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Abstract 18 

Probabilistic topic modelling is frequently used in machine learning and statistical analysis for 19 

extracting latent information from complex datasets. Despite being closely associated with 20 

natural language processing and text mining, these methods possess several properties that make 21 

them particularly attractive in metabolomics applications where the applicability of traditional 22 

multivariate statistics tends to be limited. The aim of the study was thus to introduce probabilistic 23 

topic modelling – more specifically, Latent Dirichlet Allocation (LDA) – in a novel experimental 24 

context: volatilome-based (sea)food spoilage characterization. This was realized as a case study, 25 

focusing on modelling the spoilage of Atlantic salmon (Salmo salar) at 4 °C under different 26 

gaseous atmospheres (% CO2/O2/N2): 0/0/100 (A), air (B), 60/0/40 (C) or 60/40/0 (D). First, an 27 

exploratory analysis was performed to optimize the model tunings and to consequently model 28 

salmon spoilage under 100 % N2 (A). Based on the obtained results, a systematic spoilage 29 

characterization protocol was established and used for identifying potential volatile spoilage 30 

indicators under all tested storage conditions. In conclusion, LDA could be used for extracting 31 

sets of underlying VOC profiles and identifying those signifying salmon spoilage, giving rise to 32 

an extensive discussion regarding the key points associated with model tuning and/or spoilage 33 

analysis. The identified compounds were well in accordance with a previously established 34 

approach based on partial least squares regression analysis (PLS). Overall, the outcomes of the 35 

study not only reflect the promising potential of LDA in spoilage characterization, but also 36 

provide several new insights into the development of data-driven methods for food quality 37 

analysis.  38 
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1. Introduction 42 

The rapid development of metabolomics technologies has greatly improved our understanding of 43 

complex biological systems during the past few decades. In the food and nutrition sector, this global 44 

trend has had a major impact on the development of foodomics (Miguel et al., 2012), a novel 45 

interdisciplinary field where metabolomics – the study of low molecular weight (<1500 Da) 46 

molecules associated with biological samples (Castro-Puyana et al., 2017; Pinu, 2016) – has already 47 

been used for addressing various questions related to food quality and safety (Böhme et al., 2019; 48 

Klampfl, 2018; Mancano et al., 2018; Martinović et al., 2018; Xu, 2017). In particular, the latest 49 

advances in the analysis of spoilage-indicating volatile organic compounds (VOCs) have greatly 50 

benefitted both scientific knowledge (Dong et al., 2019; Odeyemi et al., 2018; Wang et al., 2016) 51 

and technology development (Ghasemi-Varnamkhasti et al., 2018; Pavase et al., 2018; Poghossian 52 

et al., 2019). 53 

However, the complexity of the microbial metabolism poses a major challenge in food quality 54 

characterization. At any given moment during storage time, the food volatilome consists of 55 

numerous compounds that differ in terms of quantity, chemical composition, reactivity, olfactory 56 

impact and sensory acceptability. Irrespective of the applied quantification method, the extraction of 57 

information from the resulting datasets thus calls for advanced statistical analysis. Basic 58 

multivariate methods such as principal components analysis (PCA), partial least squares regression 59 

analysis (PLS) and hierarchical cluster analysis (HCA) have frequently been used for this purpose 60 

(Bermejo-Prada et al., 2015; Mansur et al., 2019; Mikš-Krajnik et al., 2016). However, the 61 

applicability of these methods in biomarker identification tends to be limited; for example, while 62 

PLS outperforms HCA and PCA as a selective tool, it still requires a linear relationship between the 63 

studied variables and has a limited capacity in distinguishing correlation from a cause-and-effect 64 
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relationship (Kuuliala et al., 2018). Hence, more flexible methods are needed for improving our 65 

ability to identify the most useful volatile spoilage indicators. 66 

Probabilistic topic modelling comprises a group of methods used in machine learning and statistical 67 

analysis for extracting underlying thematic information from an unstructured collection of 68 

documents (Blei, 2012). Currently, Latent Dirichlet Allocation (LDA) introduced by Blei et al. 69 

(2003) represents one of the most widespread approaches. Despite the fact that these methods have 70 

traditionally been closely associated with the analysis of textual data – for example, 71 

consumer/customer feedback (Bastani et al., 2019; Hu et al., 2019), social media content (Curiskis 72 

et al., 2019; Nolasco & Oliveira, 2019) or research interests (Xiong et al., 2019; Yang et al., 2019) – 73 

LDA has also already been successfully used in different biological settings, particularly in 74 

genomics (Chen et al., 2010; Perina et al., 2010; Pratanwanich & Lio, 2014; Shiraishi et al., 2015; 75 

Yu et al., 2014; Zhang et al., 2012). However, to the best of the authors’ knowledge, its prospects 76 

within food science still remain to be elucidated.  77 

The aim of the present study is to introduce LDA as an exploratory and selective statistical 78 

technique for characterizing (sea)food quality on the basis of its volatilome. First, a non-technical 79 

overview of the principles of LDA is given in Section 2. In the experimental part (Sections 3-4), 80 

LDA is applied for modeling the quality decay of raw Atlantic salmon (Salmo salar) under different 81 

gaseous atmospheres and for consequently identifying potential spoilage indicators. Special 82 

emphasis is given on 1) optimizing the model parameters, 2) developing a systematic spoilage 83 

characterization protocol, including a set of criteria for identifying VOCs that possess promising 84 

potential for quality monitoring applications (referred to as “potential spoilage indicators” from here 85 

on), and 3) comparing the performance of the said protocol with a previously established PLS-based 86 

approach (Kuuliala et al., 2019).  The obtained results, conclusions and decisions are discussed in 87 

Section 5. Finally, summarizing remarks are given in Section 6. 88 
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2. Latent Dirichlet Allocation 89 

LDA is a flexible generative probabilistic model for discrete data (Blei et al., 2003), meaning that it 90 

can be used for determining the joint probability distribution underlying a group of known samples 91 

and consecutively generating new samples from the same distribution. This approach not only 92 

allows for exploring previously unknown (underlying or latent) structures in large and complex 93 

datasets, but also reducing dimensionality, detecting co-occurring variables and evaluating the 94 

similarity between individual unlabeled samples. It should be noted though that since LDA is 95 

inherently unsupervised, it does not involve a pre-defined output and thus cannot be directly used 96 

for analyzing the relations between independent and dependent variables. For that purpose, a 97 

complementary modelling approach and/or an extension into (semi-)supervised LDA is needed (see 98 

e.g. Fu et al., 2015; Li et al., 2018). 99 

The key concepts of topic modelling are word (term), document, corpus, word-document matrix 100 

(WDM) and topic. By definition, a word refers to a basic unit of discrete data, a document to a 101 

sequence of words, and a corpus to a collection of documents (Blei et al., 2003). A WDM (also 102 

known as a document-term matrix or a bag of words) indicates the frequency of each word in each 103 

document belonging to the corpus; in case of n documents and m words, an n×m WDM is obtained 104 

(Liu et al., 2016). This information can be used for extracting a set of probability distributions over 105 

all words which appear in the corpus (i.e. the vocabulary); these distributions – or, more 106 

specifically, the interpretations of these distributions (see Subsection 3.2.3) – can be referred to as 107 

topics. In other words, a given document is seen as a product of a generative process, consisting of 108 

1) choosing a distribution over topics, 2) a topic from the chosen distribution, 3) a word from the 109 

chosen topic, and 4) returning to step 2 until the pre-determined document length has been reached 110 

(Blei et al., 2003).  111 

The application of LDA in a classical text mining setting is illustrated in Example 1. 112 
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Example 1.  A corpus was formed from 121 abstracts (documents) of original research conducted 113 

at the Research Unit Food Microbiology and Food Preservation at Ghent University (FMFP) and 114 

published in international peer-reviewed journals between 2000 and 2018. A WDM was 115 

constructed by calculating the frequency of each individual word in each abstract (excluding digits, 116 

punctuation, symbols and English stop-words) and used for generating an LDA model with five 117 

topics. The R package tm (Feinerer & Hornik, 2018; Feinerer et al., 2008) was used for 118 

constructing the WDM and the package topicmodels (Grün & Hornik, 2011) for learning the LDA 119 

model with default parameters. The obtained results were examined and visualized in accordance 120 

with Subsection 3.2.3. 121 

Figure 1 presents the 20 most common words and their distribution in the extracted topics 1-5, 122 

associatively interpreted as follows: 1) microbial aspects of food preservation technologies, 2) food 123 

quality and microbial spoilage, 3) modelling of microbial behavior in foods, with special emphasis 124 

on norovirus, 4) food packaging and shelf life, 5) microbial food safety and health. Overall, these 125 

topics could be interpreted as the central themes of research carried out at FMFP during the 126 

studied time interval. It should be noted that the number of topics affects their specificity; for 127 

example, a model with two topics could be interpreted as 1) food quality and 2) food safety (data 128 

not shown). 129 

Table 1 shows the distribution of topics 1 - 5 in selected documents. For example, document 16 130 

(“Growth of Escherichia coli O157:H7 and Listeria monocytogenes with prior resistance to intense 131 

pulsed light and lactic acid” by Rajkovic et al., 2011) could be associated with food preservation 132 

(topic 1), whereas the 64:36 relation between topics 1 and 3 in document 40 (“Multi-method 133 

approach indicates no presence of sub-lethally injured Listeria monocytogenes cells after mild heat 134 

treatment” by Uyttendaele et al., 2008) indicates that pathogen growth was examined by both 135 

experimental and statistical methods.  136 
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When compared with classical multivariate methods, LDA poses several advantages that make it 137 

particularly attractive for addressing complex biological problems. It is flexible, adaptable and 138 

imposes relatively few assumptions; importantly, the number of topics (k) is assumed to be known, 139 

the order of words within a given document to be exchangeable and all documents to be 140 

independent of each other (Liu et al., 2016). A given document may be associated with multiple 141 

topics and a given word may belong to multiple documents (Binkley et al., 2014; Griffiths & 142 

Steyvers, 2004). Overall, LDA is compatible with any inference algorithm and can be extended or 143 

incorporated as part of a more complex approach (Blei et al., 2003). A further discussion on model 144 

tuning and associated challenges is provided in Subsection 5.1. 145 

3. Materials and methods 146 

3.1. Data pre-processing and notation 147 

All statistical analyses were performed using R 3.6.1 (R Core Team, 2019) on four independent 148 

subsets (A-D) of the salmon data previously collected by Kuuliala et al. (2019). Briefly, the 149 

experimental units of the study were individually packed salmon fillet portions, stored for ≤ 13 days 150 

at 4 °C under specific gaseous atmospheres (% CO2/O2/N2): 0/0/100 (A), air (B), 60/0/40 (C) or 151 

60/40/0 (D). Each package (n=16 per atmosphere) was linked with a single value of each of the 152 

following variables: storage time (d), concentrations of 25 VOCs (C1-C25; ppb) and sensory 153 

rejection percentage (R%; %). These subsets were used for generating four WDMs, where the 154 

individual salmon packages were treated as “documents”, VOCs as “words” and their 155 

concentrations rounded to the nearest whole numbers as “frequencies”. Following the same 156 

semantic principles, the extracted “topics” are referred to as “VOC profiles” or “profiles” 157 

throughout the present manuscript and denoted whenever applicable as XkPn, where X indicates the 158 

subset (A-D), k the number of profiles, and n is a profile identifier (n=1,2,…,k)..  159 

3.2. Exploratory analysis  160 



9 
 

The exploratory analysis aimed at optimizing model performance (Subsections 3.2.1-3.2.2) and, 161 

consecutively, establishing the principles of spoilage characterization (Subsections 3.2.3-3.2.4). All 162 

activities were performed using the subset A (100 % N2) and its WDM. In case of all mentioned R 163 

functions, default parameters were used unless otherwise specified. 164 

3.2.1. Model tuning 165 

In literature, several metrics have been proposed for facilitating the selection of the number of 166 

topics (here, profiles). However, the existing methods typically apply different identification 167 

criteria;  for example, the algorithm of Cao et al. (2009) returns the value of k that minimizes the 168 

average cosine distance between the extracted topics, the algorithm of Arun et al. (2010) the value 169 

that minimizes the symmetric Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951) 170 

between the matrices representing the word-per-topic and topic-per-document distributions, and the 171 

algorithm of Deveaud et al. (2014) the value that maximizes the sum of the divergences between 172 

topic pairs. For this reason, multiple metrics are frequently implemented for comparative purposes.  173 

In this study, the three aforementioned metrics (denoted Cao, Arun and Deveaud) were used for 174 

selecting appropriate tunings for LDA models with 2-10 profiles, using the function 175 

FindTopicsNumber() from the package ldatuning (Murzintcev, 2019). Inference was estimated by 176 

the variational expectation-maximization algorithm (VEM) or Gibbs sampling with following 177 

specifications: 178 

• VEM: method=”VEM”  179 

• Gibbs100A: method=”Gibbs”, iter=100, burnin=0, thin=1 180 

• Gibbs100B: method=”Gibbs”, iter=100, burnin=50, thin=1 181 

• Gibbs1000A: method=”Gibbs”, iter=1000, burnin=0, thin=1 182 

• Gibbs1000B: method=”Gibbs”, iter=1000, burnin=500, thin=1 183 
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where iter refers to the number of iterations, burnin to the number of discarded (burned) initial 184 

iterations and thin to the interval of retained iterations. For evaluating modelling consistency, two 185 

lists consisting of ten random seeds (s1-s10) or WDM column orders (O1-O10) were created; all 186 

possible seed-order combinations were tested using each of the aforementioned five methods. 187 

Finally, the obtained results (optimal number of profiles; kopt) were visualized using the function 188 

heatmap.2() from the package gplots (Warnes et al., 2020). In conclusion (see Subsection 5.1 for a 189 

discussion), the method Gibbs1000B and a single seed-order pair were selected to be used for all 190 

further modelling activities. 191 

3.2.2. Cross-validation  192 

In literature, the performance of LDA is frequently assessed by means of a perplexity analysis. 193 

Briefly, perplexity (P(w)) is a measure of the model’s ability to predict an unseen dataset (w) and 194 

can be denoted as follows:   195 

    𝑃𝑃(𝑤𝑤) = exp �− log (𝑝𝑝(𝑤𝑤))
∑ ∑ 𝑛𝑛𝑗𝑗𝑗𝑗𝑉𝑉

𝑗𝑗=1
𝐷𝐷
𝑗𝑗=1

�     (1)  196 

where log (p(w)) is the log-likelihood of the new data and njd the number of times the jth term occurs 197 

in the dth document (Grün & Hornik, 2011); an increasing perplexity signifies a decreasing model 198 

performance. 199 

In this study, perplexity analysis was used for specifying the selection of k and for evaluating the 200 

prediction ability. First, leave-one-out cross-validation was performed with functions provided in 201 

the package topicmodels (Grün & Hornik, 2011). Each sample 1-16 was assigned once as the 202 

holdout set while using the other fifteen samples as the training set; models (k=2,…,10) were 203 

learned using the function LDA() and the selected tunings (Subsection 3.2.1). Perplexities were 204 

calculated for each model with the function perplexity(), using the holdout sets as the new data. 205 

3.2.3. Profile interpretation 206 
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In literature, different methods are used for interpreting the extracted LDA profiles. In classical text 207 

mining applications, this task is often carried out by examining the most frequent words of each 208 

extracted topic (see, e.g., Example 1). Although it may seem an intuitive process, it relies on 209 

knowledge regarding the logical relations between different words: semantically speaking, the 210 

concept of “topic” should thus be seen as the “label” of a word distribution rather than being 211 

synonymous with the distribution itself. 212 

In this study, profile interpretation was performed for identifying spoilage-associated profiles. First, 213 

three exploratory models (k=3, 5, 9) were learned using the function LDA() from the package 214 

topicmodels and the selected tunings (Subsection 3.2.1). Relevant distributions were extracted 215 

using the function tidy() from the package tidytext (Silge & Robinson, 2016): the distribution of 216 

the VOCs within profiles was visualized using the package ggplot2 (Wickham, 2016) and the 217 

distribution of the profiles within samples using Excel 2013 for Windows. In order to reduce the 218 

risk of interpretation bias, top-8 VOCs were reported in accordance with the suggestion of Agrawal 219 

et al. (2018). For assessing the similarity between the compositions of all extracted profiles, 220 

hierarchical cluster analysis (HCA) was performed on the basis of the Euclidean distance and 221 

average linkage, using the function pvclust() from the package pvclust (Suzuki et al., 2019). 222 

Finally, the profiles were interpreted by examining the relations between cluster distribution, 223 

storage time and R% (Excel 2013 for Windows).  224 

3.2.4. Identification of potential spoilage indicators 225 

In this study, potential spoilage indicators were identified by evaluating the prevalence of each 226 

VOC in the spoilage-associated profiles of the three exploratory models (Subsection 3.2.3). This 227 

was done by establishing the relative spoilage association (SA%): 228 

𝑆𝑆𝐴𝐴% = 𝑛𝑛𝑠𝑠𝑠𝑠
𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡

      (2)  229 
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where nsc is the number of times a given compound occurred among the top-8 VOCs of the 230 

spoilage-associated profile(s) (n=ntot) of a given model (k=3, 5, 9). Compounds fulfilling the 231 

criterion SA% ≥ 0.5 (occurrence among the top-8 VOCs in at least half of the spoilage-associated 232 

profiles) were considered relevant. Finally, identification performance was assessed by comparing 233 

the obtained results with the outcomes of a previously established PLS-based protocol (Kuuliala et 234 

al., 2019; denoted here as IPPLS). 235 

3.3. Selective analysis 236 

The selective analysis aimed at the identification of potential spoilage indicators under all tested 237 

storage conditions. This was done by applying the spoilage characterization protocol developed 238 

during exploratory analysis (Subsection 4.1.5) also for subsets B-D. Briefly, independent LDA 239 

models (k=3) representing a given condition (B-D) were learned and interpreted in accordance with 240 

Subsection 3.2.3 and potential spoilage indicators were identified in accordance with Subsection 241 

3.2.4. 242 

4. Results  243 

4.1. Exploratory analysis 244 

4.1.1. Model tuning 245 

The impact of model tuning on the optimal number of profiles (kopt) is visualized in Fig. 2. The Cao 246 

and Devaud metrics were found to give highly similar results, the median (Md) being either four 247 

(VEM-Cao; VEM-Deveaud; Gibbs100A-Deveaud; Gibbs100B-Deveaud), five (Gibbs100B-Cao; all 248 

Gibbs1000-methods) or six (Gibbs100A-Cao). In contrast, the Arun metric differed from the other 249 

two by consistently suggesting Md(kopt) = 2, irrespective of the chosen tunings. The smallest 250 

observed variation in kopt and thus the best model stability was achieved with the method 251 

Gibbs1000B; generally, increasing the iteration number (100 vs. 1000) and/or the number of burned 252 

iterations (0 vs. 50 or 500) reduced the variation in case of the Cao metric, whereas respective 253 
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stabilization in the Deveaud metric was achieved after a parallel increase in both parameters (100A 254 

vs. 1000B). Finally, no clear trends associated with WDM column order and/or seed could be 255 

detected under any tested circumstances.  256 

4.1.2. Cross-validation 257 

The perplexities of the cross-validation models are shown in Table 2. When considering any given 258 

holdout sample (ID=1,…,16), little difference could typically be observed between different levels 259 

of k ≠ 2. On the other hand, when considering any given k, a distinct pattern could be observed over 260 

storage time. The highest values (7.60-52.30) appeared in the beginning of storage time (days 1-3), 261 

followed by a decrease between days 5 and 13 (1.78-3.63). The prediction ability was thus lowest in 262 

the case of samples analyzed during the early days of storage. 263 

4.1.3. Profile interpretation 264 

The distributions of the top-8 VOCs within the extracted profiles (A3P1-P3; A5P1-P5; A9P1-P9) of 265 

the three exploratory models are shown in Fig. 3A-C and the corresponding clustering results in 266 

Fig. 3D. Irrespective of the value of k, three main profile clusters could be observed. In cluster 1 267 

(A3P1, A5P1 and A9P5), none of the top-8 VOCs (ethanol, 3-methyl-1-butanol, dimethyl sulfide, 268 

carbon disulfide, acetone, ammonia, 2,3-butanedione, 3-methylbutanal, acetic acid and/or ethyl 269 

acetate) accounted for over 25 % (in terms of relative abundance) of the entire volatilome, whereas 270 

cluster 2 (A3P3, A5P2, A5P5, A9P3, A9P4 and A9P8) was dominated by hydrogen sulfide + 271 

ethanol and cluster 3 (A3P2, A5P3, A5P4, A9P1, A9P2, A9P6, A9P7 and A9P9) by ethanol. In the 272 

latter two cases, the most abundant compound(s) accounted for over 80 % of the extracted profiles.  273 

The relations between profile distribution, storage time and sensory rejection are shown in Fig. 4. 274 

When considering storage time (Fig. 4A-C-E), a major shift in volatilome composition could be 275 

observed between days 3-5 in all three models. Cluster 1 was found most prominent during the 276 

early days (1-3) and cluster 3 during the latter days (5-11), whereas cluster 2 had a minor 277 
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contribution and only exceeded 50 % in two late-stage samples (days 11-13). When considering 278 

sensory rejection (Fig. 4B-D-F), respective observations could be made; generally, increasing R% 279 

was accompanied with decreasing contribution of cluster 1 and corresponding increase in clusters 2-280 

3. Cluster 1 dominated the volatilome of samples with less than 10 % rejection, whereas clusters 2 281 

and 3 had varying contributions at a certain rejection percentage. Finally, when comparing the 282 

profile distributions of any given sample (Fig. 4A-C-E), increasing k was seen to cause a 283 

partitioning in sub-profiles while retaining the three main clusters. For example, the partitioning of 284 

A3P2 (k=3) into A5P4 and A5P3 (k=5) and further to A9P1, A9P2, A9P6, A9P7 and A9P9 (k=9) 285 

could be observed under cluster 2. In conclusion, profiles belonging to clusters 2 and 3 were 286 

considered spoilage-associated (see Subsection 5.2 for discussion) and were thus used in SA% 287 

calculations (Subsection 4.1.4). 288 

4.1.4. Identification of potential spoilage indicators 289 

The relative spoilage associations of all quantified VOCs are given in Table 3. A comparison 290 

between the models with 3, 5 or 9 profiles showed that 11, 9 and 5 compounds had SA% ≥ 0.5, 291 

respectively. More specifically, three major VOC groups could be identified: 1) 13/25 compounds 292 

with SA% < 0.5 in all three models (C2, C7-C10, C13, C15, C17, C18, C22-C25), 2) 5/25 293 

compounds showing an initial SA%=1 and a decreasing trend along with increasing k (C4, C16, 294 

C19-21) and 3) 7/25 compounds fluctuating around SA%=0.5 (C1, C3, C5, C6, C11, C12, C14).  295 

4.1.5. Spoilage characterization protocol 296 

Based on the results of the exploratory analysis (Subsections 4.1.1-4.1.4), the following protocol 297 

(denoted IPLDA) was established for LDA-based salmon spoilage characterization: 298 

• Profile number criterion: for model training, use the lowest k that does not lead to a change 299 

in perplexity when compared with the optimal k;  300 
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• Spoilage characterization criterion:  for SA% calculation, use profiles whose contribution 301 

shows a positive correlation with the metadata (here, storage time and R%); 302 

• Spoilage association criterion: for identifying potential spoilage indicators, use SA% = 0.5 as 303 

the cut-off threshold.   304 

When comparing the performance of the 3-profile IPLDA (denoted IPLDA3 in Table 3) with the 305 

previously established IPPLS, a high correspondence could be observed at the full protocol level: 5/6 306 

VOCs that fulfilled the three IPPLS selection criteria were also identified by IPLDA3, while 4/5 VOCs 307 

having SA%=1 were also identified by IPPLS. In contrast, a lower correspondence was observed at 308 

the methodological level (LDA vs. PLS): out of 15 compounds identified by at least one of the two 309 

methods, three compounds (C8, C17, C23) were missed by LDA and three other compounds (C5, 310 

C11, C14) by PLS. Finally, a good overall consensus was reached in recognizing irrelevant VOCs: 311 

13/25 compounds were classified as irrelevant by both protocols.  312 

4.2. Selective analysis 313 

The relations between storage time, sensory rejection and profile distribution under conditions B-D 314 

are visualized in Fig. 5. Overall, the differences in the evolution of profile distributions showed that 315 

the applied atmosphere had a major impact on the progression of spoilage. Under air (B), 60/0/40 316 

(C) and 60/40/0 (D), profiles B3P2, C3P1 and D3P2 could be associated with spoilage, 317 

respectively, whereas the other extracted profiles showed little correlation with storage time and/or 318 

rejection. In conclusion, only the aforementioned three profiles were considered in SA% 319 

calculations. 320 

All identified potential spoilage indicators are shown in Table 3. Again (see Subsection 4.1.4), 321 

correspondence between the two identification approaches was found to be higher at the protocol 322 

level than at the methodological level. Out of 9, 4 and 1 compounds identified by IPPLS under 323 

conditions B-D, respectively, 8, 3 and 1 were also identified by IPLDA. Additional compounds 324 
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identified by IPLDA were 2,3-butanediol, acetone, acetoin, methyl mercaptan and ethyl acetate (C), 325 

and ethanol, acetoin, 2,3-butanedione, carbon disulfide, dimethyl sulfide, hydrogen sulfide and 326 

ethyl acetate (D). Out of these twelve additional identifications, six were also achieved by PLS. 327 

5. Discussion 328 

5.1 Model optimization 329 

In machine learning and statistical analysis, tuning refers to a process where different parameters 330 

are tested in order to optimize model performance. Even though it is generally well known that 331 

tuning may greatly affect the LDA output – for example, Agrawal et al. (2018) concluded that 332 

neither reusing the tunings of a preceding study nor relying on “off-the-shelf” settings can be 333 

recommended – relatively few efforts of evaluating and/or controlling the impact of LDA tuning on 334 

model output and performance have been published so far. For this reason, special emphasis was 335 

given in the present study on a systematic selection of appropriate tunings. The key points of this 336 

decision-making process are elaborated in the following paragraphs. 337 

An inference algorithm is needed for approximating the inference of the posterior distribution. The 338 

two options considered in the present study – VEM and Gibbs sampling – represent two widely 339 

popular and yet fundamentally different approaches. Unlike VEM, Gibbs sampling does not 340 

converge to a point estimate but generates random samples from a complex distribution, meaning 341 

that the true distribution will be eventually reached (Binkley et al., 2014). The fact that VEM 342 

resulted in a high variation between individual models (Fig. 2) was thus not unexpected, as it was 343 

likely due to converging towards different local maxima. It must be emphasized though that the 344 

choice of Gibbs sampling over VEM does not guarantee finding the true distribution per se, as 345 

ensuring the representability of the obtained results in the former case requires additional attention 346 

on the Gibbs sampling parameters (denoted here as iter, burnin and thin). Briefly, a sufficiently 347 

high number of burned iterations is needed for ensuring that the sampler converges to the correct 348 
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distribution, whereas thinning has traditionally been considered advantageous in addressing the 349 

risks associated with autocorrelation (Binkley et al., 2014). However, with regard to the remarks of 350 

Link and Eaton (Link & Eaton, 2012) on the thinning of Markov Chain Monte Carlo (MCMC) 351 

chains, a 10-fold increase in the number of iterations (100 vs. 1000) was used instead of thinning 352 

for reducing the risk of autocorrelation in the present study. Given the achieved level of 353 

stabilization in non-burned chains and the additional beneficial impact of burning (Subsection 354 

4.1.1), the method Gibbs1000B (iter=1000, burnin=500, thin=1) was considered appropriate for 355 

further modelling activities.  356 

Irrespective of the used inference algorithm, factors such as Dirichlet hyperparameters and the 357 

order of input (WDM) columns should be taken into account. The hyperparameters α and β 358 

represent the Dirichlet priors on the output distributions (Binkley et al., 2014); a high value of α (β, 359 

respectively) indicates that a given document (topic, resp.) is likely to consist of a broad range of 360 

topics (words, resp.), whereas a low value suggests that only a few topics (words, resp.) are 361 

involved. The relevance of these parameters has recently been highlighted by Park et al. (2019), 362 

emphasizing that the underlying assumption of unimodality may lead to biased parameter 363 

estimation if the corpus consists of clusters with different topic distributions. However, since 1) all 364 

extracted profiles can initially be assumed to comprise all VOCs and to be present in each sample,  365 

but 2) no prior assumptions should be made on the exact composition and/or distribution of these 366 

profiles, the default settings of the packaging topicmodels were considered appropriate in this 367 

study. On the other hand, since 1) the order of VOCs within the WDM can and must be considered 368 

fully exchangeable, but 2) a high level of stabilization was achieved with the method Gibbs1000B 369 

(Subsection 4.1.1), examining a single random seed-order pair was considered sufficient.  370 

In this study, the impact of model tuning on the number of extracted profiles was assessed by means 371 

of three popular metrics (Subsection 3.2.1). Since no overall consensus was reached (Subsection 372 

4.1.1), cross-validation was performed. The fact that the highest perplexity coincided with the 373 
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beginning of storage time (days 1-3) was attributed to the characteristic deterioration patterns of 374 

salmon under the tested storage condition (100 % N2). In the absence of both CO2 and O2, 375 

considerable accumulation of ethanol and sulfuric compounds was observed over storage time 376 

(Kuuliala et al., 2019); for this reason, the relatively small proportion of early-day samples (days 1-377 

3) in a given training set resulted in a better fit for the late-day samples (days 5-13). However, apart 378 

from the ill-performing two-profile models, little difference in perplexity was observed between 379 

models with different values of k. For this reason, three (the smallest possible k according to 380 

perplexity), five (Md(k) according to the Cao and Deveaud metrics) and nine (an example of a high 381 

k) profiles were chosen for further exploratory activities. 382 

Finally, computational power may pose additional challenges during exploratory analysis. As the 383 

order of extracted topics is exchangeable even between consecutive iterations (Binkley et al., 2014), 384 

the optimization of model parameters for a specific experimental setting requires comparison 385 

between multiple corresponding but independent models. While learning a single LDA model did 386 

not take considerably longer than PLS, the total time needed for generating 100 models (10 orders x 387 

10 seeds) with a given method ranged from 23 minutes (VEM) to over 8.5 hours (Gibbs1000B). 388 

This was anyhow considered acceptable at the exploratory stage, not only because of the benefits 389 

over PLS (see Section 2 and Subsection 5.2) but also because of the positive impact on the 390 

analytical workflow. In other words, sufficient emphasis on model tuning at the exploratory stage 391 

considerably reduced the need for computational effort during the selective stage. 392 

5.2. Spoilage characterization 393 

Despite the increasing popularity of topic modelling in scientific discovery, information about its 394 

biological applications is still rather scarce in the current literature. Since the publication of the 395 

review of Liu et al. (2006), a limited number of studies have been published on topics such as 396 

genetic/protein functionality (Backenroth et al., 2017; Liu et al., 2017; Liu et al., 2018), metabolic 397 

sub-structures (van der Hooft et al., 2016) and mutation signatures (Matsutani et al., 2019). The 398 
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present study thus extends the current state-of-the-art by introducing LDA as the basis of a 399 

systematic spoilage characterization protocol. The central focus points that should be considered 400 

when applying LDA as an exploratory and/or selective method within this specific context are 401 

discussed in the following paragraphs; for further information about the identified compounds and 402 

their role in seafood spoilage, please see the preceding study of Kuuliala et al. (2019). 403 

Firstly, the method of profile interpretation greatly determines the performance and representability 404 

of LDA. This highlights the importance of metadata in spoilage analysis, particularly if no prior 405 

knowledge about the expected deterioration processes and/or potential spoilage indicators exists. 406 

Hence, storage time and sensory rejection were used in the present study for confirming the 407 

tentative interpretations arising from the VOC distributions per se. For example, the correlations 408 

between increasing rejection, decreasing contribution of cluster 1 and subsequent increasing 409 

contributions of clusters 2-3 under 100 % N2 (Subsection 4.1.3) indicated that the former cluster 410 

could be associated with freshness and the latter two with spoilage. Furthermore, the emergence of 411 

multiple spoilage-associated profiles under condition A (Fig. 4) and those showing stable or 412 

fluctuating patterns under conditions B-D (Fig. 5) suggest that the progression of spoilage cannot 413 

necessarily be comprehensively modelled with a single profile, at least in case of small datasets 414 

and/or in the absence of extremely fresh/spoiled samples.  415 

The number of extracted profiles has both mathematical and biological relevance. Even though all 416 

extracted profiles and their relations provide information about salmon quality and can thus be 417 

considered relevant for exploratory purposes, a systematic selection criterion was anyhow needed 418 

for selective analysis. In line with the previous PLS-based protocol (Kuuliala et al., 2019), choosing 419 

the lowest k (condition A: 3) that does not lead to an increase in perplexity when compared with the 420 

optimal k (condition A: 5) was considered appropriate. Furthermore, additional perplexity analyses 421 

performed for conditions B-D (results not shown) indicated that different holdout sample ID and/or 422 

k had little impact on perplexity; under elevated CO2 and/or O2 levels, the final concentrations were 423 
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considerably lower and the relations between VOCs more stable when compared to storage under 424 

100 % N2 (Kuuliala et al., 2019), meaning that the differences between all samples (and thus 425 

between the extracted profiles) were less pronounced when compared to those under condition A 426 

(see Subsection 5.1). Consequently, k=3 was consistently used for selective purposes under all 427 

tested conditions. 428 

When aiming at using LDA for selective analysis, relevant definitions should be established in the 429 

first place. In the case of spoilage analysis, this essentially means determining what kind of VOCs 430 

can be considered spoilage indicators. Firstly, it should be noted that all VOCs present at a given 431 

time point do not necessarily contribute to the perceived off-odors, as this requires exceeding 432 

certain concentration thresholds. However, it is equally important to note that these thresholds are 433 

both compound-specific and context-dependent. For example, while the human olfactory threshold 434 

(OT) of a given VOC indicates its minimum perceivable concentration (Devos, Patte, Rouault, 435 

Laffort & Van Gemert, 1990), the previously reported OTs have usually been defined for pure 436 

compounds, whereas the seafood volatilome consists of multiple compounds which may interact or 437 

interfere with each other. Consequently, exceeding the OT does not guarantee that a VOC can be 438 

perceived as a part of a complex volatilome or that it contributes to offensive off-odors: the 439 

thresholds associated with these two aspects are in fact often not well known before the commence 440 

of the intended study. Anyhow, whether this matters depends on the scientific and/or practical 441 

context. As previously highlighted (Ioannidis et al., 2018; Kuuliala et al., 2019), a VOC that shows 442 

a high positive correlation with microbiological and/or sensory deterioration may have great value 443 

in quality monitoring applications even if its individual olfactory contribution remains low or 444 

unknown. For these reasons, the concept “potential spoilage indicator” is used in the present study 445 

to refer to all VOCs that show promising potential in monitoring quality decay, irrespective of their 446 

individual olfactory contribution.  447 
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Along with model optimization (Subsection 5.1), the methods of data pre-processing have a key 448 

role in ensuring that the applied methodology is in line with the defined aims. The relevance of this 449 

remark can be seen when comparing the performance of PLS and LDA (Table 3). In the former 450 

case, the data had been standardized in order to disregard the differences in concentration 451 

magnitudes between individual VOCs; furthermore, additional data quality criteria were 452 

implemented at the identification stage to dismiss VOCs whose quantification accuracy was 453 

considered inadequate (for more information, see Kuuliala et al., 2019). In contrast, all LDA models 454 

were learned with non-standardized data and used without additional data quality screening. The 455 

high correspondence between the final outcomes of the two protocols – despite the aforementioned 456 

methodological differences – was thus attributed to the characteristics of the salmon datasets. As 457 

elaborated in the previous study (Kuuliala et al., 2019), the data quality criteria that were used for 458 

screening VOCs primarily targeted those compounds that were present in low concentrations (< 100 459 

ppb) throughout storage time; due to the lack of standardization, this kind of compounds (for 460 

example, all quantified amines) typically had little impact on the extracted LDA profiles. However, 461 

the lack of data quality screening also increased the number of LDA-based identifications of low-462 

range VOCs when compared to PLS, particularly under condition D where the differences in 463 

concentration magnitudes between individual VOCs were at the lowest. Overall, these results 464 

demonstrate that while LDA is less sensitive to problems arising from the presence of low-range 465 

VOCs than PLS, an initial data quality analysis can be generally considered advisable. 466 

For finalizing the selective analysis, representative cut-off thresholds are needed. In case of spoilage 467 

analysis, it is of primary importance to note that the sole presence/absence of a VOC does not 468 

automatically signify a certain quality status: instead, VOC-based spoilage characterization requires 469 

considering both the evolution and relations of all quantified compounds throughout storage time. 470 

For this reason, the concept of relative spoilage association was developed in this study to select 471 

those VOCs which had the highest (top-8) relative abundance within spoilage-associated profiles. In 472 
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line with the definition of a potential spoilage indicator (see above), this concept was developed for 473 

quality monitoring purposes and does thus not directly signify individual olfactory contribution. For 474 

example, only a single spoilage-associated profile per condition could be identified under 475 

conditions B-D (Subsection 4.2), meaning that a given VOC could only receive an SA% value 0 476 

(irrelevant) or 1 (relevant). In the case of condition A, multiple spoilage-associated profiles were 477 

identified, meaning that a well-established numerical cut-off limit was needed. The commonly 478 

observed increase/decrease in SA% as a function of k (Table 3) was attributed to sub-profile 479 

partitioning (Subsection 4.1.3), which increased the overall diversity of the top-8 VOCs and thus 480 

reduced the number of compounds with extreme SA% values (0 or 1). In this study, setting the limit 481 

at SA%=0.5 was experimentally found to respond to the aforementioned needs in an optimal manner 482 

as well as to result in a high correspondence between the two identification protocols (IPLDA and 483 

IPPLS); however, it is important to note that the selection of the cut-off limit should always be done 484 

on a case-by-case basis. 485 

Finally, it is advisable to evaluate the prospects of a newly developed methodology in a broader 486 

context. In this case, attention was thus given to the applicability of LDA in the volatilome-based 487 

spoilage characterization of other food products. Generally, the developed methodology is expected 488 

to be widely applicable for examining the evolution and composition of complex volatilomes, 489 

suggesting that highly perishable products packed under gaseous atmospheres (such as vegetables, 490 

meat and seafood) whose quality decay is manifested by the accumulation of multiple VOCs 491 

(resulting in unacceptable off-odors) would be the most promising target group. While model 492 

tunings and cut-off limits should be experimentally determined whenever introducing a new 493 

product, the basic development process described in the present study could be used as a theoretical 494 

basis for exploring corresponding research questions in new experimental settings. In the future, 495 

emphasis should thus be given not only on testing and validating the method in these settings, but 496 

also on product-specific planning that precedes actual modelling activities. Preferably, the 497 
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availability and quality of the input data should be considered already before setting up a storage 498 

experiment: since each food product has its characteristic shelf-life, the experimental setup should 499 

allow regular and representative data collection throughout storage time. Before selective analysis, 500 

the relation between the VOCs and the dependent variable should receive particular attention, as it 501 

is not always linear: for example, reaching 100 % rejection does not mean that the volatilome will 502 

also be stable from there on. In general, it should be kept in mind that the prevailing assumptions 503 

regarding the complex quality deterioration mechanisms may affect the entire spoilage 504 

characterization process: the fact that the training of LDA models does not inherently involve 505 

metadata could thus be considered advantageous, especially when considering new product types. 506 

For further insights, a comparison between unsupervised and supervised LDA would be worth 507 

examination. 508 

6. Conclusions 509 

The outcomes of the present study show that LDA can be successfully applied for extracting 510 

underlying information about the quality status of Atlantic salmon under different storage 511 

conditions, suggesting that a respective approach could be well adapted for other food products 512 

and/or quality deterioration patterns. As a selective tool, LDA was found to identify potential 513 

volatile spoilage indicators with equal specificity and lower stringency when compared to PLS. In 514 

particular, the flexibility and high interpretability of LDA were considered highly advantageous in 515 

this problem setting; not only because of their beneficial impact on the experimental workflow, but 516 

also because of the achieved insights into the development of systematic spoilage characterization 517 

processes. Overall, the results support the state-of-the-art of data-driven food quality 518 

characterization, an emerging field with great prospects. 519 
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Figure captions 670 

Fig. 1. The distribution of the top-20 words in five topics extracted from a collection of 121 original 671 

research abstracts, published by the Research Unit Food Microbiology and Food Preservation 672 

(FMFP; Ghent University, Ghent Belgium) between 2000 and 2018. 673 

Fig. 2. The optimal number of profiles (k), extracted from the volatilome of Atlantic salmon fillet 674 

portions stored under 100 % N2 (condition A) at 4 °C. For methodological specifications concerning 675 

the applied metrics (Cao, Arun, Deveaud), inference estimation methods (VEM, Gibbs100A, 676 

Gibbs100B, Gibbs1000A and Gibbs1000B), seeds (s1-s10) and input column orders (O1-O10), see 677 

Subsection 3.2.1. 678 

Fig. 3. The distribution of the top-8 volatiles in the profiles extracted from the volatilome of 679 

Atlantic salmon fillet portions stored under 100 % N2 (condition A) at 4 °C; A) k = 3, B) k = 5, C) k 680 

= 9, and D) hierarchical clustering of all profiles.  681 

Fig. 4. The relations between storage time (from left to right: sample ID 1-16), sensory rejection 682 

(R%), and profile/cluster distribution in Atlantic salmon fillet portions stored under 100 % N2 683 

(condition A) at 4 °C; A-B) k = 3, C-D) k = 5, E-F) k = 9.  684 

Fig. 5. The relations between storage time (from left to right: sample ID 1-16), sensory rejection 685 

(R%) and profile distribution (k = 3) in Atlantic salmon fillet portions stored under different gaseous 686 

conditions (% CO2/O2/N2) at 4 °C; air (B), 60/0/40 (C) and 60/40/0 (D). 687 
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