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M.P. Garćıa del Moral,a I. Mart́ın,b J.M. Peñac and A. Restucciab,d
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1 Introduction

Nonperturbative effects like monopoles, instantons in conventional gauge theories, or dual-

ities in the context of M/string theories rely on global aspects of those theories. Properties

like confinement may well be due to non trivial topological aspects as well. Non trivial

fibrations have also been used in the context of noncommutative theories, like the noncom-

mutative formulation of the torus [1] as well to characterize compactification spaces useful

for string phenomenology, see for example [2, 3].

There is evidence that string theory can be consistently defined in non-geometric back-

grounds in which the transition functions between coordinate patches involve not only

diffeomorphisms and gauge transformations but also duality transformations [4, 5]. Such

backgrounds can arise from compactifications with duality twists [6] or from acting on

geometric backgrounds with fluxes with T-duality [5, 7, 8] or mirror symmetry. In spe-

cial cases, the compactifications with duality twists are equivalent to asymmetric orbifolds

which can give consistent string backgrounds [9–11]. In this type of compactifications,

T-folds are constructed by using strings formulated on a doubled torus T 2n with n coor-

dinates conjugate to the momenta and the other n coordinates conjugate to the winding

modes [7].

In [5, 7] it was argued that a fundamental formulation of string/M-theory should

exist in which the T- and U-duality symmetries are manifest from the start. The natural

framework for M-Theory would generalize ten- or eleven-dimensional space-time into a

higher-dimensional geometry in which auxiliary dimensions would be related to non-metric

degrees of freedom. The duality symmetries of string- and M-theory would be discrete

geometric symmetries of this generalized space. In particular, it was argued that many

massive, gauged supergravities cannot be naturally embedded in string theory without such

a framework [4, 8, 12, 13]. Examples of generalized T-folds can be obtained by constructing

torus fibrations over base manifolds with non-contractible cycles. In particular, an example
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is to consider S1 as base manifold when the monodromy of the theory in the fibres includes

a non-geometric element of O(Z) corresponding to a generalised T-duality [14]. For other

interesting works emphasizing the relation with U-duality, M-theory and T-folds see [15]–

[17]. However, in spite of advances, up to our knowledge, a full-fledged realization of

these ideas in terms of the string worldsheet action for String Theory, or in terms of the

supermembrane for M-theory is still lacking.

The aim of this paper is to prove that the action of the Supermembrane with nontrivial

central charges, whose local structure was given in [18–21] may be globally defined in terms

of sections of a symplectic torus bundle with nontrivial monodromy and Euler numbers.

The monodromy is given as a representation of the fundamental group of the symplectic

base manifold of the supermembrane in the homotopic π0 group of symplectomorphisms

of the fiber. In the case we will consider, the latest becomes the SL(2,Z) group acting on

the fiber. It defines an automorphism on the fibers providing the global structure of the

geometrical setting. The proof involves a nontrivial step in showing that the action of the

Supermembrane with central charges, which explicitly depends on the moduli of the fiber

manifold, is invariant under the Z-module associated to the monodromy.

We think that this global construction, which allows a classification of all supermem-

branes that can be formulated as symplectic torus bundles with nontrivial monodromy and

Euler numbers, is the origin in M-theory of the gauging of the effective theories associated

to String theories [22].

The Supermembrane with nontrivial central charges, motivated by the light cone gauge

formulation of the Supermembrane in [23–26], introduces a topological restriction on the

physical configurations. It defines an associated Chern number. From an algebraic point

of view it can be interpreted as a nontrivial central charge in the Supersymmetric algebra.

From a geometrical point of view it ensures the existence of a U(1) principle bundle and

a monopole connection [27] on it whose curvature is in the Chern class associated to the

topological restriction. In this sense, it is a natural way to introduce monopole configura-

tions which stabilizes the supermembrane. In fact, the resulting regularized Hamiltonian

has a discrete spectrum , that is the essential spectrum is empty [28–31]. The additional

global structure we will consider involves in a manifest way the SL(2,Z) duality group of

String theory. Its supermembrane origin was emphasized in [32] in relation with the (p,q)

string solutions, see also [21]. The SL(2,Z) group acts on the fiber bundle structure as the

cero homotopic group of symplectomorphisms preserving the symplectic form. This action

induces a modular transformation on the basis of homology of the fiber, and correspond-

ingly a Mobius transformation on the moduli of Teichmuller space. The final consistency

in the construction arises when the global SL(2,Z) structure becomes compatible with the

monopole (or central charge) topological restriction.

The paper is structured as follows. In section 2 we show some properties of a symplectic

torus bundle. In section 3 we present the local structure of the supermembrane with central

charges. In section 4 we show how the hamiltonian of the supermembrane with central

charges is invariant under the group of monodromies of the symplectic torus bundle and

consequently, it may be formulated in terms of sections of symplectic torus bundles. Section

5 is devoted to conclusions.
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2 Supermembranes and symplectic torus bundles

A symplectic torus-bundle [33] is a smooth fiber bundle

ξ : F → E
p→ Σ (2.1)

F is the fiber, which we take to be the 2-torus T 2 . E is the total space and Σ the

base manifold which we consider to be a closed, compact Riemann surface. The structure

group is the group of symplectomorphisms preserving a given symplectic structure on T 2.

So far, this symplectic fibration naturally fits in a Supermembrane formulation in the

light cone gauge since this one is invariant under area preserving diffeomorphisms which

are symplectomorphisms preserving the associated symplectic structure. The latest are

symplectomorphisms on the base manifold , however in the supermembrane with nontrivial

central charges [18] which we will describe in detail in the following sections , these ones

correspond to the pull-back of the symplectomorphisms on the fiber. In order to describe

global aspects of the supermembrane we introduce a monodromy and the associated Z-

module. The monodromy is the natural extension of the monodromy in a torus bundle on

a circle as considered by Thurston. We follow here the approach of [33]. Related work may

be found in [34–36] and [37].

The action of the structure group on T 2 produces a π0(G) action on the homology and

cohomology groups of T 2. The homomorphisms π1(Σ) → π0(G) give to each homology

and cohomology group of T 2, the structure of Z[π1(Σ)]-module. π0(G) in the case under

consideration is known to be SL(2, Z). Moreover, the action of π0(G) on H1(T
2), the first

homology group, may be identified with the natural action of SL(2, Z) on Z2. Given any

representation ρ : π1(Σ) → SL(2, Z) we denote Z2
ρ the corresponding Z[π1(Σ)]-module.

A theorem, see [33],ensures the existence of a bijective correspondence between the

equivalent classes of the symplectic torus bundle together with a representation ρ inducing

the module structure Z2
ρ on H1(T

2) and the elements of H2(Σ, Z2
ρ), the second cohomology

group of Σ with local coefficients Z2
ρ . This theorem classifies the symplectic torus bundle ξ

with a representation ρ in terms of the characteristic class C(ξ). In order to formulate the

supermembrane with central charges in terms of sections of a symplectic torus bundle with

a representation ρ inducing a Z[π1(Σ)]-module, we have to consider the transformation of

its hamiltonian under the action of SL(2, Z) on the homology basis since the moduli of the

2-torus T 2 appear explicitly in the hamiltonian.

3 The supermembrane in the light cone gauge

In this section we describe the Supermembrane with non trivial central charges in terms of

maps from the base manifold to the target space. It corresponds to a formulation in terms

of local sections of a symplectic torus bundle.

The hamiltonian of the D = 11 Supermembrane may be defined in terms of maps Xµ,

µ = 0, . . . , 10, from a base manifold Σ × R onto a target manifold which we will assume

to be 11D Minkowski. Σ is a Riemann surface of genus g. σa,a = 1, 2 are local spatial

coordinates over Σ and τ ∈ R represents the worldvolume time. Decomposing Xµ and Pµ

– 3 –
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accordingly to the standard Light Cone Gauge (LCG) ansatz and solving the constraints,

the canonical reduced hamiltonian of the D = 11 supermembrane is given by

H = T−2/3

∫

Σ

√
W

[
1

2

(
PM√
W

)2

+
T 2

4
{XM ,XN}2 +

√
WθΓ−Γm{Xm, θ}

]

(3.1)

subject to the constraint

φ ≡ d(PMdXM + θΓ−θ) = 0 (3.2)

and to the global one

φ0 ≡
∫

C∫

PMdXM + θΓ−dθ = 0 (3.3)

where Cs is a basis of homology on Σ, with M = 1, . . . , 9, and PM are the conjugate

momenta to XM .
√

W is the scalar density introduced in the LCG , Σ is the base manifold

which we take to be a Riemann surface, θ represents the 11D Majorana spinors and Γµ are

the corresponding Dirac matrices. T is the tension of the supermembrane. φ and φ0 are

the generators of the area preserving diffeomorphims homotopic to the identity and they

preserve the area element
√

Wǫabdσa ∧ dσb, a symplectic 2-form.

{Xm,Xn} =
ǫab

√
W

∂aX
m∂bX

n (3.4)

is the associated symplectic bracket. We now consider the supermembrane wrapped on a

compact sector of the target space,1 restricted by a topological condition: the supermem-

brane with nontrivial central charges.

3.1 The supermembrane with nontrivial central charges

We consider the Supermembrane on a target space M9×T 2 where T 2 is a flat torus defined

in terms of a lattice L on the complex plane C:

L : z → z + 2πR(l + mτ), (3.5)

where m, l are integers, R is a real moduli, R > 0, and τ a complex moduli τ = Reτ +iImτ ,

Imτ > 0, T 2 is defined by C/L. τ is the complex coordinate of the Teichmuller space for

g = 1, that is the upper half plane. The Teichmuller space is a covering of the moduli

space of Riemann surfaces, it is a 2g − 1 complex analytic simply connected manifold for

genus g Riemann surfaces.

The conformally equivalent tori are identified by the parameter τ modulo the Teich-

muller modular group, which in the case g = 1 is SL(2, Z). It acts on the Teichmuller

space through a Mobius transformation and it has a natural action on the homology group

H1(T
2). In order to define a supermembrane with nontrivial central charges we consider

maps Xm,Xr from Σ to the target space , with r = 1, 2;m = 3, . . . , 9 where Xm are single

1The supermembrane with winding without any extra topological condition was analyzed in [39].
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valued maps onto the Minkowski sector of the target space while Xr map onto the T 2

compact sector of the target. The necessary winding conditions, in order to define a map

onto the T 2, are:

∮

Cs

dX = 2πR(ls + msτ) (3.6)

where dX = dX1 + idX2, ls and ms , s = 1, 2 are integers and Cs the above mentioned

basis of homology for a genus g = 1 Riemann surface. From now on, Σ will be a Riemann

surface of genus g = 1. We will denote dX̂r, r = 1, 2 a normalized basis of harmonic one

forms on Σ:
∮

Cs

dX̂r = δs
r (3.7)

We may decompose the closed one-forms dXr in terms of harmonic one forms plus

exact ones. We obtain from (3.6)

dX = 2πR(ls + msτ)dX̂s + dA (3.8)

where dA denotes the exact one-form. We now impose a topological restriction on the

winding maps: the irreducible winding constraint,

∫

Σ

dXr ∧ dXs = nǫrsArea(T 2) r, s = 1, 2 (3.9)

where the winding number n is assumed to be different from zero. ǫrs is the symplectic

antisymmetric tensor associated to the symplectic 2-form on the flat torus T 2. In the

case under consideration ǫrs is the Levi Civita antisymmetric symbol. An important point

implied by the assumption n 6= 0 is that the cohomology class in H2(Σ, Z) is non-trivial.

It also implies that there is an U(1) nontrivial principle bundle over Σ and a connection

on it whose curvature is given by dX̂r ∧ dX̂s. This U(1) nontrivial principal fiber bundle

are associated to the presence of monopoles on the worldvolume of the supermembrane

explicitly discussed in [27].

The natural scalar density
√

W on the geometrical picture we are considering is ob-

tained from the pullback of the symplectic 2-form on T 2 by the map X̂r, r = 1, 2,

W = ǫrsdX̂r ∧ dX̂s ≡
√

Wǫabdσa ∧ dσb (3.10)

where
√

W = 1
2
ǫrs∂aX̂

r∂bX̂
sǫab.

The symplectomorphisms preserving the canonical symplectic structure on T 2 are then

pull-back to symplectomorphisms preserving W on Σ. This is relevant in the construction

of the supermembrane with central charges as sections of a symplectic torus bundle. Using

Area(T 2) = (2πR)2Imτ , condition (3.9) implies

n = det

(
l1 l2
m1 m2

)
(3.11)
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That is, all integers ls,ms, s = 1, 2 are admissible provided they satisfy restriction (3.11).

The supermembrane with non-trivial central charges is invariant under area preserving

diffeomorphims homotopic to the identity. In particular, under conformal maps which leave

invariant the homology basis on Σ. In fact, dX̂r remain invariant and hence the symplectic

2-form in Σ. It is also invariant under diffeomorphisms not homotopic to the identity acting

on the homology basis in Σ as SL(2, Z) transformations. In fact if dX̂r(σ) → Ss
rdX̂r(σ)

with [Sr
s ] ∈ SL(2, Z), then the symplectic 2-form W remains invariant. In this case

dX → 2πR(ls + msτ)Ss
rdX̂r + dA (3.12)

where the exact part A transform as a scalar field. Consequently, if we also transform the

winding integers by (
l1 l2
m1 m2

)
→
(

l1 l2
m1 m2

)(
S1

1 S1
2

S2
1 S2

2

)
(3.13)

then the harmonic part of dX remains invariant. The SL(2, Z) acts from the right on the

winding matrix.

4 The supermembrane maps as sections of a symplectic torus bundle

In this section we are going to prove the invariance of the Hamiltonian under the Z[π1(Σ)]-

module. The hamiltonian of the supermembrane with central charges is given by

H =

∫

Σ

H =

∫

Σ

T−2/3
√

W

[
1

2

(
Pm√
W

)2

+
1

2

(
Pr√
W

)2

+
T 2

2
{Xr,Xm}2 (4.1)

+
T 2

4
{Xr,Xs}2 +

T 2

4
{Xm,Xn}2

]
+ fermionic terms

subject to (3.2), (3.3), and (3.6), (3.9), where Xr are sections on the symplectic torus

bundle ξ with structure group G, the symplectomorphims preserving the symplectic 2-

form on the fibre T 2 defined previously . Pr are the conjugate momenta to the exact part

in the decomposition of Xr. The integrand depending in Xr, r = 1, 2 may be re-written in

terms of

dX = dX1 + idX2 (4.2)

as

1

2
{X,Xm}{X,Xm} +

1

8
{X,X}{X,X}, (4.3)

where

dX = 2πR(ls + msτ)dX̂s + dA (4.4)

where R and τ are the moduli of the T 2, dX̂s, s = 1, 2 as before are the harmonic basis

of Σ and dA is the exact one-form in the Hodge decomposition. A = A1 + iA2 carries

the physical degrees of freedom of the compact sector. The action of π0(G) ≡ SL(2, Z) in

– 6 –
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H1(T
2) is the natural one inducing a Mobius transformation on the upper half plane with

complex coordinate τ . We now prove that the hamiltonian (4.1) is a well defined functional

on the symplectic torus bundle with monodromy ρ, where ρ is a representation of π1(Σ) in

SL(2, Z) as defined in section 2. In fact, it is invariant under the following transformation

on T 2:

τ → aτ + b

cτ + d
(4.5)

R → R|cτ + d|

A → Aeiϕτ

(
l1 l2
m1 m2

)
→
(

a −b

−c d

)(
l1 l2
m1 m2

)

where cτ +d = |cτ +d|e−iϕτ and

(
a b

c d

)

∈ Sp(2, Z). this invariance was found in [21]. The

hamiltonian (4.1) as well as (3.9), (3.6) and the Area(T 2) are invariant under the above

transformation.

Notice that the SL(2, Z) (4.5) acts from the left on

(
l1 l2
m1 m2

)
while the SL(2, Z)

invariance on the basis Σ, discussed in previous sections, acts on the right.

Under these transformations the det

(
l1 l2
m1 m2

)
remains invariant. Given

(
l1 l2
m1 m2

)

with determinant 6= 0 there always exist elements of SL(2, Z) whose action from the left

and from the right yields
(

a b

c d

)(
l1 l2
m1 m2

)(
S1

1 S1
2

S2
1 S2

2

)

=

(
λ1 0

0 λ2

)

(4.6)

where λ1λ2 = n. Moreover, if λ1 and λ2 are relative primes there always exist elements

belonging to SL(2, Z) whose action from the left and the right yield λ1 = n and λ2 = 1.

If λ1 and λ2 are not relative primes one may redefine the parameter R and reduce to

the case where λ1 and λ2 are relative primes. We thus obtain a canonical expression for

the hamiltonian (4.1) subject to (3.2), (3.3), and (3.6), (3.9), in terms of sections of the

symplectic torus bundle with a monodromy ρ:

H =

∫

Σ

H =

∫

Σ

T−2/3
√

W

[
1

2

(
Pm√
W

)2

+
1

2

(
Pr√
W

)2

+
T 2

2
{X,Xm}{X,Xm}

]

(4.7)

+

[
T 2

8
{X,X}{X,X} +

T 2

4
{Xm,Xn}2

]
+ fermionic terms

where dX = 2πR(dX̂1 + nτdX̂2). Although we may have winding numbers l1, l2,m1,m2

the symmetries of the theory allow to reduce everything to the central charge integer n.

The final point is to determine which representations ρ : π1(Σ) → π0(G) ≡ SL(2, Z)

leave invariant the form of the hamiltonian density in (4.7). The representations ρn :

– 7 –
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π1(Σ) → SL(2, Z)n, where SL(2, Z)n is the subgroup of SL(2, Z) whose elements are of

the form
(

a nb

c d

)
(4.8)

leave invariant the hamiltonian density in (4.7). ρn characterizes the representations com-

patible with the topological restriction (3.9) For example, if we take the representation

ρ : π1(Σ) → SL(2, Z)n defined in the following way:

π1(Σ) ∋
(

M

N

)

→
(

1 nM

0 1

)

(4.9)

The element of H1(T
2) may be given by

(
p

q

)
being p, q integers. Then the natural action

of SL(2, Z) on it is given by

(
1 nM

0 1

)(
p

q

)
=

(
p + nMq

q

)
(4.10)

The cohomology group H2(Σ, Z2
ρ) ∼= Z, also the central charge condition (3.9) states that

we are in the characteristic class C(ξ) = n 6= 0, consequently, there exists a D = 11 super-

membrane with nontrivial central charges formulated in terms of sections of a symplectic

torus bundle ξ with representation (4.9) inducing a Z[π1(Σ)]-module.

5 Conclusion

We showed that the Supermembrane with central charges may be formulated in terms of

sections of symplectic torus bundles with a representation ρ : π1(Σ) → SL(2, Z) inducing

a Z[π1(Σ)]-module in terms of the H1(T
2) homology group of the fiber. The representa-

tion ρ may be interpreted as a monodromy on the bundle. The non trivial point in the

construction was to prove that the hamiltonian together with the constrains are invariant

under the action of SL(2, Z) on the homology group H1(T
2) of the fibre 2-torus T 2. An in-

teresting aspect of this geometrical structure is the possible existence of an extension of the

symplectic 2-form on the fiber to the full space of the symplectic torus bundle. A theorem

of Khan [33] establishes that the extension exists if and only if the characteristic class is a

torsion class in H2(Σ, Z2
ρ ). In the case of the example of section 4, we conclude that there

is not such extension since C(ξ) = n is not a torsion class. The only one is C(ξ) = 0 which

is not compatible with the topological restriction (3.9) of the supermembrane with central

charges. Locally we have the usual interpretation of the supermembrane in terms of maps

from Σ to the target. Globally we have now a more interesting geometrical structure since

the hamiltonian is defined on a non-trivial symplectic torus bundle. Locally the target is

a product of M9 × T 2 but globally we cannot split the target from the base Σ since T 2

is the fiber of the non trivial symplectic torus bundle T 2 → Σ. The formulation of the

supermembrane in terms of sections of the symplectic torus bundle with a monodromy is

– 8 –
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a nice geometrical structure to analyze global aspects of gauging procedures on effective

theories arising from M-theory. We noticed the particular case in which the representation

ρ is given by the matrix

(
0 1

−1 0

)M+N

(5.1)

the subgroup reduces to Z2 × Z2 and this case was considered in [19, 20] and [40]–[44].
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