27,651	1230	22,858
120	27,416	1260	22,812
150	27,22	1290	22,739
180	27,03	1320	22,69
210	26,802	1350	22,627
240	26,594	1380	22,572
270	26,418	1410	22,535
300	26,247	1440	22,5
330	26,071	1470	22,454
360	25,919	1500	22,423
390	25,747	1530	22,384
420	25,592	1560	22,317
450	25,44	1590	22,201
480	25,295	1620	22,166
510	25,143	1650	22,12
540	24,946	1680	22,085
570	24,836	1710	22,034
600	24,714	1740	21,987
630	24,608	1770	21,95
660	24,49	1800	21,88
690	24,361	1830	21,753
720	24,261	1860	21,668
750	24,126	1890	21,558
780	24,091	1920	22,54
810	23,962	1950	22,593
840	23,98	1980	22,59
870	23,774	2010	22,572
900	23,692	2040	22,55
930	23,6	2070	22,525
960	23 <i>,</i> 469	2100	22 <i>,</i> 495
990	23,434	2130	22,472
1020	23,356	2160	22,444
1050	23,241	2190	22,418
1080	23,178	2220	22,389
1110	23,132	2250	22,361
1140	23,083	2280	22,334

- Apéndice 6: Medidas de temperatura frente a tiempo de la disolución de 10 mL de *tert*-butanol y 0,2/0,3/0,4 mL de cloroformo.

Tabla 15. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,2 mL de cloroformo.

t(s)	TºC	t(s)2	TºC3
30	23,95	720	19,835
60	23,776	750	19,73
90	23,516	780	19,619
120	23,349	810	19,531
150	23,117	840	19,56
180	22,897	870	19,765
210	22,681	900	19,936
240	22,475	930	19,971
270	22,25	960	20,032
300	22,045	990	20,067
330	21,843	1020	20,085
360	21,651	1050	20,078
390	21,488	1080	20,067
420	21,327	1110	20,098
450	21,147	1140	20,018
480	20,996	1170	19,984
510	20,849	1200	19,934
540	20,707	1230	19,911
570	20,595	1260	19,878
600	20,43	1290	19,847
630	20,266	1320	19,817
660	20,121	1350	19,802
690	19,994		

Tabla 16. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,3 mL de cloroformo.

t(s)	T(°C)	t(s)	T(°C)
0	27,492	420	21,556
30	27,073	450	21,35
60	26,666	480	20,968
90	26,255	510	20,608
120	25,795	540	20,332
150	25,331	570	20,021
180	24,662	600	19,863
210	24,215	630	19,98
240	23,789	660	20,152
270	23,424	690	19,993
300	23,083	720	19,951
330	22,685	750	19,859
360	22,325	780	19,753
390	21,906	810	19,631

Tabla 17. Medidas de temperatura frente a tiempo de la disolución de 10 mL de tert-butanol con 0,4 mL de cloroformo.