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A B S T R A C T   

Finite element models tend to overestimate the actual elastic response of structural timber connections. The 
paper shows how such overprediction relates to the modelling of the contact between fasteners and timber. The 
use of a control parameter called stiffness contact is proposed. After an experimental campaign, a method to 
determine it, based only on the geometry of a rectangular contact area, is proposed. The modeling adequacy is 
demonstrated by applying it to dowel embedment and moment resistant wood joint tests. The obtained results 
show good agreement with the experimental test series.   

1. Introduction 

The use of timber in construction has experienced an important in-
crease during the last years, with some representative examples of tall 
structures [1,2]. 

Since connections play a major role in the elastic response of such 
structures, an accurate modeling technique is of utmost importance, in 
which the different relevant parameters are adequately introduced and 
considered to obtain a realistic result. The use of advanced modelling 
techniques such as Finite Element Models (FEM) is mostly required to 
gather an improved understanding of the structural response. 

In the case of structural timber connections with dowel-type fas-
teners, the contact between the different elements is the basis of load 
transfer and structural response, since the load is transferred through 
pressure. Moreover, due to the complexity of timber as a material, the 
modeling of contact becomes even more relevant. The structural 
behaviour of a connection is mostly defined by its stiffness (relation 
between the displacement and the force applied to the connection) and 
strength. 

1.1. Modeling techniques 

Regarding the stiffness, several authors have reported how that 
predicted by the numerical 3D FEM model of the connection is much 
higher than the experimental one [4,5]. Due to the usual non-linear 
response of timber connections, code standards provide different 

definitions to get a simplified linear response to develop an elasto-plastic 
model. For example, in Europe, such stiffness is defined as Kser, and 
obtained from the 10% - 40% load range [6] of the testing procedure 
described in the European standard EN-26891 [3], whose load path is 
shown in Fig. 1a. It is divided in three different ranges: preloading (up to 
40% of the estimated failure load (Fest), unloading (down to 10% of the 
failure load), and loading (until failure of the specimen), Fig. 1a. 
Although the loading procedure originates from the limitations of old 
testing equipment, nevertheless it allows to study in detail the response 
of the connection on different loading scenarios. 

In the experimental response (Fig. 1b), there is an initial adjustment 
zone, in which the stiffness progressively increases, mainly due to ad-
justments. It is a widely known behavior that is usually ignored with no 
further consequences, since it does not play a major role in structural 
behaviour, where the response after this initial phase is considered 
(when the load is higher than 10%). 

A stiffness increase is observed in comparison to the preloading 
phase in both unloading and loading phases. Such stiffness increase is 
also present in other materials [7,8]. In the case of wood, it has been 
attributed to a plastic deformation that occurs in a thin layer of material 
located in the contact surface. Dorn [5] described the appearance of non- 
recoverable plastic deformations, mainly on the contact surface of the 
wood. It is assumed to be related to the material heterogeneity at a 
microscopical level, and the appearance of microcracks and local 
compression [9]. It may not only depend on the material itself but also 
on the cutting tool that created the surface [10]. Additionally, moisture 
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variations also influence the contact response [11,12]. 
However, the obtained global response results in a lower stiffness 

than expected from the material properties, as proved by the elastic 
response obtained from FEM [4,5]. This is a common issue related again 
with the local behaviour of the contact area. Sandhaas [4] indicates the 
necessity to include softening rules to recreate the stiffness of timber 
joints. ASTM-D143 [9] recommends to lower the elastic and shear 
modulus of the elements around the contact areas. A reduction of 83% is 
proposed for the longitudinal elastic modulus among other reductions. 
Hong [13] introduced a modeling method capable of accounting for 

wood crushing behavior to solve the wrong assumption that the 
behavior of the contact area follows the conventional mechanical 
properties of wood determined through uniaxial compression tests. 

Instead of modeling a different material in the contact area, as an 
alternative method to obtain from modeling the overall stiffness 
observed in tests, the models may include a dedicated pressure- 
overclosure relationship in the contact surface. This modified contact 
interaction, called stiffness contact [14], simulates the behavior of a 
softened contact allowing certain penetration for the applied pressure in 
the contact area. 

Fig. 1. Standard load test procedure according to EN-26891 [3].  
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1.2. Analytical formulations 

Previous studies have determined the stiffness contact for different 
materials under cylindrical indenters. In these cases, the stiffness contact 
is defined by [7,15] 

SCind =
dF

d(δ)
=

2̅
̅̅
π

√
̅̅̅
A

√
Er (1)  

where F is the load applied, δ is the indentation depth, A is the area, and 
Er is defined as 

Er =
E

1 − ν2 (2)  

where E, is the modulus of elasticity and ν is the Poisson’s ratio. In the 
case that the indenter itself has finite elastic constants, then 

1
Er

=
1 − ν2

s

Es
+

1 − ν2
i

Ei
(3)  

where the subscript s refers to the specimen and subscript i to the 
indenter. 

With these equations, Pharr et al. [7] analyzed the contact between a 
rigid, axisymmetric punch and an elastic half space to show the simple 
relationship among the contact stiffness, the contact area, and the elastic 
modulus that is not dependent on the geometry of the punch and Yang 
[15] formulated the stiffness contact only as a function of the contact 
area for flat-ended cylindrical indenters. 

Other approaches to the stiffness contact parameter have been made: 
i.e., Troyon [16] proposed a generalized equation between elastic 
indentation and load that approximates the analytical solution very 
closely and can be easily fit to the experimental data. They deduce the 
normalized stiffness contact parameter as: 

Table 1 
Geometry of the tested specimens, and experimental results (density, ultimate load and corresponding strength).Missing density values correspond to testing cam-
paigns in which this was property was not measured; missing ultimate load and strength correspond to specimens where they could not be precisely measured.  

Specimen Height [mm] Base A [mm] Base B [mm] Density [kg m3] Slenderness Ultimate load [N] Strength [N/mm2] 

A1.1 25 25 25  1,0 26041 41,7 
A1.2 25 25 25  1,0 28900 46,2  

A2.1 50 25 25  2,0 25466 40,7 
A2.2 50 25 25  2,0 28300 45,3  

A3.1 75 25 25  3,0 27416 43,9 
A3.2 75 25 25  3,0 30100 48,2  

A4.1 100 25 25  4,0 29063 46,5 
A4.2 100 25 25  4,0 25000 40,0  

A5.1 125 25 25  5,0 28535 45,7 
A5.2 125 25 25  5,0 29500 47,2  

A6.1 150 25 25  6,0 29721 47,6 
A6.2 150 25 25  6,0 26400 42,2  

B1 45 45 45  1,0 89888 44,4 
B2 90 45 45  2,0 90856 44,9 
B3 135 45 45  3,0 89539 44,2 
B4 180 45 45  4,0 81036 40,0 
B5 225 45 45  5,0 85420 42,2 
B6 270 45 45  6,0 82600 40,8  

C1.1 150 47 29  5,2   
C1.2 150 47 29  5,2   
C1.3 150 47 29  5,2   
C1.4 150 47 29  5,2    

C2.1 75 47 29  2,6   
C2.2 75 47 29  2,6   
C2.3 75 47 29  2,6   
C2.4 75 47 29  2,6    

D1.1 169 47 29 386 5,8 57964 42,5 
D1.2 169 47 29 440 5,8 53578 39,3 
D1.3 169 47 28 409 6,0 57500 43,7  

D2.1 319 47 29 439 11,0 49699 36,5 
D2.2 319 47 27 485 11,8 32519 25,6 
D2.3 319 47 28 400 11,4 40749 31,0  

E1.1 134 42 47 451 3,2 81469 41,3 
E1.2 134 47 48 432 2,9 85429 37,9 
E1.3 135 45 44 439 3,1 86031 43,4 
E1.4 133 44 44 438 3,0 79021 40,8  

E2.1 270 45 44 435 6,1 83299 42,1 
E2.2 270 45 44 431 6,1 80314 40,6 
E2.3 270 44 43 476 6,3 79723 42,1 
E2.4 271 46 47 438 5,9 76352 35,3  

F1.1 132 44 46 458 3,0 83367 41,2 
F1.2 128 42 45 502 3,0 64862 34,3 
F1.3 128 42 44 500 3,0 62845 34,0 
F1.4 133 44 44 438 3,0 67561 34,9  
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kN =
kN

(
πγK2R2

)1/3, (4)  

where kN is the contact stiffness defined as the force divided by the 
deformation and γ, K, and R are the interfacial energy, the reduced 
elastic modulus, and the curvature radius, respectively. 

1.3. Foundation modulus of timber 

Approaches regarding contact between dowel-type fasteners and 
timber often rely on the Embedment Stiffness and an Elastic Foundation 
[17,18]. 

Mirdad and Chui [19] calculated the embedment stiffness (defined in 
N/mm3) with the following equation: 

Kh =
S
dt
[
N
/

mm3] (5)  

where S is the load–displacement slope at 10–40%, d is the outer 
diameter of the screw, and t is the width of the specimen. In their model, 
the elastic foundation is implemented using the embedment stiffness as 
the foundation modulus, which results in a theoretically derived 
correction factor for the embedment stiffness modulus. 

Reynolds et al. [20] proposed an analytical model based on [21,22], 
where the foundation modulus is calculated based on a complex stress 
function for the timber in the embedment and the friction between the 
dowel and the timber. The mean modulus obtained from the model for 
the smallest vibration is 145 kN/mm for the parallel direction, which 
coincides with the mean modulus obtained from the experimental data. 

Yurrita and Cabrero [23] and Lemaitre et al. [24,25] used for their 
analytical models the values from Hwang and Komatsu [26], where not 
only the stiffness was measured, but the effective elastic foundation was 
analysed to take into account the effect of different Modulus of Elas-
ticity. The stiffness value increases as the contact area decreases (a 
relation which will be discussed below). 

1.4. Structure of the paper 

In this paper, the influence of the contact behavior of wood on the 
stiffness of structural joints with dowel-type fasteners and members is 

analysed by means of an experimental campaign, and a formulation for 
its use as contact stiffness in FE models is proposed, which results in a 
similar formulation to Eq. (1). The paper is organized as follows: In this 
Section 1, the state of the art is presented, Section 2 describes the ma-
terials and methods used for the testing campaigns, Section 3 shows the 
results of the tests, Section 4 explains the analysis of the results, Section 
5 shows the good agreement obtained for the implementation of the 
stiffness contact in different scenarios and finally Section 6 exposes the 
obtained conclusions. 

2. Materials and methods 

2.1. Experimental setup 

To study the contact behaviour of wood, different series of 
compression tests were performed at the Universities of Navarra and 
Oviedo. The test setup followed the requirements given in EN-408 [6] to 
get the parallel-to-grain compression strength and the modulus of elas-
ticity. Additionally, the unloading and reloading process are described 
in Fig. 1a [3] is also applied to analyse the different response at each 
range. 

The standard specimens defined in EN-408 [6] are rectangular sec-
tions with a slenderness λ = 6, defined as λ = H

L, where H is the height of 
the specimen and L the minimum side length. Specimens maintain the 
same cross section in all their height, and the flat contact areas are 
parallel between them while perpendicular to the specimen axis, which 
corresponds to the fiber direction. 

The given slenderness λ = 6 in the standard was taken in the pre-
sented test campaign as an established maximum limit in which second- 
order effects such as buckling are assumed to be avoided, so that the 
specimen’s response is related only to material crushing. As a result, it 
was expected that any observed difference in behaviour would relate 
only to contact-related phenomena. The specimens varied in height, 
with slenderness mostly ranging from λ = 1 up to 6, as described in 
Table 1. Some specimens (series D2) feature higher slenderness to verify 
the validity of the assumption of avoidance of second-order effects. 
Fig. 2 shows the experimental setup. 

The loading cycle followed the standard described in [3], shown in 
Fig. 1a, and described above in three different phases: preloading, 

Fig. 2. Experimental setup of the tests performed in the Universidad de Navarra.  
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Table 2 
Load-deformation response of the tested specimens. Missing data is due to unprecise recordad data from the tests. Values in brackets show the obtained coefficient of 
variation for similar specimens.  

Specimen Preload 
stiff. 

Unload 
stiff. 

Load stiff. Ultimate 
load 

Apparent 
MOE 

Actual 
MOE 

SC (E =

11000)  
SC (actual 

E) 
St.Contact  

(15) 
St.Contact  

(16)  
Kpreload  Kunload  Kload  Fult  Eapp  E0  SC11  SCE  SCcal,A  SCcal,B   

[N/mm] [N/mm] [N/mm] [N] [N/mm2] [N/mm2] [N/mm3] [N/mm3] [N/mm3] [N/mm3] 

A1.1 27132 34457 28943 26041 1085 11081 95 96 104 84 
A1.2 28500 37600 37000 28900 1140 11796 102 101 104 84 
Mean (0,03) 

27816 
(0,06) 
36028 

(0,17) 
32972 

(0,07) 27470 (0,04) 1113 (0,04) 
11439 

(0,05) 98 (0,03) 99 (0) 104 (0) 84  

A2.1 21795 27780 20441 25466 1744 11844 83 82 104 91 
A2.2 25300 32700 31600 28300 2024 10781 99 100 104 91 
Mean (0,11) 

23547 
(0,12) 
30240 

(0,30) 
26020 

(0,07) 26883 (0,11) 1884 (0,07) 
11313 

(0,13) 91 (0,14) 91 (0) 104 (0) 91  

A3.1 20692 25388 23383 27416 2483 10345 86 87 104 99 
A3.2 24200 28800 30700 30100 2904 11960 105 102 104 99 
Mean (0,11) 

22446 
(0,09) 
27094 

(0,19) 
27042 

(0,07) 28758 (0,11) 2694 (0,10) 
11153 

(0,15) 95 (0,12) 95 (0) 104 (0) 99  

A4.1 20879 26986 24838 29063 3341 12433 96 91 104 106 
A4.2 20000 24900 22700 25000 3200 9706 90 95 104 106 
Mean (0,03) 

20440 
(0,06) 
25943 

(0,06) 
23769 

(0,11) 27032 (0,03) 3270 (0,17) 
11070 

(0,04) 93 (0,03) 93 (0) 104 (0) 106  

A5.1 21408 26093 25558 28535 4282 12515 112 104 104 114 
A5.2 23200 26200 28100 29500 4640 11615 128 124 104 114 
Mean (0,06) 

22304 
(0) 26147 (0,07) 

26829 
(0,02) 29017 (0,06) 4461 (0,05) 

12065 
(0,09) 120 (0,12) 114 (0) 104 (0) 114  

A6.1 24017 26664 25748 29721 5764 12647 161 141 104 122 
A6.2 19000 24300 22200 26400 4560 10319 104 109 104 122 
Mean (0,16) 

21509 
(0,07) 
25482 

(0,10) 
23974 

(0,08) 28061 (0,16) 5162 (0,14) 
11483 

(0,31) 133 (0,18) 125 (0) 104 (0) 122  

Mean (0,13) 
23010 

(0,15) 
28489 

(0,18) 
26768 

(0,06) 27870 (0,48) 3097 (0,08) 
11420 

(0,21) 105 (0,16) 103 (0) 104 (0,14) 103  

B1 52693 57885 65917 89888 1171 12971 58 57 58 46 
B2 46058 52493 55964 90856 2047 12237 56 55 58 51 
B3 45080 48482 54160 89539 3005 15306 61 55 58 55 
B4 39508 43268 44859 81036 3512 10470 57 59 58 59 
B5 41314 45025 45149 85420 4590 11776 70 67 58 63 
B6 36941 41836 40911 82600 4925 10530 66 69 58 68 
Mean (0,13) 

43599 
(0,13) 
48165 

(0,18) 
51160 

(0,05) 86557 (0,45) 3209 (0,15) 
12215 

(0,10) 61 (0,10) 60 (0) 58 (0,14) 57  

C1.1 39000 56000   4292  94  72 72 
C1.2 45000 56000   4952  120  72 72 
C1.3 37000 45000   4072  86  72 72 
C1.4 44600 53800   4908  118  72 72 
Mean (0,10) 

41400 
(0,10) 
52700   

(0,10) 4556  (0,16) 105  (0) 72 (0) 72  

C2.1         72 62 
C2.2 47900 62700   2636  92  72 62 
C2.3 45300 69000   2493  86  72 62 
C2.4 58500 76000   3219  121  72 62 
Mean (0,14) 

50567 
(0,10) 
69233   

(0,14) 2782  (0,19) 100  (0) 72 (0) 62  

D1.1 34694 43046 40903 57964 4302 12558 84 77 72 75 
D1.2 34387 43623 40640 53578 4264 17096 82 67 72 75 
D1.3 34376 42978 40915 57500 4415 17726 87 70 74 77 
Mean (0,01) 

34486 
(0,01) 
43215 

(0) 40819 (0,04) 56347 (0,02) 4327 (0,18) 
15793 

(0,04) 84 (0,07) 71 (0,01) 73 (0,01) 76  

D2.1 25449 29738 28336 49699 5956 14056 81 65 72 96 
D2.2 20532 25942 21590 32519 5161 13585 61 52 76 101 
D2.3 23920 31528 27771 40749 5798 21187 77 50 74 98 
Mean (0,11) 

23300 
(0,10) 
29069 

(0,14) 
25899 

(0,21) 40989 (0,07) 5639 (0,26) 
16276 

(0,15) 73 (0,14) 56 (0,03) 74 (0,03) 98  

E1.1 44027 58239 54640 81469 2989 14327 61 56 59 56 
E1.2 43465 56910 54194 85429 2582 14451 50 47 55 51 
E1.3 45141 58756 56325 86031 3078 11745 63 62 58 56 
E1.4 42230 55705 53415 79021 2901 15156 59 54 59 56 
Mean (0,03) 

43716 
(0,02) 
57403 

(0,02) 
54644 

(0,04) 82988 (0,07) 2887 (0,11) 
13920 

(0,10) 59 (0,11) 55 (0,03) 58 (0,04) 55  

(continued on next page) 
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unloading, and loading. The load ratios which define each phase are 
based on the estimated maximum load of the specimen, Fest , which was 
obtained based on the characteristic compression strength for the cor-
responding strength class (C24) of the Spruce specimens EN-338 [27]. 
This strength class, which is assigned 24N/mm2 as its bending strength, 
is representative for several softwood species [28], such as Abies alba, 
Picea Abies or Pinus pinaster. During the preloading phase, the specimens 
are loaded up to 40% of the estimated capacity (0.4Fest). They are then 
unloaded up to 0.1Fest (unloading phase), to be then loaded until failure 
(loading phase). The load application rate is kept constant. At every 
change of loading phase, the load is kept constant for 30s before 
initializing the following (see Fig. 1a). 

A Ibertest STIB 200 loading rig was used for the tests done in the 
Universidad de Navarra and a MTS 810 machine for those done in the 
Universidad de Oviedo. A ball joint was used in one of the sides to avoid 
moments and in the other a 40mm thick steel plate was used for load 
transfer. All tests were analysed with the Video Correlation Software 
GOM [29]. A Nikon D3000 camera and a JAI Go-5000 M-USB camera 
were employed for the different test series in Pamplona, with an image 
frequency of 1 Hz and an Aramis 5 M acquisition system equipped with 

two 23 mm cameras (frequency 1Hz) in Oviedo. 

2.2. Wood specimens 

Clear wood spruce specimens obtained from elements graded as C24 
according to EN-1912 [28] were tested under compression in the lon-
gitudinal direction. The specimens were conditioned at 22 ◦C and 65% 
relative humidity, so that the wood moisture content was 12%. The 
density of the different specimens was measured, and it is given in 
Table 1. 

Specimens of series A, B, and C were obtained from the same timber 
element. Afterwards, to complete the testing campaign, series D, E, and 
F, which were obtained from a different timber element, were tested to 
replicate some of the specimens of the previous series. Different geom-
etries were analysed, as shown in Table 1, with cross sections in various 
sizes and shapes (rectangular and square), and slenderness ranging from 
λ = 1 up to λ = 11.8, being the typical slenderness for most of the 
specimens λ⩽6. 

Series A, B, E, and F had square cross sections. All of them were 45 ×
45 mm, except series A, which was 25 × 25 mm. The slenderness ranged 

Table 2 (continued ) 

Specimen Preload 
stiff. 

Unload 
stiff. 

Load stiff. Ultimate 
load 

Apparent 
MOE 

Actual 
MOE 

SC (E =

11000)  
SC (actual 

E) 
St.Contact  

(15) 
St.Contact  

(16)  
Kpreload  Kunload  Kload  Fult  Eapp  E0  SC11  SCE  SCcal,A  SCcal,B   

[N/mm] [N/mm] [N/mm] [N] [N/mm2] [N/mm2] [N/mm3] [N/mm3] [N/mm3] [N/mm3] 

E2.1 36440 44339 42680 83299 4969 13251 67 59 58 69 
E2.2 36117 44774 42995 80314 4925 10443 66 69 58 69 
E2.3 34970 42722 40999 79723 4990 12618 68 61 60 71 
E2.4 34600 42773 40657 76352 4337 12477 53 49 56 65 
Mean (0,02) 

35532 
(0,02) 
43652 

(0,03) 
41833 

(0,04) 79922 (0,07) 4805 (0,10) 
12197 

(0,11) 63 (0,13) 60 (0,03) 58 (0,04) 68  

F1.1 44261 55757 53170 83367 2887 14792 59 54 58 55 
F1.2 43407 50956 46902 64862 2940 11678 63 61 60 57 
F1.3 38645 52822 48592 62845 2677 11511 55 54 60 57 
F1.4 39669 50462 48088 67561 2725 10776 54 55 59 56 
Mean (0,07) 

41495 
(0,05) 
52499 

(0,06) 
49188 

(0,13) 69659 (0,04) 2807 (0,15) 
12189 

(0,07) 58 (0,05) 56 (0,02) 59 (0,02) 56  

Fig. 5. Load-deformation response of test series D1 and D2.  
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from λ = 1 up to λ = 6. Two series, C and D, had rectangular cross 
sections, which were 45 × 30 mm. The slenderness referred to the 
minimum side length was 2.5 and 5 in series C1 and C2, and 5.6 and 10.6 
in series D1 and D2, respectively. 

Specimens of Series D have the same cross section as Series C (47 ×
29 mm). Specimens D1 are similar to specimens C1, while specimens D2 
are considerably longer. Specimens E1 are similar to specimen B3 and 
specimens E2 are similar to specimen B6. 

Series D2 has a slenderness out of the limits given by the standard. It 
is used as a reference to observe the influence of second-order effects. 

3. Results 

3.1. Load-deformation behaviour 

The results obtained from the compression tests are shown in 
Table 2. Figs. 5–7 show the load–displacement curves of series D, C, and 
F. The obtained curves are consistent with the three described behav-
iours by Dorn [5], as mentioned in Section 1: 

Fig. 6. Load-deformation response of test series E1 and E2.  

Fig. 7. Load-deformation response of test series F1.  
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• In the preloading phase, an initial adjustment zone may be seen in all 
specimens, which is followed by a zone of linear behaviour. 

• Unloading phase: it may be clearly observed how the specimen un-
dergoes a different way back, a sign of already existing plastic 
deformation. All specimens show an increase in the stiffness in the 
unloading phase.  

• Loading phase: the loading stiffness is similar to the unloading 
stiffness in all specimens at least until the previously reached load. 
However, some specimens go back to the preloading stiffness of the 
specimens and others stay at the unloading stiffness. 

3.2. Load–displacement stiffness 

For each phase, the stiffness is calculated according to [6]: 

K =
(F2 − F1)

(δ2 − δ1)
(6)  

where Fi is the applied force and δi is the corresponding displacement at 
two relevant points in the analysed loading phase. In the case of the 
initial loading phase, the initial point to obtain the stiffness was at 10% 
of the maximum capacity, not to take into account the initial adjust-
ment. Linear fitting was additionally used to verify the obtained results 
for each range, with the same results and R2 coefficients higher than 
0.99 for most of the cases. 

Table 2 shows the stiffness for the different preloading, unloading, 
and loading steps. As described above, an increase in the stiffness is 
noticed in the unloading phase. The unloading stiffness regarding the 
preloading stiffness has an increase of 24% for series A, 11% for series B, 
32% for series C, 25% for series D, 27% for series E, and 27% for series F. 
The average increase of all series is 24% in comparison to the preload 
phase, with the maximum increase for specimen C2.3 (increase of 52%). 
Series B is the one with the lowest increase, from 8% in specimen B3 up 
to 14% in specimen B2. 

Regarding the preloading phase, in comparison with the final 
loading phase, in the tests except in A2.1, the preloading stiffness is 
lower than the one for the loading phase, with an average reduction of 
15%. The highest reduction is for specimen A1.2 with 33%. Specimen 

A2.1 is the only one that increases to 107%. 

3.3. Apparent modulus of elasticity 

For each specimen, the apparent elastic modulus (Eapp), in which the 
axial stiffness of the specimen is considered, is calculated from the usual 
equation for axially loaded members as 

Eapp =
L(F2 − F1)

A(δ2 − δ1)
=

L
A

K (7)  

where L is the total height, F is the applied force, δ is the displacement, 
and A is the area of the cross section. This result, obtained in the loading 
phase, may be assumed as an apparent modulus of elasticity of the 
material, in which the geometrical influence of the specimen has already 
been taken into account. However, in this equation, the whole specimen 
is considered, and the effect of the contact area is incorporated. In the 
standard procedure, the modulus of elasticity is devised from the 
behaviour of the central part [6] (and it will be obtained below in Sec-
tion 3.5). 

In all tested series, it may be seen (Table 2) how this apparent elastic 
modulus increases as does the length of the specimen. As an example, in 
the series A, it varies from the minimum of 1085 N/mm2 for specimen 
A1.1 (λ = 1) to a maximum of 5764 N/mm2 for A6.1 (λ = 6). As shown 
in Fig. 3, a relation exists between this apparent elastic modulus and the 
slenderness of the specimen. A linear trend may be seen (with a corre-
lation factor R2 = 0.85), with only those specimens with a slenderness 
higher than 6 not following it. However, these latter are outside the limit 
given by the standard, and the presence of additional effects should be 
considered. 

3.4. Strength 

The strength of each specimen may be obtained as 

f =
Fult

A
, (8)  

Fig. 3. Relationship between slenderness and the apparent modulus of elasticity from the initial loading between the 10 and 40% of Fest . Specimens with a slen-
derness over 10 are out of the tendency line. 
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where Fult is the maximum applied load, and A is the cross-section area 
of the specimen. The calculated strength for each specimen is given in 
Table 1. A consistent strength result is obtained within each series. Se-
ries A has a mean strength of 44,6 MPa, with a coefficient of variance of 
6.2%, which is similar to the strength of series B (coming from the same 
timber member), which is 42,7 MPa (coefficient of variance 4.8%). Se-
ries D1, E, and F have a mean strength of 38,1 MPa and the coefficient of 
variation is 8.6%. 

Such consistency of strength values within the series proves that no 
influence of second-order effects exists when the slenderness of the 
specimen is equal or lower than 6, as fixed by the standard. A reduction 
of the obtained strength is seen in series D2, whose slenderness is 11. As 
a conclusion, for those specimens with slenderness lower than 6, the 
obtained strength corresponds to that of the crushing of the material. 
This fact serves as a proof that any observed difference in the behaviour 
may be related to contact phenomena, and not to buckling issues. 

3.5. Modulus of elasticity 

As described above, the apparent modulus of elasticity (considering 
the whole specimen’s length, described in Section 3.1) seems to increase 
with the length. However, such an apparent modulus considers the 
contact area, and it is thus not representative of the actual modulus of 
elasticity. According to the standard [6], to dismiss such influence of the 
contact interaction, the elastic modulus is measured in the central part of 

the specimen, within a distance four times the minor dimension of the 
specimen. The used equation is the same as (7), but where L is now the 
distance between the control points in the central zone, as shown in 
Fig. 4. 

Obtained results are given in Table 2. The elastic modulus, when not 
considering the contact area, widely differs from the apparent elastic 
modulus. It is consistent throughout the test series, independently of the 
geometry, with a mean value of 12771 N/mm2, and with a coefficient of 
variation of 18%. The obtained values are consistent with the charac-
teristic (7400 N/mm2) and mean (11000 N/mm2) values given in 
EN338 [27] for C24 softwood. As a conclusion, the experimental elastic 
modulus confirms that the differences shown in the apparent elastic 
modulus do not refer to material differences, and may be thus related to 
contact phenomena. 

4. Stiffness contact 

As shown in the previous section, although the strength and modulus 
of elasticity prove how the specimens are quite similar, their elastic 
response relates to the slenderness of the specimen. This section analyses 
the hypothesis that such different behaviour is related to the contact 
interface, which may be modeled by means of the contact stiffness. As a 
result, it will propose an equation for its direct implementation into 
modeling software. 

Other approaches, such as the modelling of the surfaces with their 
imperfections or adjusting the properties of the material of the surface 
according to the damage produced by the cutting tool, were discarded. 
Such approaches either require excessive modelling and computer cost, 
or make use of fictional material properties, which deem both inade-
quate for practice. 

In the video correlation analysis, two stripes near the contact areas 
with higher deformation are observed. Fig. 4 shows the analysis of one 
frame of testing of one specimen as an example of how these stripes are 
visualized. The phenomena occurring in the contact interface may be 
assumed by a foundation modulus or contact stiffness, and it is proposed 
to model them as a strip of material with different elastic properties. 

In all tested specimens, for any load, the observed deformation is 
higher than that obtained with the general elastic formulation for such a 
load with the Eq. (11). As a consequence, FE models tend to over-
estimate the stiffness [4,5]. This additional deformation due to the 
contact area could be considered by means of the stiffness contact SC, 
which is defined as the relationship between the pressure σ on the 
contact surface and the allowed overclosure δ(SC) [14]: 

SC =
σ

δ(SC)
(9)  

The total deformation may be obtained as 

δ = δ(E) + 2δ(SC) =
FL
EA

+ 2
σ

SC
, (10)  

where δ(SC) is the deformation of the contact area, and δ(E) is that of the 
central part of the specimen, defined as 

δ(E) =
FL
EA

. (11)  

From (10), SC may be obtained when assuming σ = F
A and K = F

δ, as 

SC =
2

(
A
K − L

E

) (12)  

where K is experimentally determined by Eq. (6) and E is the mean 
elastic modulus of wood [27]. 

Taking into account the stiffness contact parameter allows to 
consider an additional deformation in the specimens that simulates the 

Fig. 4. One frame example of the Video Correlation analysis.  
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different behavior of the contact surfaces. This phenomenological 
parameter that simulates the micromechanics happening in the surface 
and the nearest zones. 

The obtained values for each specimen are shown in Table 2. It is 
shown how the stiffness contact value varies from the lowest 50 N/mm3 

for specimen C1.2 to 161 N/mm3 for specimen A6.1. The mean value for 
the specimens is 82 N/mm3 with a coefficient of variation of 30%. The 
obtained stiffness contact values, SCE, given in Table 2, are quite 
consistent among the different series, which shows how the contact 
interaction may be assumed as the parameter explaining the observed 
change in apparent stiffness. The series A is the one with the highest 
coefficient of variation with 31%, with stiffness contact values starting 

in 86 N/mm3 for specimen A3.1 up to 161 N/mm3 for specimen A6.1, it 
is remarkable that this series has a slenderness from 1 to 6. On the other 
hand, series B has a mean value of 61 N/mm3 with a coefficient of 
variation of 10%. For series C1, C2, D1, D2, E1, E2, and F1, the co-
efficients of variation are 16%,19%, 4%,15%, 10%,11% and 7% 
respectively showing that not big dispersion is achieved inside the series 
in contrast with the dispersion obtained for all series simultaneously at 
the 30%. 

Since obtaining the actual elastic modulus for each specimen would 
deem not feasible in common practice, the stiffness contact may be 
obtained from (12), but using the mean elastic modulus given in the 
standard for the corresponding strength class instead of the actual one. 

Fig. 8. Comparison of the obtained stiffness contact results when using the mean elastic modulus (E = 11000 N/mm2) in comparison to the results obtained when 
the experimental elastic modulus is considered. 

Fig. 9. Theoretical model for the stiffness contact calculation Iraola [30]. Subindex 0 refers to the initial state, previous to the load, and subindex 1 refers to the 
lengths when loaded. 
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The obtained value when the elastic modulus from the standard is 
considered, SC11, is given in Table 2. Fig. 8 compares the obtained 
stiffness contact results when using the mean elastic modulus from the 
standard (SC11) in comparison to the results obtained when the exper-
imental elastic modulus (SCE) for each specimen is considered. As 
shown, small differences are obtained, being the fitting slope close to 
one and with a coefficient of correlation R2 higher than 0.99. Therefore, 
for practical reasons, the use of the mean elastic modulus may be 
deemed as sufficient. 

4.1. Alternative analytical methods 

Some alternative analytical models may be found in literature. A 
spring model was developed by Cepelka and Malo [10] to account for 
the effects of contact in wood. It simulates the stiffness of the wood with 
a spring and adds an additional spring for each contact area, resulting in 
a series spring model, where the inverse of the total stiffness value is 
obtained according to 

1
Ktotal

=
1

Kwood
+ 2

1
Klayer

. (13) 

Fig. 10. Adjustment of the stiffness contact equation to the analytically obtained with the mean and measured Elastic Modulus.  

Fig. 11. Comparison of predicted stiffness contact with Eq. (15) with the experimental stiffness contact values. The ideal correlation line y = x is plotted for comp. 
arison purposes. 
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A very similar method was proposed by Iraola [30] to account for the 
contact area behaviour, where the contact is simulated by an additional 
material (with a different elastic modulus, Eb) located as a band in the 
contact area. The model is shown in Fig. 9, where ℓb0 is the thickness of 
each layer and ℓm0 is the height of the specimen minus the thickness of 
these two layers. By applying the usual equations for axial deformation, 
the elastic modulus of the additional ”contact” material may be calcu-
lated from the experimental Eapp 

ℓ
Eapp

=
ℓm0

E
+ 2

ℓb0

Eb
, (14)  

where ℓ = ℓm0 + 2ℓb0. 
These alternative methods obtain the same results as those from (12), 

as they are just different expressions of the same physical problem. From 
the Eqs. (13) and (14), it is possible to obtain the values for the SC 
parameter, what seems to be the best way to face the problem not having 
to develop a model with springs or additional material bands. 

4.2. Proposal for practical implementation 

With the above experimental procedure and analysis, a very precise 
stiffness contact parameter may be obtained. However, the required 
data is not available in common practice. As a first step, it was previ-
ously demonstrated how using the standard mean elastic modulus 
deemed in minimal variation on the predicted results (see Fig. 8). In this 
section, an equation which allows to obtain the required stiffness contact 
in the modeling phase, based only on the geometry of the specimens, is 
proposed. 

The proposed equation has been developed under consideration in 
the literature (see Section 1) that the contact area mostly influences the 
contact response, and how in previous proposals (which dealt with cy-
lindrical contact) such area is accounted as 

̅̅̅̅
A

√
. Apart from the area, a 

fitting parameter is introduced: 

SCcal,A = 1300
(

a + b
ab

)

=
2 600
̅̅̅
A

√ (15)  

where a and b are the sides of the rectangular cross-section in contact 
and A is the area. 

Fig. 10 shows the good adjustment of the equation to the trendline of 
the analytically obtained values (SCcal,A, black-filled) and Fig. 11 shows 
the comparison among the values obtained with (15) (SCcal,A) and the 
experimental ones (SCE) for each specimen. As shown by the fitting line, 
the equation obtains a remarkable similar performance, with a deter-
mination coefficient R2 = 0,983. The obtained SCcal for each specimen 
shows a good relation with the SC calculated with the mean values of 
each series with the Eq. (12) as it is shown in Figs. 10 and 11. Moreover, 
the obtained value is similar to the stiffness contact of 115N/mm3 for 
steel-wood contact in the parallel direction applied by Kekeliak et al. 
[31]. 

Due to the fact that the experimental campaign was limited to C24 
softwood, it is assumed that (15) is only adequate for that strength class. 
The required numerical fitting parameters may be obtained for different 
wood species and strength classes by following the experimental and 
analytical procedures explained above. Eq. (15) is similar to Eq. (1) 
[7,15], which was developed for cylindrical contact. If (1) is modified to 
consider the applied pressure instead of the load (by dividing the force F 
by the area A) so that it follows the above presented definition of stiff-
ness contact, then it becomes 

SCind
1
A
=

2̅
̅̅
π

√
̅̅̅
A

√
Er

1
A
=

2Er
̅̅̅
π

√
1̅
̅̅
A

√ ,

((

1

)′)

which proves that when the stiffness contact is defined as the pressure- 
overclosure relation, the previously reported area influence shows an 
inverse relation and thus, appears in the denominator. The fitting 
parameter in (15) may be assumed as being related to the geometry of 
the contact area and the modulus of elasticity of timber. 

In Figs. 10 and 11, several outliers may be spotted for the calculated 
stiffness contact of 104 N/mm3. Since the Eq. (15) only requires the area 
of the specimen, the same value is obtained for those specimens with the 
same area. However, an influence of the slenderness may be observed, 
especially in the series A (

̅̅̅̅
A

√
= 25mm). The slenderness could be 

included as an additional parameter to obtain a better fit to the exper-
imental results 

Fig. 12. Comparison of the obtained stiffness contact when additionally the slenderness of the specimen (16). is considered.  
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SCcal,B = 1900
(

0, 1λ + 1
̅̅̅
A

√

)

. (16)  

The resulting performance is enhanced, as shown in Fig. 12 and in 
Table 2 (SCcal,B). However, this latter equation including the slenderness 
of the specimen becomes of difficult practical application for cases 
different to the axial load used in the experimental procedure. 

Therefore, (15) is preferred for practical purposes. 

5. Application 

5.1. Embedment test 

Iraola [30] used a simple embedment test to improve the simulation 
in FE-models of dowel-type fasteners connections in timber. The test 
configuration is shown in Fig. 13, where 6 mm diameter nails were 
pushed into a wood specimen with a cross section of 20 × 60 mm and a 
length of 144 mm. 

A FE-model was developed in ABAQUS [14] implementing cohesive 
elements defined by Dourado et al. [32] and user subroutines with the 
material script developed by Iraola and Cabrero [33] to simulate the 
failure behaviour. Different mechanical properties for each direction 
and for tension and compression were considered along with progressive 
failure and element elimination. However, these techniques have no 
influence on the resultant stiffness of the joint defined between 10% and 
40% of the ultimate load [6]. 

Fig. 14 shows the main geometry and the resulting progressive fail-
ure of the FE model with two planes of symmetry. The vertical 
displacement and the rotation of the base are constrained. A vertical 
displacement is applied in the loading area of the nail, which is modelled 
with a mesh that makes the nodes of the nail and the wood concur. The 
contact behaviour in the normal direction for the timber-to-steel inter-
face was defined by a linear pressure-overclosure relationship, with a 
slope SCcal obtained in Eq. (15). For the tangential direction a penalty 
friction formulation with a friction coefficient of 0.3 [34] was used. 
Black elements show failure due to compression in the direction 
perpendicular to the fibers, stripped elements show failure due to 
compression in the direction of the fibers, and gray elements show a 
combination of failure types. 

The stiffness contact parameter defined in Eq. (15) implemented in 
the FE-model improves the simulation of the stiffness of the joint. Pa-
rameters a and b of Eq. (15) were defined as the width of the wood 
member and the diameter of the dowel, respectively. 

Fig. 15 shows the experimental results in comparison with the FEA 
simulation with and without the stiffness contact parameter. According 
to [6], the experimental results show a mean stiffness of 3918 N/mm 
with a coefficient of variation of 8.8%, whereas the FEM with the Hard 
Contact shows a stiffness of 6097 N/mm, 156% of the experimental 
stiffness. Implementing the stiffness contact parameter of Eq. (15) re-
sults in a stiffness of 4641 N/mm, 118% of the experimental stiffness. As 
shown in the results, in this particular test, a high variability of the 
experimental response is observed, corresponding the model response to 
the most stiff experimental one. 

5.2. Moment transmitting joint 

The stiffness contact calculated with Eq. (15) (SCcal) was imple-
mented in the modelling of a series of moment transmitting joints of 
different geometries. The FEM software ABAQUS [14] was again used 
and the required stiffness contact parameter was defined with Eq. (15). 
The script developed by Iraola and Cabrero [33] was used to model the 
fracture behaviour of timber. 

The obtained results were validated with an experimental campaign, 
one of whose specimens is shown in Fig. 17. The joint consists of two 
parallel C24 column members to which a central C24 beam is attached 
by means of eight steel dowels. Parameters a and b of Eq. (15) were 
defined as the width of the wood member and the diameter of the dowel, 
respectively. 

Fig. 16b shows the main geometry and boundary conditions of the FE 
model with one plane of symmetry. The displacements of both extremes 
of the column are constrained, while the rotations are allowed. Since the 
implemented user subroutine [33] modifies the properties of each 
element, the FE model is therefore mesh-dependent. Each part was 

Fig. 13. Embedment test series configuration.  

Fig. 14. FE model geometry visualization. Black elements show failure due to 
compression in the direction perpendicular to the fibers, stripped elements 
show failure due to compression in the direction of the fibers and gray elements 
show a combination of failure types. 
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partitioned and meshed to obtain the most homogeneous element dis-
tribution close to the contact zone (see Fig. 16a). The contact behaviour 
in the normal direction for the timber-to-steel interface was defined by a 
linear pressure-overclosure relationship, with a slope SCcal obtained in 
Eq. (15). For the tangential direction a penalty friction formulation with 
a friction coefficient of 0.3 [34] was used. 

Fig. 18 shows the experimental results of three tests in comparison to 
the FEM simulation with and without the stiffness contact parameter. 
The Fest of the first tested joint was overestimated resulting in an 
unloading path starting over the 1,5 kN mark, the Fest was afterwards 
adjusted for the remaining tests. The model does not account for the 
initial plastification, therefore the unloading and reloading paths fit the 
original path and the unloading is omitted in the model. 

A good agreement with the experimental results is obtained when the 
stiffness contact parameter is considered, while not considering such 
contact phenomena results in an overprediction of the stiffness of the 
joint. 

For a complete description of the experimental campaign and the 

used modeling techniques, the reader is referred to Basterrechea- 
Arevalo et al. [35]. 

6. Conclusions 

Modelling the contact behaviour of wood members is a challenge due 
to the heterogeneity and complexity of the material. Especially in the 
case of wood joints, their elastic response cannot be accurately modelled 
without considering the singularities of the contact areas. The stiffness 
contact parameter included in some FEA software allows researchers to 
introduce some of those singularities in a simple way, by means of a 
contact stiffness parameter. Although the initial adjustment behaviour is 
not considered in this parameter, the behaviour after this initial zone can 
be precisely simulated. 

Since the determination of the stiffness contact parameter requires 
data only available through testing, an alternative method to determine 
it for C24 softwood (being this the typical one in Europe) is proposed. By 
developing further experimental campaigns, this equation could be 

Fig. 15. Experimental results of the preloading step in comparison with FEA with Hard Contact and stiffness contact approaches. Experimental data has been 
displaced to concur in the origin, discarding initial adjustments. 

Fig. 17. Moment transmitting connection used for application [35].  
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expanded for alternative wood species. The proposed determination 
method is based only on the geometry of the contact area and seems to 
be able to accurately predict the behaviour of rectangular contact areas 
for such a heterogeneous and variable material as wood. 

No correlation was achieved studying the slenderness of each spec-
imen. Upcoming research will further study this point and the influence 
of the wood mean elastic modulus to see if the factor in the Eq. (15) may 
be related to the mean elastic modulus or not. 

Fig. 16. Details of the FE-model of moment transmitting beam-to-column connection [35].  
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