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The literature about the mass associated with a certain mode, usually denoted as the modal mass, is sparse. Moreover, the units of
the modal mass depend on the technique which is used to normalize the mode shapes, and its magnitude depends on the number
of degrees of freedom (DOFs) which is used to discretize the model. This has led to a situation where the meaning of the modal
mass and the length of the associated mode shape is not well understood. As a result, normally, both the modal mass and the length
measure have no meaning as individual quantities but only when they are combined in the frequency response function. In this
paper, the problems of defining the modal mass and mode shape length are discussed, and solutions are found to define the

quantities in such a way that they have individual physical meaning and can be estimated in an objective way.

1. Introduction

The classical equation of motion for a system with N degrees
of freedom (DOFs) is [1-10]

My(t) +Cy(t) + Ky (¢) = p(t), (1)

where p(t) is the force input vector, y(t) is the response
vector, and M, C, and K are the mass, the damping, and the
stiffness matrices, respectively.

Assuming proportional damping, it is well known that
the solution is given as [1-10]

y() =¥q(t) =v,q, (1) +¥,q, (£) + ¥3g5 (1) + ... (2)

where W = [y,y,V;...] is the mode shape matrix con-
taining the real-valued mode shapes representing the spatial
solution and q (t) is the modal coordinate vector containing
the modal coordinates q(t) = {g, (t)q, (t) .. .}T representing
the time solution. Inserting the solution given by equation
(2) into the equation of motion, equation (1), and multi-
plying from the right by the mode shape matrix transpose, it
can be shown that the resulting matrices are diagonalizable,
and we obtain a set of equations of independent 1-DOF
systems, one for each of the modal coordinates, i.e.,

m.q(t) +c,4(t) +k,q(t) = p, (1), (3)

where m,, c,, k,, and p, (t) = y! p(t) are the modal mass, the
modal damping, the modal stiffness, and the modal load,
respectively, corresponding to the r-th mode.

In the frequency domain, the equation of motion is
expressed as [1-10]

H(w) - P(w) =U(w), (4)

where H (w) is the frequency response function matrix given
by

H(w) = [-0’M +iwC + K] . (5)

The FRF can also be expressed in terms of modal pa-
rameters, which for proportional damped models, it is given
by [1-4]

Ny T
_ VY,
H(w) = Z; m, (0? — w* +i2{,0w,)’ (6)

where N, is the number of modes, w, is the natural
frequencies, (, is the damping ratio, vy, is the mode shape,
and m, is the modal mass, respectively, of the r-th mode.
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From equations (3) and (5), it is easily seen that the
modal mass is needed in all applications where the
frequency response function (FRF) (or the impulse re-
sponse function (IRF)) has to be constructed from the
modal parameters, such as structural modification,
health-monitoring applications, and damage detection
[1-4, 10].

A mode shape is said to be mass-normalized when the
modal mass is dimensionless, i.e., m = 1. On the contrary, a
mode shape is said to be unscaled if it is not mass-nor-
malized. The mass normalized ¢ and the unscaled ¢ mode
shapes are related by the following equation [1-10]:

1
4) - \/mq” (7)
where the modal mass m is a real scalar in undamped and
proportionally damped models. If the mode shape v is
dimensionless, the modal mass has units of mass (kg).
The concept of modal mass is addressed in the classical
books of structural dynamics [5, 6], modal analysis [1-4, 10],
and also in research papers [11, 12]. In some books of
classical dynamics [5, 13], the concept of modal mass has
also been named as generalized mass or effective modal
mass.

1.1. The Concept of Effective Mass. Ewins [1] defined a new
parameter denoted as effective mass which is different from
the concept of modal mass. This effective mass is related to a
certain mode and a certain DOF. If mass-normalized mode

shapes are used, the effective mass at DOF j for mode r is
defined as

1
( J])r (‘/5]‘;»)2' (8)

Due to the fact that mass-normalized mode shapes are
unique and not subject to any arbitrary scaling factors, this
new concept is also unique and represents a useful de-
scription of the behavior of the structure point by point and
mode by mode [1].

In base-excited systems, the term effective mass has also
been used to define a different parameter [5, 6, 14], which
must not be mistaken with the modal mass.

For a structure subjected to an acceleration support
excitation, with a mass matrix [M], mode shapes {y}, and
influence coefficient 1, the modal participation factor for the
r-th mode can be obtained as [5, 6, 14]

Cfwl M fl Mqn
fwl, - (M1 {y}, m,

which provides a measure of the system mass participating
in that particular mode. In engineering, the earthquake
vector {l} represents the displacements of the story masses
resulting from a static unit ground displacement in the
direction of the seismic excitation [6].

The effective modal mass m.g for the r-th mode is
defined as

) (9)

r
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1"2
Meg = Jr (10)

7

The concept of effective mass was firstly proposed by
Bamford et al. [14] in the early 70s, and it is based on the
assumptions that the system is excited at the base and also
that the base is rigid. A mode with a large effective mass is
usually a significant contributor to the response of the
system m, i.e., only the modes which have significant ef-
fective masses are needed to represent the response of the
structure in a certain frequency band [15, 16]. Moreover, the
sum of the effective masses for all modes in a given response
direction must equal the total mass of the structure [5, 6]. If
some modes of the system are truncated, the effective mass
of the truncated modes is added directly to the base as a
residual mass [15]. The equations of motion obtained for
displacement and acceleration loadings are different from
each other because of the construction of the effective ex-
ternal load [17, 18]. When multiple constraints need to be
defined by different motions, displacement loading should
be the preferred one.

1.2. Modal Mass and Modal Analysis. Most of the literature
related to modal mass is devoted to methodologies and
techniques to estimate the modal masses of structures and
mechanical systems from experiments. In [19], it is men-
tioned that modal mass is the least reliable parameter when
classical modal analysis (CMA, also known as experimental
modal analysis) is being used. Furthermore, it is also very
sensitive to response magnitude.

In classical modal analysis, the modal masses are ob-
tained from the experimental FRF using some of the several
identification techniques, which are fully described in the
classical books of modal analysis [1-3]. Although it is well
known that a relatively high uncertainty is expected in the
modal masses when using CMA, only few papers can be
found in the literature discussing this subject.

Zivanovic et al. [19] estimated the modal mass corre-
sponding to the first vertical mode of a footbridge with CMA
using two different excitations (random excitation and
unaveraged chirp excitation) obtaining 53.200kg and
48.800 kg, respectively, the difference being 8.3%.

Allen and Sracic [20] applied CMA to determine the
modal parameters in a free-free beam, excited with an
impulse hammer measuring the response with a scanning
laser vibrometer. The modal masses for all the modes were
estimated with an error less than 20%. Much of the dis-
crepancy was attributed to the variation in the hammer
blows and uncertainty in the damping estimates.

In operational modal analysis (OMA), the forces are
unknown, and the modal masses cannot be estimated, i.e.,
only the unscaled mode shapes can be identified for each
mode [4, 21]. In order to overcome this problem, several
approaches have been proposed recently. One is based on
modifying the dynamic behavior of the structure by
changing the stifftness and/or the mass and then per-
forming operational modal analysis on both the original
and the modified structure [21-25]. Another one is using
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the mass matrix of a finite element model [26] or considering
for the experimental mode shapes having the same modal
masses as those of a finite element model [27].

Several methods have also been proposed to estimate
modal masses combining OMA and the response of the
structure subject to a certain artificial excitation. Pavic and
Brownjohn [28] developed a method for estimating the
modal masses of footbridges known to respond to pedestrian
excitation. Their method is based on quantifying the dy-
namic forces that generate the lively response, along with a
characterization of the initial part of the resonant build-up
due to these forces. In [29], the modal parameters of some
British rock lighthouses are estimated with CMA. The most
important modes have frequencies ranging between 4 Hz
and 7 Hz, and the modal masses are of the order of 200 .

Brandt et al. [30] proposed the OMAH technique where
operational modal analysis is combined with mono-
harmonic excitation applied by an actuator. Cara [31] de-
veloped the equations needed to compute the modal masses
from a state space model when CMA and OMA are com-
bined. Guillaume et al. [32] proposed the OMAX technique,
which is an operational modal analysis approach where
unknown forces as well as measurable input forces, which
can be deterministic or stochastic, are available.

Hwang et al. [33] proposed a method for estimating the
modal masses of a structure using a mass-type damping
device. Controllability and observability matrices are con-
structed using the identified system matrices and modal space
system matrices. The modal masses are obtained considering
that the product of controllability and observability matrices
does not change with the type of system matrices.

Fillekrug [34] developed the equations for estimating
effective masses and modal masses from base forces mea-
sured in base-driven tests. The author obtained accurate
results, and the accuracy only decreases in cases where the
magnitude of the effective masses is low.

1.3. Tuned Mass Dampers (TMDs). A tuned mass damper
(TMD) is a dynamical device (it consists of a mass, a spring,
and a damper) that is attached to a structure in order to
reduce the dynamic’s response of a structure [35-39]. The
mass and the stiffness of the TMD are tuned to the natural
frequency that needs to be damped, typically the first mode.

A TMD is characterized by three ratios: frequency ratio
(natural frequency of the TMD to the natural frequency of the
structure), mass ratio (mass of the TMD to the modal mass of
the structure), and damping (damping of the TMD to the
damping ratio of the structure) [35-37]. Thus, the modal mass
of the structure plays an important role in the design of tuned
mass dampers. As the mass of the damper depends on the
modal mass of the structure, how the modal mass is deter-
mined is an important factor in the design of a TMD [40].

The tuning of the properties of the TMD depends on the
loading acting on the structure. Den Hartog and Ormon-
droyd [35] proposed a method to minimize the response to
sinusoidal loading. The first successful analysis of the TMD
for seismic loading was introduced by Wirsching and Yao
[36].

The effect of considering soil-structure interaction in the
seismic response of reinforced concrete chimneys was in-
vestigated by Elias [41], where it is concluded that the in-
crease in the mass ratio reduces the seismic response. An
integrated damping system using both TMDs and double
skin facade (DSF) damping system was investigated in [42].
The author concluded that this system requires a signifi-
cantly reduced TMD mass ratio compared to traditional
TMDs. The response of the wind turbine tower under wind
loads was investigated by Gaur et al. [37]. They concluded
that an optimum damping ratio exists for each mass ratio.

1.4. Mode Shape Normalization. Mode shapes can be nor-
malized in many different ways, the most common tech-
niques being mass normalization, normalization to the unit
length of the mode shape (length scaling), and normali-
zation to a component (usually to the largest component)
equal to unity (DOF scaling). For this reason, the modal
mass of a mode shape is not unique because it is directly
related to the normalization method which has been used
to define the mode shape [1], making the physical inter-
pretation difficult.

Due to the fact that the modal mass corresponding to the
mass-normalized mode shapes ¢ is m = 1, the so-defined
dimensionless modal mass introduces problems interpreting
the modal equations given by equation (3) and the modal
coordinates that now have the unit [m/+/kg]. This is mis-
leading and unfortunate.

In [1-3], the modal mass is defined as a scaling pa-
rameter for the mode shapes, i.e., it is used to convert the
original unscaled mode shape vector {y} to the scaled (mass-
normalized) mode shape vector {¢}. The concept of scaling
factor a, which is related to the modal mass by

a=— (11)

is also used in the field of structural dynamics [4].

Expressions for calculating the modal mass in contin-
uous beams can be found in the literature [5-9]. As an
example, in continuous straight planar beams with length L,
distributed mass density p(x), and cross section with area
A (x), the modal mass (also denoted as generalized mass in
some books of structural dynamics) corresponding to an
arbitrary normalized continuous mode shape vector Y (x) is
given by [5-9]

L
my = [ pGOAGIY P (12)

In discrete systems, the mode shapes are vectors, and the
modal mass corresponding to the mode shape W can be
calculated with the following equation [1-8]:

m =y’ My, (13)

where M is the mass matrix.

A mode shape is said to be normalized to the unit length
ifits length is unity. In one-dimensional continuous systems,
the Euclidean length Ly of a function y(x), also known as
Euclidean norm or L? — norm, is defined as [43]



Ly - \UL hy ()P, (14)

where the subindex ‘E’ indicates Euclidean.
In discrete systems, the length of the mode shape vector
y (length of a vector in a Euclidean space) is defined as [43]

Ly = \JvT. (15)

A mode shape ¥ can be scaled to the unit length by

v
vy, = L (16)
where v, indicates the mode shape normalized to the unit
length (Euclidean length equals to unity).

It is easy to realize that this procedure will define the
modal mass estimated from equation (13) as something that
is heavily dependent upon the number of DOFs in the
model. In fact, it is easy to show that, for this case, the modal

mass is approximately proportional to

1
—. 17
moc (17)

Another approach to scaling is to scale the largest
component (or some other component) to a certain value
(for instance, equal to unity) [1-7]. This introduces the DOF
scaled mode shape {yp}:

oo = 1, (1
Ypn
where yp, is the considered DOF used for scaling.

If the mode shapes are normalized to the largest com-
ponent equal to unity, the DOF used for normalization
should be the same in the FE model and the test, i.e., the
DOF must be shared. If this is not the case, then the modal
mass is dependent upon the selected DOF.

1.5. Physical Interpretation of Modal Mass. Although the
concept of modal mass is defined in the classical books of
structural dynamics and modal analysis, the physical in-
terpretation of this modal parameter is rarely addressed.

The modal mass for the undamped and the propor-
tionally damped cases is usually defined as a scaling factor
for the mode shapes [1, 3, 11], i.e., it is used to convert the
original unscaled mode shape vector {y} to the more useful
mass-normalized mode shape vector {¢} [1-4].

When using modal superposition (see equation (3)), the
modal mass represents the mass of the single DOF systems,
after decoupling the equations by transformation to modal
coordinates [1-4].

In [44], it is demonstrated that the modal mass of a
simply-supported beam, when the mode shapes are nor-
malized to the largest component equal to unity, is the half of
the total mass of the system, whereas in fixed-fixed beams,
the modal mass is equal to the total mass of the system.

However, it seems like none of the classical ways of
dealing with the scaling problem of the mode shapes leads to
a modal mass that has the needed clarity in terms of physical
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meaning. Furthermore, since the results are dependent upon
the number of DOFs in the model, the individual quantities
do not seem to have much meaning at all.

In this paper, a new and better definition of the modal
mass is presented. This definition leads to significant im-
provements in the physical understanding of this modal
parameter. Firstly, the most important requirements for a
new definition of the modal mass are proposed. Then, a new
expression for the length of a continuous mode shape is
formulated introducing the concept of the volume matrix,
which again leads to a new definition of the modal mass for
the continuous case. The expressions derived for continuous
systems are later extended to discrete cases. Finally, the
concepts and equations formulated in the paper are illus-
trated by simple examples.

2. Basic Requirements

In order to achieve a better understanding of modal mass,
one would expect that a new definition would lead to a better
physical meaning of the modal mass, for instance, that the
physical unit is indeed [kg] and that the size of the modal
mass is a measure of the amount of mass moving in a given
mode.

Similarly, for the length of the mode shapes, since the
mode shape is pure geometry, it is natural to expect that a
good measure of the length is a pure geometrical measure,
independent of the mass distribution in the considered body.
It is also expected that since a “shape” normally means a
continuum of dimensionless numbers, the length is di-
mensionless and a measure of the average movement over
the mode shape.

For practical applications (and for the physical mean-
ing), it is important that the ways to estimate modal mass
and mode shape length are objective so that different people
will arrive at the same number for a given mode and a given
structure. At least, they should be able to agree on some
simple rules for obtaining these quantities so that they in-
dependently would arrive at the same estimates.

At this point, we will conclude that the most important
requirements for a new definition of the modal mass are as
follows:

(i) The modal mass must be physically meaningtul,
having the unit of [kg] and being a measure of the
amount of mass moving in a given mode

(ii) The length of the mode shape must be a pure
geometrical quantity, describing the average
movement of the considered mode

(iii) Estimation of modal mass and mode shape length
must be objective so that estimates obtained by
different people are equal

3. Basic Concepts

We will introduce basic concepts considering the formu-
lation in the continuous case where a mode shape ¢ = y (r)
is given as a function of the position r = {x,y, z} . The mode
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shape at a given point r has the three mode shape com-
ponents Yy, ¥, Y, , resulting in the magnitude

Wl =ly Ol = W2 () + O+ (19

The modal mass for the continuous case is now naturally
defined as

m= | plyrav, (20)

where integration is performed over the volume V of the
considered structure and p =p(r) is the mass density.
Similarly, the total mass is defined as

M = J pdV. (21)
\4

3.1. Mode Shape Length and Modal Mass. For the continuous
case, we will define the squared length L? of the mode shape
v as the average of the squared length [y|* of the mode shape
over the considered volume V:

1
L’ = —J 2qv. 22
% Vle (22)

This secures that the length definition has the same unit
as the mode shape. Thus, if the mode shape is dimensionless,
so is the length. If the mass density p is constant, then from
equation (20), we have

m = pV% Jv|q1|2dV = ML (23)

which is the central equation of this paper stating the fol-
lowing for the case of constant mass density.

The modal mass is equal to the product between the total
mass of the structure and the squared length.

If the considered body is constituted by two parts with
two volumes, V| with the mass density p, and V, with the
mass density p,, then the corresponding result is

\%4

|4 2 2 2 2
m = _IJ P1|‘l’v1| dv + _ZJ Pz“l’v2 dV = M, L} + M, L;,
Vl Vi V2 Vs

(24)

where yy, and yy, indicate the DOFs of the mode shape y in
volumes V, and V,, respectively, and

(25)

are the partial lengths now defined over the partial volumes
V| and V,, respectively.

Equation (20) easily generalizes to cases with many
volumes with constant mass density.

As indicated above, the total mass can either be calcu-
lated as the integral of the mass density over the total
volume, equation (21), or as the two similar integrals over
the two partial volumes V; and V,:

M= JVpldV+JVp2dV:M1 + M,. (26)

3.2. Moving Mass. Now, assuming that the mode shapes
vanish inside V,, [ (r)|* = 0, for r € V,, and using equation
(24) with L3 =0, we get

m=M,L}, (27)

which is obviously the right answer.
Using equation (23) on the total volume, we get

M V, +p,V
m=MI? = —vi2 =P 1P 2y (28)

v VAV,
2dv),

(29)

Due to the fact that

1 1/V 2 \%4
Lzz—J 2dv == —1J v —ZJ
v V(V1 Vl|"’V1| v, vJ"’Vz

the following relationship between the total length and the
partial lengths is derived:

L’V =LV, +L;V,. (30)
If L2 = 0, equation (30) results in
2 2
v =1V, (31)

and equation (28) can also be expressed as
|4
m="11 202y 12 (32)

Equation (32) is equal to equation (23) only if p; = p, or
V, = 0. This illustrates the validity of equations (22)-(24).

If p, = p, = p, then from equation (32), we have that
m = ML?* = ML}, i.e., we still get the same result for the
modal mass. So, adding the dead mass M, does not change
the modal mass because L3 = 0.

However, since we are looking for a unique relationship
between the modal mass and the length, we want the total
moving mass to be a well-defined quantity. We can find that
moving mass M, from equation (23), by defining the mode
shape vy, as a unitary translation inside V, that is, for
|q1(r)|2 = 1,r € V| because then using equation (23),

1
m=pV*J |‘|’U|2dV:PJ dv =M,. (33)
Viv v,

So, if the total moving mass is smaller than the total mass
in the considered system, dead mass is present.

The moving mass is a well-defined quantity, and
equation (23) defines a unique relation between the modal
moving mass and the mode shape length.



3.3. Apparent Mass. In the general case of a varying mass
density, we can define an average mass density as

M 1
p) = VoV vadv (34)

so that equation (23) still holds, but where the length is now
defined as

1
LZ:—J 244V, 35
v V|\l!| r (35)

where r = p/{p), and the total mass is given in terms of the
average density M = {p)V. We shall not use this definition
of the length, the reason being that the quantity contains
information about the mass distribution, and thus, as
defined in equation (35), is not a pure geometrical
measure.

Instead, we will start from equation (24) formulated for
an arbitrary number of constant mass distributions

2
m = ZMHLH' (36)

From equations (24) and (26), it is clear that the total
mass is M = ), M, and that the total length is

1
2 2
L = V Z V.L, (37)
n
so that from equation (36), we have
m=M,L* (38)
where the apparent total mass M, is given by
M, 12
M, = v ZeMaLy (39)
ZHVHL721

The advantage of using the definition of the length
given by equation (37) is that the length remains a pure
geometrical quantity. Unfortunately, this introduces a new
mass quantity, namely, the apparent total mass M ,, which
for nonuniform mass distribution is different from the
total mass and changes value from mode shape to mode
shape.

From equation (39), it is clear that if and only if the mass
density is uniform, then M, = M. Thus, the deviation of the
apparent total mass M, from the total mass M is a measure
of how much the mass distribution deviates from the uni-
form distribution.

3.4. Discrete Formulations. The discrete formulation follows
directly from the continuous formulation replacing the
integrals with proper similar summations. Similar to
equation (22), the squared length L? of the mode shape v
over a discrete number N of nodal points in the 3D space is
then

1
L? =2 Y WAV, (40)
n

where [y|? is the length of the mode shape ¥ = y (r,), where
the vector r,, is pointing to the nodal point # representing the
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volume AV, Inserting the volumes AV, into the diagonal
matrix V and, similarly, collecting the DOF of the mode
shape in the mode shape vector, equation (36) can be written
as

1
v

L = —y"vy. (41)

We should be aware that we are, here, using the same
symbol “y” for the mode shape as before, even though before
vy was vector field in the 3D space but now it is actually a
discrete vector containing the DOFs of the mode shape. The

discrete counterpart to equation (23) is now
1
m = pVV\pTV\V = ML, (42)

which, as before, is only valid for a constant mass density p.
Comparing this equation to the classical equation for the
modal mass given by equation (13) naturally extends the
definition of the volume matrix to the general nondiagonal
form

V=— (43)
p

where V and M are the volume and mass matrices of the
system, respectively. In this more general understanding of
the volume matrix, the matrix can be full and can content
rotational degrees of freedom. This also means that the
length definition given by equation (37) naturally extends to
cases with rotational degrees of freedom.

For two different volumes, V| with the mass density p,
and V, with the mass density p,, equation (24) still holds but
now with the length definitions:

2 1 o1
L= V71% Vy,,
(44)
21 g
L= AL V.

For the general case of a varying mass density, we find
the discrete expression for the length from equation (24):

1
reg Jv|q/|2pdV, (45)
which directly leads to
1
I’ = \—/WTMR_ 'y (46)

If the mass matrix M is diagonal, then R is a diagonal
matrix containing the elements p, representative for the
volume AV,,. Since M is symmetric, MR™! can be replaced
by R"'M or by the symmetric form R™Y>MR!?, At this
moment, it is interesting to note that the symmetric form
R >MR!? naturally defines a new definition of a mass
scaled mode shape v,,, = R™ 2y, but since it leads to mode
shapes with the unfortunate unit 1/~/kg, we will not follow
this lead any further.

Equation (46) naturally suggests the general volume
matrix:
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V=MR', (47)

which is not necessarily diagonal. For instance, using an FE
model, with the value p, of the mass density in a certain
element with the local mass matrix M,,, the corresponding
local volume matrix V,, is defined according to equation
(43):

V,=M,/p, (48)

and the global volume matrix is then assembled by the same
procedure as when assembling the local mass matrices to
form the global mass matrix. Following this procedure,
equations (32)-(35) still hold in the general case.

Before we leave this section, let us conclude that the two
important scalar quantities, the total mass M and the cor-
responding total volume V, can be found from any discrete
converged model as

T
M = yyMyy,

T (49)
V =y Vg,

where vy is a unitary translation vector as mentioned earlier.
We could also find the total mass and total volume adding all
matrix elements corresponding to translational degrees of
freedom (but then, we have to take into account if 2 or 3D
formulations are being used dividing the total sum by 2 or 3,
respectively).

4. SEREP Reduction

In this section, we will show that the so-defined modal mass
and modal length are invariant to the SEREP (system
equivalent reduction expansion process) reduction tech-
nique [45]. For this case, it is practical to consider a mode
shape cluster ¥ instead of the single mode shape. We can
then define the diagonal modal mass matrix

[m,] = ¥"MV. (50)

Using SEREP, we have the reduced mass matrix
M, =T'MT, (51)
where T = ¥, ¥} (and where we assume full rank, i.e., ¥, is

N, xN,). The modal mass matrix for the reduced mass
matrix is

[m,,] = YaMY, =¥, (¥, ¥)) M(¥,¥))¥, (52)
However, since (¥, ¥}) =1, from equation (52), it is

derived that
[Ma] = [m,]. (53)

Using the volume matrix V from equation (41), we can
define the modal length matrix

1
L’ = ‘—/‘I’TV‘I’. (54)

This matrix is clearly nondiagonal but positive definite so
that the notation L? makes sense. Now, defining the SEREP-
reduced volume matrix

7
V,=T'VT, (55)
we can calculate the length in the reduced system:
2 _lgr
| e G (56)

V a
And following the same procedure as for the modal
mass,

1 1
L= -—¥.T'VIY, = —¥'V¥ =L, (57)
v v

or in words,
Modal mass and length matrices are invariant to SEREP.

We should note that since the modal mass and modal
length are the same in all reduced systems when using
SEREP [45], equation (19) still holds in all reduced systems if
we use the simple rule that the total mass should be esti-
mated from the original system. The same is true for the total
volume.

This means that the two key quantities, the total mass
and the total volume, have to be estimated for the considered
system once and for all. One can use an experimental ap-
proach and use a weight scale to measure the total weight
and a volume scale, for instance, a fluid expansion method,
to measure the volume. This is of course the best possible
way to estimate these two key quantities.

If we cannot use the experimental way to estimate these
quantities, then we could use an analytical model or a
numerical model. An analytical model is often the simplest
and the best approach. For example, if we consider a beam
with length L and constant area A made out of material with
the constant mass density p, then the total mass is simply
M = pAL, and the total volume is simply V = AL.

If we want to use a finite element model to estimate the
quantities, then like for all other quantities, the model must
have converged in order to make sure that the estimated
quantities are reliable.

5. Mode Shape Scaling

We have now established the important linear relation
between the total mass of the considered system, the modal
mass of the considered mode shape, and the length of the
considered mode shape in case of uniform mass density:

m= ML, (58)

And we will now consider suitable rules for how to
choose the value for L. When a meaningful value for L has
been established, the modal mass is then totally defined by
equation (58). As explained in Section 1, we have to at least
consider the classical scaling, the length scaling, and the
DOF scaling.

5.1. Length Scaling. Considering the arbitrarily scaled mode
shape y with the length L, then a classical length scaling of v
would be defining the scaled mode shape v as



_y
V=7 (59)

Using equation (41), we find the resulting length of y; as

21 71 11 7

L = \—/WLV\PL = E v\l! V\[J =1 (60)

Thus, the classical length scaling leads to a version of
equation (55), where

m=M, (61)
or in words,

Using length scaling, the modal mass in constant mass
density systems is always equal to the total mass of the
considered system.

One can say that this is a simple rule and at least easy to
remember and to use and also practical because, now,
different people can easily arrive to the same number (or at
least similar estimates) because the art is only to estimate the
total mass of the system.

The drawback is of course that this modal mass does not
give us any information about how much mass is actually
moving in the different modes. If mass density is constant, all
the modes have the same modal mass. Even a local mode,
where nearly all movements are localized to a very small
region, still has the same modal mass. This is unfortunate,
but if one can live with this limitation, it might be a good way
to deal with the modal mass.

In nonconstant mass density systems, the modal mass is
different for each mode and equal to the apparent mass.

5.2. DOF Scaling. The classical DOF scaling is based on
choosing one of the DOFs in the system and then scale this
value to a certain number, for instance, to unity [1-4].

Before we go further into this scaling, let us consider an
abstract example. Like in Section 3, let us consider the case
where the continuous body is constituted by two parts with
two volumes, V', and V,, and let us assume that we consider
the abstract mode shape vy, as an unitary translation inside
V', and zero inside V.

1, reV,

2 p—
lyy (0] = { o rev, (62)

Just for simplicity, let us assume that the mass density is
constant, so from equation (20),

m= jv lyol’pdV = pV, = M,. (63)

Thus, the modal mass is then equal to the total mass
inside the volume V. It is also clear that if V| extends to the
total volume V =V, +V,, then the modal mass becomes
equal to the total mass of the system.

This case illustrates the DOF scaling, where the maxi-
mum value of |yy (r)|* is scaled to unity. Inspired by this
case, we will define the DOF scaled version as

Shock and Vibration

v

Yo = ax(jy (0)])

(64)

Using this scaling, the modal mass has the properties
m<M, (65)

and thus is a direct measure of how much mass is moving in
the considered mode shape. In words, we can express this as

Using largest component equal to unity, the modal mass in
constant mass density systems is always smaller than or
equal to the total mass of the considered system.

The advantage of this scaling is just that the size of the
modal mass now makes totally sense, but the drawback is
that we need to scale the largest component to unity, which is
the same as scaling:

max|\|1D| =1. (66)

In a model with only a few components, where one of the
DOFs is not directly equal to the DOF where the mode shape
is maximum, it is not so easy to find the scaling. The solution
is to know the ratio between one of the DOFs of the model
and the value max|yp| found in a refined model (ideally, a
model where all quantities of importance have converged).

5.3. Scaling Using SEREP. We start out with an initial model
where all important quantities have converged towards a
stable value; then, it is easy to conclude from the earlier
analysis that, for the length scaling, all reduced models
satisfy equation (61), i.e., in all reduced models, the modal
masses are the same and equal to the total mass of the
system.

Using DOF scaling, all common DOFs are still the same,
and the length, which can be estimated in any of the systems
reduced from the initial system, is the same; so, also, all
modal masses are the same, and the property expressed in
equation (65) is true in all the reduced systems. One should
note that equation (66) only holds in systems which are
reduced to a size where max|y| is the same as in the initial
system. If this is not the case, then max|y| must be estimated
in a more refined system.

6. Examples

6.1. A Cantilever Beam with Constant Density. Several
simulations were carried out on a planar finite element
model of a cantilever beam with constant mass density and
constant cross section (Figure 1). The geometric and ma-
terial properties of the cross section are also shown in
Figure 1.

The analytical mode shapes corresponding to the first
three modes and normalized to the largest component equal
to unity are shown in Figure 2 (solid lines). On the contrary,
the analytical modal masses and the squared length of the
mode shapes are presented in Table 1. In this particular case,
the largest component is at the free border of the beam for all
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FiGgure 1: Cantilever beam with constant mass density.
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FiGure 2: First three mode shapes normalized to the largest
component equal to unity. Constant mass density (solid lines).
Nonconstant mass density (dashed lines).

the modes, and the modal masses are equal for all the modes
and so is the length of the mode shapes.

In order to study the convergence of the equations
proposed in this paper, the finite element model was dis-
cretized with different number of linear bending finite el-
ements (Figure 1) ranging from 2 to 100. Moreover, both
consistent and lumped mass matrices were considered in the
simulations.

The modal masses estimated with equation (13) for the
first three modes using different number of elements are
presented in Figure 3. It can be observed that the estimated
modal masses converge very fast to the analytical solution
when a consistent mass matrix is used, the error being less
than 1% for all the modes when the model is discretized with
6 elements. When a lumped mass matrix is considered, the
convergence is achieved with more elements (error less than
1% with 9, 23, and 36 elements for the first, second, and third
modes, respectively). Due to the fact that the mass density is

constant, the ratio m/L? is constant for all the modes, and the
same conclusions can be inferred for the length of the mode
shapes (Figure 4).

Table 2 presents the results obtained with a reduced
model using SEREP when only three DOFs are considered.
As expected from the theory formulated in Section 6, the
modal masses and the length of the mode shapes of the
reduced model are exactly the same as those of the full
model, independent of the number and the distribution of
the active DOFs. The reduced mass and volume matrices are
also shown in Table 2.

6.2. A Cantilever Beam with Nonconstant Density.
Simulations were also performed on the same cantilever
beam but with nonconstant mass density. The geometric and
material properties of the cross section are shown in
Figure 5.

The analytical mode shapes corresponding to the first
three modes and normalized to the largest component equal
to unity are shown in Figure 2 (dashed lines). It can be
observed that the first mode shape is very similar to that
corresponding to the constant mass density case, but sig-
nificant differences can be seen in the second and third
modes.

The analytical modal masses and the squared length of
the mode shapes are presented in Table 1. As the mass
density is not constant, equation (25) does not hold, and an
apparent mass can be calculated for each mode (see Table 1).

The finite element model was discretized with different
number of linear bending elements ranging from 4 to 100.
Both consistent and lumped mass matrices were considered
in the simulations.

The modal masses estimated with equation (14) using
different number of elements are presented in Figure 6. It
can be observed that, again, the estimated modal masses
converge very fast to the analytical solution when a
consistent mass matrix is used, the error being less than
1% for all the modes with 7 elements. When a lumped
mass matrix is considered, the convergence is achieved
with more elements (error less than 1% with 12, 24, and
36 elements for the first, second, and third modes,
respectively).

With respect to the length of the mode shapes (Figure 7),
the same speed of convergence as that observed for the
constant mass density case was obtained for the nonconstant
density case (error less than 1% with 6 elements and con-
sistent mass matrix).

6.3. A Rigid Block on Springs. In order to illustrate how the
equations proposed in this paper work on discrete systems
modelled with lumped masses and lumped inertias, the
modal masses and mode shape lengths of a rigid block on
two springs (see Tables 3-5) vibrating in the x-y plane
(bouncing mode and pitch mode) have been calculated. We
are illustrating the equations corresponding to both the
continuous and the discrete case.
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TaBLE 1: Modal masses, effective masses, and length of mode shapes for the cantilever beams.

Model
Constant density (Figure 1) Nonconstant density (Figure 5)
Total mass (kg) 16 16
M, = 14.10
Apparent mass (kg) Equal to total mass, M, = M, = M _; = 16 M,, =15.93
M, = 16.06
L2 =0.2517
Squared length of mode shapes L3=12=12=025 L% =0.2049
12 = 0.2063
m, = 3.549
Modal mass (kg) my=m,=my =4 m, = 3.265
my = 3.313
Mode 1
55 T T T T T T T T T
Mode 1
_ s 1 0.35 T T T T T T T T T
=4
£ as| ] 03| ]
g
g a}
[ N
s 4 0250
3.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0.2 | | ! | | | | | |
Number of elements "0 10 20 30 40 50 60 70 8 90 100
—— Lumped Number of elements
—— Consistent Lumped
Mode 2 —— Consistent
5.5 T T T T T T T T T Mode 2
0.35 T T T T T T T T T
B °f 1
=
« 03 .
& 45f ]
E al
E ~
S 4t 0.25 F
=
3.5 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 0.2 ! 1 1 ! 1 1 1 1 1
Number of elements 0 10 20 30 40 50 60 70 80 90 100
Number of elements
—— Lumped
—— Consistent —— Lumped
—— Consistent
—_— 035 —_—
g” ] 03} ]
% A (o}
g N
o 0.25
3
=}
=
1 { 0.2 1 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 30 90 100 0 10 20 30 40 50 60 70 80 90 100
Number of elements Number of elements
—— Lumped —— Lumped
—— Consistent —— Consistent
FiGure 3: Convergence of the modal masses for the first three F1Gure 4: Convergence of the length of the mode shapes for the first

modes of the cantilever beam with constant mass density. three modes of the cantilever beam with constant mass density.
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TABLE 2: Results obtained with a reduced model using SEREP [45].

Active DOFs

[33, 65, 99]

[49, 75, 99]

Mass matrix (kg)

-12941 8972

[18681 —12941 4336
4336 -3009

-8616 10493 —4554

—3009:|
3735 -4554 1985

|:7083 -8616 3735 ]
1017

2.3798 -1.6485 0.5523 0.9023 -1.0976 0.4578
Volume matrix (m*) -1.6485 1.1430 -0.3834 -1.0976 1.3367 -0.5801
0.5523 -0.3834 0.1296 0.4578 -0.5801 0.2528

Length of mode shapes

12=12=12=025

Modal mass (kg)

m; =m, =my =4

L=2m

= 6500 kg/m>
P4 &m E=2x 10"'N/m?

I=5%x10"m*

p3 = 8500 kg/m? A =9.846 x 10™*m?

Total mass: 16 kg

P> = 9500 kg/m>

p1 = 8000 kg/m?

FIGURE 5: Cantilever beam with nonconstant mass density.

The block has constant density p, dimensions a x b x c,
total mass M = pabc, total volume V = M/p, and inertia | =
M/12 (a* + b*) with respect to the center of gravity of the block.

If we consider the block as a continuous system, the
analytical expressions of the mode shapes in both direc-
tions, x and y, are needed (see Table 3). The mode shapes
have been normalized to the largest vertical component
equal to unity. The modal masses and the length of the
mode shapes calculated with equations (16) and (18) are
presented in Table 3.

If the system is modelled with two translational DOFs
(see Table 4), the mass matrix, the volume matrices, and the
mode shapes are presented in Table 4. The modal masses and
the mode shape lengths calculated with equations (37) and
(38), respectively, are shown in Table 4.

The results obtained with the same system modelled with
one translation and one rotational DOF are shown in Table 5.

Mode 1
5 T T T T T T T T T
= 4.5} L
&
W
g 4t 4
=
K|
S 35[ 3
=
3 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Number of elements
—— Lumped
—— Consistent
Mode 2
5 T T T T T T T T T
= 4.5F s
&
W
g 4t 4
=
|
S 35f ]
=
3 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Number of elements
—— Lumped
—— Consistent
Mode 3
5 T T T T T T T T T
= 45 1
=
2 4
2 [ ]
E
=
S 35[ ]
=
3 1 . . L . 1 . 1 1

0 10 20 30 40 50 60 70 80 90 100
Number of elements

—— Lumped
—— Consistent

FiGure 6: Convergence of the modal masses for the first three
modes of the cantilever beam with nonconstant mass density.
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0.35

Mode 1

03}

L2

0 10 20 30 40

50 60 70 80 90 100

Number of elements

—— Lumped
—— Consistent

0.35

Mode 2

03¢

025\

LZ

0.2+t

0.15

0 10 20 30 40

50 60 70 80 90 100
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0.35

Mode 3

03}

0.25 +
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0.15

0 10 20 30 40

50 60 70 80 90 100
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F1GUre 7: Convergence of the length of the mode shapes for the first three modes of the cantilever beam with nonconstant mass density.

In can be seen from Tables 3-5 that the obtained values
of the mode shape lengths and the modal masses are the
same using different models. Moreover, as the density is
constant, the modal mass is equal to the product between
the total mass of the structure and the squared length. This
example demonstrates that the concepts and equations
formulated in this paper can also be easily extended to
discrete systems modelled with lumped masses and/or
lumped inertias.

7. Discussion

Considering a certain body, first, one has to decide which
parts of the body have constant mass density. Let us first
assume that we can identify a number of different bodies with
the volumes V,,, where this is the case. Then, for each of these
partial bodies, the corresponding modal mass and modal
length are calculated according equations (9) and (37):

T
m, = \VnMn‘Vn’
L1 g (67)
L =—vy V., v,
n Vn‘ljn n‘l"n

where v, is the part of the mode shape y corresponding to
the considered partial body V,, m, and L2 are the con-
tributions to the modal mass and the mode shape length in
the body, and V, is the volume of the body. M,, is the mass
matrix, and V, is the volume matrix of the considered
partial body, respectively, where V,, is found from equa-
tion (44). This means that we can calculate separately the
modal mass m,, and the length L2 of each partial body V,,
(for example, in a finite element model, we can calculate
the modal mass and the length of each of the finite ele-
ments of the model) and then calculate the total modal
mass and the total length as the sum of the contributions of
each body.
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TaBLE 3: A rigid block on springs. Continuous formulas.
Mode 1 Mode 2
4
3
b x 1 1
a
K K
VYix =0 Yy = 2x/a
Mode shapes Y= 1 vy, Y _(2y/b)
Length of mode shapes, L* :é [V (y2 +\p‘2,)dV L=1 L2 = (1/3)(1 + (b*/a?))
Modal mass, m = [|p (42 +y2)dV m, =M my = (M/3)(1 + (b*/a?))
TasLE 4: A rigid block on springs. Discretization with two translational DOFs.
Mode 1 Mode 2
A 1 2 A
74 'y 2
1
b l x
a
K K
o o
1 -1
Mode shapes vy, = { ] J» v, { ] }
. (M/4) + (Jla*) (M/4) - (J1a?)
Mass matrix M [(M/4)—(]/a2) (M/4) + (J/a?)
. (Vi4) + (V/12) (1 + (b*/a?)) (V/4) - (V/12)(1 + (b*/a?))
Volume matrix V [ (V/4) = (VI12)(1 + (b*a*) (V/4)+ (VI12)(1 + (b*/a?))
Length of mode shapes, L? = (1/V)y"Vy I} =1 L2 = (1/3)(1 + (b*/a?))
Modal mass, m = y"My m; =M m, = (M/3) (1 + (b*/a?))
The total mass and the total volume of each partial body m, = M, L, (69)

are then
M, = ygMyy,
v (68)
Vn = WUVn‘PU’

where Yy is a unitary translation. For each partial body, the
so-calculated quantities should satisfy equation (47):

for all modes. If this is not the case, the apparent total
masses, as introduced in equation (39), are not equal to the
total mass; then, it means that the assumption of constant
mass density inside the considered partial body is wrong,
and the body should be subdivided into smaller parts.
However, if equation (65) holds for all partial bodies and all
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TaBLE 5: A rigid block on springs. Discretization with one translation and one rotation.

Mode 1 Mode shapes

Mode shapes

_ 0
Y271 24

Mass matrix M

7]

Volume matrix V

Vv 0
0 V/12(1 + (b*/a?))

Length of mode shapes, L? = (1/V)y"Vy

L2 = (1/3)(1 + (b*/a?))

Modal mass, m = yTMy

m, = (M/3)(1 + (b*/a?))

modes, then we can conclude the final results for the total
body:

m=Yym,M=) M, V=)V,L" =YL (7

If we are not working with well-defined parts each
having its own constant mass density but rather a density
that is varying smoothly over the body, then it might be
more convenient to use all elements as partial bodies. In this
case, we can follow the same procedure as mentioned above,
but where the volume matrix V, is now simply found from
equation (49).

The final question still remains—how should we choose
the scaling? The answer is that it does not matter because
whatever scaling we use, a linear relation exists between
squared length and the modal mass given by equation (39),
and we can accurately calculate the relation for any of the
considered modes.

At this point, it is worth noticing that we can in a way
forget about the dead mass problem because any influence is
removed using equation (39). However, of course, if the
length contributions from all modes are zero for a certain
partial body, then it might be useful to remove that body
from the description/modelling of the problem.

Finally, coming back to the initial requirements
mentioned in Section 2, we can conclude that most of them
have been fulfilled with the present proposal. Both modal
mass and mode shape length have now reasonable units
and a well-defined meaning. Also, it is easy for anybody to
achieve the same result no matter what scaling has been
used because the final answer is not the modal mass, and

the final answer is all quantities need to be defined by
equation (49). However, one can say that since the DOF
scaling max|yp| =1 is more meaningful than the length
scaling and because the modal masses using DOF scaling
clearly illustrate the amount of mass moving under the
considered mode shape, it might, in many cases, be more
meaningful to use this scaling than any other possible
scaling.

8. Conclusions

The concept of length of a continuous mode shape has been
defined in this paper. The new definition depends on the
mode shape and how the volume is distributed in the
structure. Then, the concept of length has been extended to
discrete systems by introducing the concept of a volume
matrix. This length definition has the same unit as the mode
shape, but it does not coincide with the length of a vector in
an Euclidean space that is normally used in linear algebra.
We omit the definition from linear algebra because in that
case, the length depends on the number of components of
the vector.

A new and better definition of the modal mass, which is
physically meaningful and does not depend on the number
of DOFs of a discrete model, has been formulated. It is
demonstrated that if the mass density of the system is
constant, then the modal mass is always equal to the product
between the total mass of the structure and the squared
length.

If the mass density is not constant, the concept of ap-
parent mass is proposed. This apparent mass is different for
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each mode and depends on the mode shape and how the
mass is distributed in the structure. In these cases, the modal
mass is always equal to the product between the apparent
mass and the length squared.

If a model is reduced with the SEREP reduction tech-
nique, it has been demonstrated that the modal mass and the
length of the mode shapes are invariant to SEREP, i.e., the
modal mass and the modal length are the same in all reduced
systems and equal to the modal mass and length of the full
model.

In constant mass density systems, when mode shapes are
normalized to the length, the modal mass is always equal to
the total mass of the considered system. The drawback is that
this modal mass does not give us any information about how
much mass is actually moving in different modes. For ex-
ample, local and global modes have the same modal mass, in
spite of the fact that global modes are moving much more
mass. In nonconstant mass density systems, the modal mass
is different for each mode and equal to an apparent mass.

When mode shapes are normalized to the largest
component equal to unity, the modal mass is a measure of
how much mass is moving in the considered mode. The
drawback is that we need to scale the maximum component
equal to unity, and in a model with only a few DOFs, where
the DOF with the largest component is not measured, it is
not easy to find the right scaling because we have to find the
largest component in the converged model.
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