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ABSTRACT
Pacemaker logs are used to predict the progression of paroxysmal cardiac arrhythmia to permanent atrial fibrillation by means
of different deep learning algorithms. Recurrent Neural Networks are trained on data produced by a generative model. The
activations of the different nets are displayed in a graphical map that helps the specialist to gain insight into the cardiac condition.
Particular attentionwas paid toGenerativeAdversarial Networks (GANs), whose discriminative elements are suited for detecting
highly specific sets of arrhythmias. The performance of the map is validated with simulated data with known properties and
tested with intracardiac electrograms obtained from pacemakers and defibrillator systems.
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1. INTRODUCTION

Atrial fibrillation (AF) is an abnormal heartbeat, common in
the elderly, that sometimes progresses from paroxysmal arrhyth-
mia (episodes of arrhythmia that end spontaneously) to persis-
tent arrhythmia (episodes that last more than seven days and do
not end without external intervention) or permanent arrhythmia
(uninterrupted episodes). It is common for paroxysmal arrhythmia
to progress to persistent or permanent arrhythmia [1]. There are
numerous risk factors that influence the progress [2], and an early
diagnosis is beneficial for optimal treatment.

Surface electrocardiograms (ECGs) are a potential source of infor-
mation about the evolution of the arrhythmia [3]. Recent advances
in connected and pervasive healthcare allow for continuous moni-
toring of the ECG signal, that is helpful for detecting pathological
signatures and arrhythmias [4]. Portable ECG monitors are most
helpful with patients in the latter stages of permanent AF [5]. The
health risks for patients in the early states of paroxysmal arrhyth-
mia are minor and the drawbacks of carrying this kind of medical
equipment at all times outweigh the advantages. This situation may
change in the near future, as recent ECG sensors are small enough
to be embedded in smartwatches. The Apple Heart Study [6] has
shown that different AF types can be detected with wearable sen-
sors, but the battery consumption of ECG sensors is still high and
that prevents that the sensor is always on. Detection and timing of
short AF episodes remains an open problem.
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The treatment of AF often involves the use of pacemakers or
Implantable Cardiac Defibrillators (ICDs) [8]. These devices keep
a record of the dates and lengths of the episodes and are a source of
data that, to the best of our knowledge, has not been used in the past
for assessing the evolution of AF. In addition to dates and episode
lengths, short intracardiac electrocardiograms (iECGs) spanning a
few seconds before and after the detection of each episode are stored
in the device memory (see Figure 1). These iECGs are not intended
for medical diagnosis, but for adjusting the operational parame-
ters of the ICD. The amount of information that an iECG carries
is reduced: the morphology of the heartbeat in iECGs is lost in the
high-pass filtering at the ICD electrode and the only relevant infor-
mation is kept in the instantaneous frequencies of atrium and ven-
tricle.

Given that the shape of the heartbeat is not available in ICD-based
iECGs [9], the most reliable source of information is given by the
dates and lengths of the recorded episodes. There is an additional
problem with this source patients with a long record of episodes
will be in the latest stages of AF, when the diagnostic is clear. The
challenge is to anticipate the future pace of the AF since the initial
episodes. The patients of interest have a short history, that might
not be large enough for fitting a nontrivial model (see Figure 2).
This is aggravated by the fact that the data is nonstationary and it is
precisely the change in the properties of this data (from paroxysmal
to permanent) that wewant to predict on the basis of a short sample.

There are also technical difficulties [10]. The algorithm that the
ICD uses for detecting AF episodes depends on certain parameters
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that are adjusted by the technician on the basis of the iECGs men-
tioned before. Safety concerns prevail, thus the rate of false posi-
tives is high. As a consequence of this, long AF episodes are often
reported as clusters of short episodes and a nontrivial preprocess-
ing is needed to remove spurious events. This kind of preprocessing
shortens the lists of episodes even more.

Because of the reasons mentioned before, the progression of AF is
a complex process that depends on many different factors, but each
patient will be associated to only a few tens of pacemaker records.
There are not many different techniques for classifying short time
series [11] and, according to our own experimentation, none of
them is capable of finding a reliable break point between paroxistic
and permanent AF.

The solution that is proposed in this paper consists in a genera-
tive map: a generative model produces data that is used to train a
topology-preserving map, where the distances between the inputs
are correlated with the distances between their projections in the
map [12]. The topological map can be derived either from the
activation of a single multi-class classifier or from an ensemble of
binary classifiers. In the latter case, each of the binary classifiers is
only exposed to arrhythmias of a certain type.When this array is fed
with ICD records from a real patient, it is expected that only a few
of these classifiers will react, meaning that the patient’s arrhythmia
is of the same type as the arrhythmia with which these classifiers
were trained.

Most AI-based systems have a black-box nature that allows pow-
erful predictions, but cannot be explained directly. For this rea-
son explainable AI (XAI) has been gaining increasing attention
recently. Layer-wise Relevance Propagation [13] is used as a pro-
posal to understand classification decisions of nonlinear classifiers
using heat maps that show the contribution of each pixel in com-
puter vision applications. Class Activation Map (CAM) [14] has
been also a popular method to generate saliency maps that high-
light themost important regions in the data formaking predictions,
usually images. This concept has been applied in medical diagnosis
[15]. Other methods rely on localization, gradients, and perturba-
tions under the category of sensitivity [16,17]. Our method can be
considered as a mixture of the latter and CAM.We project a visual-
ization of the data using the activations of the neurons of the studied
methods as a base to build these maps. The location of these acti-
vations will be arranged on the map to provide an intuitive visual
diagnosis.

AF episodes are sequential data. Recurrent Neural Networks
(RNNs) have been used in the literature in recent years for this type
of problem and typically architectures such as Long Short-Term
Memory (LSTM) [18] or Gated Recurrent Unit (GRU) [19] have
proven to be good alternatives. On the other hand, a deep neural net
architecture known as Generative Adversarial Network (GAN) [20]
is currently breaking intoMachine Learning inmany fields [21–23].
Nonetheless, its research in the medical field is still limited [24,25],
and their application for the diagnosis of cardiovascular diseases
has not been explored yet.

Figure 3 presents a summary of the operationmode followed to give
a better overall understanding:

1. A generative model(1) is used to simulate real clinical data(2).

2. The generated data is used for training different methods(3)
to evaluate intracardiac records. Among these methods, fur-
ther research is done to obtain a time series classifier based on
adversarial training.

3. A self-explanatory graphic map(4) is obtained when the pro-
posed methods are fed with data from real patients with AF.

The structure of this paper is as follows: in Section 2, the genera-
tive model of the AF episodes are described. In Section 3, differ-
ent approaches to solve the problem are presented. Performance of
the different methods is discussed in Section 4. Visual representa-
tions and assessments are reported in Section 5 while conclusions
are drawn in Section 6.

2. MODEL OF THE SEQUENCE OF ICD
EVENTS

The purpose of this study is to predict the progression of parox-
ysmal cardiac arrhythmia to permanent AF on the basis of iECGs
and other data collected by ICDs. AF episodes are easily detected in
surface electrograms (ECGs) but iECGs are less informative. ECGs
are representations of cardiac electrical activity from two electrodes
placed on the surface of the body which are located apart from the
heart (recall Figure 1, upper part). With this type of derivation, all
kinds of electrical activity are recorded, including noncardiac elec-
trical activity. On the contrary, iECGs (Figure 1, lower part) are
representations of the potential difference between two points in
contact with the myocardium in space over time.

2.1. AMS Events

ICDs do not store a continuous stream of data, but there are cer-
tain events that trigger that data is recorded. The primary purpose
of an ICD is to release an electrical current between two points to
activate the cardiac cells and therefore facilitate cardiac contrac-
tion. Depending on the electrical signal that is measured through
the leads, the pacemaker will respond in order to stimulate, inhibit,
or change its operation mode. In particular, in the presence of car-
diac arrhythmia, if a patient experiences a high intrinsic atrial heart
rate the pacemaker does not try to match the ventricle to the atrial
rate. Instead, the pacemaker changes its operation mode and uses
a different algorithm for generating the excitation of the ventricle.
This process is called AutomaticMode Switching (AMS) [26]. AMS
events are stored in the pacemaker memory and are used to mark
the beginning of AF episodes (Figure 2, upper part). The lengths of
the AF episodes are stored along with the AMS dates in the pace-
maker memory.

Although AMS is a simple concept, the mode switching depends
on a large number of variables that depend on the patient. It is pos-
sible that the pacemaker algorithm prematurely concludes that the
AF event has ended, only to discover past a few seconds that an AF
is still taking place. In this case, a second AMS event is generated
and the pacemaker mode is restored. This has not relevant conse-
quences for the efficiency of the device, but the stored information
is inaccurate, as there may be cases where a cluster of short arrhyth-
mias is reported instead of a long event.
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Figure 1 Top: Surface electrocardiogram (ECG) (taken
from Ref. [7]). Bottom: Intracardiac ECG. The
morphology of the surface ECG is not kept in the
intracardiac ECG (iECG), where there is only one peak
for each heartbeat.

2.2. Markov Model

The proposed dynamical model of the operation of an ICD is
depicted in Figure 4. There are three states: “Normal,” “Arrhyth-
mia,” and “False Normal.” A patient is in “Normal” state until an
AMS event is issued by the ICD and the patient transitions to state
“Arrhythmia.” There are two possible paths from this state: back to
“Normal” when the episode ends or a transition to “False Normal”
when a spurious end of episode is issued. In this second case, the
patient remains in the state “FalseNormal” until a newAMS event is
dispatched and then goes back to “Arrhythmia.” AMS events mark
either the beginning of a true AF episode or the end of a “False
Normal” state. This second class of AMS events are abnormal and
should be purged, but there is not a simple procedure to remove
them from ICD data [26]. Given that these events will be present in
actual patients, the generative model must produce these spurious
events as well.

It will be assumed that the dates of the AF episodes conform an
inhomogeneous Poisson process. The time between two episodes
follows an exponential distribution with parameter 𝜆NA(t). The
length of an episode also follows an exponential distribution with
parameter 𝜆A(t). The progression from paroxysmal to permanent

Figure 2 Top: Dates of pacemaker mode changes during a year.
Bottom: Recorded length of the atrial fibrillation (AF) episodes.

AF is measured by the speed of change in these two parameters: as
the cardiac condition worsens, the time between episodes is shorter
and episodes are longer. The speed of the progression is modelled
by a parameter 𝛼 ∈ [0, 1],

𝜆NA(t) = 𝜆NA(0) ⋅ 𝛼t, (1)

𝜆A(t) = 𝜆A(0) ⋅ 𝛼−t, (2)

where 𝛼 = 1 is an stable patient and values of 𝛼 lower than 1
are patients with a quick progression to permanent arrhythmia. It
will also be supposed that the transition from state “Arrhythmia”
to “Normal” can happen with a probability pAN. The probability
of the transition from “Arrhythmia” to “False Normal” is therefore
pAG = 1 − pAN. pAG is the fraction of false positives, which is the
probability that the AF detection algorithm in the ICD signals the
end of an episode too early.

From a formal point of view, this model is a continuous-time
Markov process that is characterized by a tuple of five parameters:
(𝜆NA(0), 𝜆GA, 𝜆A(0), pAG, 𝛼). The generative model that feeds the
RNNs described in Section 3 inputs a random seed and produces a
list of AMS events by Monte-Carlo simulation. Each of these ran-
domly generated lists can be regarded as an hypothetical patient,
whose AF type is defined by the mentioned parameters.
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Figure 3 Pipeline of the presented work.

Figure 4 State diagram of the dynamical model of the beginning
of atrial fibrillation (AF) episodes.

3. GENERATIVE MAP

The diagnosis tool that is introduced in this study is a color-coded
generative map that displays the actual state of the patient and the
speed of change in his/her condition from paroxysmal to perma-
nent AF. When the input is a Monte-Carlo simulation of AMS
events, only a small area in the map should become active; ide-
ally just one point. Otherwise, when actual AMS events are used,
a potentially larger area could activate because ICD data will not
match the output of any model in a perfect way. In other words,
the activation area in the map is small when the diagnostic is clear
and large when many different diagnostics are compatible with the
available data. In this respect, the map can be regarded as a projec-
tion of the ICD data in an space whose coordinates are the values of
𝜆NA, 𝜆GA, 𝜆A, pAG, and 𝛼. The values of 𝜆NA, 𝜆A, and 𝛼 in the pro-
jection measure the condition of the patient and the progression of
the AF. 𝜆GA and pAG measure the chance that an AMS event in the
ICD is spurious.

3.1. Uncertainty in the Data

Because of the behavior of the ICDs mentioned in the preceding
section, spuriousAMS events can be produced and it is possible that
a long AF episode is perceived as a series of short events. There is
not an easy procedure for knowingwhether a non-simulated patient
is in “Normal” or “False Normal” state.

In this study we will cope with this uncertainty by means of a fuzzy
postprocessing that replaces the list of ICD logs by a continuous-
time function that can be sampled at regular intervals. This trans-
form consists in computing the degree of truth of the assert “the
patient was undergoing an AF episode at time t” [27]. Thus, this
function measures the percentage of daily AF events, subsequently
becoming a soft window (with Gaussian membership) that extends
a few days before and after time t (see Figure 5).

3.2. LSTM and GRU Networks. Error
Minimization and GAN Architecture

Networks are sought that are able to estimate the parameters of
the Markov model given a truncated sample of postprocessed ICD
events. RNNs are arguably the technique of choice for this applica-
tion [28]. Let us remark that the difficulty of the problem at hand is
learning from short time series, i.e., from incomplete information.
The shorter the sample is, the more probable is that different mod-
els can produce the same sample.

Accurate and specific RNNs are sought. In our context, accuracy
measures how often the net reacts to AF episodes similar to those
in the training set. Specificity measures how different two models
must be for the net being able to separate one from the other. The
quality of the map depends on the RNN having the right amount
of specificity: if the classifiers are too specific, there will be patients
that are not visible in the map. If the specificity is too low, different
parts of the map will be visible at the same time and the diagnosis
will not be useful either.

LSTMs and GRUs are the most commonly used RNNs for classify-
ing time series. In both cases, the input is distributed over a chain of
cells and the main differences with previous RNNs are in the oper-
ations carried out within each cell, which will allow maintaining
or forgetting information. LSTM cells consist of three gates: input,
forget, and output gate. These multiplicative gates learn to manage
the information passed so each memory cell decides what to store.
GRUnetworks differmainly in the number of gates: GRUs have two
gates (input and forget gates are combined into a single gate) instead
of three, which means lighter storage and faster training. Although
LSTM has the ability to remember longer sequences, GRUs exhibit
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Figure 5 Top: Synthetic sequence of episodes
(simulation time: 10 years). Bottom: Continuous-time
function measuring the degree of truth that the patient
is undergoing an arrhythmia episode at time .

better performance on certain tasks [29,30], whichmakes us to con-
sider them as an alternative for short-time series.

Training data is comprised by the postprocessed continuous-time
functions defined in Section 3.1. In turn, two different methods
were considered for training the RNNs:

1. Error minimization: the networks are trained for minimizing
the squared error between the output of the net and the param-
eters of theMarkovmodel. Alternatively, a set of clusters can be
defined in the space of parameters of the model and the prob-
lem redefined as a multi-class classification task. The clusters
in the space of parameters represent medical cases of interest,
such as paroxysmal stable AF, paroxysmal AF with slow evo-
lution to permanent AF, paroxysmal AF with quick evolution
to permanent AF, permanent AF, and others. In this case, the
concepts “accuracy” and “specificity” can be traced down to
the confusion matrix of the classifier.

2. GANs: LSTMs or GRUs can be configured as GANs
(see Figure 6.) GANs consist of 2 RNN: a generative net
and a discriminative net. The generator net produces new
data instances from noise, while the discriminator receives
real data and the data from the generator and decides
whether the generator’s data belongs to the same distri-
bution as the real data. From this verdict, the parameters
of both networks are adjusted to improve in the next iter-
ation until the generator is able to produce realistic data,
that is to say, sequences of arrhythmia episodes. If a GAN
is trained with arrhythmias with specific features a discrim-
inator will be obtained that separates arrhythmias of that
type from any other kind of arrhythmia. It is remarked that
for this particular application we are not interested in the

generative network, that is discarded after training (because
the generative model introduced in Section 3.1 fulfills this
function) but in the discriminative element. This process is
repeated for each of the clusters in the space of parameters. A
different GAN discriminator is learned for each class, and the
generative map is the output of an ensemble that combines all
the nets.

4. NUMERICAL RESULTS

The experimental validation of the proposed generative map has
two parts. First, synthetic data with known properties is used to
assess each of the presented alternatives. Second, actual patients are
diagnosed, and their maps are validated by a human expert.

The experimental setup is described first. Second, the specificity of
the GAN architecture is analyzed. In third place, the properties of
LSTM and GRU networks are compared to that of GAN and also to
non-neuronal classifiers. Fourth and last, some representative real-
world cases are discussed.

4.1. Experimental Setup

The experimental setup is as follows: the code for training GAN
recurrent networks for time series has been adapted from the pub-
licly available code at https://github.com/ratschlab/RGAN [31].

A total of 14000 sequences have been generated for each combi-
nation of parameters chosen (60% was used for training, 20% for
validation, and remaining 20% of data was used for testing). For
multi-class problems, a softmax activation function is applied to the
last layer of the LSTM- andGRU-based solutions in order to predict
the class for the given pacemaker data. For GANs, each discrimi-
nator of the ensemble has its output passed through a sigmoid to
determine whether the input belongs to the distribution data with
which it was trained. Then all discriminator outputs are compared
to determine which is the predicted class for the input.

4.2. Sensibility of the GAN-Based Approach

A brief study about the sensibility of the GAN-basedmaps has been
included in Tables 1 and 2. The first table collects the results for
𝛼 = 0.998 (fast progression) and the second table contains the same
experiments for 𝛼 = 0.999 (slow progression).

The meaning of the rows and columns of these tables is as follows:
each column contains the fraction of correct classifications of a dis-
criminator that has been trained with sequences produced by the
generative model. The values of 𝜆NA(0) used for computing these
sequences are indicated in the column labels. The first and second
rows, “Train” and “Test” are the percentage of correct detections
of “True” sequences (generative models) versus “False” sequences
(produced by the generator net in the GAN architecture). The rows
labelled 𝛼 = 0.997… 0.999 are the fraction of sequences with the
same parameters as those used for training the net but a different
parameter 𝛼. The remaining rows are the fraction of correct classi-
fications when the net is fed with sequences with a different value
of 𝜆NA.
These results show that the nets are highly responsive when the
arrhythmia is paroxysmal (low values of 𝜆NA, thus time between
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Figure 6 Generative adversarial network (GAN) architecture for obtaining one of the discriminant elements. The red block represents the
generator net which generates fake data that is passed to the discriminator (blue block). The latter decides what is true and what is false from the
input data and the gradients are adjusted according to the true labels until a discriminator that knows exactly what type of arrhythmia that is
being trained with is obtained.

Table 1 Sensitivity of the discriminator for 𝛼 = 0.998.

𝝀NA = 1.0/10 𝝀NA = 1.0/30 𝝀NA = 1.0/90 𝝀NA = 1.0/180 𝝀NA = 1.0/260

Train 0.9794 0.9804 0.9830 0.9868 0.9800
Test 0.9779 0.97978 0.9811 0.9847 0.9797
𝛼 = 0.997 0.5299 0.2523 0.5373 0.4324 0.4878
𝛼 = 0.999 1.0000 1.0000 0.9979 0.3475 0.4424
𝜆NA = 1/5 0.3333 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/10 - 0.8162 1.0000 1.0000 1.0000
𝜆NA = 1/30 0.9967 - 0.9505 0.9970 0.9983
𝜆NA = 1/90 1.0000 0.9703 - 0.1369 0.1969
𝜆NA = 1/180 1.0000 0.9994 0.0914 - 0.0312
𝜆NA = 1/260 1.0000 1.0000 0.1494 0.0008 -

Table 2 Sensitivity of the discriminator for 𝛼 = 0.999.

𝝀NA = 1.0/10 𝝀NA = 1.0/30 𝝀NA = 1.0/90 𝝀NA = 1.0/145 𝝀NA = 1.0/180

Train 0.9832 0.9823 0.9809 0.9825 0.9838
Test 0.9821 0.9818 0.9818 0.9853 0.9783
𝛼 = 0.997 0.9986 0.9987 0.9986 0.9986 0.9997
𝛼 = 0.998 0.9998 0.9998 0.9956 0.9485 0.9809
𝜆NA = 1/5 0.1543 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/10 - 1.0000 1.0000 1.0000 1.0000
𝜆NA = 1/30 1.0000 - 0.9988 0.9997 0.9996
𝜆NA = 1/90 1.0000 0.9978 - 0.1703 0.2002
𝜆NA = 1/120 0.9800 0.9800 0.0012 0.0516 0.0566
𝜆NA = 1/145 1.0000 1.0000 0.0001 - 0.0357
𝜆NA = 1/260 1.0000 1.0000 0.0000 0.0008 0.0089

episodes is high). This is the desired result, because these are the
cases with clinical interest. The net is less capable when 𝜆NA is high,
however these are the cases where the patient is in a permanent
arrhythmia condition at the beginning of the experiments thus the
evolution of the patient is self-evident.

4.3. Compared Results

In this section, 6 of the 10 AF categories used in the preceding
subsection are used. These classes are labelled 998na10, 998na30,
998na180, 999na10, 999na30, and 999na180. The class labels begin
with the first three decimals of 𝛼, which is the speed of the pro-
gression of the AF (998 is slow, 999 is fast). The second number in

the class label is 1/𝜆NA(0), which is the average time between two
AF episodes, measured in days (10, 30, and 180 days). Accuracy
and sensitivity of the classifier are assessed by means of a confusion
matrix where the number of times that an AF was correctly diag-
nosed is counted, and in this last case the deviation between the
prediction and the desired value is also accounted for.

The different RNNs discussed in the preceding section are com-
pared between them and also to two other standard nondeep learn-
ing classification methods, that have been included as a baseline:
Multilayer Perceptron (MLP) and Random Forest. Table 3 collects
the performance of the different models for each different class in
terms of accuracy, i.e., each entry in Table 3 is the number of times
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Table 3 Accuracy of the different classifiers, six types of AF.

Accuracy
MLP Random Forest GRU LSTM GAN Ensemble

998na10 0.9921 (3) 0.9918 (4) 0.9964 (1) 0.9943 (2) 0.9782 (5)
998na30 0.9654 (5) 0.9857 (3) 0.9911 (1) 0.9875 (2) 0.9686 (4)
998na180 0.9371 (5) 0.9800 (3) 0.9879 (1) 0.9946 (2) 0.9596 (4)
999na10 0.9739 (5) 0.9943 (3) 1.0000 (1.5) 1.0000 (1.5) 0.9803 (4)
999na30 0.9368 (5) 0.9979 (3) 0.9996 (1.5) 0.9996 (1.5) 0.9911 (4)
999na180 0.9911 (5) 0.9946 (3) 0.9982 (1) 0.9957 (2) 0.9796 (5)

Summary Results
Accuracy 0.9661 0.9907 0.9955 0.9953 0.9762
Average rank 4.6666 3.1666 1.1666 1.8333 4.3333
Note: AF, atrial fibrillation; MLP, multilayer perceptron; GRU, gated recurrent unit; LSTM, long short-term memory; GAN, generative
adversarial network.

that a series that was generated by the correct model was recog-
nized as such. Also, to illustrate the performance of each method
the ranking computed by Friedmans method for each dataset and
the averaged resulting ranking is added.

Observe that in all cases RNNs improve the results of MLP and
Random Forest. In terms of accuracy, GRU is the RNN that bet-
ter exploits the incomplete information in truncated ICD event
series. It is better than MLP, Random Forest, and GAN with a p-
value lower than 0.012 (according to Bonferroni correction [32]),
followed by LSTM, although the difference is not statistically sig-
nificant. LSTMs in GAN configuration apparently do not improve
simpler classifiers such as RandomForest but their specificity is bet-
ter and this metric has a higher impact in the visual coherence of
the map. This point will be made clearer in Subsection 4.4. Observe
also this metric is heavily dependent on the chosen division of the
AF in clusters. To illustrate this fact, in Table 4 the same experiments
carried out in Table 3 were repeated for a division in 8 classes (class
labels 998na90 and 999na90 were added, with 90 days between AF
episodes). The new classes are not easily separated from those with
180 days and the mean accuracy of the classifiers decreases.

Observe that the visual perception ismuch different if, e.g., a patient
whose AF episodes occur every 180 days is assigned 90, 30, or
10 days. In order to keep the perceptual coherence the cost of mis-
classifying arritmias must not be uniform. This will be illustrated
too in Section 4.4. In this respect, Figure 7 contains the confusion
matrices of GAN (left) and Random Forest (right) for the initial
division in six AF types. Observe that the number of correctly clas-
sified series is better for Random Forest, as expected, but there are
two cells with errors that cannot be accepted from themedical diag-
nosis point of view: the cell 998na10- 999na10 (wrong rate of evolu-
tion for the same time between episodes) and, of secondary impor-
tance the cell 998na30- 999na180 (wrong rate of evolution and the
initial time between episodes in the fast case is higher).

Observe that this behavior can be corrected if a cost matrix is intro-
duced in the problem, although the problem of choosing the best
cost matrix remains. For instance, if the cost matrix

ci,j =
N

∑
i≠j
|i − j|k, (3)

(whereN = 6, the number of classes) is used, the weighted accuracy
of the GAN method would be better for values of k > 1.73.

Table 4 Accuracy of LSTM and GRU, eight types of AF.

Accuracy
GRU LSTM

998na10 0.9982 0.9968
998na30 0.9764 0.9796
998na90 0.8343 0.8529
998na180 0.8754 0.8464
999na10 1.0000 0.9982
999na30 0.9989 0.9975
999na90 0.8521 0.8904
999na180 0.9471 0.9286
Summary Results
Accuracy 0.9353 0.9363
Note:AF, atrial fibrillation;GRU, gated recurrent unit; LSTM, long short-
term memory.

4.4. Graphical Representation and
Discussion

Three different experiments will be carried in this section. First,
maps generated with different architectures (GAN and minimal
error) are compared on data generated by the model. Second, two
maps with minimal error and different clusterings of the generative
model parameters are compared. Third, a true patient will be diag-
nosed by a human expert and by means of the proposed map.

4.4.1. Random forest versus LSTM-GAN

Twomaps (see Figure 8)were selected for illustrating the differences
between maps comprising RNNs and maps comprising other clas-
sifiers. The left map was obtained with an LSTM in a GAN config-
uration. The map in the right panel of the same figure was derived
from a Random Forest. The horizontal axis is labelled 𝛽, which is
the inverse of the parameter 𝜆NA, and can be understood as the
expected number of days between two AF episodes at time t = 0.
The vertical axis is labelled 𝛼 and measures the speed of the pro-
gression. The lower the value of 𝛼, the quickest the progression to
permanent AF. The color code is shown in the bar at the right. Red
areas are the highest activations, and blue areas the lowest.

Data is a random sample of the model with parameters 𝛼 = 0.998
and 𝛽 = 1/𝜆NA = 30. The proper diagnosis would be a red
dot at coordinates (30, 0.998). Observe that the confidence of the
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Figure 7 Left: Generative adversarial network (GAN) ensemble confusion matrix. Right: Random Forest confusion matrix. Similar classes
are nearby on the map, thus errors in prediction should be close to the diagonal.

Figure 8 Left: Generative adversarial network (GAN) map for simulated atrial fibrillation (AF) alpha = 0.998, beta = 30. Right: Random
Forest-based map for the same data.

detectors in the correct area is higher for the map in the right, but
there is also a clear red dot in the upper right corner that is an
artifact of the classifier. This pair of maps illustrates the problem
indicated in the preceding subsection: the presence ofmisclassifica-
tions that are far from the diagonal in the confusion matrix causes
that abnormal regions in the map are activated, while the misclas-
sifications near the diagonal are perceived as an increase the area
around the correct diagnostic. In this respect, LSTMs andGRUpro-
duce results with a higher quality in terms of the medical diagnosis
and furthermore it is not needed that a cost matrix is introduced in
the classification task.

4.4.2. Effect of the different clustering in the
generative model parameters

In Table 4 we shown that the division of the AF in categories influ-
enced the accuracy of the RNNs. In Figure 9 two LSTM-basedmaps
are compared. In the left panel, AF is divided into the six categories
998na10, 998na30, 998na180, 999na10, 999na30, and 999na180. In
the right panel of the same figure the two additional categories

were added, named 998na90 and 999na90. These two categories are
harder to separate and the global accuracy decreases. The resulting
maps are correct (both maps have maximum activations centered
at 𝛽 = 20 and 𝛼 = 0.9994 but the right map has a much higher area
of uncertainty).

4.4.3. Diagnosis of an actual patient

Actual data downloaded from the ICDof a patient with paroxystical
arrhythmia is displayed in Figure 10. The black spikes are clusters
of events (the isolated AMS events are not visible at this time scale).
About three years of data are included in the figure. Observe that
the time between events is higher in the first two years and the pace
increases quickly in the last part (around the mark of the day 1000).

In Figure 11 three maps are displayed with the same conventions
seen in the preceding subsection. The map in the left of the upper
panel has been obtained with GRU, and map in the right in the
same panel is produced by a LSTM network. The map in the bot-
tom panel was obtained with another LSTM in GAN configuration.
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Figure 9 Left: Long short-term memory (LSTM)-based map, 6 clusters of atrial fibrillation (AF). Generative model with. Right: Same data, 8 clusters
of AF.

Figure 10 Dates of the automatic mode switching (AMS) events
(black lines) and atrium beats per minute (bpm * 0.2) for an actual
patient.

The three maps are similar and produce coherent results. The inter-
pretation of these maps is as follows: the red region is centered in
𝛼 = 0.9994 and 𝛽 = 180. This means that the patient began suffer-
ingAF episodes every 6months, but the evolution of the arrhythmia
is moderate and is expected that the average time between episodes
is multiplied by 0.77 every year.

Observe that the map for an actual patient is not as specific as the
maps obtained from data from the generative model. This means
that it cannot be discarded that the patient has episodes every 3–4
months and his/her evolution is faster, up to a reduction factor of
0.58 per year. If Figure 10 is recalled, the number of episodes in the
first 100 days was of three, but the following three episodes hap-
pened in more than one year, thus this kind of uncertainty in the
diagnosis is correct, although the most probable diagnosis is that of
a slow evolution.

5. CONCLUDING REMARKS AND FUTURE
WORK

We have shown that iECGs from ICDs and pacemakers can be used
to a certain extent for predicting the change from paroxysmal to
permanent AF. The main difficulty is with the short length of the
pacemaker records, that has been addressed here by means of a
graphical projection of the sequence of AMS events in the param-
eter space of a generative model. If the data is enough for a clear
diagnosis, the map produces an estimation of the patient condition
and future evolution, and in those cases where the data is insuffi-
cient the map produces a set of estimations that can be subjectively
assessed in order to determine whether the evolution is positive or
not. Such a diagnosis can help specialists reduce the time spent ana-
lyzing intracardiac data.

LSTM and GRU have shown remarkable results as a standalone
multi-class classifier, and LSTM was adequate as a part an ensem-
ble of GAN detectors as well. GANs have an intrinsic advantage,
that is the obtention of the generator network, that may be a bet-
ter generative model than the continuous Markov model used in
this study. If a number of ICD records of actual patients was high
enough, it would make sense to bootstrap the model with the gen-
erative model described in this paper and fine-tune the GANs with
real-world data, for obtaining an improved generative model. Such
a GAN-based generative model could have an application on its
own, as a predictor of future AF episodes. Lastly, we are currently
working in other alternatives than GANs for obtaining the diagnos-
tic map, such as the use of Variational Autoencoders, than can also
be trained on model-generated data and be applied to ICD logs to
get a compact representation of the evolution of AF.
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Figure 11 Maps of the patient in Figure 10. Top panel, left: multi-class gated recurrent unit (GRU). Top panel, right: multi-class long
short-term memory (LSTM). Bottom panel: LSTM in generative adversarial network (GAN) configuration.
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