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Abstract: Background and objectives: Massive rotator cuff tears compromise shoulder mobility function
and cannot be directly repaired. Latissimus dorsi tendon transfer (LDTT) is a therapeutic alternative
suitable for the treatment of rotator cuff tears that helps to restore external shoulder rotation. Cadaver
models have been used for studying the effects of LDTT and procedural variations, but, to the
best of our knowledge, none of them have been validated. The aim of our study was to validate a
novel cadaver model while verifying the effects of LDTT on external rotation. Materials and Methods:
Two groups were included in the study: a cadaver group and a control group made up of healthy
volunteers, which were used for the validation of the cadaver model. Baseline external rotation
measurements were performed with both groups, after which a massive rotator cuff tear was inflicted
and repaired with LDTT in the cadaver group. Their postoperative external rotation was evaluated
using three different tests. Results: No statistically significant differences were found between the
baseline measurements of the two groups, and postoperative external rotation was significantly
higher after LDTT in all cases but one. Conclusions: Cadaver models were validated, since they
had a similar preoperative external rotation to healthy volunteers. Moreover, they allowed us to
demonstrate the effect of LDTT on external shoulder rotation.

Keywords: cadaver; external rotation; latissimus dorsi tendon transfer (LDTT); rotator cuff; shoulder

1. Introduction

The rotator cuff not only contributes to the motion of the shoulder joint (abduction,
internal rotation, and external rotation), but also to glenohumeral stability, preventing the
proximal migration of the humeral head [1,2]. When a rotator cuff injury occurs, shoulder
motion may be compromised, particularly in the event of a posterosuperior lesion, i.e., a
lesion affecting the supraspinatus and infraspinatus tendons, resulting in a loss of external
rotation. Massive tears (which involve two or more tendons or are larger than 5 cm) are
often not amenable to direct repair, especially when associated with muscle atrophy and
fatty infiltration. In these cases, a latissimus dorsi tendon transfer (LDTT) has emerged as a
promising therapeutic alternative [3–10].

The latissimus dorsi is a vast muscle that attaches to the distal portion of the medial
bicipital groove between the pectoralis major and subscapularis tendons. Its normal func-
tion includes internal rotation, adduction, and backward extension of the humerus [11,12].
In LDTT, the latissimus dorsi tendon is harvested from its medial humeral insertion and
reattached to the supraspinatus footprint. This allows the latissimus dorsi to restore ex-
ternal shoulder rotation and prevent the superior migration of the humeral head, thus
improving deltoid function [3,5,7,12,13].
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Although cadaver models cannot completely match a live patient, they can be useful
for developing improvements in surgical techniques or training surgeons. Previous studies
have used cadaver models for the assessment of LDTT since they are a rapid and direct
way to visualize the effects of procedural variations on shoulder functionality. However, to
the best of our knowledge, none of these models have been validated [14–18].

For this reason, the present study aimed to validate a novel cadaver model by compar-
ing it to healthy living subjects, while also ascertaining that LDTT does restore external
rotation after a massive rotator cuff tear.

2. Materials and Methods
2.1. Study Groups

Our study was conducted with two groups. The cadaver group was made up of three
fresh frozen cadavers with a mean age of 64.3 years (range, 62–67 years). They were stored
at −20 ◦C before testing and thawed for 12 h at room temperature. The clinical practice
complies with the ethical and legal requirements for testing medical devices on human
cadavers, as well as the medical tests necessary to ensure the safety of all participants. The
anatomical material used comes from local donors, provided by the Catholic University of
Valencia. When selecting the cadavers, specimens with previous conditions involving the
glenohumeral and/or scapulothoracic joints, limited range of motion, rotator cuff tears,
or previous shoulder surgery were excluded. All three cadavers were upper hemibody
specimens with an eviscerated ribcage, full head and neck, and all the static and dynamic
stabilizers of the glenohumeral and scapulothoracic joints of both extremities were present,
including the skin.

The control group, made up of 50 healthy volunteers, was used to validate the cadaver
models. To this effect, a representative sample of 50 individuals was selected following the
selection criteria shown in Table 1.

Table 1. Inclusion and exclusion criteria for the control group.

Inclusion Criteria

• Aged between 18 and 65 years
• Signed informed consent

Exclusion Criteria

• Any diagnosed shoulder pathology that implied an unnatural limited range of motion,
including glenohumeral and/or scapulothoracic joint condition, rotator cuff tears, or any
previous shoulder surgery

Out of the 50 healthy volunteers, 23 (46%) were male and 27 (54%) were female. Their
baseline characteristics are shown in Table 2.

Table 2. Baseline characteristics of the control group. Data are presented as mean (range).

Male Female

Age (years) 38.3 (25.0–61.0) 33.9 (21.0–44.0)

Weight (kg) 81.8 (62.0–98.0) 60.2 (47.0–78.0)

Height (cm) 177.7 (170.0–191.0) 165.1 (150.0–178.0)

BMI (Body Mass Index) 25.9 (21.2–30.8) 22.1 (17.7–29.7)

2.2. Measurement Device

All measurements were made with an electromechanical device (shown in Figure 1)
that allowed us to easily record the external torque applied to the upper extremity and the
resulting external rotation.
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Figure 1. Electromechanical measurement device.

To ensure the accuracy of the measurements, all subjects were placed next to the
device with their axilla resting on its height-adjustable lateral panel. Their arms were
placed on the rotation axis of the device, preventing any contact between the elbow and
the equipment to minimize friction. The subject’s wrists were attached to a clamp located
on the end of the rotating rod, which mimicked the external rotation movement of the
shoulder. To ensure uniformity between measurements, the torque exerted on the subject’s
arm was applied through a programmable digital torque wrench. All measurements were
made with the subject’s arm in neutral rotation, held close to the chest.

All steps of the study are detailed in the following subsections and summarized in
Figure 2.
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Figure 2. Methodological flowchart. Purple squares indicate study groups, blue squares show the timeline, and white
squares represent each main step of the study. Connected by an arrow to each step are the brief explanation (grey) and the
variables being measured (yellow). LDTT, latissimus dorsi tendon transfer.

2.3. Pre-LDTT Measurements

Both groups were subjected to baseline measurements, which involved forcing the
maximum external rotation of both arms for each subject until resistance was felt in the
cadaver group or verbally expressed in the control group (Figure 3).
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Figure 3. Measurement of the external rotation of one of the subjects in the control group using the measurement device.

2.4. Surgical Technique

A massive posterolateral tear was created to both cadaveric shoulders in each speci-
men, which were subsequently repaired using a LDTT procedure. Subjects were placed
laterally, and the greater tuberosity was debrided to induce bleeding in the latissimus dorsi
recipient site. A longitudinal incision was made over the posterior axillary pillar, separating
the latissimus dorsi tendon from its humeral insertion site. The tendon was retrogradely
resected from the thoracic wall, sparing the neurovascular pedicle. Non-resorbable sutures
were applied on each side of the tendon. Mobilization of the tendon was deemed to be
appropriate when the tip of the tendon surpassed the posterolateral border of the acromion
by 2 cm. The latissimus dorsi tendon was transported to the subacromial space through
the space between the infraspinatus, the teres minor, and the posterior deltoid. The two
sutures (medial and lateral) on the side of the latissimus dorsi graft were anchored to the
greater tuberosity with knotless anchors.

2.5. Post-LDTT Measurements

To restore the normal viscoelastic properties of soft tissues, five maximum internal
and external rotation movements were performed on each shoulder. All movements were
carried out by applying the minimum torque needed for shoulder movement (2.2 N·m) that
we estimated using free validated simulation software (OpenSim [19,20]). This allowed us
to restore physiological properties without compromising the anatomical structures.

Three tests were then conducted with the cadaver group to evaluate postoperative
external rotation:

− Test A: Shoulders were subjected to the same torque values applied at baseline.
− Test B: Shoulders were subjected to the mean torque value applied at baseline.
− Test C: Sustained torque was applied until the repaired tendon avulsed from its

insertion on the greater tuberosity. This was used to determine the maximum torque
that the reconstruction could endure.

2.6. Statistical Analysis

Data are presented as mean and standard error of the mean (SEM). An independent
samples t-test was used for the comparative analysis of the baseline measurements between
both groups, while a paired-samples t-test was used for the comparison of baseline mea-
surements with Tests A and B in the cadaver group. These differences are represented with
scatterplots and kernel density plots. Kernel density plots show the continuous distribution
of a single variable as a flattened histogram.

All statistical analyses were carried out using the Stata 15 software package (StataCorp,
College Station, TX, USA), establishing 80% power (1-β) for all tests. A p-value < 0.05 was
considered statistically significant in all cases.
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3. Results

The baseline measurements for both study groups were compared to identify dif-
ferences in their preoperative performance and to determine the validity of the cadaver
models. The baseline mean torque was 18.9 N·m (SEM = 0.86) in the control group and
21.4 N·m (SEM = 1.35) in the cadaver group, while the mean external rotation was 99.8◦

(SEM = 1.18) in the control group and 103.2◦ (SEM = 2.38) in the cadaver group. No statisti-
cally significant differences were found between the two groups for the maximum torque
(p = 0.23) or the external rotation (p = 0.25).

Figure 4a shows a continuous distribution representation of the torque required to
achieve maximum preoperative external rotation in both groups, and Figure 4b shows said
maximum external rotation for both groups. All curves show a similar pattern, with a
slight rightward shift in the cadaver group, probably due to muscle distention, which is
typically observed in cadaveric specimens.
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Figure 4. Continuous distribution comparing baseline measurements of the control (blue) and cadaver (red) groups in terms
of the torque required to achieve maximum external rotation (a) and said external rotation (b).

Figure 5 shows the absolute differences in external rotation before and after LDTT
for the cadaver group, as obtained in Test A. In all cases, except for the left shoulder of
subject 1, external rotation increased after the procedure. There were statistically significant
differences between the external rotation achieved pre- and post-operatively (p < 0.001),
with a mean increase in external shoulder rotation of 7.5◦ (SEM = 3.24).

The differences between the external rotation before and after LDTT as measured in
Test B are shown in Figure 6. Again, except for the left shoulder of subject 1, post-LDTT
external rotation increased in all cases. The cadaveric specimens achieved a mean increase
of 15.3◦ (SEM = 3.26) in the external rotation of the shoulder, which was considered to be a
significant increase compared to their baseline measurement (p = 0.03).

We performed Test C to determine the maximum torque that the reconstruction could
withstand before breaking. However, only three out of the six tendons avulsed from their
insertion during Test C, despite the mean torque being applied (138 N·m; SEM = 6.01), and
the subsequent external rotations (33.0◦; SEM = 2.19) were significantly higher than those
applied in Tests A and B.
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Figure 5. Differences in external rotation between baseline and post-LDTT (Test A) in cadaveric
specimens for the maximum torque values. The values for each arm are shown separately for each of
the three subjects (L = left; R = right). Three measurements per arm were recorded for both arms of
the cadaveric specimens.
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Figure 6. Differences in external rotation between baseline and post-LDTT performance (Test B) in
the cadaveric specimens for maximum mean preoperative external rotation values. The values for
each arm are shown separately for each of the three subjects (L = left; R = right). Three measurements
per arm were recorded for both arms of the cadaveric specimens.

4. Discussion

When using cadaver models, the specimens have to represent close to physiologic
anatomy behavior. Model validation is therefore very specific to an application and implies
that selection criteria appropriate for the use of the models were used [18].

The presented cadaveric specimens appear to be a valid model for the study of external
shoulder rotation, as no significant differences were found between the cadaver and control
groups in baseline measurements. This is the first time that this comparison has been made
in shoulders undergoing LDTT [11,15,17,21]. The values were slightly higher in the cadaver
model, which permits a wider range of muscle movements, and have absence of pain.
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Numerous alternatives have been reported for the treatment of rotator cuff tears, such
as arthroscopic subacromial debridement, partial tendon repair, acromioplasty, allograft
reconstruction, and muscle transfer. The choice of one technique over another mainly
depends on the patient’s age and functional requirements, with LDTT representing a valid
alternative for young active patients with high functional demands [6,10,13,22–25]. A
wide number of studies confirm its efficacy, since it restores active external rotation of the
shoulder, relieves pain, and improves shoulder torque and function [3,5,7,10,13,23,26].

External rotation was not only restored, but increased after LDTT, which was sta-
tistically significant when comparing baseline and postoperative measurements (Tests A
and B). Active external rotation increase after LDTT has already been reported by several
studies, but it should be noted that we exclusively measured passive external rotation,
since we would need to apply an external active muscle contraction to measure active
external rotation in cadaveric specimens. LDTT has a direct effect on muscle contraction
(restoring active external rotation) and a tenodesis effect, descending the humeral head and
improving glenohumeral kinematics, which could explain its effects on passive external
rotation [10].

However, one of the six shoulders experienced a decrease in postoperative external
rotation. This could be attributed to either a failure when performing the surgical technique
or a non-diagnosed lesion, such as fatty infiltration in the teres minor or instability in
the subscapularis tendon, which are known contraindications for LDTT [12,13,17,25,27].
Nevertheless, none of these indicators were stated in the specimens’ records, and we believe
that this result does not overshadow the overall uniformity of the data. Moreover, only half
of the reconstruction detached from their insertion point when subjected to significantly
high torque, which proves their strength and stability.

The quantification of the range of motion of the shoulder is usually carried out using
goniometers, although they require a certain skill by the clinician, and some authors believe
that inter-observer and inter-instrument variability should not be disregarded [28–30]. Our
measurement device constitutes an innovative alternative that is both comfortable for the
patient and easy to interpret by the clinician. Based on the principles of goniometry, the
device makes it possible to simultaneously measure two different parameters: applied
torque and external shoulder rotation.

Overall, we present an original study validating cadaver models with intact shoulder
joint structures that allowed us to verify the effects of LDTT on external shoulder rotation.
We consider our cadaver model’s anatomical features and preservation method to be
suitable for shoulder studies.

The main weakness of this study is a small number of cadaver models, which limits
the power of our study. Although we believe that our results are remarkably uniform,
they should be taken with caution. Future studies should focus on using the same cadaver
models for studying LDTT variations or other shoulder surgeries.

5. Conclusions

Our cadaver models that were selected for studying external rotation of the shoulder
after LDTT were validated, as no statistical differences were found when comparing their
preoperative measurements with those of healthy volunteers. Moreover, they allowed us
to verify that external rotation is not only restored, but increased after LDTT.
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