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s ABSTRACT: The quest for new transition metal dichalcogenides (TMDs) with
outstanding electronic properties operating under ambient conditions draws us to
investigate the 1T-HfSe, polytype under hydrostatic pressure. Diamond anvil cell
(DAC) devices coupled to in situ synchrotron X-ray, Raman, and optical (vis—
NIR) absorption experiments along with density functional theory (DFT)-based
calculations prove that (i) bulk 1T-HfSe, exhibits strong structural and vibrational
anisotropies, being the interlayer direction especially sensitive to pressure changes,
(ii) the indirect gap of 1T-HfSe, trend to vanish by a —0.1 eV/GPa pressure rate,
slightly faster than MoS, or WS,, (iii) the onset of the metallic behavior appears at
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Pt ~10 GPa, which is to date the lowest pressure among common TMDs, and

finally, (iv) the electronic transition is explained by the bulk modulus By-P,, correlation, along with the pressure coefficient of the
band gap, in terms of the electronic overlap between chalcogenide p-type and metal d-type orbitals. Overall, our findings identify 1T-
HfSe, as a new efficient TMD material with potential multipurpose technological applications.

Bl INTRODUCTION

Layered-based materials have attracted tremendous research
interest since the breakthrough of graphene.' These materials
have been widely studied owing to the intrinsic electronic
properties covering from semiconductivity to metallic behavior
along with promising catalytic performance, photolumines-
cence, and high-water resistance.” > Particularly, layered
transition metal dichalcogenides (TMDs) exhibit unique
optical and electronic properties accompanied by a tunable
band gap.’ From the structural point of view, TMDs are
defined as solids with the general stoichiometry MX, (M is a
transition metal that belongs to the groups IV, V, VI, and VII;
X =S, Se, Te) showing in-plane strong chemical bonding and
out-of-plane weak van der Waals (vdW) interactions, as
represented in Figure la. Based on the atomic arrangements,
TMDs are classified in three stacking polytypes denoted as 1T,
2H, and 3R that correspond to one, two, and three layers per
unit cell with a trigonal, hexagonal, and rhombohedral
structure, respectively. Note, however, that M,X; and MX
alternative stoichiometries have been recently found for
TMDs.”® There are roughly 60 TMDs known so far, but
since MoS,, TiS,, and WS, have attracted more attention,
these three compounds are considered the workhorses among
them.”'’

Not surprisingly, the structural and electronic properties of
few layers and bulk TMDs can be easily tuned thanks to the
abovementioned vdW interlayer forces."' Several strategies
have been established to enhance their performance including
(i) top-down synthesis protocols moving toward low-dimen-
sional TMD counterparts,'” (i) the use of chemical dopant
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agents,13 (iii) the intercalation of species,'* (iv) the application 4s
of an electrical field,"”” and (v) the application of high 49
pressures.'® The latter strategy brings the layers closer and thus 5o
making the interlayer interactions much stronger, resulting in a s;
concomitant modulation of the TMD properties. 52

Recent experimental and theoretical investigations on the s3
pressure-induced properties of bulk TMDs, such as MoS,, 54
WS,, MoSe,, WSe,, and MoTe,, have reported interesting ss
semiconducting-to-metal electronic state transitions achieved s¢
at ~15—40 GPa under hydrostatic conditions, depending on 57
the TMD composition.'” >* The implementation of these sg
results in flexible nanoelectronic devices involves practical so
difficulties mainly due to the high-pressure regimes required to 6o
induce the metallization.”* To overcome this drawback, low- ¢;
dimensional counterparts of TMDs coupled with uni- and ¢
biaxial stress conditions have been proposed as a suitable &3
alternative to modulate the band gap at lower pressures. ¢4
Combined experimental and theoretical studies have success- ¢s
fully shown that the metallization of monolayer MoS, takes ¢s
place only at 3 GPa under uniaxial out-of-plane compression ¢7
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Figure 1. View of the crystal structure of 1T-HfSe, showing (a) the multilayered arrangement and (b) the a-b plane. (c) Schematic of the used
high-pressure diamond anvil cell setup. (d) Observed (circles), calculated (solid line), and difference (bottom) synchrotron-XRD Rietveld profile
for 1T-HfSe, at room temperature and ambient pressure. Bragg positions indicated in green correspond to 1T-HfSe,, whereas orange marks are due
to a very small amount of impurity (less than 3%) identified as metallic Se.

69  All these extensive efforts have contributed significantly to
70 the knowledge of bulk, few layer, and monolayer TMDs under
71 extreme conditions. Most of the studies have been focused
72 only on the 2H-TMD polytype, thus demanding further
73 investigations over TMDs with other arrangements (e.g., 1T or
74 3R). In particular, IT-TMD compounds have attracted interest
75 for understanding the mechanism of charge density wave order
76 at low temperature and its coexistence with superconductivity
77 under high pressure.”’ ">’ Focusing on hafnium diselenide
78 (1T-HfSe,), depicted in Figure la,b, its high carrier mobility
79 (above 2000 cm” V s71), significantly larger than that of 2H-
s0 (Mo,W)X, (~340 cm® Vs™'), is to be highlighted. Due to this
81 extraordinary electronic property, 1T-HfSe, emerges as one of
82 the most promising materials for applications in the ambit of
g3 field-effect transistors (FETs).>”*! Furthermore, the moderate
s+ band gap of 1T-HfSe, (~1.1 eV)** opens the possibility of
using it as a high-x dielectric, leading to the replacement of
silicon in electronic devices.*®

In short, the present study has the aim of providing
experimental data and theoretical interpretation on the
g9 response of structural, vibrational, and electronic properties
90 of bulk 1T-HfSe, at hydrostatic high pressures. A homemade
91 diamond anvil cell (DAC) device has been used for performing
92 in situ high-pressure measurements, and therefore, synchrotron
03 X-ray diffraction, Raman spectroscopy, and optical (vis—NIR)
94 absorption experiments have been carried out. In addition,
95 density functional theory (DFT)-based calculations assist and
96 interpret the experiments. Our investigations demonstrate that
97 the 1T-HfSe, phase is highly sensitive under pressure,
9g reporting a metallization at ~10 GPa, which is actually the
99 lowest value reported to date for bulk TMDs under hydrostatic
100 conditions. Note that this relatively low hydrostatic pressure
101 may break down the technological limitations observed in
102 other compounds within the 2H-(Mo,W)(S, Se), polytype
103 family, opening new avenues in the generation of novel flexible
104 nanoelectronic devices.

B EXPERIMENTAL AND COMPUTATIONAL DETAILS 10s

106
107
108

Samples. HfSe, samples used in the experiments were acquired
from HQGraphene in a single crystal form. A pristine single crystal
was mechanically exfoliated and cut into smaller pieces to obtain
various samples of similar dimensions and suitable to be loaded in the 109
high-pressure cells. The crystal structure was checked by room- 110
temperature XRD, and purity and homogeneity were probed by 111
scanning electron microscopy (SEM) and X-ray energy-dispersive 112
spectroscopy (XEDS). Further details are given in Figure S1 in the 113
Supporting Information. 114

High-Pressure Experiments. Symmetric diamond anvil cells 115
(DAC) were used for high-pressure experiments. The general 116
operating scheme of the DAC is depicted in Figure lc. In situ high- 117
pressure synchrotron X-ray diffraction experiments were performed at 118
beamline ID15B (experiment CH-5079) of the European Synchro- 119
tron Radiation Facility. A small piece of HfSe, was ground into fine 120
powder, subsequently loaded in a membrane-type DAC with 300 ym 121
culet-sized diamonds. A stainless steel gasket was preindented to be 122
S0 pm thick, and a hole of 100 ym in diameter was drilled. A sample 123
chamber was filled with helium as a pressure transmitting medium 124
(PTM) and two ruby chips for calibrating pressure. The beam was 125
operated at 0.411 A with dimensions close to 5 X 5 um”. Angle- 126
dispersive X-ray patterns were collected with a MARSSS image plate 127
detector. Images were integrated by using both Fit2D and Dioptas 128
software. Rietveld analysis of data was performed through Fullprof 129
software.>**° 130

High-pressure Raman experiments were carried out using a 131
Merril—Basset DAC device with a 400 ym culet size. In this case, a 132
small single crystal flake of HfSe, was loaded into the chamber sample 133
of a stainless-steel gasket as well as Daphne 7373 oil as the PTM and 134
ruby chips as pressure markers. An XploRA PLUS confocal Raman 135
spectrometer equipped with excitation lines at 532 and 785 nm and 136
several long-distance working objectives was used to acquire the 137
Raman spectra. 138

Optical absorption under high-pressure conditions was performed 139
on a prototype fiber optics microscope equipped with two 25X 140
reflecting objectives mounted on two independent xyz translation 141
stages for a microfocus beam, the collector objective, and a third 142
independent xyz translation stage for DAC micropositioning. Optical 143
absorption data and images were obtained simultaneously with the 144
same device. Spectra in the UV—vis and NIR were recorded with an 145
Ocean Optics USB 2000 and NIRQUEST 512 monochromators 146
using Si- and InGaAs-CCD detectors, respectively. To ensure a good 147
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Figure 2. Experimental (from XRD) and theoretical pressure evolution of (a) normalized a/a, and c/c, lattice parameters and (b) volume of the
1T-HfSe, unit cell; third-order BM-EOS is also shown in panel (b). (c) Ambient pressure Raman spectrum of 1T-HfSe,, showing the two main
vibrational modes with E, and A;, symmetry. (d) Evolution of Raman shift frequencies with pressure.

quality signal, the absorption spectra were obtained with an HfSe,
single crystal flake with a thickness of around 60 pm. Analysis of data
and band gap calculation methodology is detailed in Figure S2 and
Note S1.

Density Functional Theory-Based Calculations. First-princi-
ples periodic electronic structure calculations were systematically
performed by minimizing static total energies at selected volumes of
the 1T-HfSe, structure. To this end, the Vienna ab initio simulation
package (VASP)*® was used by employing the Perdew—Burke—
Ernzerhof (PBE) implementation®” within the generalized gradient
approximation (GGA) to the exchange-correlation (xc) functional.
Weak vdW interactions were considered by adding a semiempirical
dispersion potential to the conventional Kohn—Sham DFT energy
through a pairwise force field following Grimme’s DFT-D3
method.***” This dispersion term is highly required to obtain a
reasonable agreement with respect to experiments even in dense
solids.** The Kohn—Sham equations were solved by using an
expansion of the valence electron density in a plane-wave basis set
with a kinetic energy cutoff of 500 eV. The projector-augmented wave
(PAW) method was included to account for the interaction between
the valence and the core electron densities.""** Numerical
integrations in a reciprocal space were carried out by sampling I'-
centered Monkhorst—Pack meshes,*> where the numbers of
subdivisions along each reciprocal lattice vector b; were given by N;
= max(1.90 Ib| + 0.5). The geometry optimizations were considered
converged when the forces acting on the nuclei were all below 10~°
eV A™'. Note, however, that this criterion is even tight, 107 eV A~
to'calculate the phonon frequencies of Raman active modes at the I'-
point by using finite differences, as implemented in the VASP
package.

In addition, since the standard GGA calculations systematically
underestimate the band gap in semiconductor materials, a more
sophisticated approach as one based on a hybrid functional would be
recommended.** A state-of-the-art hybrid-based calculation strategy
was followed in this regard to accurately investigate the electronic
properties of 1T-HfSe,. Thus, the hybrid HSE06 density functional
was selected.*® By using the hybrid HSE06 functional, 25% of the
short-range exchange interaction of the traditional PBE xc functional
was replaced by the short-range nonlocal Hartree—Fock exchange

interaction. In addition, an exchange-screening parameter @ of 0.2
A™" was applied. Particular numerical integrations by sampling I'-
centered Monkhorst—Pack meshes with N; = max(1.30 Ib] + 0.5)
were performed.

B RESULTS AND DISCUSSION

Structural Characterization. To investigate the structure
of 1T-HfSe, and its evolution under hydrostatic pressure
conditions, in situ high-pressure synchrotron X-ray diffraction
(XRD) and Raman spectroscopy analysis coupled with DFT-
based calculations are carried out. The representative XRD
pattern for 1T-HfSe, at ambient pressure depicted in Figure 1d
shows a high crystallinity of the sample. The Rietveld
refinement confirms that 1T-HfSe, belongs to the P3ml
space group containing just one HfSe, formula unit per unit
cell with trigonal symmetry (see Table S1 for details). The cell
parameters are a = 3.7562 A and ¢ = 6.1749 A. The internal
coordinates are (0,0,0) and (1/3,2/3,0.2560) for Hf and Se,
respectively. DFT-based calculations predict a = 3.7319 A, ¢ =
6.2152 A, and zg, = 0.2538, which are in good agreement with

205

the experiments. This confirms that the PBE-D3 level of 206
calculation is reasonably reliable to describe the structure of 207

1T-HfSe,.

As applied pressure increases, the XRD patterns show the
well-known shifting toward higher 26 angles (see Figure S3).
New peaks are not observed during the compression process
up to 11.3 GPa, and the initial 1T-HfSe, structure is fully
recovered at ambient pressure. Consequently, the compres-
sion/decompression cycle is completely reversible (see Figure
S3 and Note S2). This outstanding mechanical stability is one
of the main desired requirements for the development of future
electronic devices operating under harsh conditions.

At this respect, we would like to notice that a pressure-
induced phase transition to a C2/m monoclinic structure was
recently reported in 1T-TiTe, showing coexistence with the
trigonal phase in a wide range of pressures from ~5 to 19
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Figure 3. (a) Pressure evolution of the vis—NIR transmittance spectra for 1T-HfSe,. (b) Optical absorption coefficient versus photon energy at
ambient pressure (the inset shows the linear extrapolation to estimate the band gap). (c) Evolution of the experimental and theoretical calculations

of the band gap energy with pressure.

GPa.**™* The claimed generality of this transformation in
TMD MX, compounds was later examined by Mora-Fonz et
al®® The emergence of the monoclinic C2/m structure is
explicitly ruled out in their exhaustive computational study of
the 1T-TiSe, polytype. They found that this trigonal structure
is the stable phase up to 25 GPa and conclude that the
pressure-induced polymorphic sequence is still an open
question. For 1T-TiS,, instead of the C2/m monoclinic
structure, a cotunnite-like polymorph is proposed as the high-
pressure structure where the trigonal polytype transits at 16.2
GPa.*” The lower oxidation power of Te and the distinctive
role of the Sp orbital in Te-based TMDs, compared to S and
Se counterparts, should be taken into account to explain the
rich polymorphism of the TMD family according to the high-
pressure study of Léger et al. in 1T-IrTe,.”! This is of relevance
to our work showing that, in all these experimental and
theoretical studies, the trigonal 1T polytype is always observed
in the pressure range where our experiments and calculations
have been performed.

The experimental and computed pressure dependence of the
unit cell volume V and lattice parameters 4 and ¢ are shown in
Figure 2a and Figure 2b, respectively. V, 4, and ¢ exhibit
smooth variations as pressure increases for both experiments
and theory. Computational results are in reasonable agreement
with the experiments, although at high pressure, the calculated
lattice parameter reduction along the interlayer c-axis direction
is predicted to be slightly higher than the experimental one.
This deviation from the experiments can be attributed to the
description of the vdW interactions that is reasonable in the
absence of pressure but is progressively underestimated as
pressure increases according to the D3 correction. Overall, the
calculated trends observed under pressure are well-described
compared to experiments.

Quantitatively speaking, the pressure evolution of g, ¢, and V/
is carried out by fitting analytical functions to the data. The

experimental third-order Birch—Murnaghan (BM3) equation
of state (EOS)*>** (see Figure 2b) provides a zero-pressure
volume (V;) equal to 75.42 A* and an isothermal zero pressure
bulk modulus (B,) along with its first pressure derivative (B,’)
of 34.5 GPa and 6.9, respectively. DFT calculations lead to V
= 7496 A3 B, = 29.2 GPa, and B, = 7.0, in reasonable
agreement with the experimental results. Here, it must be
noted that the low B, value compared with other compounds
within the MX,, crystal family (for example, 57 and 62 GPa for
MoS, and MoSe,, respectively)'”'” shows an interesting result
that might anticipate a low metallization pressure for 1T-HfSe,,
assuming that the metallization is a consequence of short-
distance interlayer interactions.

Concerning the effect of pressure on the unit cell
parameters, it is more pronounced in the ¢ axis than in the a
axis. The former is reduced around 8.3%, whereas the latter is
only reduced around half of it, ~4.5%, at the maximum
reached pressure in our experiments, close to 11 GPa. Linear
isothermal compressibility (k;) values of k, = 5.51 TPa™" and k,
=21.0 TPa! and k, = 5.51 TPa™' and k., = 29.6 TPa™" are
obtained from the experimental and calculated data,
respectively. These values are fully consistent with the trends
displayed in Figure 2a and evidence a clear pressure-induced
structural anisotropy in 1T-HfSe,. Likewise, the pressure
evolution of Se—Se and Hf-Se interatomic distances
corroborates this observation since the reduction of the Se—
Se interlayer distance is much more pronounced than
corresponding to the intralayer Hf—Se one (see Figure S4).
All these structural results have obvious implications in the
electronic behavior of this polytype as we will discuss later.

Following with the structural characterization, Raman
spectroscopy has been broadly used to characterize TMD-
derived materials.””*®> The Raman spectrum of 1T-HfSe,
(Figure 2c) clearly shows two signals centered at 147 and
199 cm™' corresponding to normal modes of E; and Ay
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symmetry in good agreement with previous works, respec-
tively.>” The E; mode corresponds to in-plane vibrations,
whereas the A;; one is associated with out-of-plane atomic
movements. Interestingly, the DFT-based calculations give
frequencies at 148 and 202 cm™} respectively. Note that the
computed Raman frequency modes match quite well in the
absence of pressure. Not surprisingly, both Raman modes shift
toward high frequencies at increasing pressure (Figure 2d).
The experimental pressure coefficients for E; and A;, modes
are 1.67 and 3.33 cm™' GPa™!, respectively. Again, our
calculations reproduce reasonably well these values. The weak
interactions along the c-axis direction are significantly sensitive
to pressure effects. This structural argument directly explains
why the A, pressure coefficient is higher compared to that of
the E, mode. The different response of the vibrational modes,
depending on whether they are in-plane or out-of-plane, is
another manifestation of pressure-induced anisotropy exhibited
by this material (see Figure S5 for a detailed scheme of normal
modes and the Raman spectra under pressure).

Electronic Characterization. We show now results from
the analysis of the electronic properties of 1T-HfSe, and, more
interestingly, their evolution under pressure. To this end, in
situ high-pressure optical absorption experiments coupled with
DFT-based electron band calculations are carried out. The
vis—NIR absorption spectra are analyzed in detail (Figure 3a).

First, we focus on the spectrum in the absence of pressure.
Plotting the optical absorption coefficient square root versus
photon energy allows one to estimate the band gap, E, using a
linear extrapolation (see details in Figure S2 and Note S1). In
the absence of pressure, 1T-HfSe, yields to an indirect gap of
1.05 eV estimated by the linear extrapolation (Figure 3b,
inset). Our experiments at zero pressure are in good agreement
with previous studies.>>*®>” In addition, accurate DFT-based
calculations using the hybrid HSE06 xc functional reveal two
close indirect gaps at =L (0.97 eV) and I'-M (1.14 eV), as
shown in the band structure depicted in Figure 4a. This leads
to a theoretical E, value of 0.97 eV, in close agreement with the
experimental one.

The effect of pressure is analyzed based on the vis—NIR
spectra depicted in Figure 3a. A significant reduction of the
transmittance within the transmission window below 1.2 eV is
observed as pressure increases. Interestingly, the transmission
edge becomes almost negligible at 10.2 GPa. This result
confirms the closure of the band gap and evidences the
metallization of 1T-HfSe,. The linear extrapolation method
(see the inset in Figure 3b) has been also used to evaluate the
pressure evolution of the band gap. Pressure evolution of the
band gap energy is shown in Figure 3c. The E, narrowing
progresses steadily and smoothly as the pressure increases. A
reduction of 50% in the band gap is already achieved at 4 GPa.
The E, pressure evolution exhibits an almost linear trend, easily
represented with a second-order polynomial, similar to other
well-known TMDs such as MoS, and MoSe,.'”"’

Further interesting results are found in the analysis of the
abovementioned calculated indirect gaps at I'=L and I'-M
regions of the Brillouin zone. The former shows the smallest
band gap along the investigated pressure range and disappears
at 8.1 GPa, whereas the latter is zero at around 10.9 GPa by an
extrapolation analysis (Figure 3c). These computational results
pinpoint the emergence of a metal state observed in the
experiments and confirm that bulk 1T-HfSe, becomes metallic
at ~10 GPa, the lowest metallization pressure known so far in
MX, TMD materials (see Figure 4b).
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Figure 4. DFT-based calculations of the band structures on 1T-HfSe,
at (a) ambient pressure and (b) metallization pressure. Rednlifies
indicatertherFermirlevel, and arrows show the indirect band gaps.

To identify the atomic orbitals involved in the metallization
of 1T-HfSe,, the partial density of states (DOS) depicted in
Figure 5 is discussed. This analysis reveals a predominant
contribution of the Se 4p orbitals in the valence band (VB),
whereas the Hf Sd orbitals are the ones dominating the
conduction band (CB). When 1T-HfSe, is subjected to high
pressure, the contribution from the Se p, in the VB and those
of the metal d., d,., and d,, orbitals in the CB become more
important, therefore decreasing the participation of the p, and
p, orbitals of the chalcogen and d,, and d,> _ > of Hf.

This means that the orbitals with electron density localized
along the z direction increase their contribution in the density
of states of the VB and CB by the effect of pressure. This trend
is directly connected with the structural anisotropy of this
material, as described in the previous structural character-
ization. From the chemical point of view, the hydrostatic
pressure induces an effective overlapping between the orbitals
directed along the z direction, and then, noncovalent
interactions are strengthened.26 As a consequence, we
conclude that the CB is stabilized thanks to the effective
overlapping of these orbitals, producing the vanishing of the
band gap and the eventual metallization of 1T-HfSe, under
pressure.

All these results point out that the metallization of 1T-HfSe,
is conditioned mainly by its response to hydrostatic pressure
and particularly by the compressibility along the ¢ axis. An
interesting comparison is schemed in Figure 6a, where the B,
parameter of different TMDs is included along with our result
corresponding to 1T-HfSe,. The latter presents the lowest By
values among the selected TMD family. It is probably due to a
good compromise between the efficient overlapping of the
chalcogen’s p orbitals, which are much more effective in
selenides than in sulfides, and the large Hf ionic radius in
comparison with other metals as Mo or W. Both factors favor a
strengthening of noncovalent interactions along the =z
direction, which justifies a higher compressibility and less
rigidity of this material. In fact, such a behavior has previously
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Figure S. Partial density of states (DOS) for Hf (left) and Se (right) atoms at 0.3 GPa (upper) and at metallization pressure (lower).

These results reveal a correlation between the bulk modulus 394
and the metallization pressure for different TMDs explored in 395
Figure 6a. It is clearly seen that the more compressible is a 396
material, the lower its metallization pressure is expected, and 397
thus, 1T-HfSe, has been positioned in a very attractive 398
pressure regime, close to 10 GPa. 2H-MoTe,, 2H-MoS,, 2H- 39
MoW,, 2H-MoSe,, and 2H-WSe, follow, in this order, 400
increasing values of both B, and P, Analogously, the band 401
gap versus pressure plotted in Figure 6b show that the linear 402
trends (guide to the eye) of 2H-MX, (M = Mo, W; X = S, Se, 403
Te)'772%2»%3 and 1T-HfSe, (this work) also follow the same 404
sequence. Clearly, the reduction of E, in 1T-HfSe, occurs at 40s
the highest pressure rate, close to 0.1 eV-GPa™'. We thus 406

Q
N—"

Metallization pressure (GPa)

40 50 60 70 conclude that 1T-HfSe, presents attractive tunable electronic 407
Bulk modulus (GPa) properties that can be easily modulated by the application of 408
b) relatively moderate pressures. 409

B CONCLUSIONS 410

We have undertaken a complete and detailed study on bulk 411
1T-HfSe,, covering the analysis of its structural, dynamical, and 412
electronic properties up to 12 GPa. We have combined 413
experiments and theoretical calculations to shed light on this 414
TMD material to understand its behavior under pressure. Our 415
results conclude that 1T-HfSe, shows a highly sensitive 416
response to pressure application, giving increase to a 417
pressure-driven metallization at around 10 GPa, which is 418
actually the lowest value found to date among common bulk 419
TMD-derived materials. The theoretical calculations are in 420
good agreement with the experimental observations, and the 421
Pressure (GPa) correlation between electronic behavior of the solid and the 422
mechanical response of its crystallographic structure under 423
pressure has been evidenced. Within the studied pressure 424
range, there is no first-order structural transition found, and 423
both structure and electronic behavior are completely 426
reversible, which is an essential requirement for the develop- 427

Eg (eV)

0 10 20 30 40 50

Figure 6. (a) Metallization pressure versus bulk modulus for different
TMDs. (b) Evolution of the band gap energy with pressure for
different TMDs, showing the metallization pressure for each material.

392 been theoretically predicted by Guzman and Strachan for ment of future electronic devices operating under harsh 428
393 TMDs.” conditions. This scenario situates 1T-HfSe, in a privileged 429
F https://dx.doi.org/10.1021/acs.inorgchem.0c03223
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430 position compared to other TMDs. In fact, most usual
431 strategies for effectively tuning the electronic properties of
432 these systems concern the dimensionality reduction, working
433 at the nanoscale (monolayers). Through the application of
434 hydrostatic pressure, some materials require even more than 60
435 GPa for inducing a semiconductor—metal electronic transition.
436 In contrast, 1T-HfSe, would allow us to work within the
437 macroscopic scale, being able to significantly modulate their
438 optoelectronic properties by means of moderate pressure
439 application.
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