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1 Introduction

A holographic description of anisotropic but homogeneous phases of strongly coupled the-

ories is interesting for its potential application to a varied set of systems in high energy

physics and condensed matter physics.

In the context QCD, the initial stages of the quark-gluon plasma formed in heavy

ion collisions are highly anisotropic due to the initial conditions. The effect of the initial

anisotropy on the properties of the quark-gluon plasma using holography was first studied

in [1, 2]. Anisotropic phases could also appear in cold but dense matter such as the
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one found in the interior of neutron stars, especially in the presence of strong magnetic

fields. This in principle could lead to the observation of stars more compact than the ones

allowed by isotropic matter, see, e.g., [3, 4]. Strongly coupled anisotropic phases have been

studied using holography in a variety of setups, including axionic/dilatonic sources [5–20],

electric [21–23] and magnetic fields [24–33] or both [34–38], and p-wave superfluids [39–

44]. Strongly coupled holographic matter has also been studied in the context of compact

stars [45–52], so a combination of the approaches will lead us to a fascinating unknown

territory, the “mass-gap” between the heaviest neutron stars and the lightest black holes.

In systems with strongly correlated electrons, anisotropic nematic phases appear in

the presence of magnetic fields in ultra-clean quantum Hall systems and in Sr3Ru2O7,

and there is evidence that similar phases are present in iron-based and cuprate high Tc
superconductors (see [53] for a review on the topic). The application of holography to

anisotropic and multilayered condensed matter systems has produced many interesting

results [54–56].

Among one of the most surprising observations in holographic duals with broken spatial

symmetries is the existence of ‘boomerang’ flows [57, 58], where the renormalization group

(RG) flow drives the theory in the far UV and far IR to isotropic fixed points with the same

number of degrees of freedom, as counted by the holographic c-function [59]. This seems at

odds with the usual intuition of Wilsonian flow where the number of degrees of freedom is

reduced by coarse graining as one moves from higher to lower energy scales. Nevertheless,

the non-monotonicity is not in contradiction with any of the existing c-theorems [59–65],

as all rely on Lorentz invariance to prove the existence of a monotonic quantity under the

RG flow evolution. In principle, a similar measuring device may not exist in an anisotropic

flow (or be a very complicated object) even if the Wilsonian intuition is correct. An

interesting question is whether boomerang flows are a rarity or are they to be expected

under appropriate circumstances.

In this paper, we construct a family of holographic models dual to anisotropic states

in a strongly coupled gauge theory. Our construction is based on the near-horizon limit

of a stack of Nc D3-branes intersecting along 2 + 1 dimensions with Nf D5-branes. We

take the Veneziano limit where Nc → ∞ and Nf/Nc remains fixed. On the gravity side

this is realized by considering the backreaction of D5-branes in the geometry sourced by

the D3-branes. The D5-branes are smeared along the transverse directions parallel to the

D3-branes, in such a way that the resulting solution is homogeneous but anisotropic along

one of the spatial directions of the field theory dual. Configurations of this type were

previously constructed and studied in [54–56]. The main novelty in this work is that we

allow the density of D5-branes to go to zero at the asymptotic boundary of space. Similar

supergravity solutions have been constructed in [66, 67] to study the Higgsing and Seiberg

dualities of cascading theories and their relations with the tumbling phenomena in theories

of extended technicolor. From the point of view of the field theory dual this means that

instead of modifying the action by adding additional degrees of freedom localized on the

(2+1)-dimensional defects, the anisotropy is produced spontaneously. This is similar to the

anisotropic p-wave superfluids, except that the anisotropy is present even at zero density.

In the case at hand, the operator that acquires an expectation value is a three-form and
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has conformal dimension ∆ = 3. In four dimensions it is related by Hodge duality to an

axial vector field, thus parity is unbroken. The operator is in a non-trivial representation

of the R-symmetry group, which is then also spontaneously broken. This is reflected in the

dual geometry as a deformation of the internal space.

The configurations we find are realized at vanishing temperature and density. They are

also supersymmetric, thus stability is guaranteed. As far as we are aware there are no other

examples in the literature with these characteristics, although there are supersymmetric

examples where the anisotropy is introduced by an explicit breaking e.g. [68–70]. It should

be mentioned that although we based our construction on a string theory setup, we have

not shown that the D5-brane density we use can actually be obtained from the smearing of

localized D5-branes, so our construction is phenomenological in this sense. One may ask

the question of how a state of this type might be reached, a possibility is that the system

was put under the action of an external force that induced the anisotropy and, when the

force was turned off, the system remained in an anisotropic state. This would be analogous

to what happens to a lump of iron when it is put in the presence of a magnet. The iron is

magnetized and remains in this state even after the magnet is removed.

In the UV, the field theory flows to an isotropic fixed point, the well-studied N = 4

Yang-Mills in (3 + 1) dimensions. In the IR, we find two distinct behaviors depending on

the density of D5-branes close to the origin of the bulk. If the density falls fast enough,

the theory follows a boomerang flow and goes to an isotropic fixed point similar to the

one in the UV. Our analysis thus indicates that boomerang flows appear quite generically

in holographic duals if the deformation is irrelevant enough in the IR. If the density goes

to zero more slowly, or goes to a constant, the IR is Lifshitz-like: there is an associated

scaling symmetry of the anisotropic spatial direction. In order to characterize the flow we

study the evolution of anisotropy and use different proposals for c-functions, none of which

turn out to be monotonic. However, some quantities have lower values in the IR than in

the UV, so a weaker version of the c-theorem might exist for anisotropic systems.

The paper is organized as follows. We begin in section 2 by laying out the ten-

dimensional background geometry and pay special attention to both the UV and IR

regimes. We also discuss the field theory interpretation of our supergravity solution by

first consistently reducing the geometry to five dimensions and then identifying the op-

erator in the UV conformal theory that is responsible for the breaking of the isotropic

symmetry spontaneously. We then continue in section 3 to analyze the solution. We define

an effective Lifshitz exponent at any energy scale. We also discuss different definitions for

the c-functions via null congruences and via entanglement entropies. Section 4 contains

our final thoughts and future directions that we aim to study.

2 The supergravity solution

In this section we will briefly discuss the ten-dimensional background geometry that we

have constructed. We will also outline the user-friendly effective action for five-dimensional

bulk geometry which can be directly adopted in various applications.
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2.1 Background geometry

Let us consider the following array of Nc D3-branes and Nf D5-branes:

0 1 2 3 4 5 6 7 8 9

(Nc) D3 : × × × × − − − − − −
(Nf ) D5 : × × × − × × × − − −

(2.1)

In (2.1) the D3-branes are color branes which generate an AdS5 × S5 space dual to N = 4

super Yang-Mills (SYM), a gauge theory in four spacetime dimensions. The D5-branes

create a codimension one defect which deforms anisotropically the (3 + 1)-dimensional

theory. This deformation is reflected in the ten-dimensional metric when the backreaction

of the D5-branes is taken into account. To find these backreacted geometries we will follow

the smearing approach (see [71] for a review) and will homogeneously distribute the D5-

branes in such a way that a residual amount of supersymmetry is preserved. The general

form of the smeared type IIB backgrounds corresponding to the D3-D5 array in (2.1) was

found in [72] (see also [54, 55]). To write the deformed metric, let us represent the five-

sphere S5 as a U(1) bundle over CP2. The ten-dimensional backreacted metric can then be

written as

ds2
10 = h−

1
2
[
− (dx0)2 + (dx1)2 + (dx2)2 + e−2φ (dx3)2

]
+h

1
2

[
ζ2e−2f dζ2 + ζ2 ds2

CP2 + e2f (dτ +A)2
]
, (2.2)

where φ is the dilaton of type IIB supergravity, h is the warp factor, and f is the squashing

function of the internal space. These functions are assumed to depend only on the radial

holographic coordinate ζ; boundary is at ζ = ∞ and the origin of spacetime is at ζ = 0.

Moreover, A is a one-form on CP2 inherent to the non-trivial U(1) bundle. The preservation

of two supercharges for our Ansatz leads to a series of first-order differential equations for

the functions in (2.2). These equations can be combined and reduced to single second-order

equation for a master function W (ζ) [55, 72], in terms of which f and φ are given by

e2f =
6 ζ2W

6W + ζ dWdζ
, e−φ = W +

1

6
ζ
dW

dζ
. (2.3)

The warp factor h can be written in terms of the following integral

h(ζ) = Qc e
−φ(ζ)

∫ ∞
ζ

dζ̄

ζ̄5W (ζ̄)
, (2.4)

where Qc is related to the number Nc of D3-branes as follows

Qc = 16π gs α
′ 2Nc . (2.5)

The second-order differential equation satisfied by the master function W is:

d

dζ

(
ζ
dW

dζ

)
+ 6

dW

dζ
= −

6Qf p(ζ)

ζ2
√
W

, (2.6)
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where Qf is a constant proportional to the number Nf of D5-branes and p(ζ) is a profile

function which characterizes the distribution of D5-branes along the holographic direction

ζ. The type IIB supergravity background is complemented with Ramond-Ramond three-

and five- forms, whose explicit expressions are written for completeness in appendix A.

They, apart from elucidating the field theory connection, do not play a significant role in

the current paper.

The undeformed AdS5 × S5 solution corresponds to taking p = 0 and W = 1. In

this paper, we are interested in the case in which the geometry becomes AdS5 × S5 only

asymptotically in the UV and thus W (ζ)→ 1 and p(ζ)→ 0 in the region ζ →∞. We will

argue in section 2.2 that we can achieve this by allowing a VEV for a three-form field, which

then induces anisotropy at lower energy scales. As shown in [72], the smeared D5-branes

contribute to the energy density as TD5
00 ∝ 3p + efdp/dζ. Clearly, this expression is not

positive definite in general when p decreases with ζ, as it happens for large ζ. However, in

the asymptotic AdS5×S5 geometry ef ∼ ζ for large ζ and so the positive energy condition

is tantamount to demanding that p(ζ) should decrease as p ∼ ζ−3 or more slowly, if we

want to have a positive energy density TD5
00 in the UV, in such a way that we can interpret

the solution as sourced by ordinary D5-branes with positive tension. We have succeeded

in finding a two-parameter family of solutions fulfilling this requirement. These solutions

are derived in detail in appendix A. Let us now illustrate that the above properties are

satisfied by our solutions. The master function of these solutions reads as follows

W (ζ) = 1 + Qf

[
1

4(κ ζ)4
F

(
4

m
,
3 + n

m
;

4 +m

m
;−(κ ζ)−m

)
+

(κ ζ)n−1

5 + n
F

(
5 + n

m
,

3 + n

m
;

5 +m+ n

m
;−(κ ζ)m

)]
, (2.7)

where F are hypergeometric functions, κ is a constant with units of mass and n and m

are arbitrary non-negative dimensionless constants. However, we will later show that for

physical considerations, we need to restrict the allowed domain for solutions (2.7) to

n ≥ 1

3
, 4 > m > 0 . (2.8)

Finally, the profile function corresponding to (2.7) is

κ p(ζ) =
√
W (ζ)

(κζ)n(
1 + (κζ)m

)n+3
m

. (2.9)

In figure 1 we have depicted the profile function for select values of n to show that for all

cases it vanishes rapidly enough at the UV, but in the IR it either vanishes (n > 1) or goes

to a constant (n < 1). The profile has a global maximum at some intermediate energy

scale. In the figures to follow we have indicated these global maxima by asterisks.

Given the master function we can construct all the functions of the supergravity solu-

tion; see appendix A. We have checked that the resulting geometry is free from curvature

singularities. In the following, let us focus on the asymptotic behaviors.
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n=1/3

n=1/2

n=2/3

n=2

n=3

n=4

0.001 0.010 0.100 1 10
κζ

0.2

0.4

0.6

0.8

1.0

1.2

κp

Figure 1. We illustrate the profile function (2.9) for various choices of n, while keeping m = 2 and

Qf = 1 fixed. The value of n increases as gazing curves from top to bottom. The profile peaks at

some O(1) radial coordinate, which will be indicated in the coming figures with asterisk symbols.

2.1.1 UV regime

The expansion in the UV region of the geometry ζ →∞ is

W = 1 +
3Qf

4(κζ)4
+ . . . , ζ →∞ . (2.10)

This indeed yields a sufficiently rapidly decreasing density p(ζ) ∼ ζ−3:

p =
κ−1

(κζ)3

(
1 +

3Qf
8(κζ)4

− n+ 3

m(κζ)m
+ . . .

)
. (2.11)

Let us next show that the background is sourced by branes with positive tension. The

behavior of the energy density of the D5-branes close to the boundary is

TD5
00 ∝ 3p+ efp′ ' κ−1

(κζ)3

[
−

9Qf
4(κζ)4

+
n+ 3

(κζ)m

]
. (2.12)

In order to remain positive asymptotically, the first term should decay faster than the

second, which restricts m < 4.1 Assuming this condition holds, the expansions of the

dilaton and the warp factors are

e−φ ' 1 +
Qf

4(κζ)4
, e2f ' ζ2

(
1 +

Qf
2(κζ)4

)
, h ' Qc

4ζ4
. (2.13)

Therefore, the dilaton vanishes asymptotically and the geometry approaches AdS5 × S5

with radius R4
UV

= Qc/4.

1In the case m = 4 we could still have TD5
00 > 0 if the density of D5 branes is small enough Qf ≤ 4(n+3)

9

(the subleading term is positive when the bound is saturated), however, we will not study this possibility.
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2.1.2 IR regime

Away from the UV region the metric becomes anisotropic, but it does not necessarily stay

anisotropic indefinitely. The behavior in the IR ζ → 0 depends on the profile of the D5-

brane density, in particular, on the value of the exponent n in (2.9). We can distinguish

two cases depending on whether n > 1 or n < 1, with a limiting case n = 1 between the

two. The master function has the following IR expansions, depending on the value of n,

W '


wn,m +

6Qf
(n+ 5)(1− n)

(κζ)n−1 , n > 1

−Qf log(κζ) , n = 1

6Qf
(n+ 5)(1− n)

(κζ)n−1 , n < 1 ,

(2.14)

where

wn,m = 1 +
Γ
(

4
m

)
Γ
(
n−1
m

)
mΓ

(
3+n
m

) Qf . (2.15)

From these expressions one can infer the expansion for the D5-brane density

p '



κ−1√wn,m(κζ)n , n > 1

κ−1

√
6Qf
n+ 5

(κζ)(− log(κζ))1/2 , n = 1

κ−1

√
6Qf

(n+ 5)(1− n)
(κζ)

3n−1
2 , n < 1 .

(2.16)

The density at ζ = 0 remains finite as long as n ≥ 1/3. In the IR region p is growing and

positive for n > 1/3, in which case it is guaranteed that TD5
00 ≥ 0. The limiting case n = 1/3

matches with the behavior of a constant density of massless defects constructed in [72].

The behavior of the metric is qualitatively different in the case n > 1 and n < 1. For

n > 1 the solution resembles the “boomerang” flow [57],2 in the sense that in the IR the

geometry becomes isotropic again and approaches AdS5 × S5 with the same radius as the

UV geometry:

e−φ ' wn,m −
Qf
n− 1

(κζ)n−1 ' wn,m

e2f ' ζ2

(
1 +

Qf
wn,m (n+ 5)

(κζ)n−1

)
' ζ2

h =
Qc
4ζ4

(
1 +O((κζ)n−1)

)
. (2.17)

The only difference between the UV and IR geometries is the magnitude of the dilaton,

i.e., the coupling constant has flown, and that the length scale in the direction transverse

to the D5-branes has been renormalized by a constant factor. In the n = 1 case the metric

2Notice, however, that in [57] translation invariance is explicitly broken.
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deviates from the AdS solution by logarithmic factors. From now on, we will not consider

n = 1 any further.

When n < 1 the anisotropy along the spatial direction transverse to the D5-branes

survives in the IR and the geometry becomes of Lifshitz-type. The expansion of the dilaton

and warp factors of the metric is (ζ → 0):

e−φ '
Qf

1− n
(κζ)n−1

e2f ' 6

n+ 5
ζ2

h =
n+ 5

6(n+ 3)

Qc
ζ4

(
1 +O((κζ)1−n)

)
. (2.18)

Let us write the ten-dimensional IR metric as:

ds2
IR = ds2

5 + dŝ2
5 . (2.19)

After a convenient rescaling of the Minkowski coordinates, the non-compact part of the

metric can be written as:

ds2
5 =

ζ2

R2

[
− (dx0)2 + (dx1)2 + (dx2)2 + (µζ)2(n−1) (dx3)2

]
+
R2

ζ2
dζ2 , (2.20)

where µn−1 = Qfκ
n−1/(1− n) and the radius R is given by:

R4 =

(
n+ 5

6

)3 Qc
n+ 3

=
4

n+ 3

(
n+ 5

6

)3

R4
UV

. (2.21)

The compact part of the metric is a squashed version of S5, namely:

dŝ2
5 = R̂2

[
ds2

CP2 +
6

n+ 5
(dτ +A)2

]
, (2.22)

where the radius R̂ is related to R as:

R̂4 =

(
6

n+ 5

)2

R4 =
n+ 5

6(n+ 3)
Qc =

n+ 5

6

4

n+ 3
R4

UV
. (2.23)

Notice that the non-compact part of the metric is invariant under the following anisotropic

scale transformations:

ζ → ζ/Λ , x0,1,2 → Λx0,1,2 , x3 → Λn x3 , (2.24)

where Λ is an arbitrary positive constant. This means that, effectively, the x3 direction

has an anomalous scaling dimension. In canonical convention, with a general Lifshitz-like

anisotropic scaling, the coordinates transforming as in (2.24), with x3 → Λ
1
z x3, the dy-

namical exponent z is a measure of the degree of anisotropy associated with this coordinate

direction. Thus, in our model

z =
1

n
, n < 1 . (2.25)

Notice also that the dilaton transforms as eφ → Λn−1 eφ. In section 3.1 we will discuss the

running of the dynamical exponent in more detail.
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2.2 Field theory interpretation

To complete this section we give a field theory interpretation of the solutions presented

above. With this purpose it is convenient to formulate our backgrounds as solutions of

a five-dimensional gravity theory. This reduced theory was obtained in [54] for the case

of massless flavors, in which case the profile p is constant everywhere; recall that this is

also the IR limiting case for n = 1/3 (2.16). Here we will outline the generalization of the

reduction to a non-trivial profile function (details are given in appendix A). The reduction

Ansatz for the metric is:

ds2
10 = e

10
3
γ gpq dz

p dzq + e−2(γ+λ) ds2
CP2 + e2(4λ−γ) (dτ +A)2 , (2.26)

where gpq = gpq(z) is a 5d metric and the scalar fields λ and γ depend on the 5d coordinates

zp = (x0, x1, x2, x3, ζ). As argued in [54] the reduced theory has smeared codimension one

branes and a gauge field strength F4, which originates from the reduction of the RR three-

form. The reduced gravity action can be written in terms of these fields and the profile

function p(ζ) (see appendix A). For the purposes of this section it is enough to consider

the action of the gauge field F4 which, up to a global constant factor, takes the form:

Sgauge
5d = − 1

2 · 4!

∫
d5z
√
−g5 e

−4γ−4λ−φ (F4)2 +

∫
C3 ∧ Σ2 , (2.27)

where C3 is the three-form potential for F4 = d C3. The second term in (2.27) is a Wess-

Zumino term, which depends on a smearing form Σ2. In the reduced theory, Σ2 encodes the

distribution of the D5-brane charge. The equation of motion for F4 is a standard Maxwell

equation with a source,

d
(
e−4γ−4λ−φ ∗ F4

)
= −Σ2 . (2.28)

In our solutions F4 can be written in terms of the profile and the dilaton as

F4 =
√

2Qf ζ p(ζ) e2φ dζ ∧ dx0 ∧ dx1 ∧ dx2 , (2.29)

whereas Σ2 depends on the radial derivative of the profile and is given by

Σ2 =
√

2Qf p
′(ζ) dζ ∧ dx3 . (2.30)

In the solutions we have constructed the distribution of five-brane charge goes to zero

at the asymptotic boundary, so it does not change the UV field theory, which is still the

dual to the theory living on the color three-branes, N = 4 SYM. There is nevertheless

an RG flow that should be triggered by the expectation value of some operator. In [54]

it was shown that in the truncation to five-dimensions there is a background three-form

potential that is proportional to the volume form of the five branes along the field theory

directions. We expect that the operator acquiring an expectation value is the dual to this

field. Consequently, if the five-brane distribution would be non-zero at the boundary we

expect that the dual field theory is modified by introducing a non-zero coupling for the

operator dual to the three-form.

The dual operator should be a three-form operator of conformal dimension ∆ = 3, since

the bulk three-form potential is massless. One should also remember that the three-form
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originates from a ten-dimensional Ramond-Ramond form that has non-zero components

along the internal space. Those components break the isometries of the would-be S5, thus

the dual operator should break the R-symmetry of N = 4 SYM in the same way. Further-

more, as the original five-brane defect configuration on which the smeared distributions are

based are parity invariant [73], the dual operator should preserve the same discrete symme-

try as well. A candidate Hermitian operator fulfilling these conditions can be constructed

with the Majorana gaugino fields ψ,

Vµνρa = −iTr
(
ψγµνρHaψ

)
, (2.31)

where the trace is over the gauge group, γµνρ = γ[µγνγρ] is the completely antisymmetric

product of three Dirac matrices, and Ha is a Hermitian generator of the N = 4 SYM R-

symmetry group SO(6) ∼= SU(4) in the 4 representation (corresponding to the gauginos).

The components of the three-form that are sourced by a density of five-branes are the ones

matching V012
a .

In four spacetime dimensions the product of three gamma functions satisfies the spe-

cial relation

γµνρ = −iεµνρσγσγ5 . (2.32)

The three-form operator is then the Hodge dual of an axial current

Vµνρa = −εµνρσTr
(
ψγσγ5Haψ

)
. (2.33)

More precisely, the V012
a component is equal to an axial current in the direction transverse

to the five-brane volume

V012
a = Tr

(
ψγ3γ5Haψ

)
. (2.34)

Assuming Vµνρa is the correct identification for the dual operator to the three-form,

we can compute its expectation value following the usual procedure of evaluating the on-

shell gravitational action and taking a variation with respect the boundary values, the

asymptotic boundary being at ζ → ∞ (UV). However, we should proceed with caution

in order to identify the coupling of the dual operator correctly. The UV expansion of the

fields (ζ → ∞) was given in the previous subsection. The metric approaches AdS5 and

it is easy to check that the dilaton φ and the scalar fields γ, λ defined in (A.22) all go

to zero. In the case where the dual theory has (2 + 1)-dimensional defects smeared in

the transverse directions, the density of D5-branes becomes constant at the asymptotic

boundary p(ζ) ' p0. The expansion of the four-form potential (2.29) is

F4 '
√

2Qf p0 ζ dζ ∧ dx0 ∧ dx1 ∧ dx2 . (2.35)

Therefore, the non-zero components of the three-form potential have the asymptotic

expansion

C012 '
Qf√

2

(
p0ζ

2 + v0

)
. (2.36)

The two terms with coefficients proportional to p0 and v0 correspond to the leading and

subleading solutions for a massless three form in AdS5, respectively. If p(ζ)→ 0 sufficiently
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fast at the boundary, as it is the case in the configuration we study, then only the term

proportional to v0 is present (plus subsubleading corrections). We will now show that this

term corresponds to an expectation value.

The variation of the on-shell gravity action (2.27) will give a boundary contribution

δSon−shell
5d = −1

6
lim
ζ→∞

∫
d4x
√
−g5 e

−4γ−4λ−φ F ζµνρ4 δC3µνρ . (2.37)

Then,

δSon−shell
5d ' Q2

fRUVV4 lim
ζ→∞

(
p0δp0ζ

2 + p0δv0

)
, (2.38)

where V4 is the regulated volume along the field theory directions. As usual, the on-

shell action is divergent. In order to remove the divergence we need to add a boundary

counterterm. This can be achieved by including a mass term for the three-form

Sc.t. = lim
ζ→∞

1

6RUV

∫
d4x
√
−h4C

µνρCµνρ , (2.39)

where h4 is the determinant of the induced boundary metric hµν = ζ2

R2
UV

ηµν with which the

indices are raised. The variation of the counterterm gives

δSc.t. = lim
ζ→∞

2

RUV

∫
d4x
√
−h4C

012δC012

' −Q2
fRUVV4 lim

ζ→∞

1

ζ2
(p0ζ

2 + v0)(δp0ζ
2 + δv0) . (2.40)

The sum of the variations of the on-shell action plus the boundary term is finite

δSon−shell
5d + δSc.t. = −Q2

fRUVV4 v0δp0 . (2.41)

This shows that the variational principle is consistent with taking p0 as the coupling to

the dual ∆ = 3 operator and consequently v0 should be identified as the expectation value.

This supports our expectation that the RG flows constructed with a five-brane density

vanishing at the boundary are triggered by the expectation value of the operator dual to

the three-form potential.

3 Properties of the solutions

In this section we analyze different properties of our backgrounds. We start by measuring

the degree of anisotropy of our metrics at different holographic scales. In particular, we

aim to characterize the flow by measuring the number of degrees of freedom at different

energy scales. Recall that the UV fixed point is that of pure glue (3+1)-dimensional N = 4

SYM. The number of degrees of freedom scale with the rank as ∼ N2
c , so as a reference we

define the “central charge” in the UV as

cUV =
N2
c

4
. (3.1)

We start by computing the effective dynamical exponent of anisotropy in the following

subsection and discuss its behavior for different geometries that we have constructed. After

this, we then device different functions that measure the number of degrees of freedom,

constructed to match up with the UV value (3.1).
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3.1 The effective anisotropy exponent and refraction index

Let us consider a metric of a holographic dual with four Minkowski directions x0, x1, x2,

and x3, which is anisotropic along the third spatial direction x3. We define the effective

anisotropic Lifshitz exponent zeff = zeff(ζ) as:

1

zeff(ζ)
≡ 1 + ζ

d

dζ
log

√∣∣∣gx3x3

gx0x0

∣∣∣ . (3.2)

Clearly, zeff = 1 if the metric is isotropic. The deviations from unity signal anisotropy

along the x3 direction. In fact, the function (3.2) determines how the anisotropy evolves as

we change the holographic coordinate ζ, i.e., as we vary the energy scale. It can be thought

as the analogue of the beta function for the anisotropy. To illuminate the definition (3.2),

consider a geometry such that the Minkowski part of the metric has the following form:

ζ2
[
− (dx0)2 + (dx1)2 + (dx2)2

]
+ ζ

2
z (dx3)2 + . . . , (3.3)

with z being a constant exponent. One readily finds that zeff is constant and equal to z for

the metric (3.3). Moreover, this metric is invariant under the scaling transformation (2.24)

with n = 1
z .

Let us now evaluate the function zeff(ζ) for our anisotropic models. As:√∣∣∣gx3x3

gx0x0

∣∣∣ = e−φ , (3.4)

we can relate zeff to the radial derivative of the dilaton:

1

zeff
= 1 − ζ

dφ

dζ
= 1 − Qf p e

3φ
2
−f , (3.5)

where p is the profile and f is the squashing function of the metric (2.2). It is possible

to get a full analytic expression of zeff for the different values of n and m. The derivation

and the final result for this expression is presented in appendix B. Here we are content

with only depicting the final result: zeff in figure 2 for anisotropic Lifshitz solutions and in

figure 3 for the boomerang solutions. Interestingly, for all values of n and m there is an

intermediate region of ζ where zeff(ζ) has a maximum, i.e., the maximal anisotropy occurs

at intermediate scales.

It is, however, interesting to discuss the asymptotics. The behavior of zeff in the UV

region ζ →∞ reads

zeff = 1 + Qf (κζ)−4 − 3 + n

m
Qf (κζ)−4−m + . . . , ζ →∞ . (3.6)

In all cases zeff(ζ)→ 1 as ζ →∞, i.e., Poincaré invariance is retained in the UV. Notice also

that the first UV anisotropic correction is independent of n and m. In the IR limit ζ → 0,

zeff '


1 +

Qf
wn,m

(κζ)n−1 , n > 1

1

n
− (n− 1)2wn,m

n2Qf
(κζ)1−n , n < 1 .

(3.7)
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Figure 2. Plots of zeff(ζ)−1 for different anisotropic Lifshitz solutions for Qf = 1. Left: we depict

zeff(ζ) − 1 for n = 1/3 and m = 1 (dashed black), m = 2 (blue), and m = 3 (dotted red). Right:

we plot the case m = 2 with varying n = 1/3 (blue), n = 1/2 (dotted red), and n = 2/3 (dashed

black). The maximal exponent decreases for increasing m or n.

**
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Figure 3. Relative effective anisotropy exponents zeff − 1 for boomerang flows for Qf = 1. Left:

all the curves have the same n = 2, while the different curves correspond to m = 1 (dashed black),

m = 2 (blue), and m = 3 (dotted red). Right: all the curves have the same m = 2, but this time we

vary n = 2 (blue), n = 3 (dotted red), and n = 4 (dashed black). The maximal exponent decreases

with increasing n, but increases with m.

For the Lifshitz solutions one finds zeff(ζ) → 1/n as alluded to before in (2.25), while for

the boomerang solutions one returns to the Poincaré invariant system.

A quantity related to the anisotropic exponent is the refraction index n =

|gx3x3/gx0x0 |1/2 = e−φ [74]. It was shown to be monotonically increasing towards the

IR in the boomerang flows of [58], and we find the same qualitative behavior in our con-

figurations. The result follows from the equation that relates the dilaton to the master

function (2.3) and the master equation (2.6)

d

dζ
n = −

Qfp

ζ2
√
W
≤ 0 . (3.8)

Note that it depends on the sign of the five-brane density, that we take to be positive as

expected for physical D5-branes. If one follows a more bottom-up approach, and relaxes

this condition, the refraction index could also be engineered non-monotonic.
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3.2 Holographic entanglement entropy and c-functions

According to the Wilsonian intuition, the number of degrees of freedom decreases effec-

tively at large distances or low energies due to coarse graining. In two-dimensional field

theories this was given a precise meaning through the definition of a c-function that equals

the central charge of the CFT at UV and IR fixed points and that was shown to be mono-

tonically decreasing along the RG flow; the celebrated c-theorem by Zamolodchikov [60].

A different version of the c-theorem based on the entanglement entropy was more recently

derived by Casini and Huerta [61, 65]. Using the subadditivity properties of entanglement

entropy of a strip of length `, a c-function was defined as

c = 3`
∂SEE

∂`
. (3.9)

This c-function is monotonically decreasing with ` and coincides with the central charge

at the fixed points. Monotonic c-functions based on entanglement entropy have also been

defined for field theories, e.g., in 2 + 1 [65] dimensions. In 3 + 1 dimensions there is a field

theory proof of the c-theorem (the a-theorem) [64]. In theories with a holographic dual,

a c-theorem exists for arbitrary dimensions, provided the null energy condition is satisfied

in the bulk [59]. A generalization of (3.9) to D spacetime dimensions is suggested by a

holographic computation [62, 63],

c =
1

VD−2
βD`

D−1∂SEE

∂`
, βD =

1√
π2DΓ(D/2)

Γ
(

1
2(D−1)

)
Γ
(

D
2(D−1)

)
D−1

, (3.10)

where VD−2 is the area of the sides of the strip; it can be trivially regulated by implementing

a periodic compactification in the spatial directions, for instance.

In all the aforementioned cases, the proof of the c-theorem utilizes Lorentz invariance in

one way or another. There have been several attempts to find a monotonic c-function valid

in holographic models with broken Lorentz invariance, with some partial success [75–79].

As more recently shown in [78], for a theory with an anisotropic scaling symmetry

t→ Λt , xi → Λn1xi , yj → Λn2yj , i = 1, . . . , d1 , j = 1, . . . , d2 , (3.11)

the entanglement entropy of an infinitely extended strip depends on the separation between

the two sides ` with an exponent determined by the scaling exponents and the number of

dimensions. For a strip separated along one of the xi directions,

S
(x)
EE ∼ −

1

`dx
, (3.12)

where dx = d1 − 1 + d2
n2
n1

. If the strip is separated along one of the yj directions, then

S
(y)
EE ∼ −

1

`dy
, (3.13)

where dy = d2 − 1 + d1
n1
n2

. These can be interpreted as the effective dimensions of the

(hyper)planes on the sides of the strip divided by the effective dimension of the trans-

verse direction.
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A clear question for the flows that we have constructed is whether a monotonic c-

function can be defined through the entanglement entropy. Following the previous works

we have mentioned, we will consider the entanglement entropy of strips with flat walls sep-

arated a distance ` along one of the spatial directions. According to the Ryu-Takayanagi

(RT) prescription [80, 81], the entanglement entropy is determined by a minimal codimen-

sion two surface in the gravity dual that lives on a fixed time slice and it is anchored at

the AdS boundary on the location of the sides of the strip. In the Einstein frame, the RT

formula reads

SEE =
1

4G10

∫
d8σ
√
g8 , (3.14)

where g8 is the determinant of the induced metric on the surface and G10 = 8π6. In the

anisotropic geometries we are studying, we have to distinguish between strips that are

separated along the anisotropic direction, so the sides of the strip would be parallel to the

defects described by D5-branes reaching the boundary of AdS,3 and strips separated along

one of the other spatial directions, such that the sides of the strip will be crossing the

defects. We will refer to the entanglement entropy (EE) of the first type as S
‖
EE and of the

second type as S⊥EE. In principle the entanglement entropy can be computed both in the

original and in the reduced theory [82], but it should be noted that the results of [78, 79]

are obtained using domain wall coordinates and the conditions that 5d equations of motion

impose on the 5d metric. Then, to use their results requires finding the explicit form of

the scalars γ, λ in the reduction (2.26) and using a new radial coordinate related in a non-

trivial way to the ten-dimensional radial coordinate. Then, the results of [78, 79] cannot

be used directly for the EE we compute using the 10d metric.

The calculation is standard (see appendix C) and gives the following expressions for

the EE in the metric (2.2)

S
‖
EE =

π3V2

2G10

∫ ζΛ

ζ0

dζ
ζ5h√

1− P 2e2φ−2f

hζ8

S⊥EE =
π3V2

2G10

∫ ζΛ

ζ0

dζ
ζ5he−φ√

1− P 2e2φ−2f

hζ8

. (3.15)

Here V2 is the area of the sides of the strip, which we consider finite via a periodic compact-

ification of the spatial directions. There is the standard UV divergence from the integration

along the radial direction: we have introduced a cutoff ζΛ in order to regularize it. The

minimal surface that determines the EE consists of two sheets starting at the locations of

the sides of the strip at the AdS boundary, extending towards the bulk, and joining at the

point ζ0, defined through an integration constant P :

ζ8
0 = P 2h−1e2φ−2f

∣∣∣
ζ=ζ0

. (3.16)

3In the type of geometries we are studying D5-branes do not reach the boundary, but the 5-brane charge

distribution splits the spatial directions in the same way.
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The EE depends implicitly on the separation between the two sides of the strip

`‖ = 2P

∫ ζΛ

ζ0

dζ

ζ3

e2φ−2f√
1− P 2e2φ−2f

hζ8

(3.17)

`⊥ = 2P

∫ ζΛ

ζ0

dζ

ζ3

eφ−2f√
1− P 2e2φ−2f

hζ8

. (3.18)

Using these expressions for the EE of the strips, we can mimic (3.10) by defining two

possible “c-functions” as follows

c‖(`) =
1

V2
C‖(`)

∂S
‖
EE

∂`
, c⊥(`) =

1

V2
C⊥(`)

∂S⊥EE

∂`
. (3.19)

Desirable properties of the c-functions are that they become constants on scaling solutions

and that they give the expected result in the UV. Concerning the second property, the UV

expansion (`→ 0) of the EE is

S
‖
EE ' S

⊥
EE =

π3V2

2G10

(
1

2
R4

UV
ζ2

Λ −
16c3

0R
8
UV

`2

)
, (3.20)

where R4
UV

= Qc/4 and c0 =
√
πΓ( 2

3)
2Γ( 1

6)
. This means that for `→ 0,

C‖(`) ' C⊥(`) ' β4`
3 . (3.21)

The UV value of the c-function is fixed to the expected result (3.1), noting that β4 = π
128c30

,

yielding

cUV = lim
`→0

c‖(`) = lim
`→0

c⊥(`) =
π4

8

R8
UV

G10
=
N2
c

4
. (3.22)

Before continuing to discuss the results for the entanglement entropies and the asso-

ciated c-functions, let us make a brief comment. It turns out that if Qf is large enough,

then there can be several competing minimal surfaces for large values of `. In the current

paper we will choose to present results for Qf small enough to avoid addressing the issues

related with phase transitions.

3.2.1 c-functions in boomerang flows

In order to describe the behavior of the solutions at a generic radial coordinate, we need

a separate discussion depending on whether n exceeds unity or not. Let us start with the

boomerang flows, n > 1.

In the IR, the geometry becomes almost the same as in the UV, except for a finite

rescaling of the anisotropic direction by the constant wn,m (2.15). The IR expansion

`→∞ is

S
‖
EE '

π3V2

2G10

(
1

2
R4

UV
ζ2

Λ −
16c3

0R
8
UV
w−2
n,m

`2

)

S⊥EE '
π3V2

2G10

(
1

2
R4

UV
ζ2

Λ −
16c3

0R
8
UV
wn,m

`2
+ constant

)
. (3.23)
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Figure 4. Left: the (absolute values of the) regularized entanglement entropies for the in-plane

(‖,blue) and for the off-plane (⊥,red) with the constant part in (3.23) subtracted for the dotted curve

to illustrate the `−2 behaviors for the asymptotically narrow and wide slabs. Right: the c-functions

for the boomerang flows. We chose as parameters n = 3,m = 2, but the results are qualitatively the

same for other values. The flavor parameter we picked sizable Qf = 10 to pronounce the features.

The solid curves are produced numerically, while the dashed curves follow from the asymptotic UV

and IR analytics (C.23) and (3.25), respectively. The black curve is the average c-function defined

in (3.26).

Since the scaling in the UV is the same as in the IR, a natural definition for the c-functions

is in accord with that of UV CFT:

C‖ = C⊥ ≡ β4`
3 . (3.24)

The IR value of the c-functions will be either larger or smaller than cUV depending on the

orientation of the strip. We find

lim
`→∞

c⊥ = wn,mcUV > cUV > lim
`→∞

c‖ = w−2
n,mcUV . (3.25)

Note that the following averaged c-function has the same values at the UV and IR, depicted

in figure 4,

c̄ = (c‖c
2
⊥)1/3 . (3.26)

The fact that degrees of freedom as measured with c‖ dwindled, makes it a prospective

candidate also for a monotonically decreasing c-function. However, we find that it is not

monotonic, showing a global maximum away from the fixed points, around the intrinsic

energy scale of the background, see figure 4.

3.2.2 c-functions in flows with anisotropic IR

Let us now discuss the flows with Lifshitz scaling in the IR. First, recall that the UV

behavior does not change for these flows, the behavior of the c-functions in the UV, `→ 0, is

as in (3.21). The IR scalings along the (x1, x2, x3) directions can be taken to be n1 = n2 = 1,
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Figure 5. The regularized entanglement entropies for the anisotropic Lifshitz solutions with m = 2

and n = 1/3 (blue), n = 1/2 (red), and n = 2/3 (black) and Qf = 1. Left: the in-plane case. The

slopes are -2 in the UV and −2/n is the IR conforming with (3.27). Right: the off-plane case. The

slopes are -2 in the UV and −(n+ 1) in the IR conforming with (3.28).

n3 = n < 1. We then expect the dependence of the EE with the width of the strip to be

S
‖
EE ∼ −

1

`
n1+n2
n3

= − 1

`2/n
(3.27)

S⊥EE ∼ −
1

`
n1,2+n3
n2,1

= − 1

`n+1
. (3.28)

Compared to the UV scaling, we see that the effective dimensions satisfy

2

n
= d‖ > dUV = 2 > d⊥ = n+ 1 . (3.29)

Indeed, we find, for `→∞ (details are in appendix C),

S
‖
EE '

π3V2

2G10

1

2
R4

UV
ζ2

Λ −
R6A‖B

2/n
‖

(µR)2

(
µR2

`

)2/n


S⊥EE '
π3V2

2G10

(
1

2
R4

UV
ζ2

Λ −
R6A⊥B

n+1
⊥

(µR)2

(
µR2

`

)n+1

+ constant

)
.

(3.30)

Note that

R4 =
4

n+ 3
λ6
nR

4
UV
, λn =

√
n+ 5

6
. (3.31)

Let us define

c
‖
n−1 =

√
πΓ
(
n+1
n+2

)
2Γ
(

n
2(n+2)

) , c⊥n−1 =

√
πΓ
(

n+3
2(n+2)

)
(n+ 1)Γ

(
1

2(n+2)

) , (3.32)

such that for n = 1, λ1 = 1, c
‖
0 = c⊥0 = c0, R = RUV . Then, the coefficients appearing in

the EE are

A‖ =
1

λ4
n

c
‖
n−1 , B‖ =

4

nλn
c
‖
n−1

A⊥ =
1

λ4
n

c⊥n−1 , B⊥ =
2(n+ 1)

λn
c⊥n−1 .

(3.33)
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In the IR limit `→∞, using the values of d‖ = 2/n and d⊥ = n+ 1 for the solutions

with anisotropic scaling, the requirement that the c-functions asymptote to a constant

value in the IR fixes

C‖(`) ' βd‖+2`
3
0

(
`

`0

)1+ 2
n

, C⊥(`) ' βd⊥+2`
3
0

(
`

`0

)n+2

, `→∞ , (3.34)

where `0 is a scale fixed by the properties of the RG flow. We have chosen the coef-

ficients according to the expected behavior for a conformal theory of dimensions D =

d+ 2 (3.10). Then,

lim
`→∞

c‖ = cUV

(
µR2

`0

) 2
n
−2

β 2
n

+2

R8

R8
UV

8

nπ
A‖B

2/n
‖

= cUV

(
4

n+ 3

)2 λ
8−d‖
n π

d‖−2

2

nd‖Γ
(

1
n

) (
µR2

`0

) 2
n
−2

(3.35)

lim
`→∞

c⊥ = cUV

(
µR2

`0

)n−1

βn+3
R8

R8
UV

4(n+ 1)

π
A⊥B

n+1
⊥

= cUV

(
4

n+ 3

)2 λ8−d⊥
n π

d⊥−2

2

Γ
(
n+3

2

) (
µR2

`0

)n−1

. (3.36)

There is a combination that is independent of `0. Let us define the averaged c-function

c̄ =
(
cn‖c

2
⊥

) 1
n+2

. (3.37)

Then,

lim
`→0

c̄ = cUV , lim
`→∞

c̄ = cUV

(
4

n+ 3

)2 λ6
n(

n2Γ
(

1
n

)n
Γ
(
n+3

2

)2) 1
n+2

> cUV . (3.38)

If we consider c‖ and c⊥ separately, the most natural choice of scale seems to be `0 = µR2

as other choices increase the value of either c‖ or c⊥. With this choice, a direct evaluation

gives, for any 1 > n ≥ 1/3,

lim
`→∞

c‖ > cUV > lim
`→∞

c⊥ . (3.39)

We note that the hierarchy has switched with respect to the boomerang flows. It would

be interesting to understand this phenomenon. Related to this, in the IR c‖ > c⊥, and

cUV > c⊥ so c⊥ is a candidate for a monotonically decreasing c-function. However, there

is no unambiguous choice for the functions C‖(`) and C⊥(`), and the behavior of the

c-functions at intermediate scales will depend on this choice. A simple possibility is

C‖(`) = β4`
3 + βd‖+2`

3
0

(
`

`0

)1+ 2
n

, C⊥(`) =
β4`

3

1 + β4

βd⊥+2

(
`
`0

)1−n . (3.40)

However, as in the boomerang case, we find that neither individual c-functions nor the

averages (3.37) are monotonic, see figure 6. Instead, they peak roughly at the intrinsic

energy scale of the background.
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Figure 6. Left: the c-functions for the in-plane (‖,blue) and off-plane (⊥,red) directions at Qf = 1

and n = 1/2, m = 2 as functions of `‖ and `⊥, respectively. The dashed curves are the analytic

UV and IR expansions. Right: we depict the average c̄-functions (3.37) for n = 1/3 (solid blue),

n = 1/2 (dotted red), and n = 2/3 (dashed black) for Qf = 1, m = 2, and µR2/`0 = 1. Notice the

log-linear scale.

3.3 c-function from null congruences

In this section we present an alternative holographic c-function for our models, following

the proposal of [83], based on ideas of [84] , which proposed to use the expansion parameter

of the congruences of null geodesics to extract the information encoded holographically in

the geometry (see also [85] for a similar proposal for the c-function). For a 4d QFT the

c-function of [83] is defined by the geodesics of its 5d dual geometry. The corresponding

metric for our case can be obtained by reducing the Ansatz (2.2) to five dimensions. This

metric reads as follows

ds2
5 = ζ

8
3 h

1
3 e

2
3
f
[
− (dx0)2 + (dx1)2 + (dx2)2 + e−2φ (dx3)2

]
+ ζ

14
3 h

4
3 e−

4
3
f dζ2 . (3.41)

The first step in the proposal of [83] is to consider a null vector kµ tangent to the geodesics

of the type:

kµ = F (ζ)

(
1√
|gx0x0 |

∂x0−
1
√
gζζ

∂ζ

)
= F (ζ)

(
ζ−

4
3 h−

1
6 e−

1
3
f∂x0 − ζ−

7
3 h−

2
3 e

2
3
f∂ζ

)
, (3.42)

where the function F (ζ) is obtained by imposing the affine condition:

kµ∇µ kν = 0 . (3.43)

It is easy to see that, in our geometry (3.41), the function F (ζ) must satisfy the following

differential equation:
F ′

F
= − 4

3 ζ
− 1

6

h′

h
− 1

3
f ′ , (3.44)

which can be integrated as

F (ζ) = ζ−
4
3 h−

1
6 e−

1
3
f . (3.45)

Thus, the vector kµ becomes:

kµ = ζ−
8
3 h−

1
3 e−

2
3
f∂x0 − ζ−

11
3 h−

5
6 e

1
3
f∂ζ . (3.46)
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Figure 7. Left: we depict c(ζ)/c
UV

for a boomerang solution with n = 3 and m = 2 with Qf = 10.

Right: we depict the same quantity for an anisotropic IR solution with n = 1/2 and m = 2 with

Qf = 1. The dashed curves correspond to the analytic UV and IR asymptotics (3.51) and (3.52),

respectively.

The expansion parameter θ for the congruence is defined as

θ = ∇µ kµ . (3.47)

This parameter measures the isotropic expansion of the flow of null geodesics in the geom-

etry. In our metric θ takes the form:

θ = −1

2
ζ−

14
3 h−

11
6 e

1
3
f
(
ζ h′ + 2h(4 + ζf ′ − ζφ′)

)
. (3.48)

In the proposal of [83] the holographic central charge is given by:

c(ζ) ∼ 1√
H θ3

, (3.49)

where H is the determinant of the induced metric on hypersurfaces with constant x0 and

ζ. In our case it is straightforward to check from (3.41) that
√
H = ζ4 h

1
2 ef−φ. Therefore

we can write c(ζ) as:

c(ζ) =
432

Q2
c

ζ10h5eφ−2f(
ζh′ + 2h(4 + ζf ′ − ζφ′)

)3 cUV =
3456

Q2
c

ζ31h5e4f−5φ[(
ζ8he2f−2φ

)′]3 cUV , (3.50)

where we have absorbed the multiplicative constant of (3.49) in cUV = c(ζ →∞).

We have plotted in figure 7 the function c(ζ) for boomerang and anisotropic Lifshitz

flows (3.50). We find qualitatively similar results to the ones found by using entropic

c-functions. In particular, notice that in all cases, c(ζ) is never monotonic in the whole

range of ζ.

Furthermore, we find that the UV behavior of c(ζ) is universal and given by, expanding

out (3.50),

c(ζ) = cUV

[
1 +

Qf
(κ ζ)4

+ . . .

]
, ζ →∞ . (3.51)
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Notice, in particular, that this means that c(ζ) decreases as the UV is approached. As

usual, the IR behavior is different for boomerang and anisotropic Lifshitz flows. We find,

as ζ → 0,

c(ζ) '


cUV

wn,m

[
1 +

n2 + 10n+ 1

2(5 + n)(n− 1)

Qf
wn,m

(κζ)n−1

]
, n > 1

2 cUV

(1− n)(5 + n)3

(2 + n)3(3 + n)2Qf
(κζ)1−n , n < 1 .

(3.52)

Recalling that wn,m > 0 we find that in all the cases the IR value is smaller than cUV . In

the anisotropic Lifshitz case, the IR value actually tends to zero.

4 Discussion and outlook

We constructed a new family of anisotropic solutions of ten-dimensional supergravity cou-

pled to smeared brane sources. The solutions are supersymmetric and we argued that they

are dual to N = 4 SYM with an expectation value for a three-form operator. This operator

can be Hodge dualized to an axial current with a non-zero expectation value along the spa-

tial direction transverse to the smeared branes. We did not determine whether the smeared

sources we introduced can actually be realized microscopically within string theory, so our

construction is not fully top-down. To go beyond supergravity and to address this point is

an important extension of our work that deserves a more detailed study in the future.

From a more phenomenological point of view, an interesting aspect of the model is

that the distribution of smeared branes is an almost arbitrary function of the holographic

radial coordinate. In the cases we have studied, the desired IR behavior can be engineered

by changing the density of branes in the horizon region. In this work, our family of solu-

tions consist of boomerang flows between conformal fixed points and those that will have

an anisotropic scaling in a spatial direction deep in the IR. In principle, it is possible

to design a brane distribution in such a way that an intermediate scaling region appears,

emulating other results in boomerang flows of [57, 58]. Following this line of thought,

more exotic possibilities such as flows where the density has several maxima in the radial

direction are also open to study. Since the full geometry is determined by simple formulas

stockpiling the brane distribution, it becomes a straightforward exercise to construct new

anisotropic solutions. All these solutions are supersymmetric and so the stability is guar-

anteed. This solution-generating technique leading to explicit and even analytic geometries

is not commonplace in supergravity constructions.

Our analysis of the entanglement entropy and holographic c-functions shows that one

should be careful when discussing monotonicity results for these quantities in holographic

RG flows obtained in dimensionally reduced supergravities. In principle the entanglement

entropy can be computed directly in the reduced theory [82]. In practice, when the warp

factors along the internal direction are non-trivial, the relation between the 5d and 10d

entanglement entropy functional can be non-trivial. Thus, we find that all existing proofs

of monotonicity in the anisotropic case cannot be directly checked in the ten-dimensional

construction (constructing the full reduction is necessary), and by direct computation in 10d
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we find that none of the usual proposals yield monotonic c-functions. We observe that the

non-monotonic behavior is correlated with the profile of the brane distribution, which also

determines the degree of anisotropy. In a certain sense the c-functions are sensitive to the

number of degrees of freedom in the bulk, although this does not have a direct translation

to the degrees of freedom in the dual field theory. It should be noted that similar non-

monotonic behavior was observed in the boomerang supergravity solutions [57, 58] and it

is interesting to ask if a similar interpretation would apply in those cases, for instance in

terms of background fluxes. In order to better understand the properties of the solutions

along the full ten-dimensional anisotropic RG flow it would be interesting to study other

observables that are also sensitive to the internal energy scales [86–88], such as mutual

information, entanglement wedge cross sections, or Wilson loops. As we have mentioned,

for a large enough brane density, preliminary results indicate that some of these quantities

could go through different saddle points as their size is varied.

Regarding other extensions, it would be very interesting to construct anisotropic black

hole solutions, perhaps also including charge. Those would be dual to anisotropic states at

finite temperature and charge density, and could be used as toy models of real anisotropic

systems as alluded to in the introduction. Since supersymmetry will be broken, it is to

be expected that stable configurations do not admit an arbitrary distribution of smeared

branes, but rather that it will be unique or very constrained, if it exists. In this work we

have focused on duals to states with spontaneously broken isotropy, but our identification

of the dual operator sourced by the branes as an axial current connects the multilayered

solutions of [54–56] to the physics of Weyl semimetals (see, e.g., [89]), although in the last

case the axial current is Abelian. It is clearly interesting to pursue this direction further.

Concerning other smeared brane configurations, we note here that in most cases the

brane distribution can also be chosen almost arbitrarily, but so far this has not been ex-

plored much. This is partly because it is not easy (or maybe possible) to find localized

brane configurations corresponding to a given distribution, so the construction becomes

more phenomenological. Nevertheless, it would be interesting to explore other brane con-

structions that are Lorentz invariant, such as the D3-D7 intersection [71, 90, 91], in order

to disentangle the effects of the anisotropy from other properties of the smeared brane

construction.
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A Background details

In this appendix we flesh out more details of the family of backgrounds found in [54, 55, 72]

and generalize in the current context. Besides the metric and the dilaton written in (2.2)

and (2.3), these backgrounds of type IIB supergravity contain a RR five-form F5 and a RR

three-form F3. The former is self-dual and given by the standard Ansatz in terms of the

dilaton φ and warp factor h:

F5 = ∂ζ
(
e−φ h−1

) (
1 + ∗

)
d4x ∧ dζ . (A.1)

In order to write the expression for F3, let us recall that the CP2 manifold is a Kähler-

Einstein space endowed with a Kähler two-form J = dA/2, where the one-form potential

A is the one appearing in the U(1) fibration of the metric (2.2). The two-form J can be

canonically written as J = e1 ∧ e2 + e3 ∧ e4, where e1, . . . , e4 are vielbein one-forms of CP2,

whose explicit coordinate expressions can be found in appendix A of [72]. Let us introduce

the complex two-form Ω̂2 as

Ω̂2 = e3iτ (e1 + ie2) ∧ (e3 + ie4) . (A.2)

Then, we can write F3 as follows

F3 = Qf p(ζ) dx3 ∧ Im Ω̂2 , (A.3)

where Qf is a constant and p(ζ) is an arbitrary function of the holographic coordinate ζ.

Clearly, dF5 = 0, since the D3-branes have been replaced by a flux in the supergravity

solution. However, dF3 6= 0, which means that the Bianchi identity for F3 is violated due

to the presence of the D5-branes. By inspecting the expression of dF3 we immediately

conclude that we are continuously distributing D5-branes along the x3 direction, giving

rise to a system of multiple (2+1)-dimensional parallel layers. This is, of course, the origin

of the anisotropy of the backreacted metric. The function p(ζ) determines the D5-brane

charge distribution in the holographic direction. This background is supersymmetric and

satisfies the equations of motion of supergravity with delocalized D5-brane sources if W

satisfies (2.6) and φ, f , and h are given in terms of W as in (2.3) and (2.4).

Let us derive the expression for h written in (2.4). It was shown in [55, 72] that the

warp factor is the solution of the following first-order differential equation

dh

dζ
+ Qf

e
3φ
2
−f p

ζ
h = −Qc

ζ3
e−2f . (A.4)

Let us proceed solving (A.4) in general, in terms of an arbitrary W . We first use (2.3) to

write the coefficient multiplying h in (A.4) in terms of W

Qf
e

3φ
2
−f p

ζ
=

1

W + 1
6 ζ

dW
dζ

Qf p(ζ)

ζ2
√
W

. (A.5)

Using the master equation (2.6), the right-hand side of (A.5) can be written as a total

derivative

Qf
e

3φ
2
−f p

ζ
= − d

dζ
log

[
W +

1

6
ζ
dW

dζ

]
. (A.6)
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Moreover, since
e−2f

ζ3
=

1

ζ5W

[
W +

1

6
ζ
dW

dζ

]
, (A.7)

the equation determining h is:

dh

dζ
− d

dζ
log

[
W +

1

6
ζ
dW

dζ

]
h = − Qc

ζ5W

[
W +

1

6
ζ
dW

dζ

]
. (A.8)

We can solve this differential equation by variation of constants. To start with, notice that

formally when Qc → 0, the differential equation becomes homogeneous and the solution is

readily obtained

h(ζ) = C

[
W +

1

6
ζ
dW

dζ

]
, Qc = 0 , (A.9)

where C is a constant. Next, we allow C to depend on ζ and substitute it into the original

differential equation, yielding a differential equation for C(ζ):

dC

dζ
= − Qc

ζ5W (ζ)
. (A.10)

This is simply integrated to

C(ζ) = Qc

∫ ζ0

ζ

dζ̄

ζ̄5W (ζ̄)
, (A.11)

where ζ0 is a constant of integration. Finally, let us choose ζ0 in such a way that h(ζ →
∞) = 0. This then brings us to

h(ζ) = Qc

[
W (ζ) +

ζ

6

dW

dζ

] ∫ ∞
ζ

dζ̄

ζ̄5W (ζ̄)
. (A.12)

Taking into account the expression of the dilaton in (2.3), we land on (2.4).

A.1 Solution to the master equation

Let us now show how we integrate the master equation (2.6) in general. First of all, we

define a new function F (ζ) as follows

F (ζ) ≡ p(ζ)√
W (ζ)

. (A.13)

Then, it is straightforward to demonstrate that the master equation becomes

d

dζ

(
ζ7 dW

dζ

)
= −6Qf ζ

4 F (ζ) . (A.14)

Given the structure of the left-hand side of (A.14), we can simply perform a double

integration

W (ζ) = 1 + 6Qf κ

∫ ∞
κ ζ

dx

x7

∫ x

0
u4 F

(
u

κ

)
du . (A.15)

– 25 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
2

In (A.15) κ is an arbitrary constant and we have already imposed that W (ζ → ∞) = 1.

Integrating by parts in the integral over x in (A.15), and assuming that x−1 F (x) → 0 as

x→∞, we can rewrite (A.15) as a single integral

W (ζ) = 1 +
Qfκ

(κζ)6

∫ κζ

0
dxx4 F (x/κ) + Qfκ

∫ ∞
κζ

dx
F (x/κ)

x2
. (A.16)

As a check one can directly show that (A.16) solves (A.14).

The profile function (2.9) we use to generate our geometries corresponds to the follow-

ing explicit expression for F :

F (x/κ) =
1

κ

xn

(1 + xm)
n+3
m

. (A.17)

Plugging (A.17) into (A.16) we arrive at the following integrals

W (ζ) = 1 +
Qf

(κζ)6

∫ κζ

0
dx

xn+4

(1 + xm)
n+3
m

+ Qf

∫ ∞
κζ

dx
xn−2

(1 + xm)
n+3
m

. (A.18)

The integrals in (A.18) can be done analytically in terms of hypergeometric functions,

giving (2.7). Finally, for expansions at the IR, it is useful to rewrite W as

W (ζ) = 1 +
Γ
(

4
m

)
Γ
(
n−1
m

)
mΓ

(
3+n
m

) Qf

+Qf (κζ)n−1

[
1

n+ 5
F

(
5 + n

m
,

3 + n

m
;
5 +m+ n

m
;−(κζ)m

)
(A.19)

+
1

1− n
F

(
n− 1

m
,

3 + n

m
;
m+ n− 1

m
;−(κζ)m

)]
,

while for expansions near the boundary we instead use

W (ζ) = 1 +
1

2

Qf
(κζ)4

[
F

(
− 2

m
,

3 + n

m
;
m− 2

m
;−(κζ)−m

)
(A.20)

+
1

2
F

(
4

m
,
3 + n

m
;

4 +m

m
;−(κζ)−m

)]
+

Γ
(
− 2

m

)
Γ
(

5+n
m

)
mΓ

(
3+n
m

) Qf
(κζ)6

.

A.2 Reduction to five dimensions

Let us lay out the dimensional reduction of our system to a gravity theory in five dimensions.

We will not write down all the details explicitly, but will refer to key formulas in the

literature. The reduction Ansatz for the metric has been written in (2.26). In the reduced

5d theory we have three scalars,γ and λ for the metric (2.26) and the dilaton φ. In order to

match the metric (2.26) with the Ansatz (2.2) we need to relate h, f , and ζ to (γ,λ) and to

one of the components of the 5d metric gpq. For convenience we choose the gζζ component

as the independent function. It can be easily verified that the seeked relation is

h
1
2 = e

10
3
γ+10λ gζζ , e

f =
e−

8γ
3
−λ

√
gζζ

, ζ =
e−

8γ
3
−6λ

√
gζζ

, (A.21)
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which can be inverted as:

eλ = ζ−
1
5 e

f
5 , eγ = ζ−

4
5 h−

1
4 e−

f
5 , gζζ = h

4
3 ζ

14
3 e−

4f
3 . (A.22)

The reduced 5d theory also contains a four-form F4 which originates from the reduction

of the RR three-form F3 of ten-dimensional supergravity. Moreover, our system also con-

tains dynamical D5-branes, which are codimension one objects in the reduced 5d theory,

extended along the hypersurface x3 = constant and then smeared over x3. The correspond-

ing DBI action contains the determinant of the induced metric on this 4d surface, which

we will denote by ĝ4, integrated over x3 to account for the smearing. The full effective

action can be obtained by generalizing the results in [54], yielding

Seff =
V5

2κ2
10

∫
d5z
√
−g5

[
R5 −

40

3
(∂γ)2 − 20 (∂λ)2 − 1

2
(∂φ)2

− 1

2 · 4!
e−4γ−4λ−φ (F4)2 − Uscalars

]
+ Sbranes + SWZ , (A.23)

where V5 is the volume of the five dimensional compact space and Uscalars is the following

potential for λ and γ:

Uscalars = 4 e
16
3
γ+12λ − 24 e

16
3
γ+2λ +

Q2
c

2
e

40
3
γ . (A.24)

The construction of the action SWZ will be addressed later, starting at around (A.38). In

order to find Sbranes we proceed as in appendix C of [54] and look at the DBI action of the

distribution of D5-branes. For a calibrated set of smeared branes the resulting DBI action

equals (minus) the WZ one which is the integral of the wedge product of the RR potentials

and the smearing form Ξ. In our case the relevant RR potential is the six-form C6 and so

the corresponding action is

Sbranes = −T5

∫
M10

C6 ∧ Ξ , (A.25)

where Ξ is a four-form. The expressions for C6 and Ξ are given in appendix B.2 of [55].

After integrating over the angular directions, we can rewrite (A.25) as:

Sbranes =

∫
dx0 dx1 dx2 dx3 dζ Lbranes , (A.26)

where Lbranes is a smeared Lagrangian density. Using the results in [55], Lbranes reads

Lbranes = −
V5Qf
κ2

10

ζ3 e
φ
2
−f
(

3 p(r) +
e2f

ζ

dp

dζ

)
. (A.27)

Let us now rewrite this last expression in a covariant form with respect to the 5d metric

gpq. First of all, we notice that the function multiplying dp/dζ in (A.27) can be written as:

e2f

ζ
=

e4λ− 8γ
3

√
gζζ

. (A.28)
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Second, the determinant ĝ4 of the induced metric in the x3 = 0 submanifold spanned by

the D5-branes is related to γ, λ, and gζζ as

√
−ĝ4 =

e−10γ−15λ

gζζ
. (A.29)

As a consequence, we can rewrite the prefactor in (A.27) as:

ζ3 e−f = e
14γ
3
− 2λ

√
−ĝ4 . (A.30)

Putting all these results together, we can write the brane action in (A.23) as:

Sbranes = − V5

2κ2
10

∫
d5z

√
−ĝ4 Ubranes , (A.31)

where Ubranes is the following function depending on the profile p:

Ubranes = 2Qf e
φ
2
− 2λ+ 14γ

3

(
3p+

e4λ− 8γ
3

√
gζζ

dp

dζ

)
. (A.32)

In order to write Ubranes in a covariant form, let us next introduce a vector field vn

with unit norm in the 5d metric

vp v
p = gpq v

p vq = 1 . (A.33)

When vp points in the radial direction, only vζ is non-vanishing and given by

vp =
1
√
gζζ

δpζ . (A.34)

In this case, we have
∂ζ p√
gζζ

= vn ∂n p ≡ ∇v p , (A.35)

where ∇v is the directional derivative along the unit vector v. It follows that Ubranes can

be written as

Ubranes = 6Qf e
φ
2
− 2λ+ 14γ

3

(
p+

e4λ− 8γ
3

3
∇v p

)
. (A.36)

Let us finally discuss the ingredients in describing SWZ. Let us define the one-form F1

via 5d Hodge dual of F4 as

F1 = −e−4γ−4λ−φ ∗ F4 . (A.37)

The one-form F1 is the result of reducing the RR 10d three-form F3 to 5d, which is not

closed and thus violates the Bianchi identity due to the presence of D5-brane sources. We

thus expect to have dF1 6= 0 in the reduced theory. As in the 10d formalism, the violation

of Bianchi identity is induced by a Wess-Zumino term in the action (A.23). It is easy to

conclude that this term must have the form

SWZ =
V5

2κ2
10

∫
C3 ∧ Σ2 , (A.38)
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where C3 is the three-form potential for F4 and Σ2 is a smearing two-form. Indeed, from

the equation of motion for C3 (2.28) one readily gets

dF1 = Σ2 , (A.39)

which is the desired modified Bianchi identity. For our BPS Ansatz we have:

F1 =
√

2Qf p(ζ) dx3 , (A.40)

and the smearing two-form Σ2 is the one written in (2.30).

Next, let us look at the equations of motion that follow from the action (A.23). The

equation for the three-form C3 has been studied in section 2.2, cf. (2.28). In order to

write compactly the equations for the scalars, let us group them in a three-component field

Ψ = (φ, γ, λ). Then, if αφ, αγ , and αλ take the values

(αφ , αγ , αλ) =

(
1 ,

3

80
,

1

40

)
, (A.41)

then the equations of motion of the scalars are

�Ψ = αΨ ∂Ψ Uscalars +
1

2
αΨ

(
F1

)2
∂Ψ

(
e4λ+4γ+φ

)
+

√
−ĝ4√
−g5

αΨ ∂ΨUbranes . (A.42)

The Einstein equations are obtained by computing the variation of the action with respect

to the 5d metric. The result is

Rpq −
1

2
gpq R =

∑
Ψ

1

2αΨ

(
∂p Ψ ∂q Ψ − 1

2
gpq (∂Ψ)2

)
− 1

2
gpq Uscalars (A.43)

+
1

2 · 4!
e−4γ−4λ−φ

(
4
(
F4

)
p r1 r2 r3

(
F4

) r1 r2 r3
q

− 1

2
gpq
(
F4

)2)
+ T branes

pq ,

where T branes
pq represents the contribution originating from the brane term (A.36). The

non-vanishing components of T branes
pq are

T branes
xµxν = −

Qf e
3φ
2
−7λ+ 4γ

3

√
gζζ

(
3 p +

e4λ− 8γ
3

√
gζζ

dp

dζ

)
ηµν , µ, ν = 0, 1, 2 (A.44)

T branes
ζζ = −3Qf

(
gζζ
) 3

2 e3λ+8γ+ 3φ
2 p . (A.45)

One can readily verify that our background satisfies (A.42) and (A.43) for an arbitrary

profile function p(ζ).

B Degrees of anisotropy

The effective Lifshitz exponent (3.5) can be written in terms of the master function W as:

1

zeff
= 1 −

Qf

W + 1
6 ζ

dW
dζ

p

ζ
√
W

= 1 + ζ
d

dζ
log

[
W +

1

6
ζ
dW

dζ

]
. (B.1)
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When the master function is given by (2.7), the effective exponent depends on two integers

n and m and can be written as

zeff =
1 +

Qf
4 (κζ)−4 F

(
4
m ,

3+n
m ; 4+m

m ;−(κζ)−m
)

1−Qf (κζ)−4
[(

1 + (κζ)m
)− 3+n

m + 1
4F
(

4
m ,

3+n
m ; 4+m

m ;−(κζ)−m
)] . (B.2)

From this expression we can readily obtain the behavior (3.6) of zeff in the UV region

ζ →∞. In order to obtain the behavior of zeff as ζ → 0 it is convenient to rewrite zeff as

zeff =
1− Qf (κζ)n−1

(n−1)wn,m
F
(
n−1
m , 3+n

m ; n+m−1
m ;−(κζ)m

)
1− Qf (κζ)n−1

wn,m

(
1 + (κζ)m

)− 3+n
m

[
1 + 1

n−1

(
1 + (κζ)m

)
F
(

1, m−4
m ; n+m−1

m ;−(κζ)m
)] .

(B.3)

The IR behavior for zeff for both boomerang and anisotropic Lifshitz flows can be readily

obtained from this last equation, resulting in (3.7).

B.1 The internal squashing function

The D5-brane sources cause both the anisotropy of the model and the deformation of the

internal manifold. The latter is most conveniently characterized by the so-called internal

squashing function q = q(ζ), defined as

q(ζ) ≡ ef(ζ)

ζ
. (B.4)

This measures the deviation of the internal metric from that of the round S5. It takes a

simple form in terms of the dilaton and the master function W , and can also be written

entirely using the master function

q =
√
eφW =

1√
1 + 1

6 ζ
d logW
dζ

. (B.5)

From the latter it is rather easy to obtain the asymptotic forms of q. In the UV,

q = 1 +
Qf

4 (κζ)4
+ . . . , ζ →∞ . (B.6)

For Lifshitz solutions q attains a constant value in the IR that depends on n, while for the

boomerang solutions the S5 rounds out again, ζ → 0,

q =


1 +

Qf
2(n+ 5)wn,m

(κζ)n−1 + . . . , n > 1√
6

n+ 5
+ . . . , n < 1 .

(B.7)

By numerical investigation one finds that q(ζ) resembles zeff very closely. The devi-

ations from the round S5 are maximal at roughly the same values of ζ where zeff is also
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Figure 8. We present the internal squashing function versus the effective exponent for Lifshitz

flows. Left: the curves correspond to fixed n = 1/3 and m = 1 (dashed black), m = 2 (blue), and

m = 3 (dotted red). Right: the curves correspond to fixed m = 2 and varying n = 1/3 (blue),

n = 1/2 (dotted red), and n = 2/3 (dashed black). In both panels we have fixed Qf = 1. The RG

flows clockwise.
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Figure 9. We present the internal squashing function versus the effective exponent for boomerang

flows. Left: the curves correspond to fixed n = 2 and m = 1 (blue), m = 2 (dotted red), and

m = 3 (dashed black). Right: the curves correspond to fixed m = 2 and varying n = 2 (blue),

n = 3 (dotted red), and n = 4 (dashed black). In both panels we have fixed Qf = 1. The RG flows

clockwise.

maximal. A natural question then arises if there is a simple relation between zeff and q.

One can find this relation by appropriately subtracting (B.1) from (B.5):

1

zeff
− 1

q2
= ζ

d

d ζ
log

W + 1
6 ζ

dW
dζ

W
1
6

. (B.8)

In order to get further insight on the relation between these two functions we have plotted

q versus zeff for Lifshitz (figure 8) and boomerang (figure 9) flows. The q(zeff) curves are

double-valued and have the shape of a lasso. The upper (lower) portion of the q(zeff)

corresponds to the UV (IR) region, whereas the turning point corresponds roughly to the

value of ζ where the anisotropy is maximal. In other words, the flows from the UV to the

IR correspond to clockwise paths. In the boomerang solutions the q(zeff) curve is closed.

This is not the case for Lifshitz geometries since zeff 6→ 1 as ζ → 0.

C Calculation of the entanglement entropy

Let us fill in some background details in the computation of the holographic entanglement

entropy. The holographic entanglement entropy of a strip consisting of two flat surfaces
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separated along a general spatial direction x reads

SE =
1

4G10

∫
d8σ
√
g8 , (C.1)

where the induced metric is

ds2
8 = gijdy

idyj +
(
gζζ + gxx(x′)2

)
dζ2 + gSdsCP2 + gττ (dτ +A)2 . (C.2)

The yi, i = 1, 2 are the coordinates parallel to the boundaries of the strip in the field theory

directions. Explicitly,

SEE =
π3

4G10

∫
d2ydζg2

S (gττg11g22gζζ)
1/2
√

1 +
gxx
gζζ

x′2 . (C.3)

We consider a now a generic minimal surface anchored at the boundary on straight lines

separated along the x direction. The surface will have a profile x(ζ), and the area is

given by

S = c

∫
dζA

√
1 +Bx′2 . (C.4)

In this expression A, B are functions of ζ and c a constant. We assume that the boundary

is at ζ = ∞. As usual with strip configurations, there is a first integral due to conjugate

momentum being independent of ζ,

δS

δx′
= −cP . (C.5)

This gives a configuration of width ` that extremizes the area

x′ = − P

AB

1√
1− P 2

A2B

, ` =

∫
dζ x′ . (C.6)

The action evaluated on the extremal configuration is

S = c

∫
dζ

A√
1− P 2

A2B

. (C.7)

Let us now focus on our background and infer the data going into the above formulas:

c =
π3

4G10
, A = g2

S (gττg11g22gζζ)
1/2 , B =

gxx
gζζ

. (C.8)

In all the cases we have that

gS = h1/2ζ2 , gττ = h1/2e2f , gζζ = h1/2ζ2e−2f . (C.9)

For the other components we have the following options

• x parallel to the anisotropic direction

g11 = g22 = h−1/2 , gxx = h−1/2e−2φ . (C.10)
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• x transverse to the anisotropic direction

gxx = g11 = h−1/2 , g22 = h−1/2e−2φ . (C.11)

Then, the coefficients are

• x parallel to the anisotropic direction

A = ζ5h , B−1 = ζ2he2φ−2f , A−2B−1 = ζ−8h−1e2φ−2f . (C.12)

• x transverse to the anisotropic direction

A = ζ5he−φ , B−1 = ζ2he−2f , A−2B−1 = ζ−8h−1e2φ−2f . (C.13)

We define ζ0 as the position at the bottom of the surface, which is the solution to the

equation ζ8
0 = P 2h−1e2φ−2f

∣∣
ζ=ζ0

. We introduce a cutoff in the radial direction ζΛ.

From the formulas above, the entanglement entropy (3.15) and the width of the

strip (3.18) directly follow. Close to the boundary, where h ∼ R4
UV/ζ

4, e2f ∼ ζ2,

SEE ∼
π3V2

2G10
R4

UV

∫
dζζ

(
1 +O(ζ−4)

)
. (C.14)

There is a quadratic UV divergence, we will subtract it to get the finite part of the entropy,

which we denote as ŜEE.

C.1 UV asymptotics

We start with (3.15) and the asymptotic UV expansions

h '
R4

UV

ζ4
, e−φ ' 1 , e2f ' ζ2 . (C.15)

We will use the condition that relates the constant P with the tip of the entangling surface

ζ0, ζ8
0 ' P 2

R4
UV
ζ2

0 . Then we find P ' R2
UVζ

3
0 . We will do an expansion in ζ, ζ0 → ∞ with

ζ0/ζ fixed. The term inside the square root goes as

P 2 e
2φ−2f

ζ8h
∼ ζ6

0

ζ6
. (C.16)

At leading order the expansion of the integrands in the entropy are

∼ ζ

 1√
1− ζ6

0
ζ6

− 1

R4
UV . (C.17)

In order to compute the integrals we will change variables to ζ = ζ0u
−1/6 and integrate

u ∈ [0, 1). Denoting s0 = π3V2
2G10

, as ζ0 →∞, there is a leading contribution proportional to

a coefficient

c0 =

√
πΓ
(

2
3

)
2Γ
(

1
6

) . (C.18)
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We can approximate the regulated entanglement entropy by

Ŝ
‖
EE ' Ŝ

⊥
EE ' −s0c0R

4
UVζ

2
0 . (C.19)

The separation between the two walls have integrands that go as

∼ 1

ζ5

√
1− ζ6

0
ζ6

. (C.20)

Computing the integrals, substituting the value of P , and expanding one finds that the

first term is proportional to the coefficient 4c0, allowing us to solve for ζ0:

` ' 4c0
R2

UV

ζ0
→ ζ0 ' 4c0

R2
UV

`
. (C.21)

Plugging this in the expressions for the entanglement entropy and expanding we find

ŜEE ' −16c3
0

s0R
8
UV

`2
. (C.22)

It is straightforward, albeit a bit longer, derivation to get the subsubleading behaviors

at the UV. We are content with representing the final result of the UV expansion to the

next order:

Ŝ
‖,⊥
EE ' −16c3

0

s0R
8
UV

`2

(
1− γ‖,⊥

Qf
8(κRUV)4

(
`

RUV

)4
)
, (C.23)

where

γ‖ =
2

5
γ⊥ =

Γ(1/6)7

120× 22/3π7/2Γ(2/3)4
. (C.24)

We have checked this asymptotic result against the numerical calculation, see figure 4.

C.2 IR asymptotics

We will separate the finite part of the entanglement entropy in an IR contribution and a UV

contribution, separated by some scale ζM . The IR contribution is obtained by integration

up to ζM . The approximate expressions depend on the IR behavior.

For the boomerang flows, the expansions are essentially the same as in the UV, ex-

cept for the anisotropic coordinate, which has an additional constant scale factor. In the

calculation, the functions A, B in (C.8) change relative to the UV case by a factor

• x parallel to the anisotropic direction

A→ A , B → w2
n,mB . (C.25)

• x transverse to the anisotropic direction

A→ wn,mA , B → B . (C.26)
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Recall, that wn,m is given in (2.15). The dependence on wn,m can be removed from inside

the square root in (C.7) by rescaling P

P → wn,mP . (C.27)

The combination of all these rescalings introduce the following factors in the EE and the

width

Ŝ
‖
EE → Ŝ

‖
EE,UV(ζ0), `‖ → w−1

n,m`UV,‖(ζ0) (C.28)

Ŝ⊥EE → wn,mŜ
⊥
EE,UV(ζ0), `⊥ → `UV,⊥(ζ0) . (C.29)

From these, it is easy to derive (3.23). The next order correction follows from the expan-

sion (2.14). For 5 > n > 1 the scaling in all directions is

` ∼ 1

ζ0

(
a+Qfb

(
ζ0

ζm

)n−1
)
. (C.30)

Since the scaling does not depend on the direction we have dropped the label, but one should

keep in mind that the coefficients are different in each direction. We have introduced ζm
to fix the units, which should be a characteristic scale of the background geometry. The

value of ζm or b cannot be determined just from the IR geometry, but the full profile is

needed. For n > 5 the power of the NLO correction inside the bracket remains at a value

of 4, independently of the value of n. The EE also has similar scalings in all the directions,

for 5 > n > 1,

ŜEE ∼ ζ2
0

(
c+Qfd

(
ζ0

ζm

)n−1
)
, (C.31)

where again the coefficients c and d depend on the direction, even if the scaling does not.

Solving for ζ0 in terms of ` and plugging the result in the EE one finds

ŜEE ∼
4a

`2

(
ac+Qf

(
2n−1ad+ (n− 1)bc

)(`m
`0

)n−1
)
, `m = a/ζm . (C.32)

Finally let us discuss the case n < 1. For geometries with anisotropic Lifshitz scaling,

Ŝ
‖
EE =

π3V2

2G10

∫ ζM

ζ0

dζ
R4

λ4
n

ζ√
1− λ6

nP
2

R4ζ6(µζ)2(n−1)

+ . . . (C.33)

Ŝ⊥EE =
π3V2

2G10

∫ ζM

ζ0

dζ
R4

λ4
n

ζ(µζ)n−1√
1− λ6

nP
2

R4ζ6(µζ)2(n−1)

+ . . . . (C.34)

The constant λn was defined in (3.32). In this case R4ζ6
0 (µζ0)2(n−1) = λ6

nP
2. The expres-

sions for the length are in each case

`‖ = 2λ2
nP

∫ ζM

ζ0

dζ

ζ5

(µζ)2(1−n)√
1− λ6

nP
2

R4ζ6(µζ)2(n−1)

+ . . . (C.35)

`⊥ = 2λ2
nP

∫ ζM

ζ0

dζ

ζ5

(µζ)1−n√
1− λ6

nP
2

R4ζ6(µζ)2(n−1)

+ . . . . (C.36)
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The integrals can be calculated explicitly in terms of Gamma and Beta functions.

Expanding for small values of ζ0, one finds the leading order behavior for the entanglement

entropy to be

Ŝ
‖
EE ∼ −

π3V2

2G10
R4A‖ζ

2
0 (C.37)

Ŝ⊥EE ∼ −
π3V2

2G10
R4A⊥ζ

2
0 (µζ0)n−1 . (C.38)

The coefficients A are given in (3.33). The separation between the two walls is

`‖ ∼ 4λ2
nPµ

2(1−n) c
‖
n−1

n
ζ
−2(n+1)
0 = R2µ1−nB‖ζ

−n
0 (C.39)

`⊥ ∼ 2(n+ 1)λ2
nPµ

1−nc⊥n−1ζ
−n−3
0 = R2B⊥ζ

−1
0 , (C.40)

where the different coefficients can be found in (3.32) and (3.33). Therefore, solving for

ζ0 in terms of ` and plugging the result in to the entanglement entropy, the asymptotic

behaviors of the entanglement entropy with the separation between the walls as given

by (3.30) follows.
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