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A B S T R A C T

In forest landscapes affected by fire, the estimation of fractional vegetation cover (FVC) from remote sensing
data using radiative transfer models (RTMs) enables to evaluate the ecological impact of such disturbance across
plant communities at different spatio-temporal scales. Even though, when landscapes are highly heterogeneous,
the fine-scale ground spatial variation might not be properly captured if FVC products are provided at moderate
or coarse spatial scales, as typical of most of operational Earth observing satellite missions. The objective of this
study was to evaluate the potential of a RTM inversion approach for estimating FVC from satellite reflectance
data at high spatial resolution as compared to the standard use of coarser imagery. The study was conducted both
at landscape and plant community levels within the perimeter of a megafire that occurred in western Mediter-
ranean Basin. We developed a hybrid retrieval scheme based on PROSAIL-D RTM simulations to create a training
dataset of top-of-canopy spectral reflectance and the corresponding FVC for the dominant plant communities. The
machine learning algorithm Gaussian Processes Regression (GPR) was learned on the training dataset to model
the relationship between canopy reflectance and FVC. The GPR model was then applied to retrieve FVC from
WorldView-3 (spatial resolution of 2 m) and Sentinel-2 (spatial resolution of 20 m) surface reflectance bands. A
set of 75 plots of 2x2m and 45 plots of 20x20m was distributed under a stratified schema across the focal plant
communities within the fire perimeter to validate FVC satellite derived retrieval. At landscape scale, the accu-
racy of the FVC retrieval was substantially higher from WorldView-3 (R2 = 0.83; RMSE = 7.92%) than from
Sentinel-2 (R2 = 0.73; RMSE = 11.89%). At community level, FVC retrieval was more accurate for oak forests
than for heathlands and broomlands. The retrieval from WorldView-3 minimized the over- and underestimation
effects at low and high field sampled vegetation cover, respectively. These findings emphasize the effectiveness
of high spatial resolution satellite reflectance data to capture FVC ground spatial variability in heterogeneous
burned areas using a hybrid RTM retrieval method.

1. Introduction

Wildfires are major ecological disturbances across most terrestrial
ecosystems around the globe (De Santis and Chuvieco, 2007; Ben-
nett et al., 2016; Collins et al., 2018), causing significant impacts
on their biological composition, structure and functioning (Calvo et
al., 2008; Lozano et al., 2008) and, therefore, on the ecosystem ca-
pacity to provide services and goods for society (Lee et al., 2015;
Robinne et al., 2020). The fire-induced shifts in ecosystem struc-
ture and composition further influence land surface energy budgets
at local, regional and continental scales over a long time period af-
ter fire (Liu et al., 2005; Archibald et al., 2018) by changes on
earth surface albedo (Kasischke and Stocks, 2000), as well as sen-
sible and latent heat flux (Liu et al., 2018), among others. In the
European Mediterranean Basin, the frequency of large and severe for-
est fires has increased to a great extent in the recent decades (Pausas
et al., 2008; González-De Vega et al., 2016) as a consequence
of land-use changes (Chergui et al., 2018), socio-economic fac

tors, such as rural depopulation, abandonment of the primary sector or
tourism pressure (Pausas and Keeley, 2014; Chergui et al., 2018),
and climate change (González-De Vega et al., 2016). In this context,
the assessment of vegetation structure variation across the landscape is
essential to determine the impact of fire on vegetation communities in
the short or medium term at different spatial scales (Veraverbeke et
al., 2012a; Fernández-Guisuraga et al., 2020) and, therefore, to ad-
dress sustainable management actions on high-priority areas aimed to
avoid the most harmful environmental fire effects (De Santis et al.,
2009).

Fractional vegetation cover (FVC) is a crucial biophysical property
to be considered in post-fire environmental assessments, as it enables
to quantify the vegetation horizontal structure across landscapes (Chu
et al., 2016; Fernández-Guisuraga et al., 2020). FVC is defined
as the ratio of green vegetation vertical projected area to the consid-
ered land surface extension (Gutman and Ignatov, 1998; Gitelson
et al., 2002; Jia et al., 2016; Song et al., 2017; García-Haro
et al., 2018). This parameter has been demon
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strated to be particularly useful for determining forest response and
resilience to fire disturbance (Fernández-Guisuraga et al., 2019a),
characterizing fuel loadings in fire-prone ecosystems (Suchar and
Crookston, 2010; Wing et al., 2012), as well as for identifying sen-
sitive areas to soil erosion or nutrient losses as a result of changes
in vegetation cover, and, therefore, in hydrogeological processes (Ve-
raverbeke et al., 2012b; Chu et al., 2016; Storey et al., 2016;
Fernández-Guisuraga et al., 2020). Thus, post-fire FVC assessment
of vegetation legacies is of significant meaning for restoring fire-dis-
turbed vegetation communities, particularly those affected by high burn
severity events in fire-prone ecosystems (Quayle et al., 2005; Kokaly
et al., 2007) and refining fire behavior models in case of the occur-
rence of a new wildfire (Wing et al., 2012; Fernández-Guisuraga et
al., 2019a). Additionally, FVC monitoring allows to elucidate relation-
ships between fire disturbances and energy balance processes such as
evapotranspiration (Weiss et al., 2000; Song et al., 2017), as well
as land surface albedo and emissivity (Zhou et al., 2007). Although
ground surveys provide the most accurate FVC measures through visual
estimations or instrumental methods (Zhang et al., 2013; Li et al.,
2015a), this approach is expensive and labor-intensive (Liang et al.,
2008; Fernández-Guisuraga et al., 2020), which makes it unfeasi-
ble for monitoring large burned landscapes (Chuvieco and Kasischke,
2007; Fernández-Guisuraga et al., 2019a). Currently, the most feasi-
ble alternative to estimate FVC in extensive areas, as compared to tradi-
tional field sampling campaigns, is the use of remote sensing techniques
(Veraverbeke et al., 2012a; Jia et al., 2016; Fernández-Guisuraga
et al., 2020) in combination with FVC field measurements for valida-
tion (White et al., 2000). The most commonly used algorithms to esti-
mate FVC from remote sensing data include: (i) empirical models based
on the establishment of statistical relationships between field-measured
FVC and reflectance data or its derived products, such as spectral in-
dices or texture metrics (e.g. Los et al., 2000; Gitelson et al., 2002;
Goetz et al., 2006; Cuevas-González et al., 2009; Jiapaer et
al., 2011; Hill et al., 2017; Fernández-Guisuraga et al., 2019a;
Fernández-Guisuraga et al., 2019b); (ii) pixel unmixing models,
which assume that remote sensing pixel spectra is a combination of two
or more ground components, being the vegetation component the pixel
FVC (e.g. Gutman and Ignatov, 1998; Xiao and Moody, 2005; Jia-
paer et al., 2011; Veraverbeke et al., 2012a; Zhang et al., 2013;
Li et al., 2015a; Bian et al., 2016; Fernández-Guisuraga et al.,
2020); and (iii) physical-based methods based on the inversion of ra-
diative transfer models (RTM) (e.g. Baret et al., 2007; Kallel et al.,
2007; Ding et al., 2016; Jia et al., 2016; García-Haro et al., 2018;
Wang et al., 2017; Wang et al., 2018; Tao et al., 2019).

Among these approaches, the inversion of radiative transfer mod-
els (RTMs) to retrieve FVC is the method with the soundest theoretical
basis and physical sense (Jia et al., 2015; Verrelst et al., 2015a).
RTMs simulate the physical relationships between canopy reflectance
and vegetation biophysical variables (Jia et al., 2016; Wang et al.,
2017) and can be inverted using observed reflectance data to retrieve
FVC. The RTM physical relationships are independent of ecosystem en-
vironmental conditions (Yebra et al., 2008; Yebra and Chuvieco,
2009) and, therefore, the models are widely applicable over large ar-
eas with heterogeneous ground cover (Tao et al., 2019). RTM pa-
rametrization is usually based on field knowledge or measurements for
a specific plant community (Campos-Taberner et al., 2018). How-
ever, when aiming to encompass a wide range of communities for which
no ground data is available, then the model variables are ranged be-
tween specific thresholds (Yebra and Chuvieco, 2009). A wide range
of coupled leaf and canopy RTM models have been used in the re-
cent years to retrieve vegetation biophysical parameters such as FVC
(e.g. DART, Gastellu-Etchegorry et al., 2004; INFORM, Schlerf and
Atzberger, 2006; PROSPECT+GeoSail, Verhoef and Bach, 2003;
PROSAIL, Jacquemoud et al., 2009). In particular, PROSAIL has been
one of the most frequently applied models over the past years for sim-
ulating canopy spectra and retrieving vegetation biophysical parame-
ters, even in the case of heterogeneous canopies (Yebra and Chu-
vieco, 2009; Verrelst et al., 2015a; García-Haro et al., 2018; Lin
et al., 2019) due to its robustness, accuracy and computational ef-
ficiency (Jacquemoud et al., 2009). However, the direct inversion
of RTM to retrieve FVC is a challenging task due to model complex-

cedure (Yebra et al., 2008; Verrelst et al., 2015a). Therefore, indi-
rect RTM inversion is typically performed through either lookup-tables
(LUT) (physical inversion) or machine learning regression algorithms
(MLRA) (hybrid inversion) strategies (Verger et al., 2011; Jia et al.,
2016; Campos-Taberner et al., 2018). Among them, MLRA hybrid
inversion ensures: (i) a high degree of model generalization (Houborg
and McCabe, 2018), (ii) more accurate biophysical parameter estima-
tion (Verger et al., 2011; Liang et al., 2015) and (iii) better compu-
tational efficiency (Yang et al., 2016; García-Haro et al., 2018) than
other retrieval strategies.

Conventionally, MLRA trained over RTM simulations have been used
to retrieve FVC from data collected by operational satellite optical sen-
sors with low spatial resolution (e.g. MODIS, MetOp-AVHRR, MERIS,
SPOT-VEGETATION) (Bacour et al., 2006; Baret et al., 2007; Jia
et al., 2015; Yang et al., 2016; Campos-Taberner et al., 2018;
García-Haro et al., 2018) or moderate spatial resolution (e.g. Land-
sat, CHRIS/PROBA, Sentinel-2, GF-1 WFV) (Verger et al., 2011; Li
et al., 2015b; Jia et al., 2016; Yang et al., 2017a; Wang et al.,
2018; Upreti et al., 2019; Hu et al., 2020) at local, regional or
global scales. Nevertheless, the fine-scale ground spatial variation of
heterogeneous post-fire landscapes generated by complex mixtures of
plant communities, soil types and fine or coarse charred woody de-
bris (Fernández-Guisuraga et al., 2020) might not be properly cap-
tured at the spatial scale of the aforementioned FVC products (Sinha
et al., 2020). In such cases, high spatial resolution satellite data are
needed to: (i) Account for the fine-grained arrangement in small patches
of living vegetation legacies (Lentile et al., 2006; Walker et al.,
2019). These patches play a key role in post-fire vegetation recovery,
as they might act as seed sources and dispersers habitat (Schlawin and
Zahawi, 2008), as well as a controllers of the runoff erosive power
(Puigdefábregas, 2005). Consequently, their omission will result in
the underestimation of vegetation natural regeneration capacity and
soil protection against erosion (Ludwig et al., 2005; Walker et al.,
2019). (ii) Detect mortality at individual tree level (Lentile et al.,
2006), which is essential in post-fire management strategies. (iii) Ob-
tain operational FVC maps, at scales of at least 1:10,000, which allow
the identification of high-priority areas where emergency management
actions are necessary at short term for assisting vegetation recovery and
controlling soil erosion processes (Corona et al., 2008). (iv) Assess
post-fire vegetation dynamics at medium or long term to monitor ecosys-
tem resilience at high temporal resolution (i.e. low revisit time) (Van
Leeuwen, 2008; Veraverbeke et al., 2011). Traditionally, coarse spa-
tial resolution satellite optical sensors with high temporal frequency
(e.g. MODIS) have been used to monitor post-fire vegetation dynamics
(Van Leeuwen, 2008). However, the current availability of moderate
or high spatial resolution sensors with low revisit times (e.g. Sensinel-2
and commercial satellites such as Deimos-2 or WorldView-3) provides a
great opportunity for monitoring vegetation condition in post-fire land-
scapes.

Remote sensing data at high spatial resolution have received lit-
tle attention in the fire ecology field for post-fire FVC analysis
(Fernández-Guisuraga et al., 2020). Despite all the available knowl-
edge on this topic, there is still a gap in estimating FVC from the inver-
sion of an RTM using satellite reflectance data at high spatial resolution.
This fact is particularly relevant in complex and heterogeneous burned
landscapes made of a mixture of different shrub and tree communities,
bare soil and woody debris. The objective of this study was therefore
to evaluate the potential of a hybrid RTM inversion approach for esti-
mating FVC from satellite reflectance data at high spatial resolution, as
compared to the standard use of coarser imagery. The case study was
conducted in a heterogeneous burned landscape of the western Mediter-
ranean Basin that comprises different shrubland and tree forest commu-
nities. Specifically, we analyzed the performance of WorldView-3 (spa-
tial resolution of 2 m) and Sentinel-2 (spatial resolution of 20 m) surface
reflectance data to retrieve FVC at landscape and plant community lev-
els using Gaussian processes regression (GPR) algorithm learned from a
simulation dataset generated using the PROSAIL-D model. We seek to
address the following research questions:

(i) Do remote sensing data at high spatial resolution provide quanti-
tatively better performance than coarser data to retrieve FVC from
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(ii) Does a hybrid RTM retrieval method to estimate FVC provide an ac-
curacy above the accepted threshold of 10% for vegetation biophys-
ical variable retrieval (Drusch et al., 2012; Verrelst et al., 2016)
in heterogeneous post-fire environments generated by complex mix-
tures of vegetation and soil types, as well as charred woody legacies?

2. Material and methods

2.1. Study site

The study area is located within the perimeter of a mixed-sever-
ity wildfire (Sierra de Cabrera mountain range, NW Spain; Fig. 1)
that burned 9940 ha between 21th and 27th August 2017. It lays at
the limit of the Mediterranean and Eurosiberian biogeographic regions
(Rivas-Martínez et al., 2011). Altitude ranges between 834 and
1963 m a.s.l. and orography is abrupt. The climate is Mediterranean
temperate (García-Llamas et al., 2019), with an average annual
temperature of 9 °C and an average annual precipitation of 850 mm
(Ninyerola et al., 2005). Soils are predominantly acidic and devel-
oped over siliceous lithologies (slates in the north of the fire perime-
ter and quartzite in the south area), mainly Lithic and Distric Leptosols
(LPq and LPd, respectively) and Distric and Humic Cambisols (CMd
and CMu, respectively) (GEODE, 2019; ITACyL, 2019). The burned
landscape is highly heterogeneous since it holds a wide range of plant
communities: shrublands dominated by Genista hystrix Lange, Erica aus-
tralis L. and Genista florida L. and forests dominated by Quercus pyre-
naica Willd. and Pinus sylvestris L. Each community exhibits also high
levels of ground spatial heterogeneity due to local differences in post-

fire regeneration patterns, accumulation of non-photosynthetic material
and bare soil (Fernández-Guisuraga et al., unpublished).

Fire has been historically a crucial process modeling the landscape
dynamics of the study site, the fire regime being characterized by a high
wildfire frequency (8.48 fires × 10 years−1) (García-Llamas et al.,
2020) and severity (García-Llamas et al., 2019). In fact, the adap-
tive traits (e.g. vegetative resprouting, heat-shock triggered germination
or self-pruning) of the dominant plant species are typical of fire-prone
landscapes (Keeley and Zedler, 1998; Calvo et al., 2008; Fernandes
et al., 2008).

2.2. Satellite imagery data and pre-processing

Sentinel-2 multispectral imaging mission comprises two polar-orbit-
ing satellites placed in the same sun-synchronous orbit, launched on
23rd June 2015 (Sentinel-2A) and 7th March 2017 (Sentinel-2B) as
part of the Copernicus program of the European Space Agency (ESA,
2020). Sentinel-2 provides 13 spectral bands -four bands at 10 m, six
bands at 20 m and three bands at 60 m of spatial resolution- over the
visible (VIS), near infrared (NIR) and shortwave infrared (SWIR) re-
gions of the spectrum (Table 1). Sentinel-2 MSI Level 1C (top-of-at-
mosphere reflectance) scene covering the study site was acquired from
the Copernicus Open Access Hub on 23rd August 2019 at 11:21:21
with a cloud cover of 1.38%. Sentinel-2 MSI Level 1C scene was al-
ready orthorectified by the image provider. The bands at 10 m of spa-
tial resolution were resampled to 20 m using a nearest neighbor tech-
nique. The pre-processing included topographic and atmospheric cor-
rection to obtain a surface reflectance product (Level 2A) using the
ATCOR algorithm (Richter and Schläpfer,

Fig. 1. Sierra de Cabrera wildfire (NW Spain) occurred in August 2017 and location of the sampling sites for each studied plant community (heathlands, broomlands and oak forests).
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Table 1
WorldView-3 and Sentinel-2 band configuration. Those considered for further analysis are bolded.

WorldView-3 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16

Spatial resolution (m) 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7
Band center (nm) 425 480 545 605 660 725 833 950 1210 1570 1660 1730 2165 2205 2260 2330
Band width (nm) 50 60 70 40 60 40 125 180 30 40 40 40 40 40 50 70
Sentinel-2A B1 B2 B3 B4 B5 B6 B7 B8 B8A B9 B10 B11 B12
Spatial resolution (m) 60 10 10 10 20 20 20 10 20 60 60 20 20
Band center (nm) 443 492 560 665 704 741 783 833 865 945 1374 1614 2202
Band width (nm) 21 66 36 31 15 15 20 106 21 20 31 91 175

2018) bundled in PCI Geomatica 2018 software (PCI Geomatics Enter-
prises Inc.).

WorldView-3 is a polar sun-synchronous commercial satellite
launched on 13th August 2014 (DigitalGlobe, 2020). Sensors on-board
WorldView-3 provide 16 spectral bands, featuring eight bands over the
VIS and NIR regions at 1.24 m of spatial resolution and eight bands
over the SWIR region with a spatial resolution of 3.7 m (Table 1).
VIS and NIR bands were resampled to 2 m by the image provider and
SWIR bands were released commercially at 7.5 m of spatial resolution
(Asadzadeh and de Souza-Filho, 2016). WorldView-3 scene was ac-
quired on 22nd August 2019 at 11:38:57 with absence of cloud cover.
SWIR bands were resampled to 2 m using a nearest neighbor technique.
The scene was orthorectified using the rational polynomial coefficients
provided in the image metadata and a Digital Elevation Model (DEM)
at 5 m of spatial resolution with an RMSEZ (vertical accuracy) < 20 cm
provided by the Spanish National Center of Geographic Information
(http://www.cnig.es/). Image pre-processing was similar to that applied
to Sentinel-2 MSI Level 1C scene.

WorldView-3 and Sentinel-2 common bands with similar band cen-
ter and width (Table 1 and Fig. 2) were considered for further analy-
ses after discarding WorldView-3 band 1 and Sentinel-2 bands 1, 9 and
10 at 60 m. These bands are used for atmospheric correction and cloud
detection (Wang et al., 2018) and they are influenced by atmospheric
effects (Jia et al., 2016). For that reason, these bands cannot provide
top of canopy reflectances interpretable by RTMs (Rivera et al., 2013).

See Figure SM2 of the Supplementary material for a RGB view
of WorldView-3 and Sentinel-2 imagery covering the perimeter of the
Sierra de Cabrera wildfire.

2.3. FVC estimation using machine learning inversion of radiative transfer
model (RTM)

PROSAIL-D RTM (the coupled PROSPECT-D leaf optical model and
SAIL canopy reflectance model) was used in this study in forward mode
to create a training dataset of top of canopy spectral reflectance from
400 to 2500 nm and the corresponding FVC under several canopy con-
ditions. The dataset was spectrally resampled to simulate WorldView-3
and Sentinel-2 satellite observations of canopy reflectance. A Gauss-
ian processes regression (GPR) algorithm was learned on the training
dataset to model the relationship between the simulated reflectance and
FVC. The model was then used to retrieve FVC from the WorldView-3
and Sentinel-2 surface reflectance values (Fig. 3). These analyses were
conducted within ARTMO (Automated Radiative Transfer Models Oper-
ator) software package (Verrelst et al., 2012a).

2.3.1. Canopy reflectance simulation
The PROSAIL model (Jacquemoud et al., 2009), which results

from the coupling of PROSPECT (Jacquemoud and Baret, 1990) and
SAIL (Verhoef, 1984; Verhoef, 1985) RTMs, was used to produce top
of canopy spectral reflectance simulations.

In PROSPECT, leaf directional-hemispherical reflectance and trans-
mittance are simulated for the optical spectrum from 400 to 2500 nm
with a 1 nm spectral resolution (Jacquemoud and Baret, 1990; Ver-
relst et al., 2015a) as a

Fig. 2. Spectral Response for the WorldView-3 (WV-3) and Sentinel-2 (S-2) bands.
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Fig. 3. Flowchart of radiative transfer model (RTM) inversion and validation.

function of leaf structure parameter (N) and several biochemical vari-
ables (Casas et al., 2014). For the model version used in this study
(PROSPECT-D; Féret et al., 2017), the required biochemical variables
are: leaf chlorophyll content (Cab), leaf carotenoid content (Car), leaf an-
thocyanin content (Cant), brown pigment fraction (Cbp), leaf dry matter
content (Cm) and leaf equivalent water thickness (Cw). We have chosen
this version since it adds anthocyanins to chlorophylls and carotenoids
to the previous version of the model (PROSPECT-5) and improves model
performance with or without the presence of the new pigment in the
vegetation (Féret et al., 2017). In our study, the inclusion of antho-
cyanins in the model provides a substantial added value, since these
pigments are essential leaf constituents that play a significant role in
the vegetation leaf optical signal under environmental stress condi-
tions (Gould, 2004), such after the occurrence of a wildfire
(Fernández-Guisuraga et al., 2019a). The ranges of the PROSPECT-D
input variables (Table 2) related to pigments content were established
on the basis of literature review and expert field knowledge to ac-
count for the variability of the plant communities of the study site
(Baret et al., 2007; Féret et al., 2017; Campos-Taberner et al.,
2018; Wang et al., 2018; Tao et al., 2019). Despite brown pig-
ment fraction (Cbp) is removed or fixed to zero in some studies (e.g.
Jay et al., 2016; Campos-Taberner et al., 2018; García-Haro et
al., 2018), we used it due to its large influence in the red edge re-
gion of the vegetation spectrum. Brown pigments are not always re-
lated to visible leaf browning, but with chlorophyll breakdown in senes-
cent stages (Danner et al., 2019). Leaf structure variable (N) was al-
lowed to range between 1.5 and 2.5, a suitable range for dicotyledons

Table 2
Range of input variables of the PROSPECT-D and 4SAIL models.

Unit Range or value

Leaf parameters (PROSPECT-D)
Leaf structure index (N) – 1.5–2.5
Leaf chlorophyll content (Cab) μg cm − 2 20–90
Leaf carotenoid content (Car) μg cm − 2 5–40
Leaf anthocyanin content (Cant) μg cm − 2 0–40
Leaf dry matter content (Cm) g cm − 2 0.005–0.015
Leaf equivalent water thickness (Cw) g cm − 2 0.005–0.015
Brown pigment fraction (Cbp) – 0–1
Canopy parameters (4SAIL)
Leaf area index (LAI) m 2 m − 2 0.1–6
Average leaf angle (ALA) ° 30–80
Diffuse/direct radiation (skyl) – 0.1
Hot spot effect (hspot) – 0.001–1
Soil brightness factor (αsoil) – 0–1
Vegetation cover (Vcov) – 0–1
Solar zenith angle (θs) ° 32.2
Observation zenith angle (θo) ° 19.1
Sun-sensor azimuth angle (φ) ° 42.6

5
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(Sinha et al., 2020). A uniform distribution was assumed for each
PROSPECT-D variable.

Leaf reflectance and transmittance simulated by PROSPECT-D serves
as input for SAIL, a 1-D turbid medium canopy reflectance model
(Jacquemoud et al., 2009), which assumes a random distribution of
leaves (Baret et al., 2007). We used an improved version of the model
-4SAIL- developed by Verhoef et al. (2007), which is more numeri-
cally robust and stable than previous SAIL models (Jacquemoud et al.,
2006) and requires as input variables: leaf area index (LAI), average
leaf angle (ALA), ratio between diffuse and direct radiation (skyl), hot
spot effect (hspot) specified as the ratio between leaves size and canopy
height (Casas et al., 2014), soil background reflectance, soil bright-
ness factor (αsoil) and viewing geometry (solar zenith angle -θs-, obser-
vation zenith angle -θo- and sun-sensor azimuth angle -φ-). LAI, ALA,
skyl and hspot input variables were established in agreement with the
literature and field knowledge to consider the complete ground cover
variability of the study site (Baret et al., 2007; Campos-Taberner et
al., 2018) (Table 2). The viewing geometry input variables were fixed
from the satellite scene metadata. Soil spectra was extracted from dry
and moist bare soil pixels identified in the satellite imagery (Verrelst et
al., 2015a) for each prevailing soil type in the study area, multiplied
by a soil brightness factor (αsoil) scaled between 0 and 1. An accurate
soil background reflectance characterization is crucial to produce realis-
tic simulations in ecosystems with sparse canopies (García-Haro et al.,
2018). A uniform distribution was also assumed for each 4SAIL input
variable.

FVC was computed in PROSAIL-D using gap fraction calculation at
nadir (Nilson, 1971) as a function of LAI, ALA and the viewing angle
(García-Haro et al., 2018; Wang et al., 2018). Non-vegetated areas
at subpixel level must be represented in reflectance simulations of tur-
bid medium RTMs (Campos-Taberner et al., 2016; Svendsen et al.,
2018). A linear spectral mixing model was used to account for spatial
heterogeneity in the burned landscape (Baret et al., 2007;), which as-
sumes that each pixel is constituted by a linear mixture of pure veg-
etation fraction (Vcov) and bare soil (1-Vcov). Then, the simulated re-
flectance and FVC were computed at the pixel level following this as-
sumption (García-Haro et al., 2018).

Each possible combination of the leaf and canopy input variables
listed in Table 2 was used by PROSAIL-D run in forward mode to sim-
ulate a training dataset of canopy reflectance from 400 to 2500 nm and
the corresponding FVC. We performed a balanced sampling of 2000 sim-
ulations over the total model space using Latin Hypercube Sampling
(McKay et al., 1979). Additionally, we included a 10% of spectra
representative of bare soil (Vcov = 0) with respect to the total model
samples. Likewise, a 10% of spectra corresponding to fine and coarse
charred woody debris extracted from the satellite imagery was included
to the simulated PROSAIL-D spectra to account for this representative
constituent of a burned landscape at short or medium-term. The re-
flectance simulations were resampled to match the band settings of
WorldView-3 and Sentinel-2 using the spectral bandwidth and the rela-
tive spectral response of each sensor. A relative white Gaussian noise of
2% wavelength-independent was added to the simulated PROSAIL-D re-
flectance to account for uncertainties in satellite surface reflectance data
derived from the atmospheric correction algorithm, residual cloud cont-
amination and inherent limitations of RTMs (Baret et al., 2007; Jia et
al., 2016; García-Haro et al., 2018).

2.3.2. FVC retrieval
The relationship between simulated WorldView-3 and Sentinel-2

reflectance and the corresponding FVC was modeled with Gaussian
processes regression (GPR; Rasmussen and Williams, 2006). GPR is a
powerful machine learning regression algorithm (MLRA) that has been
recently introduced in the field of biophysical parameters estimation
(Verrelst et al., 2015b). Gaussian processes provide a Bayesian prob-
abilistic approach for learning regression kernels by fitting non-para-
metric as well as non-linear models between simulated reflectance data
and vegetation biophysical variables (Verrelst et al., 2015b; Sinha et
al., 2020), described by a mean and a covariance function (radial basis
function kernel) (Verrelst et al., 2012b). GPR offers three meaningful

mean FVC prediction and associated uncertainty for the prediction (Ver-
relst et al., 2012b; Verrelst et al., 2015b; Verrelst et al., 2016). In
earlier retrieval studies, GPR slightly outperformed other MLRAs, such
as support vector regression (SVR), kernel ridge regression (KRR) or ar-
tificial neural networks (ANNs), being computationally more efficient
(Verrelst et al., 2012c). See Rasmussen and Williams (2006) for
in-depth details of GPR theoretical aspects.

We ran two GPR models for each sensor: (i) a “full model” trained
with all bands (Table 1) and (ii) a “parsimonious model” trained with
the most contributing bands, according to the theoretical or internal
model validation (i.e. with the simulated reflectance data and FVC)
based on the model hyperparameter σb, which controls the spread of the
relations for each band of the simulated reflectance data. The inverse
of hyperparameter σb represents the importance of band b. A high σb
value indicate that relations extend to a large extent along band b, thus
suggesting a low band informative content (Verrelst et al., 2012b).
This hyperparameter can therefore be exploited to perform a sequen-
tial backward band removal (SBBR) routine to identify the set of bands
that maximize the predictive performance of the biophysical variable
(Verrelst et al., 2016), in this case the FVC. The GPR-SBBR routine
was used together with 10-fold cross-validation (10-CV) to identify the
most contributing reflectance band subset for FVC prediction applied to
the training dataset of PROSAIL-D simulations. We established a hyper-
parameter σb threshold that defines the most informative bands based
on the results of 10-CV for both WorldView-3 and Sentinel-2 training
datasets. This analysis also allowed to determine if the contribution of
the best matching bands for both sensors was similar. The predictive
performance of full and parsimonious models was measured by means
of root-mean-squared error of cross-validation (RMSECV; i.e. the RMSE
average of each cross-validation iteration). FVC was finally retrieved by
applying full and parsimonious models to WorldView-3 and Sentinel-2
observed reflectance. An FVC map was generated using the best per-
forming model achieved for each sensor, with mean predictions and
their associated uncertainty, since GPR models provide a full posterior
predictive distribution (Verrelst et al., 2016).

2.4. Field measurement of FVC and retrieval validation

Two sets of 45 plots equivalent to WorldView-3 and Sentinel-2 pixel
size (2 m × 2 m and 20 m × 20 m, respectively) were established in
the field between June and July 2019 within the fire perimeter, using
each satellite image pixel grid to ensure the alignment between remote
sensing and field data. The plots were located using a sub-meter accu-
racy GPS receiver. The field plots were stratified into the three dominant
plant communities across the burned landscape: (i) Quercus pyrenaica
oakland, (ii) Erica australis heathland and (iii) Genista florida broomland.
FVC was measured in each plot as the vertical projected area occupied
by herbs, shrub and tree strata to the total plot extent (Anderson et al.,
2005; Calvo et al., 2008; Fernández-Guisuraga et al., 2020) us-
ing a visual estimation method in steps of 5% (Schlerf and Atzberger,
2006; Delamater et al., 2012; Liang et al., 2012). FVC was esti-
mated in each plot by four observers, being the final value the average
of the four estimations. The standard deviation of the measures taken in
each plot was less than 5%. In the 2 m × 2 m plots, FVC was estimated
using a quadrat (i.e. a metal frame) of that size. The quadrat was also
used in the 20 m × 20 m plots to estimate the FVC in nested sub-plots
for reducing subjectiveness. The FVC of each 20 m × 20 m plot was
then obtained by averaging the estimation of the sub-plots. In plant com-
munities with several vertical strata, the FVC of the tree canopy was es-
timated in a bottom-up direction using a quadrat held by long sticks,
while a top-down direction was used for estimating the FVC of the un-
derstory vegetation (Jia et al., 2016). Thus, the FVC in these communi-
ties accounted for the tree canopy plus the understory vegetation which
is estimated to be viewed through canopy gaps (Mu et al., 2015). To
validate retrieval performance, we computed the coefficient of determi-
nation (R2) and the root-mean-squared error (RMSE) for the relation-
ship between the retrieved FVC from WorldView-3 and Sentinel-2 im-
agery using the full and parsimonious GPR models, and the field-mea-
sured FVC, both at community and landscape (encompassing field data
from the three considered communities) levels.
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3. Results

The contribution of the most informative bands in the GPR mod-
els was approximately identical for WorldView-3 and Sentinel-2 simu-
lated reflectance data, which supports further comparison of the FVC re-
trieval performance from both datasets. Sharp differences in the band
contribution were observed for both sensors across the different spec-
tral regions (Fig. 4A and B). According to theoretical 10-CV, blue and
red were the most informative bands throughout the visible region for
both sensors, around 420 nm and 660 nm, respectively. The hyperpa-
rameter σb values were lower than five, which is the highest σb value
for each selected band in the GPR model that minimizes the RMSEcv
in 10-CV, as shown in Fig. 5. Regarding the NIR region, WorldView-3
and Sentinel-2 bands centered at 833 nm soundly contributed (hyperpa

rameter σb lower than five) to the GPR model. For the case of the SWIR
region, Sentinel-2 and WorldView-3 bands centered around 1600 nm
and 2200 nm were highly informative for FVC estimation (hyperpara-
meter σb lower than five).

The theoretical validation of the full GPR models trained with all
the simulated bands and the corresponding FVC achieved an RMSEcv
of 3.36% and 2.97%, respectively for Worldview-3 and Sentinel-2 (Fig.
5A and B). The Worldview-3 parsimonious FVC model, which included
the five most contributing bands of the visible, NIR and SWIR re-
gions (Fig. 4A) featured a RMSEcv of 3.53%. For its part, a RMSEcv
of 3.33% was achieved for the Sentinel-2 parsimonious model trained
with the five most informative bands (Fig. 4B). It should be noted
that, from five bands onwards, no significant improvement in model
accuracy was observed when keeping additional bands beyond

Fig. 4. WorldView-3 (A) and Sentinel-2 (B) band contribution to the 10-fold cross validated (CV) Gaussian processes regression (GPR) model of FVC trained with simulated reflectance
data. Lower σb values correspond to higher predictive capacity of the band.

Fig. 5. 10-fold cross validation RMSEcv statistics (mean, standard deviation range and minimum-maximum range) of the Gaussian processes regression (GPR) models trained with World-
View-3 (A) and Sentinel-2 (B) simulated reflectance in a sequential backward band removal procedure based on GPR model hyperparameter σb.
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the parsimonious FVC models or it even decreased the model stability
(Fig. 5), as well as the computational efficiency.

The accuracy of the GPR models trained with PROSAIL-D reflectance
simulations used to retrieve FVC from WorldView-3 imagery with regard
to the FVC field measurements (Fig. 6; R2 = 0.73–0.89 and RMSE =
6.44% - 9.32%) was substantially higher than that achieved from Sen-
tinel-2 (Fig. 7; R2 = 0.63–0.82 and RMSE = 10.61% - 13.26%). Like-
wise, the parsimonious GPR models outperformed the full models for
both sensors (Fig. 6 and Fig. 7). The performance of the parsimonious
GPR models for FVC retrieval at landscape level was R2 = 0.83 and
RMSE = 7.92% for WorldView-3 (Fig. 6A) and R2 = 0.73 and RMSE
= 11.89% for Sentinel-2 (Fig. 7A). At the plant community level, FVC
retrieval was more accurate for oak tree forests (Figs. 6D and 7D; RMSE
= 6.44% - 11.91%) than for heathlands (Figs. 6B and 7B; RMSE =
7.68% - 13.26%) and broomlands (Figs. 6C and 7C; RMSE = 9.29% -
12.68%). FVC was slightly underestimated for almost the entire range
of field sampled vegetation cover in all communities, as it can be ob-
served from the 1:1-line and the fitted line of Sentinel-2 FVC retrieval
(Figs. 7B, C and D). For its part, at very low vegetation cover in shrub
ecosystems, FVC retrieved from Sentinel-2 reflectance was slightly over-
estimated (Figs. 7B and C). These effects were much less noticeable or
negligible in the FVC retrieval from WorldView-3 imagery (Fig. 6).

Based on WorldView-3 and Sentinel-2 parsimonious GPR models, we
generated a map showing mean FVC predictions and their associated un-
certainty (see Fig. 8 for a subset of the study area with a heterogeneous
ground cover). It should be noted that even in bare soil or sparsely veg-
etated areas, the retrieval FVC uncertainty expressed as standard devia-
tion around the mean GPR prediction is much lower in the WorldView-3
FVC map (Fig. 8B.1 and B.2) than for the Sentinel-2 FVC map (Fig.
8C.1 and C.2).

4. Discussion

The quantitative characterization of post-fire vegetation patterns in
burned landscapes through remote sensing-based estimates of FVC is
an essential approach to assess fire effects at different spatial scales
and identify the post-fire recovery dynamic of vegetation communi-
ties (Zhang et al., 2013; Chu et al., 2016; Yang et al., 2017b;
Fernández-Guisuraga et al., 2019a; Fernández-Guisuraga et al.,
2020). This study is pioneer in the use of high spatial resolution satel-
lite reflectance data to retrieve FVC by means of the GPR algorithm
trained with RTM simulations, achieving promising results both at land-
scape and plant community levels. In contrast to empirical or pixel un-
mixing models, the hybrid RTM retrieval method can be applied to re-
mote sensing scenes acquired over other burned landscapes with similar
environmental characteristics to retrieve FVC without the need to use
extensive field data to train the MLRA (Darvishzadeh et al., 2008).
Only some field measurements would be required to validate the model
(Liang et al., 2015) since it was parametrized without site-specific
prior information that is not usually available at short or medium-term
after fire. Although the use of site-specific prior information for leaf and
canopy RTM parametrization may provide more realistic simulated spec-
tra and alleviate the ill-posed nature of the model inversion (Yebra and
Chuvieco, 2009; Verger et al., 2011; Jurdao et al., 2013), consid-
erable accurate FVC estimations can still be achieved using a generic
training simulation dataset as demonstrated in this study, among oth-
ers (e.g. Baret et al., 2007; Qu et al., 2008; Verger et al., 2011;
Liang et al., 2015; Jia et al., 2016; Campos-Taberner et al., 2018;
García-Haro et al., 2018; Wang et al., 2018).

Regarding our first research question, FVC retrieval from GPR mod-
els trained with PROSAIL-D simulations based on WorldView-3 re-
flectance imagery outperformed the retrieval from Sentinel-2 imagery,
both at landscape and community levels. This result indicates that the
pixel size of WorldView-3 (2 m) is more appropriate to capture the
fine scale of variation of the vegetation horizontal structure in the
study site than that of Sentinel-2 (20 m). In fact, the main errors in
the estimation of FVC are introduced by current retrieval algorithms
when a coarse pixel encompasses a mixture of several ground vegeta-
tion and soil types in heterogeneous surfaces (Jurdao et al., 2013;
Casas et al., 2014; Hu et al., 2020; Xu et al., 2020). These
retrieval errors could be considerably high in heterogeneous ecosys-

cover aggregation effect of mixed pixels produced a noticeable under-
estimation of retrieved FVC values from Sentinel-2 reflectance data for
almost the entire range of field sampled vegetation, since coarse pixels
produce average FVC values of a broader area than the ground scale of
variation, being lower these averaged pixel values than fine-scale pixels
(Fernández-Guisuraga et al., 2020; Kimm et al., 2020). By contrast,
at low vegetation cover in shrub ecosystems, FVC was overestimated
from Sentinel-2 reflectance data. According to Verrelst et al. (2015a),
this behavior occurred due to a mismatch in the soil spectra profile ac-
quired from expected pure bare soil pixels of Sentinel-2 imagery. Both
under- and overestimation effects were much less noticeable in FVC re-
trieved from WorldView-3 reflectance data since (i) the land cover ag-
gregation effect is not expected to occur at very high spatial resolution
pixel size given the ground scale of variation of the ecosystems of our
study area, and (ii) the acquisition of spectra profiles from very high
spatial resolution of pure bare soil pixels of each soil type is obviously
more precise (Fernández-Guisuraga et al., 2020).

FVC retrieval was improved from the GPR model training with only
the most informative PROSAIL-D simulated reflectance data for World-
View-3 and Sentinel-2 matching bands (i.e. the parsimonious model for
both sensors trained with blue and red bands, a band in the NIR re-
gion and the two SWIR bands). Some other researchers (e.g., Schlerf
and Atzberger, 2006; Botha et al., 2010; Verrelst et al., 2016;
Lunagaria and Patel, 2018) also reported that a spectral subsetting
based on the selection of the most informative wavelengths improved
the model retrieval accuracy by preventing model uncertainty which
would bias the vegetation biophysical parameter retrieval (Meroni et
al., 2004; Schlerf and Atzberger, 2006; Verrelst et al., 2016).

The higher accuracy of the retrieved FVC from both WorldView-3
and Sentinel-2 reflectance data in oak forests with respect to heath-
lands and broomlands could be explained by the complexity of biophys-
ical parameters retrieval in shrublands. In such plant communities, a
higher amount of non-photosynthetic material is exposed to the sen-
sor compared to forest ecosystems (Casas et al., 2014). Indeed, even
in a high resolution WorldView-3 pixel, a mixture of different shrub
species can occur, although to a lesser extent than in a Sentinel-2 pixel
(Fernández-Guisuraga et al., 2020). Another factor of uncertainty
was related to model inversion being performed on simulated data using
a turbid medium RTM as boundary condition (Verrelst et al., 2015a).
A higher accuracy in the inversion could be provided by using a geo-
metric RTM to simulate reflectance data in heterogeneous shrub ecosys-
tems (Yebra et al., 2008), but at the expense of a much higher com-
putational demand and a more complex parameterization of the model
(Darvishzadeh et al., 2008). However, the 4SAIL canopy RTM used
in this study is numerically more robust and stable than previous SAIL
models (Jacquemoud et al., 2006; Verhoef et al., 2007). First,
4SAIL can describe non-homogeneous canopy characteristics in sparsely
vegetated areas, since it can simulate precisely multiple scattering for
optical and thermal radiation inside the canopy (Verhoef et al., 2007;
Liang et al., 2015; Cao et al., 2018). Second, the formulation of the
analytical solution implemented in 4SAIL avoid the mathematical sin-
gularity problem present in previous SAIL models, caused by duplicate
eigenvalues in the analytical solution by means of eigenvector decom-
position, which could lead to model numerical instability (see Verhoef,
1998; Verhoef and Bach, 2007; and Verhoef et al., 2007 for more
details). In response to our second research question, the extension of
the simulated PROSAIL-D spectra with several soil types and charred
woody debris spectra profiles to account for these representative land
covers of a recently burned landscape led to a reasonable performance
(R2 > 0.7 and RMSE < 9.3%) of FVC retrieval from WorldView-3 re-
flectance data even in shrub communities.

The prediction error of the WorldView-3 FVC estimation is well be-
low (RMSE between 6.44% - 9.32%) the accepted accuracy threshold of
10% for biophysical variable retrieval (Drusch et al., 2012; Verrelst
et al., 2016). This result suggests that FVC retrieval over heterogeneous
burned areas limits the application of remote sensing imagery with de-
cametric resolution, requiring the use of very high spatial resolution re-
flectance data for this purpose (Tao et al., 2019; Hu et al., 2020). In-
deed, the high resolution FVC map generated for a portion of the study
area showed a large spatial variability in the ground patterns which
cannot be captured from the coarser FVC map. Also, the associated un-
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Fig. 6. Relationship between field-sampled and retrieved FVC from very high spatial resolution WorldView-3 (WV-3) imagery using the full (7 bands) and parsimonious (5 bands) Gaussian
processes regression (GPR) models: landscape (A), heathlands (B), broomlands (C) and oak forests (D).
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Fig. 7. Relationship between field-sampled and retrieved FVC from high spatial resolution Sentinel-2 (S-2) imagery using the full (7 bands) and parsimonious (5 bands) Gaussian processes
regression (GPR) models: landscape (A), heathlands (B), broomlands (C) and oak forests (D).
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Fig. 8. Orthophoto at a spatial resolution of 0.5 m for a portion of the study area with heterogeneous ground cover (A) and mean predicted FVC maps and their associated uncertainty
(standard deviation; SD) generated from the WorldView-3 (B.1 and B.2) and Sentinel-2 (C.1 and C.2) parsimonious Gaussian processes regression (GPR) model, at a spatial resolution of
2 m and 20 m, respectively. See Figure SM3 of the Supplementary material for a FVC map of the entire fire perimeter.

thanks to Bayesian probabilistic approach of the GPR model (Verrelst
et al., 2015a) only remains at acceptable levels in the WorldView-3
FVC map. In addition, the lower revisit time of WorldView-3 satel-
lite (< 1 day), in comparison to the combined Sentinel-2 constellation
(5 days), provides a benefit for the assessment of vegetation condition
at short-term after fire. In fact, emergency post-fire management ac-
tions should be implemented as soon as possible after disturbances, par-
ticularly in areas where the loss of vegetation exposes soil to erosion
(USDA, 2020).

Despite the promising findings reported in this research, several lim-
itations should be highlighted: (i) Although we considered equivalent
bands to retrieve FVC from WorldView-3 and Sentinel-2 reflectance
data, differences in the spectral response functions between both sen-
sors, and particularly in the central wavelength location and width of
SWIR bands, could be a potential source of uncertainty in the observed
reflectance as a function of the ground cover type (Trishchenko et al.,
2002; Cundill et al., 2015; Roy et al., 2016), together with satellite
imagery pre-processing, such as atmospheric correction (Yebra et al.,
2008). (ii) Despite having been used successfully in recent remote sens-
ing studies (e.g. Fernández-Guisuraga et al., 2020), FVC field mea-
surements collected using a visual estimation method are a source of
uncertainty that may affect the accuracy of the global approach. Even
though the use of digital cameras is a common procedure to measure
field FVC (Zhou and Robson, 2001; Wang and Qi, 2008; Delamater
et al., 2012; Ding et al., 2016; Wang et al., 2018) and reduce
the visual estimation method uncertainty, the measurement of canopy
FVC in forest tree ecosystems from a bottom-up direction is affected by
shielding of photosynthetic vegetation in the upper part of the canopy
by non-photosynthetic vegetation (e.g. branches), the FVC being under-
estimated in these circumstances (Jia et al., 2016). Hence, the use of
unmanned aerial vehicles to measure tree canopy FVC in a bottom-up
direction from low altitude flights should be considered in future stud-
ies.

5. Conclusions

The quantification of vegetation structure through the estimation of
biophysical properties in forest landscapes affected by fire is essential
to determine the impact of this disturbance at different spatio-temporal
scales. This is a pioneer multi-scale study evaluating the potential of a
radiative transfer model (RTM) inversion approach for estimating frac-
tional vegetation cover (FVC) from satellite reflectance data at high spa-
tial resolution, in comparison to the standard use of coarser imagery,
both at landscape and community levels. FVC retrieval from World-
View-3 imagery at 2 m of spatial resolution outperforms the retrieval
from Sentinel-2 imagery at 20 m, at both ecological levels, using Gauss-
ian processes regression (GPR) models trained with PROSAIL-D simu-
lations. WorldView-3 FVC retrieval shows negligible bias by avoiding
the land cover aggregation effect of mixed pixels that encompass several
vegetation and soil types and by the acquisition of more pure soil spectra
profiles. These findings emphasize the use of high spatial resolution re-
flectance data for retrieving FVC over heterogeneous burned landscapes
in order to capture the large ground spatial variability and reduce the as-
sociated uncertainty of FVC predictions in these sites. Finally, the hybrid
RTM retrieval method used in this study is computationally efficient and
does not require site-specific prior information that is not usually avail-
able at short or medium-term after fire, so this approach is proposed as
a valuable tool for supporting post-fire management strategies.
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