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Pg. Lluis Companys, 23, 08010 Barcelona, Spain
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1 Introduction

Recently it has been appreciated that sectors with large charge under a global symmetry

of a given quantum field theory enjoy remarkable simplification properties, which allow a

systematic and analytic study [1–3]. A prototypical example is the O(2) model in d = 3,

where, if one is interested in the sector of operators with large charge n under the global

symmetry, it is possible to write an effective field theory governing their dynamics. This

allows to compute their anomalous dimensions, which are found to scale as ∆ ∼ n
3

2+O(n
1

2 ).

This result can be understood from a “microscopic” description starting with the U(1)

Wilson-Fisher (WF) fixed point in d = 4− ǫ dimensions, described by the action

S0 =

∫

d4−ǫx
(

∂φ̄ ∂φ− g

4
(φ̄φ)2

)

. (1.1)

This approach in fact uncovers a rich structure, as the sector of operators at fixed charge

n is described by an effective theory depending on both n and g (recall that at the WF

fixed point, g ∼ ǫ), in such a way that, depending on how the large charge limit is taken, a

different behavior emerges. Some aspects of the large n expansion were recently investigated

in [4–7], where the two-point function of the operators φn, φ̄n was computed at large n.

In particular, a general way to organize the expansion was discussed in [5–7] (generalizing

earlier work in [8–10]). The effective description of the large n sector naturally depends

on n and g n = λ̂, in such a way that a ‘t Hooft-like double expansion emerges. For the

dimension of the operator φn one has

∆ =
∞
∑

k=−1

n−k ∆k(λ̂) . (1.2)

In the strong coupling regime –which overlaps with the regime of validity of the large charge

effective theory–, one finds ∆ ∼ λ̂
4−ǫ
3−ǫ + · · · , thus recovering the expected scaling ∆ ∼ n

d
d−1 ,
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with the extra bonus of providing an analytic expression for the actual coefficients in the

large charge expansion [5–7].

On the other hand, at weak coupling and in the large n limit, the dominant term is

∆−1(λ̂), which must admit a perturbative expansion for small λ̂. This gives [4–6]

∆−1(λ̂) = 1 +
λ̂

32π2
+O

(

λ̂2
)

. (1.3)

In [4], the leading correction was obtained by a full resummation of the dominant Feynman

diagrams –dubbed Kermit L-loop diagrams– that survive in a double scaling limit with

n → ∞ at fixed g n2 ≡ λ. In this limit the sum over Feynman diagrams exponentiates,

giving the result

〈φn(x)φ̄n(0)〉 = n!

(4π2)n|x|2∆ , ∆ = n+
λ

32π2
. (1.4)

This result can also be derived by a saddle-point evaluation of the two-point function,

which becomes exact in the double scaling limit with fixed λ = gn2 [4].

In the double-scaling limit of [4] at fixed λ, the O
(

λ̂2
)

terms are given by Feynman

diagrams which are suppressed by powers of 1/n. Thus, from this point of view, the

result (1.4) can be viewed as the leading term of the more general double expansion in n, λ̂.

Large charge expansions also exist in general CFT’s with a marginal coupling. An

example of a CFT depending on an exactly marginal parameter gYM is N = 2 supersym-

metric four-dimensional QCD with gauge group SU(N) and 2N fundamental flavors. The

large charge limit of this theory was first introduced in [11] and studied using supersym-

metric localization. Localization leads to exact formulas for a special class of correlation

functions of superconformal chiral primary operators, called “extremal correlators”. These

are correlation functions with an arbitrary number of insertions of operators Trφn and

only one insertion of Tr φ̄n and they enjoy special properties because of supersymmetry (φ

being the adjoint scalar in the vector multiplet of unit R-charge). It was shown that the

perturbative expansion of correlators of (Trφ2)n has a well-defined large n limit provided

one takes a double-scaling limit of large n and fixed g2YM n. This limit ensures that all terms

in the perturbative expansion are finite and non-vanishing. Further aspects were studied

in detail in [12, 13]. Subsequently, the existence of a double-scaling limit was understood

in terms of a “hidden” matrix model description in [14].

The mere fact that it is possible to compute observables of a QFT in a closed form in the

large charge sector is remarkable per se. Motivated by this, in this paper, we study higher

point functions in the O(2) theory in the sector of operators with large charge. Focusing

in the weak coupling regime in the double expansion in 1/n, λ̂, we compute “extremal”

correlators (of the form 〈φn1 · · ·φnr φ̄m〉) as well as 4-point functions in the “non-extremal”

case. As discussed above, in the double scaling limit, these results become exact. We shall

use the saddle point method employed in [4].

– 2 –
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2 Higher point functions in the O(2) model

We will follow the approach of [4], where the two-point function was computed in a double-

scaling limit, n → ∞, g → 0 at fixed g n2 ≡ λ. This limit yields the exact exponentiation of

the the leading non-trivial term in the more general n, λ̂ expansion in the large n and weak

λ̂ regime. In the case of higher-point functions, we are interested in general correlation

functions of the form

〈φ(x1)n1 · · ·φ(xr)nr φ̄(y1)
m1 · · · φ̄(ys)ms〉 ,

r
∑

i=1

ni =
s

∑

j=1

mj . (2.1)

We will assume the following scaling

ni = ain , mj = bjn , g → 0, n → ∞ , gn2 = fixed ,

and fixed ai, bj . In the case of the two-point function 〈φ(x)nφ̄(y)n〉, it was shown in [4] that

in the double-scaling limit all higher loop diagrams vanish except those with a particular

topology (the “Kermit the frog” L-loop diagram), corresponding to the case where two

lines of each of the L vertices join two of the n lines of the operator φn and the other two

lines join two of the n lines of the operator φ̄n. In particular, Feynman diagrams having

lines joining one vertex to another one vanish in the double-scaling limit. As a result, the

two-point function can be exactly computed by a complete resummation of the surviving

L-loop Feynman diagrams.

Alternatively, the double-scaling limit can be understood from a saddle-point calcu-

lation. This can be easily generalized to the general correlation function (2.1). We first

introduce the scaled scalar field

σ = g
1

4 φ , σ̄ = g
1

4 φ̄ . (2.2)

The general correlation function (2.1) is then given by

〈φ(x1)n1 · · ·φ(xr)nr φ̄(y1)
m1 · · · φ̄(ys)ms〉 = 1

g
m
2 Z

∫

DσDσ̄ e−S , m ≡
s

∑

j=1

mj ,

where the Euclidean action, including source terms, is given by

S = Sfree + Sint (2.3)

Sfree =

∫

d4x



g−
1

2∂σ̄ ∂σ −
∑

i

niδ(x− xi) log σ −
∑

j

mjδ(x− yj) log σ̄





=

∫

d4x
(

g−
1

2∂σ̄ ∂σ − log σ(x1)
n1 · · ·σ(xr)nr σ̄(y1)

m1 · · · σ̄(ys)ms

)

, (2.4)

Sint =

∫

d4x
1

4
(σ̄σ)2 . (2.5)
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The saddle-point equations are given by

∂2σ = −ng
1

2

∑

j

bjδ(x− yj)
1

σ̄
+

1

2
g

1

2 σ̄σ2 , ∂2σ̄ = −ng
1

2

∑

i

aiδ(x− xi)
1

σ
+

1

2
g

1

2 σ̄2σ .

In the double-scaling g → 0, n → ∞, with fixed λ = n2g, the cubic term vanishes. The

equations simply become

σ̄∂2σ = −λ
1

2

∑

j

bjδ(x− yj) , σ∂2σ̄ = −λ
1

2

∑

i

aiδ(x− xi) . (2.6)

2.1 Extremal correlators

We shall first consider a special class of correlation functions where the resulting expressions

in the double-scaling limit are conspicuously simple. These are the “extremal” correlators

〈φ(x1)n1 · · ·φ(xr)nr φ̄(y)m〉 ,
r

∑

i=1

ni = m . (2.7)

The name “extremal” correlators is borrowed from N = 2 supersymmetric gauge theories,

where, as explained earlier, correlation functions of this form are special by virtue of su-

persymmetry. In the present case, there is of course no supersymmetry. Yet, for extremal

correlators of the form (2.7), the double-scaling limit is specially simple, singling out the

particular topologies generalizing the Kermit diagrams of [4] with the two lines of each

vertex being distributed among the r different points. The reason of the simplicity of this

correlator is more transparent in the saddle-point calculation, which for this case admits a

simple solution. The solution to (2.6) is

σ =
λ

1

2 b

σ̄0(y)
G(x− y) , σ̄ = σ̄0(y)

r
∑

i=1

aiG(x− xi)

bG(xi − y)
, (2.8)

where G(x) is the Green’s function

G(x) =
1

4πx2
, ∂2G(x) = −δ(x) ,

Note that the factor σ̄0(y) = σ̄(y) cancels out in computing the action. Substituting this

solution into the free part of the action, we obtain

Sfree = − log σ(x1)
n1 · · ·σ(xr)nr σ̄(y)m +m . (2.9)

This gives

〈φ(x1)n1 · · ·φ(xr)nr φ̄(y)m〉free =
mme−m

(4π2)m

r
∏

i=1

1

|xi − y|2ni
. (2.10)

The factor mme−m is the leading approximation for m! (the Gaussian integration in the

saddle-point approximation completes the standard form of the de Moivre-Stirling formula

m! ≈
√
2πmmme−m).

– 4 –
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Next, let us consider the interaction term.

Sint =

∫

d4x
1

4
(σ̄σ)2 =

λ

4

∫

d4xG(x− y)2

(

∑

i

aiG(x− xi)

G(xi − y)

)2

=
λ

4





r
∑

i=1

a2i I(xi, y) + 2
r

∑

i<j

aiajI(xi, xj , y)



 ,

where1

I(xi, y) ≡ 1

G(xi − y)2

∫

d4xG(x− y)2G(x− xi)
2 =

1

4π2
log(µ|xi − y|) (2.11)

I(xi, xj , y) ≡ 1

G(xi − y)G(xj − y)

∫

d4xG(x− y)2G(x− xi)G(x− xj)

=
1

8π2
log

(

µ
|xi − y| |xj − y|

|xi − xj |

)

, (2.12)

being µ is a reference mass scale, which in what follows will be set to one (see comments

in appendix A).

Combining the free and the interacting part, we finally obtain

〈φ(x1)n1 · · ·φ(xr)nr φ̄(y)m〉 = m!

(4π2)m
∏r

i=1 |xi − y|2(ni+
λ aib

32π2
) ∏r

i<j |xi − xj |−
λ ai aj

16π2

.

(2.13)

We can now check that this structure is consistent with the expected structure dictated by

conformal symmetry. Consider first the particular case of the three-point function, that

is, r = 2. With no loss of generality, we can set y = 0. The result can be written in the

equivalent form

〈φ(x1)n1φ(x2)
n2 φ̄(0)m〉 = m!

(4π2)m|x1|∆1+∆̄−∆2 |x2|∆2+∆̄−∆1 |x1 − x2|∆1+∆2−∆̄
, (2.14)

where m = n1 + n2 and

∆1 = n1 +
λa21
32π2

, ∆2 = n2 +
λa22
32π2

, ∆̄ = (n1 + n2) +
λ(a1 + a2)

2

32π2
.

Higher-point extremal correlators are given explicitly by the remarkably simple for-

mula (2.13). When r ≥ 3, the exponents in the formula (2.13) can no longer be expressed

purely in terms of the dimensions {∆i, ∆̄} as in the three-point function (2.14).

Summarizing, we found the exact “extremal” correlators in the double-scaling limit

where all charges go to infinity scaling in the same way. The result represents the resum-

mation of the infinite number of L-loop Feynman diagrams that survive the limit. These

are shown in figure 1 and generalize the “Kermit the frog” diagrams described in detail

in [4]. The existence of the limit can be understood from the saddle-point analysis, which

led to finite expressions that become exact at n = ∞. For large, but finite, charges, the

1Details on the calculation of these integrals can be found in [15] (see also [4]).
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xi
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y
...

xi

xj

y
...

Figure 1. Types of diagrams that contribute to the extremal correlators.

double-scaling limit can be viewed as the leading result in a 1/n expansion. The next

O(1/n) terms in the expansion may be systematically derived from corrections to the sad-

dle point approximations, obtained from the Taylor expansion of the action around the

saddle-point.

2.2 Non-extremal correlators

Let us now discuss general (“non-extremal”) correlation functions. The general solution

to (2.6) is given by

σ(x) = λ
1

2

s
∑

j=1

bj
σ̄(yj)

G(x, yj) , σ̄(x) = λ
1

2

r
∑

i=1

ai
σ(xi)

G(x, xi) , (2.15)

One can check that these equations are consistent provided
∑r

i=1 ni =
∑s

j=1mj . General

correlation functions can be obtained by substituting (2.15) into the action (2.4), (2.5). In

what follows we shall focus on the four-point function.

2.2.1 Four-point non-extremal correlator

As an explicit example, let us consider the case r = s = 2, i.e. the four-point function

〈φ(x1)n1 φ(x2)
n2 φ̄(y1)

m1 φ̄(y2)
m2〉 , n1 + n2 = m1 +m2 . (2.16)

In addition, in this subsection we shall consider the particular case

a1 = a2 = b1 = b2 = 1 , (2.17)

so that ni = mi = n. Then

σ(x) = σ0(x2)

√

G(x1, y2)
G(x2, y1)

G(x, y1) +
√

G(x1, y1)
G(x2, y2)

G(x, y2)
√

G(x1, y2)G(x2, y1) +
√

G(x1, y1)G(x2, y2)
, (2.18)

and

σ̄(x) =
λ

1

2

σ0(x2)

(

G(x, x2) +

√

G(x2, y1)G(x2, y2)

G(x1, y1)G(x1, y2)
G(x, x1)

)

. (2.19)

The factor σ0(x2) = σ(x2) cancels out when computing the action. Substituting the solu-

tion into the free part of the action, given in (2.4), we obtain

Sfree = 2n− n log λ
(

√

G(x1, y2)G(x2, y1) +
√

G(x1, y1)G(x2, y2)
)2

. (2.20)
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It is convenient to rename (y1, y2) → (x3, x4) and define rij ≡ |xi − xj |. Thus we obtain

〈φ(x1)n φ(x2)n φ̄(x3)n φ̄(x4)n〉free =
n2ne−2n

(4π2)2n

(

1

r14r23
+

1

r13r24

)2n

. (2.21)

Let us now compute the interaction term. Substituting the solutions (2.18), (2.19) for σ

and σ̄ into (2.5), we get an expression with nine integrals. Using the formulas (2.11), (2.12)

and the integral computed in [16] (see also [17–20])

∫

d4xG(x, x1)G(x, x2)G(x, x3)G(x, x4) =
H

28π6 r213 r
2
24

, (2.22)

where

H =
1

1− x− y

(

log x(1− y) log
y

1− x
− 2Li2(x) + 2Li2(1− y)

)

, (2.23)

with

x =
ρ u2

1 + ρ u2
, y =

ρv2

1 + ρ v2
, ρ =

2

1− u2 − v2 − λ
, λ =

√

(1− u2 − v2)2 − 4u2 v2 ,

being u, v the conformal ratios

u ≡ r12r34
r13r24

, v ≡ r14 r23
r13 r24

; (2.24)

one finds that

Sint =
λ

16π2
log

r13r24
r12r34

+
λ

16π2
log

r14r23
r12r34

+
λ

16π2
log(r12 r34) + S′

int , (2.25)

where

S′
int ≡

λ

16π2

1

(r14r23 + r13r24)2

(

H r214 r
2
23 − r213r

2
24 log

r13r24
r12r34

− r214r
2
23 log

r14r23
r12r34

)

. (2.26)

Thus, altogether, we obtain

〈φ(x1)n φ(x2)n φ̄(x3)n φ̄(x4)n〉 =
(n!)2

(4π2)2n
(r14r23 + r13r24)

2n (r12r34)
λ

16π2

(r14r23r13r24)
2∆

e−S′

int . (2.27)

The final expression (2.27) has the symmetries under the exchanges x1 ↔ x2 and

x3 ↔ x4. These symmetries are not manifest in the term with H, but they can be shown

to hold using standard properties of Li2(x) (see discussion in appendix C of [16]). The

four-point function (2.27) also has the expected singular behavior in the channels x1 = x3,

x1 = x4, x2 = x3, x2 = x4, with a power governed by the full scaling dimension ∆ of the

operators, including the anomalous dimension. Here we have used the property that S′
int

is regular at any coinciding points, as can be shown using the above formula for H. While

the free part (2.21) does not contain any singularity in the channels r12 = 0 and r34 = 0

because of charge conservation, due to the interaction there is a behavior (r12r34)
λ

16π2 . This

behavior was already present in the extremal correlators. The terms with log r12 and log r34
in S′

int exactly cancel out with similar terms originating from H in the limit where either

– 7 –
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r12 → 0 or r34 → 0, so there is no extra contribution to this behavior. As a non-trivial

check, we must recover the extremal three-point function (2.14) in the limit x4 → x3.

We obtain

lim
x4→x3

〈φ(x1)n φ(x2)n φ̄(x3)n φ̄(x4)n〉 =
(2n)!

(4π2)2n
(ℓ r12)

λ

16π2

r∆̄13r
∆̄
23

, ∆̄ = 2n+
λ

8π2
, (2.28)

where ℓ = r34 → 0. This reproduces (2.14) for n1 = n2 = n, m = 2n, with an extra factor

ℓ multiplying r12. This factor is to be absorbed into the reference scale µ; see discussion

in appendix A.

The important prediction of the double-scaling limit is that the O(λ) correction expo-

nentiates. The saddle-point method exactly computes the full resummation of the surviving

multiloop Feynman diagrams in the double-scaling limit. The saddle point approximation

receives 1/n corrections that we are not computing and reorganize into a more general

expansion in powers of 1/n and λ.

2.2.2 Generating functional for the free part

Here we shall compute general higher-points correlation functions for the free theory by

computing the generating functional. This will also serve as a cross-check of the free (λ = 0)

part of the previous results. We consider the following correlation function:

〈 r
∏

i=1

eαiφ(xi)
s
∏

j=1

eβj φ̄(yj)

〉

free

. (2.29)

The desired (free) correlator (2.1) is then obtained by expanding the generating functional

in powers of αi and βj and isolating the term with the required powers ni, mj . Including

the source terms, the action is given by

Sfree =

∫

d4x



∂φ̄ ∂φ−
∑

i

αiδ(x− xi)φ−
∑

j

βjδ(x− yj)φ̄



 . (2.30)

The functional integral is Gaussian and can be computed exactly, with no need of taking

any large charge limit, by solving the saddle-point equations. These are given by

∂2φ = −
s

∑

j=1

βjδ(x− yj) , ∂2φ̄ = −
r

∑

i=1

αiδ(x− xi) . (2.31)

The advantage of working with exponential operators is that the equations have now the

straightforward solutions

φ(x) =

s
∑

j=1

βjG(x− yj) , φ̄(x) =

r
∑

i=1

αiG(x− xi) . (2.32)

Substituting these solutions into the action we obtain

Sfree = −
s

∑

j=1

r
∑

i=1

αiβjG(xi − yj) . (2.33)

– 8 –
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Using this formula, we reproduce the previous results for the free part of the extremal

correlators in a straightforward way.

Let us now consider non-extremal correlators. These have a more complicated structure

involving several sums of terms, which originate from many new possible contractions

arising in Feynman diagrams. As an example, here we consider the four-point correlation

function

G4 ≡ 〈φ(x1)n1φ(x2)
n2 φ̄(y1)

m1 φ̄(y2)
m2〉free . (2.34)

We have

〈eα1φ(x1)eα2φ(x2) eβ1φ̄(y1)eβ2φ̄(y2)〉free = eα1β1G(x1−y1)eα2β2G(x2−y2)eα1β2G(x1−y2)eα2β1G(x2−y1) .

Expanding in powers of αi, βj and isolating the terms with given powers αn1

1 αn2βm1

1 βm2

2 ,

we find

G4 = n1!n2!m1!m2!
∑

k

G(x1 − y1)
kG(x2 − y2)

k+n2−m1G(x1 − y2)
n1−kG(x2 − y1)

m1−k

k!(n1 − k)!(k + n2 −m1)!(m1 − k)!

(2.35)

Thus far this is exact, valid for any values of n1, n2,m1,m2, with the sum over k restricted

to k ≥ 0, k ≤ m1, k ≥ m1 − n2, k ≤ n1.

Obtaining the correct asymptotic large charge behavior requires some care, as the

approximation (n− k)! ≈ n!n−k cannot be applied in (2.35) because this holds for k ≪ n

and terms with k ∼ n give a relevant contribution to the sum. To illustrate this, let us

consider in particular the case n1 = n2 = m1 = m2 ≡ n. Then we get

G4 = (n!)4
n
∑

k=0

G(x1 − y1)
kG(x2 − y2)

kG(x1 − y2)
n−kG(x2 − y1)

n−k

k!2(n− k)!2

=
n!2

(4π2)2n
1

r2n14 r
2n
23

2F1(−n,−n, 1, v2) , (2.36)

where we renamed (y1, y2) → (x3, x4). This formula is in agreement with the results

presented in [21] for the cases n = 1 and n = 2, given by (6.17) and (6.21) in [21] (for a

real scalar field). Explicitly,

1

r2n14 r
2n
23

2F1(−n, −n, 1, v2) =

{

u+ u
v

if n = 1 ,

u2 + u2

v2
+ 4 u2

v
if n = 2 .

(2.37)

The missing term “1” in (6.2) of [21] is easily understood, as it comes from the identity

operator which in the present O(2) case cannot be exchanged in the φ(x1)φ(x2) fusion due

to charge conservation. As a further consistency check, in the limit x4 → x3 we find

〈φ(x1)n φ(x2)n φ̄(x3)2n〉free =
(2n)!

(4π2)2n
1

r2n13 r
2n
23

, (2.38)

which is precisely the free part of the 3-point function (cf. eq. (2.14) for λ = 0).
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The exact result (2.36) can be used to cross-check the free part computed earlier

in (2.21). The asymptotic large n behaviour can be obtained from the integral representa-

tion of the hypergeometric function, which at large n is dominated by a saddle-point (see

e.g. [22]). This gives

2F1(−n,−n, 1, v2) ≈ 1√
4πn

(1 + v)1+2n

v
1

2

.

Substituting this formula into (2.36), we obtain

〈φ(x1)n φ(x2)n φ̄(x3)n φ̄(x4)n〉free ≈
n!2

(4π2)2n
1√
4πn

1

(r14r23r24r13)n

(√
v +

1√
v

)1+2n

.

(2.39)

For large n, this coincides with (2.21).
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A On the scale dependence of correlation functions

It is worth noting that the first two terms in (2.25) and S′
int are dimensionless quantities

(which can in fact be written in terms of the standard conformal ratios). Upon restoring the

reference mass scale µ, this appears only in the term log(µ2 r12 r34) term. One may wonder

how, in a CFT, a non-trivial dependence on a scale appeared in a correlation function. To

understand this point, let us first consider the case of the two-point function written it in

terms of dimensionless operators using the reference scale µ. This leads to

〈(

φ(x1)

µ

)n( φ̄(x2)

µ

)n〉

=
n!

(4π2)n
e−Sint

(µ |x1 − x2|)2n
=

n!

(4π2)n
e−

λ

16π2
log(µ |x1−x2|)

(µ |x1 − x2|)2n

=
n!

(4π2)n
1

(µ |x1 − x2|)2∆
, ∆ = n+

λ

32π2
. (A.1)

Thus, the µ dependence in the argument of the logarithm is precisely what it is required

to soak up the dimensions of x as it should be for a correlator of dimensionless operators.

In other words, the µ dependence in the argument of the logarithm is reflecting the fact

the operator has anomalous dimension.

Now consider the four-point function (2.27). Similarly, the factor of µ arising from the

term log(µ2 r12 r34) in (2.25) combines with the factor µ−4n to give a net factor µ−4∆, which
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is, in this case, the expected factor given that each operator has dimension ∆. Restoring

the µ dependence, the non-extremal four-point function is given by

1

µ4n
〈φ(x1)nφ(x2)nφ̄(x3)nφ̄(x4)n〉 =

(n!)2

(4π2)2n
µ4n(r14r23 + r13r24)

2n
(

µ2r12r34
) λ

16π2

µ8∆ (r14r23r13r24)
2∆

e−S′

int

=
(n!)2

(4π2)2n
(r14r23 + r13r24)

2n (r12r34)
λ

16π2

µ4∆ (r14r23r13r24)
2∆

e−S′

int . (A.2)

One can check that the same property holds for the general extremal correlator (2.13): the

only µ-dependence in µ−
∑

i niµ−m〈φ(x1)n1 · · ·φ(xr)nr φ̄(y)m〉 is in a factor µ−
∑

i ∆iµ−∆̄ on

the r.h.s. , as expected.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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